
Weak Bisimulation Approximants

Will Harwood, Faron Moller?, and Anton Setzer??

Department of Computer Science, Swansea University
Singleton Park, Sketty, Swansea SA2 8PP, UK

{cswill,f.g.moller,a.g.setzer}@swansea.ac.uk

30 June 2006

Abstract. Bisimilarity ∼ and weak bisimilarity ≈ are canonical no-
tions of equivalence between processes, which are defined co-inductively,
but may be approached – and even reached – by their (transfinite)
inductively-defined approximants ∼α and ≈α. For arbitrary processes
this approximation may need to climb arbitrarily high through the in-
finite ordinals before stabilising. In this paper we consider a simple yet
well-studied process algebra, the Basic Parallel Processes (BPP), and
investigate for this class of processes the minimal ordinal α such that
≈ = ≈α.

The main tool in our investigation is a novel proof of Dickson’s Lemma .
Unlike classical proofs, the proof we provide gives rise to a tight ordinal
bound, of ωn, on the order type of non-increasing sequences of n-tuples of
natural numbers. With this we are able to reduce a long-standing bound
on the approximation hierarchy for weak bisimilarity ≈ over BPP, and
show that ≈ = ≈ωω .

1 Introduction

There has been great interest of late in the development of techniques for decid-
ing equivalences between infinite-state processes, particularly for the question of
bisimilarity between processes generated by some type of term algebra. Several
surveys of this developing area have been published, beginning with [16], and
there is now a chapter in the Handbook of Process Algebra dedicated to the
topic [2], as well as a website devoted to maintaining an up-to-date comprehen-
sive overview of the state-of-the-art [20].

While questions concerning strong bisimilarity have been successfully ad-
dressed, techniques for tackling the question of weak bisimilarity, that is, when

? This paper was written in part while the second author was in residence at the Isaac
Newton Institute for Mathematical Sciences, Cambridge, during the Programme
Logic and Algorithms.

?? Supported by EPSRC grant GR/S30450/01.

2

silent unobservable transitions are allowed, are still lacking, and many open
problems remain. The main difficulty arising when considering weak bisimilar-
ity is that processes immediately become infinite-branching: at any point in a
computation, a single action can result in any number of transitions leading to
any one of an infinite number of next states. Common finiteness properties fail
due to this; in particular, bisimilarity can no longer be characterised by its finite
approximations in the way that it can for finite-branching processes. For arbi-
trary infinite-branching processes, we may need to climb arbitrarily high through
the transfinite approximations to bisimilarity before reaching the bisimulation
relation itself.

In this paper we consider the problem of weak bisimilarity for so-called Basic
Parallel Processes (BPP), a simple yet well-studied model of concurrent pro-
cesses. These correspond to commutative context-free processes, or equivalently
to communication-free Petri nets. The question as to the decidability of weak
bisimilarity between BPP processes remains unsolved (though decidability re-
sults for very restricted classes of BPP have been established by Hirshfeld in [10]
and Stirling in [21]). It has recently been shown that the problem is at least
PSPACE-hard [19], even in the restricted case of so-called normed BPP, but this
sheds no light one way or the other as to decidability. Jančar suggests in [14]
that the techniques he uses there to establish PSPACE-completeness of strong
bisimilarity for BPP might be exploited to give a decision procedure for weak
bisimilarity, but three years later this conjecture remains unsubstantiated.

It has long been conjectured that for BPP, weak bisimilarity is characterised
by its (ω×2)-level approximation. Such a result could provide a way to a decision
procedure. However, no nontrivial approximation bound has before now been
established; the strength of the (ω×2)-conjecture remains rooted only in the
fact that no counterexample has been found. In this paper we provide the first
non-trivial countable bound on the approximation: for a BPP defined over k
variables, weak bisimilarity is reached by the ω2k level; weak bisimilarity is thus
reached by the ωω level for any BPP.

Our argument is based on a new constructive proof of Dickson’s Lemma
which provides an ordinal bound on the sequences described by the Lemma.
This proof is presented in Section 2 of the paper. After this, the definitions
necessary for the remainder of the paper are outlined in Section 3 along with a
variety of results, and our results on BPP are presented in Section 4. We finish
with some concluding observations in Section 5.

2 Ordinal Bounds for Dickson’s Lemma

In the sequel we shall use the following notation. We let x, y (with subscripts)
range over natural numbers N = {0, 1, 2, . . .}; ~x, ~y (with subscripts) range over

finite sequences (n-tuples) of natural numbers; and ~X, ~Y range over arbitrary

3

(finite or infinite) sequences of such n-tuples. We shall use angle brackets to de-

note sequences, such as ~x= 〈x1, . . . , xn〉 and ~X = 〈~x1, ~x2, . . .〉, and juxtaposition

to represent concatenation; e.g., if ~X is a finite sequence of n-tuples then ~X〈~x〉
is the longer sequence which has the extra n-tuple ~x added to the end. Finally,
we shall use the notation (·)k to select the kth component from a sequence; for
example, if ~xi = 〈x1, . . . , xn〉 then (~xi)k = xk . (The parentheses are used to avoid
confusion with the subscripting allowed in the variable naming the sequence.)

