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The present paper begins with the description of an “algebraic” duality (in the sense of M. Burnat)
between the characteristic or exceptional nature in the physical space and a characteristic nature in the
hodograph space (§2). This “algebraic” duality is then used to describe aspects of some possible relations
between the physical space and the hodograph space.

A first relation, among those mentioned above, is that indicated by a significant class of solutions: the
simple waves solutions (§3). Section 3.1 constructively considers one-dimensional simple waves solu-
tions. The importance of a genuinely nonlinear character of the characteristic fields which contribute in
construction is observed in this respect (section 3.1.3). An analogue of the genuinely nonlinear character
of an one-dimensional simple waves solution is then identified and essentially used for the construction
of some multidimensional extensions [simple waves solutions (sections 3.2, 3.3, 3.5), regular interactions
of simple waves solutions (§§4−7)]. Section 3.7 comparatively revisits (cf. Scheme 1) the scalar, non-
scalar, one-dimensional, multidimensional approaches. We end §3 by presenting a classification, from a
multidimensional prospect, in the class of the simple waves solutions (section 3.8).

A Riemann restricted one-dimensional version of the method of characteristics is considered at the begin-
ning of §4. In sections 4.2−4.4 this version is adapted to the “algebraic” duality considered in §2. Section
4.4 makes use of this Riemann restricted version to consider two remarkable types of one-dimensional
constructions. In section 4.5 a nonlinearity hierarchy is considered from a Riemann restricted prospect.

Incidentally, the two remarkable types of construction mentioned above can be adapted, in order to
make their persistence possible, when the Riemann restricted context is no more available. For the first
remarkable construction, associated to the simple waves solutions, such an adaptation consists in re-
placing the Riemann invariance by a Riemann−Lax invariance (section 4.6). For the second remarkable
construction, associated with regular interactions of simple waves solutions, the details of a candidate
adaptation are presented in section 5.3.4 (Example 5.1). The role of the Riemann invariance is played in
this case by a Riemann−Burnat invariance.

In §5 we present a multidimensional extension, in the sense of M. Burnat, of the results in §4. Sections
5.4, 5.5 follow the work of Z. Peradzyński and respectively S.P. Tsarev and E. Ferapontov to characterize
the class of regular multidimensional interactions of simple waves solutions as a natural extension of the
class of the simple waves solutions. Section 5.6 relates this extension with the concept of solution with
a nondegenerate /degenerate hodograph. This concept is revisited in [5] from a distinct “nonalgebraic”
prospect. Particularities of the multidimensional approach, induced by its complexity, are considered
in sections 2.5, 5.2, 5.3 and §7 by means of a parallel with the one-dimensional approach.

A class of exact multidimensional gasdynamic solutions is constructed in §6 whose interactive elements
are regular.

Two examples of interactive solutions belonging to the class presented in §6 are considered in §7 (sections
7.1, 7.2). In sections 7.1, 7.2 it is indicated, in a multidimensional context, the possibility of several
Riemann representations for an interactive solution. An admissibility criterion is then formulated and
exemplified for selecting regular interactive representations “of a genuinely nonlinear type” where other
(“hybrid”) solutions are formally possible (section 7.2). Section 7.3 presents an extension, on regular
multidimensional interactions of simple waves solutions, of the genuinely nonlinear character.

The Riemann−Lax invariance, presented in section 4.6, and the construction in sections 5.2−5.5 anticipate
some applications of the rank theory included in §8.

We consider in this paper the homogeneous quasilinear system

n∑

j=1

m∑

k=0

aijk(u)
∂uj
∂xk

= 0, 1 ≤ i ≤ n (1.1)

together with its one-dimensional version

∂u

∂t
+ a(u)

∂u

∂x
= 0, (1.2)
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its two-dimensional version
∂u

∂t
+ a(u)

∂u

∂x
+ b(u)

∂u

∂y
= 0, (1.3)

and its concrete gasdynamic forms





∂p

∂t
+ vx

∂p

∂x
+ ρ(p, ψ)c2(p, ψ)

∂vx
∂x

= 0

∂vx
∂t

+ vx
∂vx
∂x

+
1

ρ(p, ψ)

∂p

∂x
= 0

∂ψ

∂t
+ vx

∂ψ

∂x
= 0 ,

(1.4)

corresponding [cf. (1.2) with u = (p, vx, ψ)t] to an anisentropic (strictly adiabatic) gasdynamic flow (in
usual notations; ψ is the particle function, c(p, ψ) is an ad hoc anisentropic sound speed; see Appendix
1 for details), m = 1; and





∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
+
γ − 1

2
c

(
∂vx
∂x

+
∂vy
∂y

)
= 0

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+
2

γ − 1
c
∂c

∂x
= 0

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+
2

γ − 1
c
∂c

∂y
= 0

(1.5)

corresponding to an isentropic description (in usual notations: c is the sound velocity, vx, vy are fluid
velocities), with m = 2.