One n-tuple ~y= 〈y1, . . . , yn〉 of natural numbers dominates another such
n-tuple ~x= 〈x1, . . . , xn〉 if ~x≤ ~y, where ≤ is considered pointwise, that is, xi≤ yi
for each i∈{1, . . . , n}. A sequence of n-tuples is a non-dominating sequence
over Nn if no element of the sequence dominates any of its predecessors in the
sequence. A tree – by which we mean a rooted directed graph with no undirected
cycles – with nodes labelled by n-tuples from Nn is a non-dominating tree over
Nn if the sequence of labels along any path through the tree is a non-dominating
sequence.

Dickson’s Lemma [6] asserts that there can be no infinite non-dominating
sequences.

Lemma 1 (Dickson’s Lemma). All non-dominating sequences are finite. That
is, given an infinite sequence of vectors ~x1, ~x2, ~x3, . . . ∈ Nn, we can always find
indices i, j with i< j such that ~xi ≤ ~xj .

The standard proof of this lemma uses a straightforward induction on n: for the
base case, any sequence of decreasing natural numbers must be finite; and for
the induction step, from an infinite sequence of n-tuples you extract an infinite
subsequence in which the last components are nondecreasing (either constant
or increasing), and then apply induction on the sequence of (n−1)-tuples which
arise by ignoring these last components.

The problem with this proof is that it is nonconstructive; in particular, it
gives no clue as to the ordinal bound on the lengths of non-dominating sequences.
The difficulty with determining an ordinal bound comes from the fact that the
domination order is not a total order on n-tuples (as opposed, for example, to
lexicographical order). We provide here an alternative constructive proof from
which we can extract an ordinal bound on the lengths of such sequences.

Theorem 1 (Constructive Dickson’s Lemma). The order type of the set of
non-dominating sequences of n-tuples of natural numbers with partial ordering

~X ≺ ~Y
def⇔ ~X strictly extends ~Y

is ωn.

4

Proof. That the order type is at least ωn is clear: the order type of the set of
lexicographically descending sequences with respect to extension is ωn, and this
set is contained in the set of non-dominating sequences.

It remains to show that the order type is at most ωn. This result will follow
immediately from the construction of a function

fn : (Nn)+ → Nn

on non-empty finite sequences of n-tuples which satisfies the following property:

If ~X〈~x〉 is a non-dominating sequence of n-tuples, and ~X is itself non-empty,

then fn(~X〈~x〉)<lex fn(~X).

We shall inductively define these functions fn. The base case is straightforward:
we can define f1 by

f1(〈x1, . . . , xk〉) def
= xk.

A non-dominating sequence of natural numbers is simply a decreasing sequence,
which has ordinal bound ω.

For illustrative purposes we carry out the construction of the function f2 for
sequences of pairs, and later generalise our construction to sequences of n-tuples.

Given a non-empty finite sequence of pairs ~X = 〈〈x1, y1〉, . . . , 〈xk , yk〉〉, de-
fine

• minx(~X)
def
= min{xi : 1 ≤ i ≤ k },

• miny(~X)
def
= min{ yi : 1 ≤ i ≤ k }, and

• S2(~X)
def
=
{
〈x, y〉 : minx(~X) ≤ x, miny(~X) ≤ y, and

〈xi, yi〉 6≤ 〈x, y〉 for all i : 1 ≤ i ≤ k
}
.

S2(~X) consists of the pairs with which the sequence ~X can be extended without
altering the minx and miny values and yet while maintaining non-domination.

Note that S2(~X) must be finite: if we let i and j be such that xi = minx(~X)

and yj = miny(~X), then in order for 〈x, y〉 6≥ 〈xi, yi〉 and 〈x, y〉 6≥ 〈xj , yj〉 we
must have x < xj (since y ≥ yj) and y < yi (since x ≥ xi).

Suppose that ~Y = ~X〈〈x, y〉〉 is a non-dominating sequence, and that ~X is

itself non-empty. Then clearly minx(~Y) ≤ minx(~X) and miny(~Y) ≤ miny(~X);

and if equality holds in both cases then S2(~Y) (S2(~X), since S2(~Y) ⊆ S2(~X)

yet 〈x, y〉 ∈ S2(~X) \ S2(~Y). Thus |S2(~Y)| < |S2(~X)|.

5

We can then define the function f2 on non-empty sequences ~X of pairs as
follows:

f2(~X)
def
= 〈minx(~X)+miny(~X), |S2(~X)| 〉

If ~X〈〈x, y〉〉 is a non-dominating sequence and ~X is itself non-empty, then by

the above argument we must have that f2(~X〈〈x, y〉〉)<lex f2(~X).

For the inductive construction of fn we assume we have constructed the
function fn−1 as required. For 1 ≤ i ≤ n we define the function

π-i(〈x1, . . . , xn〉) def
= 〈x1, . . . , xi−1, xi+1, . . . , xn〉

which simply deletes the ith component from the n-tuple 〈x1, . . . , xn〉. Next,

given a non-empty finite sequence ~X = 〈~x1, . . . , ~xk〉 of n-tuples, we define the
set

nd-i(~X)
def
=
{
〈π-i(~xi1), . . . , π-i(~xip)〉 : p > 0, 0 < i1 < · · · < ip ≤ k,

and 〈π-i(~xi1), . . . , π-i(~xip)〉 is non-dominating
}

which consists of the non-dominating subsequences of (n−1)-tuples of ~X in
which the ith components of the n-tuples have been deleted. Finally we make
the following definitions:

• min-i(~X)
def
= min<lex

{ fn−1(~Y) : ~Y ∈ nd-i(~X) }

• Sn(~X)
def
=
{
~x : min-i(~X) = min-i(~X〈~x〉) for all i : 1 ≤ i ≤ n,

and ~xi 6≤ ~x for all i : 1 ≤ i ≤ k
}

Sn(~X) consists of the n-tuples with which the sequence ~X can be extended
without altering the min-i values and yet while maintaining non-domination.
Note that Sn(~X) must be finite. To see this, let 1 ≤ i ≤ n and i1, . . . , ip be such
that

min-i(~X) = fn−1(〈π-i(~xi1), . . . , π-i(~xip)〉),

and suppose that ~x ∈ Sn(~X). If the sequence 〈π-i(~xi1), . . . , π-i(~xip), π-i(~x)〉 is
non-dominating, then by induction we would get that

min-i(~X〈~x〉) ≤lex fn−1(〈π-i(~xi1), . . . , π-i(~xip), π-i(~x)〉)
<lex fn−1(〈π-i(~xi1), . . . , π-i(~xip)〉)
= min-i(~X)

6

contradicting ~x ∈ Sn(~X). Therefore we must have that π-i(~x) ≥ π-i(~xij) for
some j. But since ~x 6≥ ~xij we must then have that (~x)i < (~xij)i.

Suppose that ~Y = ~X〈~x〉 is a non-dominating sequence, and that ~X is itself

non-empty. Then min-i(~Y) ≤ min-i(~X) for all i (since nd-i(~X) ⊆ nd-i(~Y)); and

if equality holds in all cases then Sn(~Y) (Sn(~X) since Sn(~Y) ⊆ Sn(~X) yet

~x ∈ Sn(~X) \ Sn(~Y). Thus |Sn(~Y)| < |Sn(~X)|.

We can then define the function fn on non-empty sequences ~X of n-tuples
as follows:

fn(~X) =
(∑n

i=1 min-i(~X)
)
〈|Sn(~X)|〉

where the sum is taken component-wise. (This sum is, if we identify 〈k1, . . . , kn〉
with ωn−1 ·k1 +ωn−2 ·k2 + · · ·+ω0 ·kn, the natural sum of ordinals.) If ~X〈~x〉 is a

non-dominating sequence and ~X is itself non-empty, then by the above argument
we must have that fn(~X〈~x〉)<lex fn(~X). �

2.1 Ordinal Bounds on Trees

Our constructive version of Dickson’s Lemma easily extends to trees, where we
take the following definition of the height of a well-founded tree (that is, a tree
with no infinite paths).

Definition 1. The height of a well-founded tree rooted at t is defined by

h(t)
def
= sup{h(s) + 1 : t −→ s }.

(By convention, sup ∅ = 0.)

Theorem 2. If t is (the root of) a non-dominating tree over Nn, then h(t) ≤ ωn.

Proof. For each node x of the tree, define `(x) ∈ Nn by `(x) = fn(πx), where
fn is as defined in the proof of Lemma 1, and πx is the non-dominating se-
quence of labels on the path from (the root) t to x. It will suffice then to prove
that h(x)≤`(x) (viewing `(x) as an ordinal, that is, interpreting the n-tuple
〈k1, . . . , kn〉 ∈ Nn as ωn−1k1 + ωn−2k2 + · · ·+ ω0kn) for all nodes x of the tree.
This is accomplished by a straightforward induction on h(x):

h(x) = sup{h(y)+1 : x→ y }
≤ sup{ `(y)+1 : x→ y } (by induction)

≤ `(x). �

7

3 Processes and Bisimilarity

A process is represented by (a state in) a labelled transition system defined
as follows.

Definition 2. A labelled transition system (LTS) is a triple S = (S,Act ,→)
where S is a set of states, Act is a finite set of actions, and → ⊆ S ×Act ×S
is a transition relation.