We end this section with some terminological mentions.

Terminology 1.1. The space E = lRm+1 of the independent variables x0 = t; x1, ..., xm is called the
physical space; m is the codimension [the number of the space independent variables]. The space H = lRn

of the entities [dependent variables] is said to be the hodograph space. �

Terminology 1.2. The systems (1.1)−(1.5) whose coefficients do not depend on the independent
variables are said to have a gasdynamic type form. We essentially consider such systems in our present
approach. �

Terminology 1.3 ([17]). A direction ~β at a point u∗ ∈ H is said to be exceptional for (1.1) if a linear

combination of equations (1.1) exists at u∗ for which the derivatives of ui, 1 ≤ i ≤ n, in the direction ~β
are missing. As it is well-known a planar (/linear) infinitesimal element centered at u∗ and orthogonal
to a nonexceptional /exceptional direction is said to be noncharacteristic /characteristic. �

Proposition 1.4 ([17]). A direction ~β at a point u∗ ∈ H is exceptional iff the restrictions

det[aij(u
∗) · ~β ] = 0

[
~β = (β0, β1, . . . , βm)

aij(u) = [aij0(u), . . . , aijm(u)]

]
i, j = 1, . . . , n (1.6)

are fulfilled at u∗. �
We eventually put the condition (1.6) in the form

det

[
m∑

k=0

aijk(u∗)βk

]
= 0 (i, j = 1, . . . , n). (1.7)

Restriction (1.7) takes for the system (1.2) the form

det[β0I + β1a(u∗)] = 0 (1.8)

and for the system (1.5) the form

(β0 + β1v
∗
x + β2v

∗
y)[(β0 + β1v

∗
x + β2v

∗
y)2 − c∗2(β2

1 + β2
2)] = 0. (1.9)
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2.1. Dual pairs of directions

Terminology 2.1 (M. Burnat). For the system (1.1) we say that the vector ~κ ∈ lRn is a hodograph

dual at a point u∗ ∈ H of a real exceptional vector ~β defined at that point, and write ~κ ↽⇀ ~β, if this
vector satisfies at u∗ the duality condition

n∑

j=1

m∑

k=0

aijk(u∗)βkκj = 0, 1 ≤ i ≤ n. (2.1)

This terminology, corresponding to Remark 2.4 here below, could be naturally extended to the case
presented in Remark 2.5.b. �

We notice that a dual character in H is essentially connected with an exceptional character in E. In
fact in order to make Terminology 2.1 active at a point u∗ ∈ H , we have to verify first the reality of an
exceptional vector ~β at u∗.

In certain cases, for defining a dual vector ~κ we could ignore, in a first step, the duality relation which
is implicit in Terminology 2.1. Such a case corresponds to n = m + 1 in (1.1). It is easy to be seen, cf.
(2.1), that a dual direction ~κ at a point u∗ ∈ H satisfies in this case the condition

det




n∑

j=1

aijk(u∗)κj


 = 0 (i, k = 1, . . . , n) (2.2)

which is formally independent of (2.1). Also see section 2.2 for a similar issue.

Terminology 2.2 (M. Burnat). A smooth curve in H is said to be a hodograph characteristic if it is
tangent at each point of it to a characteristic vector ~κ. Argument: for n = 2 in (1.2) interchanging the
pair of independent variables t, x and the pair of dependent variables u1, u2 results in interchanging the
characteristic character associated to the pair t, x and the hodograph characteristic character associated
with the pair u1, u2. �

2.2. The hyperbolic one-dimensional case.
Structure of a dual pair. Indices

In case of the system (1.2) the duality condition (2.1) takes, at a point of strict hyperbolicity u∗ ∈ H ,
the form, similar to (2.2),

[β0I + β1a(u∗)]~κ = 0.