We write s
a→ t instead of (s, a, t) ∈ →, thus defining an infix binary relation

a→ = {(s, t) : (s, a, t) ∈ →} for each action a ∈ Act .

It is common to admit silent transitions to model the internal unobservable
evolution of a system. In standard automata theory these are typically referred
to as “epsilon” (or occasionally “lambda”) transitions, but in concurrency theory
they are commonly represented by a special action τ ∈ Act . With this, we can
then define observable transitions as follows:

s
τ⇒ t iff s (

τ→)∗ t and

s
a⇒ t iff s (

τ→)∗ · a→ · (τ→)∗ t for a 6= τ .

In general,
a⇒ ⊇ a→; and over an LTS with no silent transitions,

a⇒ =
a→, and

in this case all the relations we define wrt ⇒ will be identical to the analogous
relations defined wrt →.

The notion of “behavioural sameness” between two processes (which we view
as two states in the same LTS) can be formally captured in many different ways
(see, e.g., [8] for an overview). Among those behavioural equivalences, bisimi-
larity enjoys special attention. Its formal definition is as follows.

Definition 3. Let S = (S,Act ,→) be an LTS. A binary relation R ⊆ S × S is
a bisimulation relation iff whenever (s, t) ∈ R, we have that

– for each transition s
a→ s′ there is a transition t

a→ t′ such that (s′, t′) ∈ R;
and

– for each transition t
a→ t′ there is a transition s

a→ s′ such that (s′, t′) ∈ R.

Processes s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff
they are related by some bisimulation. Thus ∼ is the union, and ergo the largest,
of all bisimulation relations.

If we replace the transition relation → in this definition with the weak tran-
sition relation ⇒, we arrive at the definition of a weak bisimulation relation
defining weak bisimulation equivalence (weak bisimilarity), which we de-
note by ≈. In general, ≈ ⊇ ∼; and over an LTS with no silent transitions,
≈ = ∼.

8

The above definition of (weak) bisimilarity is a co-inductive one, but can be
approximated using the following inductively-defined stratification.

Definition 4. The bisimulation approximants ∼α, for all ordinals α ∈ O,
are defined as follows:

– s ∼0 t for all process states s and t.

– s ∼α+1 t iff

• for each transition s
a→ s′ there is a transition t

a→ t′ such that s′ ∼α t′;
and
• for each transition t

a→ t′ there is a transition s
a→ s′ such that s′ ∼α t′.

– For all limit ordinals λ, s ∼λ t iff s ∼α t for all α < λ.

The weak bisimulation approximants ≈α are defined by replacing the tran-
sition relation → with the weak transition relation ⇒ in the above definition.

The following results are then standard.

Theorem 3.

1. Each ∼α and ≈α is an equivalence relation over the states of any LTS.

2. Given α < β, ∼α ⊇ ∼β and ≈α ⊇ ≈β over the states of any LTS; and in
general these define strictly decreasing hierarchies: given any ordinal α we
can provide an LTS with states s and t satisfying s ∼α t but s 6∼α+1 t (and
s ≈α t but s 6≈α+1 t).

3. s ∼ t iff s ∼α t for all ordinals α ∈ O, and s ≈ t iff s ≈α t for all ordinals
α ∈ O. That is, ∼ = ∩α∈O ∼α and ≈ = ∩α∈O ≈α.

Remark 1. For Part 2 of Theorem 3 we can define an LTS over a singleton
alphabet {a} (a6=τ) whose state set is γ for some ordinal γ (that is, each ordinal

smaller than γ is a state), and such that α
a→ β iff β < α. Then it is easy to

show that for α < β, α ∼α β but α 6∼α+1 β. (First we show, by induction on α,
that if α ≤ µ, ν then µ ∼α ν; then we show, by induction on α, that if α < β
then α 6∼α+1 β.) As this LTS does not have τ actions, and hence ≈=∼, this also
gives that α ≈α β but α 6≈α+1 β.

If s 6∼ t, we must have a least ordinal α ∈ O such that s 6∼α+1 t, and for this
ordinal α we must have s ∼α t. (If s 6∼λ t for a limit ordinal λ then we must
have s 6∼α t, and hence s 6∼α+1 t, for some α < λ.) We shall identify this value α
by writing s ∼!

α t. In the same way we write s ≈!
α t to identify the least ordinal

α ∈ O such that s 6≈α+1 t.

9

3.1 Bisimulation Games and Optimal Move Trees

There is a further approach to defining (weak) bisimilarity, one based on games
and strategies, whose usefulness is outlined in the tutorial [15]. We describe it
here for bisimilarity; its description for weak bisimilarity requires only replacing
the transition relation → with the weak transition relation ⇒, after which all
results stated will hold for the weak bisimilarity relations.

A game G(s, t) corresponding to two states s and t of an LTS is played
between two players, A and B; the first player A (the adversary) wants to show
that the states s and t are different, while the second player B (the bisimulator)
wants to show that they are the same. To this end the game is played by the
two players exchanging moves as follows:

– A chooses any transition s
a→ s′ or t

a→ t′ from one of the states s and t;

– B responds by choosing a matching transition t
a→ t′ or s

a→ s′ from the
other state;

– the game then continues from the new position G(s′, t′).

The second player B wins this game if B can match every move that the first
player A makes (that is, if A ever cannot make a move or the game continues
indefinitely); if, however, B at some point cannot match a move made by A then
player A wins. The following is then a straightforward result.

Theorem 4. s ∼ t iff the second player B has a winning strategy for G(s, t).

If s 6∼ t, then s ∼!
α t for some α ∈ O, and this α in a sense determines how

long the game must last, assuming both players are playing optimally, before B
loses the game G(s, t):

– Since s 6∼α+1 t, A can make a move such that, regardless of B’s response,
the exchange of moves will result in a game G(s′, t′) in which s′ 6∼α t′; such
a move is an optimal move for A.

– For every β < α, regardless of the move made by A, B can respond in such
a way that the exchange of moves will result in a game G(s′, t′) in which
s′ ∼β t′.

With this in mind, we can make the following definition.

Definition 5. An optimal move tree is a tree whose nodes are labelled by
pairs of non-bisimilar states of an LTS in which an edge (s, t) −→ (s′, t′) exists
precisely when (s, t) is a node of the tree and the following holds:

In the game G(s, t), a single exchange of moves in which A makes an optimal
move may result in the game G(s′, t′)

The optimal move tree rooted at (s, t) is denoted by omt(s, t).

10

If (s, t) −→ (s′, t′) is an edge in an optimal move tree, then s ∼!
α t and s′ ∼!

β t
′

for some α and β with α > β. Hence, every optimal move tree is well-founded.
Furthermore, the following result is easily realised.

Lemma 2. h(omt(s, t)) = α iff s ∼!
α t.

3.2 Bounded Branching Processes

Over the class of finite-branching labelled transition systems, it is a standard
result that ∼ = ∼ω. We give here a generalisation of this result for infinite-
branching processes.

Definition 6. An infinite cardinal κ is regular iff it is not the supremum of
fewer than κ smaller ordinals.

Thus for example ω is regular as it is not the supremum of any finite collection
of natural numbers.

Definition 7. A process is <-κ-branching iff all of its states have fewer than
κ transitions leading out of them. A tree t is <-κ-branching iff all of its nodes
have fewer than κ children.

Theorem 5. If κ is a regular cardinal, and t is a well-founded <-κ-branching
tree, then h(t) < κ.

Proof. By (transfinite) induction on h(t). If t −→ s then h(s) < h(t); and by
induction h(s) < κ and hence h(s)+1 < κ. Since h(t) = sup{h(s)+1 : t −→ s },
by the regularity of κ we must have that h(t) < κ. �

The most basic form of this result is König’s Lemma: any finite-branching
well-founded tree can only have finitely-many nodes (and hence finite height).

The next result follows directly from the fact that |A×A| = |A| for any
infinite set A.

Lemma 3. If s and t are non-equivalent states of a <-κ-branching process, then
omt(s, t) is <-κ-branching.

From the above, we arrive at a theorem on approximant collapse, which
generalises the standard result that ∼ = ∼ω on finite-branching processes as
well as a result in [22] concerning countably-branching processes.

Theorem 6. For regular cardinals κ, ∼ = ∼κ over the class of <-κ-branching
processes.

Proof. ∼ ⊆ ∼κ is a given. If on the other hand s 6∼ t, then h(omt(s, t)) = α
where s ∼!

α t. Thus, by Lemma 3 and Theorem 5, α < κ, and hence s 6∼κ t. �

11

4 Basic Parallel Processes

A Basic Process Algebra (BPA) process is defined by a context-free grammar
in Greibach normal form. Formally this is given by a triple G = (V,A, Γ),
where V is a finite set of variables (nonterminal symbols), A is a finite set of
labels (terminal symbols), and Γ ⊆ V × A × V ∗ is a finite set of rewrite rules
(productions); it is assumed that every variable has at least one associated rewrite
rule. Such a grammar gives rise to the LTS SG = (V ∗, A,→) in which the states
are sequences of variables, the actions are the labels, and the transition relation
is given by the rewrite rules extended by the prefix rewriting rule: if (X, a, u) ∈ Γ
then Xv

a→ uv for all v ∈ V ∗. In this way, concatenation of variables naturally
represents sequential composition.