Therefore ~κ appears to be, at the mentioned point u∗, a right eigenvector R of the matrix a, corresponding
to a (real) eigenvalue λ of a. This indicates the following duality connection at the mentioned point
u∗ ∈ H :

~βi = Θi(u)[−λi(u), 1] [in the physical space] ↽⇀ ~κi =
i

R(u) [in the hodograph space], for each i = 1, ..., n.
(2.3)

Remark 2.3 [ ACBEDGFIHJBEFKD�LNMPO-QSRTFUQWVYXZQT[ED]\_^IFK`'aCLbD�MCO-RTFUQWVYXZQT[ED]A ]. (i) In case of a system (1.2) strictly
hyperbolic in a region R ⊂ H to each real value of the matrix a a single right eigenvector ~κ corresponds
at each u∗ ∈ R. Therefore, each dual pair associates [cf. (2.3)] in this case, at each u∗ ∈ R, to a vector ~κ

a single dual vector ~β. (ii) We dispose at each u∗ ∈ R of a cd^I[>BeL number of dual pairs with the structure
~β ↽⇀ ~κ. (iii) To each pair an index i = 1, ..., n is associated cf. (2.3). �

2.3. The hyperbolic one-dimensional case.
Hodograph characteristics

In a region R ⊂ H of strict hyperbolicity of (1.2) the hodograph characteristics appear to be field lines

of the n vector fields
i

R(u), i = 1, ..., n. The hodograph characteristics corresponding to a given index i
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are given by the orbits u =
i

U(α) of the autonomous system

dU

dα
=

i

Λ(U)
i

R(U) , U ∈ R ⊂ H . (2.4)i

Remark 2.4.a. An unique hodograph characteristic curve of index i through a regular point u∗ ∈ R
of (2.4)i could be constructed as an orbit of (2.4)i with the condition U(α∗) = u∗ [as an unique direction
i

R(u∗) is associated to the point u∗ for each index i]. See section 4.6 for the details of construction. �
Remark 2.4.b. A cd^I[>BfL union of hodograph characteristics through a regular point u∗ ∈ R results

when all indices i = 1, . . . , n are considered. �

2.4. The multidimensional case of the isentropic gas dynamics.
Structure of a dual pair

In case of a system (1.5), for which n = m+ 1 = 3, condition (2.2) takes, at a point u∗ ∈ H , the form

c2κ1

[(
2

γ − 1

)2

κ2
1 − (κ2

2 + κ2
3)

]
= 0 (2.5)

which will be connected with (1.9) in order to determine the duality relations:

(i) given ~β [cf. (1.9)] we obtain from (2.1)

~β = (vxβ1 + vyβ2,−β1,−β2) ↽⇀ ~κ = (0,−β2, β1) (2.6)

~β = [−(vxβ1 + vyβ2)− εc, β1, β2] ↽⇀ ~κ =

[
ε
γ − 1

2
, β1, β2

]
ε = ±1 (2.7)

(ii) given ~κ [cf. (2.5)] we get from (2.1)

~κ = (0, κ2, κ3) ↽⇀ ~β = (vxκ3 − vyκ2,−κ3, κ2) (2.8)

~κ =

[
ε
γ − 1

2
, κ2, κ3

]
↽⇀ ~β = [−(vxκ2 + vyκ3)− εc, κ2, κ3] ε = ±1 (2.9)

where we assumed c 6= 0 and we normalized the vectors ~β or ~κ by β2
1 +β2

2 = 1 or, respectively, κ2
2 +κ2

3 = 1;
the orientations of these vectors have been chosen a priori.

Remark 2.5.a. (Peradzyński [18]; ACBEDbFUHJBEFKDCL�MPO5QgRTFUQWV�XhQi[EDJ\d^IFK`�aPLbD5MPO�RiFUQWVjXZQT[ED]A ). (i) In case of the
BEk�M�l�Ri[E`'Lb^jA6[fMT^�Q�V system (1.5) each dual pair associates [cf. (2.8), (2.9)] at the mentioned u∗ to a vector

~κ a single dual vector ~β. (ii) Cf. (1.9) we dispose in this case of an [E^Wcm^I[>BeL number of dual pairs with

the structure ~κ ↽⇀ ~β. �
Remark 2.5.b. (Peradzyński [18]; ACBEDbFUHJBEFKDCL�MPO#Q�RTFUQWVKXhQi[EDJ\�^UFZ`�aCL�D#MPO#RiFUQWVKXhQi[EDJA ). (i) In the extended
BEnhDCLCLJl�Ri[E`'Lb^jA6[fMT^�Q�V example of the isentropic gas dynamics with n = 4,m = 3 [i.e. for u = (c, vx, vy, vz)

t

and three space dimensions in the extended version of (1.5)] each dual pair associates, at the mentioned

u∗, to a vector ~κ a finite [constant, 6= 1] number of k independent exceptional dual vectors ~βj , j = 1, . . . , k.

(ii) In this case we still dispose of an [E^icd^I[>BfL number of dual pairs with the structure ~κ ↽⇀ (~β1, ... , ~βk).
�

2.5. Dual pairs of directions: a comparison between
the one-dimensional approach and the multidimensional approach

• There is an LJACA�L�^jBo[fQWV difference between the case of m = 1 and the case of m > 1 in (1.1) concerning
the structure of the set Cm(u∗) of hodograph characteristic directions through a given point u∗ ∈ H .
Precisely, a nonvoid set Cm(u∗) may be infinite in case of m > 1 and is certainly finite in case of m = 1
(see Remarks 2.3, 2.4). We may describe this by saying that a nonvoid (and finite) set C1(u∗) “bursts”
into an infinite set Cm(u∗) as m > 1. We notice at this point that the directions ~κ of the generatrices
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which rule the cone (2.5) centered at u∗ ∈ H belong to the set C2(u∗) connected with (1.3) and that there
is an infinite number of such directions.

• A natural consequence of this aspect is noticed in Remark 2.6.b here below.

2.6. The two-dimensional case of the isentropic gas dynamics.
Hodograph characteristics: constructive details

Remark 2.6.a. A hodograph characteristic arc through a point u∗ ≡ (c∗, v∗x, v
∗
y) can be constructed

for the system (1.5) as follows [Figure 1].

c c

vy

vx

vy

vx

u* u*

C ’
C ’

C C

(a) (b)

CºC ’

C ’ C

u*

circular
branch of (2.5)

Figure 1

We consider in the plane c = c∗ a smooth arbitrary arc

c = c∗, vx = vx(α), vy = vy(α) α ∈ I (C)

through the point u∗ corresponding to α∗ ∈ I. The tangent vector associated, for each α ∈ I, to a point
of C appears to be represented by [κ2(α), κ3(α)] where we calculate

κ2(α) =
d

dα
vx(α), κ3(α) =

d

dα
vy(α).

Then we associate, for each α ∈ I, to the pair [κ2(α), κ3(α)] the value κ1(α) 6= 0 obtained from (2.5) and
integrate [taking into account the independence of the coefficients in (2.5) of the solution: a gasdynamic
detail]

dc

dα
= κ1(α), c(α∗) = c∗, α ∈ I

in order to complete the equation

c = c(α), vx = vx(α), vy = vy(α), α ∈ I (C)

of the characteristic arc C through (c∗, v∗x, v
∗
y).

We notice that the characteristic curve which corresponds in this construction to κ1 6= 0 in (2.5) is a cylin-
drical or conical helix. Indeed, a helix is a spatial curve whose tangents keep a constant inclination with
respect to a fixed direction. Now, primo, at each point u∗ of the mentioned characteristic curve the tangent
is constructed by intersecting the circular branch corresponding to κ1 6= 0 of the cone (2.5), considered at
u∗, with the cylinder which includes C or with a suitable cone, and is parallel to the axis c, and secundo,
the mentioned branch is independent of u∗ [a gasdynamic fact]. The fixed direction is given by the axis c.
�
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Remark 2.6.b. An infinity of characteristic curves could be constructed through [an arbitrary] u∗ ∈ R
in this way. This aspect suggests a special complexity of the multidimensional approach. This is in contrast
with the finite character noticed in Remark 2.4.b. Some natural consequences of this aspect are presented
in sections 5.2, 5.3 and §7. �

Remark 2.7. Any smooth curve C placed in a plane c = constant 6= 0 appears to be a hodograph
characteristic curve corresponding to κ1 = 0 in (2.5). �

(H) Figure 2

Remark 2.8. Incidentally, Figure 1 presents cases for which the hodograph characteristics are self-
intersecting; see Figure 2. �

p�q�rNs6t@u�vfwyx{z2|&w&}!}�~�v��2�)s�~����:��w��<�4sf��s�~'��}�z4�����0~��#}��
�K�#�7�)se|&w���w���z�s�vf}7q
� w��5�#s��#w;��~��5ves���w&z2�hsf�I��q���z,�Y����wy~#��z;})s6t@u�vfwyx{z2|&w&}!}�~�v��2�)s�~��

3.1. One-dimensional simple waves solution

3.1.1. Constructive details

• Let
i

R(u),
i

L(u), and λi(u), i = 1, ..., n, be, respectively, the right eigenvectors, the left eigenvectors,
and the eigenvalues of the matrix a(u).