A Basic Parallel Processes (BPP) process is defined in exactly the same
fashion from such a grammar. However, in this case elements of V ∗ are read
modulo commutativity of concatenation, so that concatenation is interpreted as
parallel composition rather than sequential composition. The states of the BPP
process associated with a grammar are thus given not by sequences of variables
but rather by multisets of variables.

As an example, Figure 1 depicts BPA and BPP processes defined by the same

A
a //

c

��

AB
a //

c

��

ABB
a //

c

��

. . .

ε B
b

oo BB
b

oo . . .
b

oo

A

a **

c

��

AB
b

ii
a ,,

c

��

ABB
b

jj
a

**

c

��

. . .

b

ll

ε B
b

oo BB
b

oo . . .
b

oo

Fig. 1. BPA and BPP processes defined by the grammar A
a→ AB, A

c→ ε, B
b→ ε

grammar given by the three rules A
a→ AB, A

c→ ε and B
b→ ε.

Decidability results for (strong) bisimilarity checking have been long estab-
lished for both BPA [5] and BPP [3, 4]. For a wide class of interest (normed
processes) these problems have even been shown to have polynomial-time solu-
tions [11–13]. More recently, the decision problems for full BPA and BPP have
been shown to be PSPACE-hard [17, 18].

Decidability results for weak bisimilarity are much harder to establish, mainly
due to the problems of infinite branching. While over BPA and BPP we have
∼ = ∩n∈ω ∼n, the infinite-branching nature of the weak transition relations
makes this result false. As an example, Figure 2 gives a BPP process with states
P and Q in which P ≈n Q for all n∈ω yet P 6≈ Q. In this case we have
P ≈!

ω Q, but from these we can produce BPP process states Xn and Yn such

12

A
a→ A P

τ→ A Q
a→ ε

P
τ→ Q Q

τ→ QQ

P

τ

��

τ // A aff

ε Q
a

oo
τ **

QQ
τ ,,

a
oo QQQ

τ
**

a
oo . . .

a
oo

Fig. 2. A BPP process with states P and Q satisfying P ≈!
ω Q

that Xn ≈!
ω+n Yn by adding the following production rules to the defining

grammar:

X1
a→ P Xi+1

a→ Xi Y1
a→ Q Yi+1

a→ Yi

However, no example BPP states X and Y are known which satisfy X ≈!
ω×2 Y .

This leads to the following long-standing conjecture.

Conjecture (Hirshfeld, Jančar). Over BPP processes, ≈ = ≈ω×2.

Remark 2. The situation is different for BPA, as noted originally in [22]: for
any α<ωω, we can construct BPA processes P and Q for which P ≈!

α Q. To see
this, we consider the grammar G = (V,A, Γ) in which V = {X0, X1, . . . , Xn−1},
A = {a, τ}, and Γ consists of the following rules:

X0
a→ ε Xi

τ→ ε Xi+1
τ→ Xi+1Xi

For each α<ωn, with Cantor normal form

α = ωn−1an−1 + · · · + ω2a2 + ωa1 + a0,

let Pα = Xa0
0 Xa1

1 Xa2
2 · · ·X

an−1

n−1 . We can show that, for α<β<ωn, Pα ≈!
α Pβ.

This will follow from the following sequence of observations which demonstrate
a close analogy between the processes Pα and the ordinal processes α from Re-
mark 1:

– If P ≈ Q then RP ≈ RQ and PR ≈ QR. The first conclusion is true for
every BPA process, while the second conclusion is true for every BPA process
in which P

τ⇒ ε whenever P ≈ ε, which is certainly the case for the BPA
process under consideration since in this case P ≈ ε implies that P = ε.
(Proof: {(RP,RQ) : P ≈ Q} and {(PR,QR) : P ≈ Q} are easily verified to
be weak bisimulation relations.)

– For i>j: XiXj ≈ Xi. (Proof: by induction on i−j.)

13

– Every state P ∈ V ∗ is weakly bisimilar to some state Pα. (Proof: follows
directly from the above observations.)

– Xk
τ⇒ Pα for every α≤ωk. (Proof: easily verified.)

– Pα
τ⇒ Pβ for every β≤α. (Proof: generalisation of the above observation.)

– Pα
a⇒ Pβ for every β<α. (Proof: follows from the previous observation and

the fact that Pβ+1
a→ Pβ .)

– If Pα
τ⇒ P then P ≈ Pβ for some β≤α. (Proof: easily verified.)

– If Pα
a⇒ P then P ≈ Pβ for some β<α. (Proof: again easily verified.)

We thus arrive at the following important observations about the states Pα:

– Pα
τ⇒ Pβ for all β≤α, and if Pα

τ⇒ P then P ≈ Pβ for some β≤α; and

– Pα
a⇒ Pβ for all β<α, and if Pα

a⇒ P then P ≈ Pβ for some β<α.

This suffices to deduce with little effort, analogously to Remark 1, that if α<β
then Pα ≈!