• Let U(α) be an orbit of (2.4)i isolated with the condition U(α∗) = u∗. We use this orbit to define the
function

ζi(α) ≡ λi[U(α)], (3.1)i

corresponding to the index i via the duality connection (2.3) [also see Remark 2.3], and construct, in a
convenient neighbourhood of t = 0, a C1 smooth solution α(x, t) of the Cauchy problem

∂α

∂t
+ ζi(α)

∂α

∂x
= 0 , −∞ < x <∞, t > 0 (3.2)i

α(0, x) = θ(x) , −∞ < x <∞ (3.3)i

where ζi and θ are assumed to be C1(lR) smooth functions. The mentioned construction depends on a
simple remark.

• Remark 3.1. The characteristics of (3.2)i, described in the physical plane x, t by

dx

dt
= ζi[α(x, t)], (3.4)i

are straight lines along which α = constant (the constant depends on line generally). �
• We complementarily assume that (3.2)i is genuinely nonlinear [= strictly quasilinear]:

dζi
dα
6= 0. (3.5)i

• For a genuinely nonlinear equation (3.2)i we define the simple waves solution of index i (also called
the i- simple waves solution) by

u(x, t) = U ◦ α ≡ U [α(x, t)]. (3.6)i
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We carry (3.6)i) into (1.2) for getting

[
∂α

∂t
+ ζi(α)

∂α

∂x

]
dU

dα
= 0. (3.7)i

and the fulfilment of system (1.2) results from (3.2)i and (2.4)i.

• The orbit
i

U(α) contains the hodograph half of the simple waves solution and the solution α of (3.2)i
appears to be the physical half of the i- simple waves solution U ◦ α.

• We remark that (3.6)i and (3.7)i indicate a factorization which distinguishes between the physical half
and the hodograph half of the i- simple waves solution. The duality character of the relation between
these two mentioned halves results from (2.3) via (2.4)i and (3.1)i.

• From (3.1)i and (3.4)i it results that the characteristics of the equation (3.2)i [which is associated with
an index i] appears, concurrently, to be characteristics of index i of the system (1.2).

• From Remark 3.1 and (3.6)i we notice that a simple waves solution u(x, t) of index i of the system
(1.2) is constant along each characteristic straightlined arc of index i of this system.

• As a consequence, in the physical plane x, t a simple waves solution of index i appears to be limited [to
the left (or right) side] by a constant state [ul (or ur)] or by a simple waves solution of the same index;
in particular such a solution may appear to connect two constant states [ul (or ur)] placed, as points in
the hodograph space, on the one-dimensional hodograph of this solution. The separation between the
domain of a simple waves solution of index i and an adjacent to it domain of constant state [on the left
(/right)] appears to be made along a characteristic arc of index i.

3.1.2. Implicit form

Remark 3.1 leads to an implicit representation for the solution we are looking for [we shall ignore in the
following the index i associated to U and α]; the solution has the form

u(x, t) = U [α(x, t)]. (3.8)i

where we have to determine α(x, t) from the implicit representation

α = θ(ξ), ξ = x− ζi(α)t. (3.9)i

This representation can be read as

Fi(t, x, α) ≡ α− θ[x− ζi(α)t] = 0. (3.10)i

The requirement ∂Fi
∂α 6= 0 imposed to a smooth function Fi in order to apply the implicit function

theorem is equivalent with the condition

1 +
dζi
dα

[θ(ξ)]
dθ

dξ
t 6= 0. (3.11)i

Restriction (3.11)i is fulfilled, for example, at the point [t∗ = 0, x∗, α∗ = θ(x∗)] of the domain of Fi in
(3.10)i and consequenly the implicit function theorem is active around this point. In fact, this active
character of the implicit function theorem appears to persist in a neighbourhood of t = 0 for which (3.11)i
is fulfilled.