α Pβ. (The conjecture for BPA, though, is that the bound given by this
construction is tight: ≈ = ≈ωω .)

BPP processes with silent moves are countably-branching, and thus by The-
orem 6 ≈ = ≈ℵ1 . In [22] there is an argument attributed to J. Bradfield which
shows that the approximation hierarchy collapses by the level ≈ωCK1

, the first

non-recursive ordinal. (The argument is made there for BPA but clearly holds as
well for BPP.) But this is to measure in lightyears what should require centime-
tres; we proceed here to a more modest bound, based on our ordinal analysis of
Dickson’s Lemma.

We assume an underlying grammar (V,A, Γ) defining our BPP process, and
recall that a state in the associated process is simply a sequence u ∈ V ∗ viewed
as a multiset. With this, we make the important observation about weak bisim-
ulation approximants over BPP: besides being equivalences, they are in fact
congruences.

Lemma 4. For all u, v, w ∈ V ∗, if u ≈α v then uw ≈α vw.

Proof. By a simple induction on α. �

We next observe a result due to Hirshfeld [10].

Lemma 5. If u≈!
α v and uu′≈!

β vv
′ with β <α then uu′≈!

β uv
′ and vu′≈!

β vv
′.

Proof. uu′ ≈β uv′ since uu′ ≈β vv′ ≈α uv′. On the other hand, if uu′ ≈β+1 uv
′

then uu′ ≈β+1 uv
′ ≈α vv′. Thus uu′ ≈!

β uv
′. (vu′ ≈!

β vv
′ can be shown similarly).

�

14

BPP processes, being multisets over the finite variable set V , can be rep-
resented as |V |-tuples over N. Given non-equivalent BPP states u0 and v0,
omt(u0, v0) can then be viewed as a N2·|V |-labelled tree. In general this tree
will not be non-dominating, but the above lemma will enable us to produce a
non-dominating N2·|V |-labelled tree from omt(u0, v0)

Lemma 6. For BPP processes, if u0 ≈!
α v0 then there exists a N2·|V |-labelled

non-dominating tree of height α.

Proof. We apply the following substitution procedure to each successive level
of the weak-transition optimal move tree omt(u0, v0) (where the level of a node
refers to the distance from the root (u0, v0) to the node) by induction on the
levels:

For each node x at this level, if x dominates some ancestor node y, that is,
if there exists an ancestor node y = (u, v) where x = (uu′, vv′), then replace
the subtree rooted at x with either x′ = omt(uu′, uv′) (if u <lex v) or with
x′ = omt(vu′, vv′) (if v <lex u). (If this x′ itself then dominates an ancestor
node, repeat this action.)

That <lex is a well-founded relation on N2·|V | means this repetition must halt;
and Lemma 5 implies that this is a height-preserving operation. �

Theorem 7. Over BPP processes, ≈ = ≈ωω

Proof. If u ≈ v then u ≈ωω v is a given. If, on the other hand, u 6≈ v, then
u ≈!

α v for some α, and by the combination of Lemma 6 and Theorem 2 we must
have that α ≤ ω2·|V |. Thus, u 6≈ωω v. �

5 Conclusions

In this paper we provide a bound on the level at which the bisimulation approx-
imation relations collapse over BPP. The bound we give of ωω is still a far cry
from the widely-accepted conjectured bound of ω×2, but it nonetheless repre-
sents the first nontrivial countable bound that has been discovered in the decade
since this conjecture was first uttered (originally by Hirshfeld and Jančar).

We arrive at our bound through a careful analysis of Dickson’s Lemma, and
in particular via a novel constructive proof which provides this ordinal bound
on non-dominating sequences of n-tuples. (Dickson’s Lemma itself merely de-
clares that such sequences are necessarily finite without actually identifying any
ordinal bound.) This approach does not immediately seem to be applicable to
strengthening the bound, given that this bound on Dickson’s Lemma is tight.

15

However, it seems equally likely that by taking into consideration the restricted
form of non-dominating sequences produced by BPP transitions we can identify
the missing ingredient for the proof of the tighter bound.

There have been other similar constructive proofs of Dickson’s Lemma in
the area of term rewriting. In particular, Sustik [23] provides a similar proof
using an ordinal mapping on sequences in order to mechanically prove Dickson’s
Lemma using the ACL2 theorem prover. However, the ordinal mapping defined
by Sustik gives an inferior bound to the one we provide; in particular, it requires
ωω already for sequences of pairs.

Blass and Gurevich have very recently (preprint March 2006) written a
manuscript [1] in which they define the stature of a well partial ordering P
to be the order type of nondominating sequences of P , and (amongst other
things) derive the same tight bound of ωn as we have done. Their application
of interest lies in program termination, and their proofs, being of more general
results, are more complicated than the proof we provide. We therefore feel that
our proof, which appeared in an earlier mauscript [9], as well as our application
to bisimulation checking is of independent interest.

If the ω×2 bound for the weak bisimulation approximation relations over
BPP is resolved positively, this can potentially be exploited to resolve the de-
cidability of weak bisimilarity over BPP. Esparza in [7] has shown that weak
equivalence is semi-decidable, by demonstrating a semilinear witness of equiva-
lence, so semi-decidability of non-equivalence is all that is required. If ≈ω can be
shown to be decidable (which is likely a much simpler result to attain than for ≈)
then it would naturally be expected that the successor relations ≈ω+1,≈ω+1, . . .
would also be decidable, which would give rise to a semi-decision procedure for
6≈ω×2: test each relation ≈ω+i in turn until one such test fails.

References

1. A. Blass and Y. Gurevich. Program termination and well partial orderings. Mi-
crosoft Technical Report MSR-TR-2006-27, 31 pages, March 2006. (Available at
ftp://ftp.research.microsoft.com/pub/tr/TR-2006-27.pdf.)

2. O. Burkart, D. Caucal, F. Moller and B. Steffen. Verification over Infinite States.
Chapter 9 in the Handbook of Process Algebra, pages 545-623, Elsevier Publishers,
2001.

3. S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable
for basic parallel processes. In Proceedings of the 4th International Conference on
Concurrency Theory (CONCUR’93), LNCS 715, pages 143-157, Springer, 1993.

4. S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, decidability and ax-
iomatisability for bisimulation equivalence on basic parallel processes. In Proceed-
ings of the 8th Annual IEEE Symposium on Logic in Computer Science (LICS’93),
pages 386-396, IEEE Computer Society Press, 1993.

5. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. In Proceedings of the 3rd International Conference
on Concurrency Theory (CONCUR’92), LNCS 630, pages 138-147, Springer, 1992.

16

6. L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
distinct factors. American Journal of Mathematics 3:413-422, 1913.

7. J. Esparza. Petri nets, commutative context-free grammars, and basic parallel pro-
ceses. Fundamenta Informaticae 30:23-41, 1997.

8. R. Glabbeek. The linear time – branching time spectrum I: The semantics of con-
crete sequential processes. Chapter 1 in the Handbook of Process Algebra, pages
3-99, Elsevier Publishers, 2001.

9. W. Harwood and F. Moller. Weak bisimulation approximants. In Selected Papers
from the CALCO Young Researchers Workshop (CALCO-jnr 2005), Swansea Uni-
versity Research Report CSR 18-2005, pages 27-40, December 2005. (Available at
http://www-compsci.swan.ac.uk/reports/2005.html.)

10. Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulation. Elec-
tronic Notes in Theoretical Computer Science 5:2-13, 1997.

11. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’94), pages 623-631, IEEE
Computer Society Press, 1994.

12. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theoretical Computer Science 15:143-159,
1996.

13. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-
ulation equivalence of normed basic parallel processes. Mathematical Structures in
Computer Science 6:251-259, 1996.

14. P. Jančar. Strong bisimilarity on Basic Parallel Processes is PSPACE-complete. In
Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science
(LICS’03), pages 218-227, IEEE Computer Society Press, 2003.

15. P. Jančar and F. Moller. Techniques for decidability and undecidability of bisimi-
larity. In Proceedings of the 10th International Conference on Concurrency Theory
(CONCUR’99), LNCS 1664, pages 30-45, Springer, 1999.

16. F. Moller. Infinite Results. In Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR’96), LNCS 1119, pages 195-216, Springer, 1996.

17. J. Srba. Strong bisimilarity and regularity of Basic Process Algebra is PSPACE-
hard. In Proceedings of the 29th International Conference on Automata, Languages
and Programming (ICALP’02), LNCS 2380, pages 716-727, Springer, 2002.

18. J. Srba. Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-
hard. In Proceedings of the 19th International Symposium on Theoretical Aspects
of Computer Science (STACS’02), LNCS 2285, pages 535-546, Springer, 2002.

19. J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP. Math-
ematical Structures in Computer Science 13:567-587, 2003.

20. J. Srba. Roadmap of Infinite Results. http://www.brics.dk/~srba/roadmap.
21. C. Stirling. Decidability of weak bisimilarity for a subset of Basic Parallel Processes.

In Proceedings of Foundations of Software Science and Computation Structures
(FOSSACS’01), LNCS 2030, pages 379-393, 2001.

22. J. Stř́ıbrná. Approximating weak bisimulation on Basic Process Algebras. In
Proceedings of Mathematical Foundations of Computer Science (MFCS’99),
LNCS 1672, pages 366-375, 1999.

23. M. Sustik. Proof of Dickson’s Lemma using the ACL2 theorem prover via an
explicit ordinal mapping. Unpublished presentation at the Fourth International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2003). (Avail-
able from http://www.cs.utexas.edu/users/moore/acl2/workshop-2003.)