In presence of restriction (3.11)i we can obtain explicitly the solution α(x, t) of (3.2)i, (3.3)i [cf. (3.10)i];
this solution describes, via the construction (3.9)i, the manner in which the data (3.3)i evolve over the
half-plane t > 0 by constancy (cf. Remark 3.1) along the characteristic lines.

3.1.3. Genuine nonlinearity. Linear degeneracy. Types of quasilinearity

We compute from (2.4)i, (3.1)i

dζi
dα
≡

i

Λ[U(α)]{
i

R[U(α)] · graduλi[U(α)]},
i

Λ 6= 0. (3.12)i
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This naturally leads to the Terminologies 3.2 which follow.

Terminology 3.2.a [ ^�Q�BEFKDCL#MCO2[E^�Ri[fHPLJA ] (Lax [16]). For a strictly hyperbolic system (1.2) we say that
an index i is genuinely nonlinear if for it

i

R(u) · graduλi(u) 6= 0, u ∈ R (3.13)i

and it is linearly degenerated if for it

i

R(u) · graduλi(u) ≡ 0, u ∈ R (3.14)i

�
Terminology 3.2.b [ BE�JXZLGA,MCO&��L�^IFK[E^�L,^�Mi^jV [E^�LCQiDb[>BE� ] . The genuine nonlinearity associated to an index

is said to be hard [see Terminology 3.2.a and restriction (3.13)i] and appears to be a priori associated
to any hodograph characteristic arc of such an index. A soft genuine nonlinearity is associated with a
particular hodograph characteristic arc [in a soft genuine nonlinearity the restriction (3.13)i is considered
only along a particular hodograph characteristic arc − thus guaranteeing [cf. (3.12)i] the fulfilment of
(3.5)i for a particular simple waves solution only]. �

Terminology 3.2.c [ BE�JXZLGA�MPO4��FUQWA6[>V [E^�LPQiDb[>BE� ] (Lax [16]). We say that the quasilinearity of the system
(1.2) is

- strong if for this system all the indices are genuinely nonlinear,
- medium if this system has genuinely nonlinear indices concurrently with linearly degenerate indices,
- weak if for this system all the indices are linearly degenerate. �

Remark 3.3. A simple wave corresponding to a genuinely nonlinear equation (1.2) is a planar front
which evolves with a constant velocity and at the points of which the dependent variable α in (3.6)i keeps a
constant value during the (permitted) evolution. This is the simplest ingredient of a nonlinear continuous
evolution. The remarkable fact (first time noticed in Poisson [23]) that a simple wave could be identified in
a nonlinear evolution has, on the other hand, a structuring (hence an essential) character: a simple waves
solution appears to be a continuous distribution of simple waves and, as is well known, the [genuinely
nonlinear] simple waves solutions appear to be essential structuring ingredients of a quasilinear evolution
description (pairing the shock waves of a similar index). In sections 3.2, 3.3 the genuinely nonlinear
character of a simple waves solution will be considered for extension. �

Remark 3.4. Restriction (3.5)i could be also presented cf. (2.3) by

d~βi
dα
6= 0. (3.15)i

This indicate a “fanning out” of the characteristic straighlines which structure the simple waves solution
− as ~βi is orthogonal to a characteristic direction. �

Remark 3.5. The requirement of genuine nonlinearity for an index i has the form

~κi(u) � ~βi(u) ≡
i

R(u) · grad uλi(u) 6= 0

and appears as a restriction imposed to the dual pair [~κi(u), ~βi(u)] at each point of the hodograph of a
simple waves solution. �

3.2. Multidimensional planar simple waves solution

3.2.1. Implicit form

Example 3.6 (Peradzyński [19]). If to each characteristic vector ~κ tangent to a characteristic curve in

H a single exceptional dual ~β corresponds [see Remark 2.5.a(i)] then, the same as in section 3.1 a simple
waves solution which is constant on m-dimensional hyperplanes can be constructed according to

u = U [α(x, t)] (3.6)′

8



where we have to determine α(x, t) from the implicit representation

α = θ(ξ), ξ =
m∑

ν=0

βν [U(α)]xν =
m∑

ν=0

βν{U [θ(ξ)]}xν . (3.9)′

Here U(α) is a smooth hodograph characteristic curve isolated in H cf. u∗ = U(α∗), for arbitrary
u∗ ∈ H, α∗ ∈ lR (the details of isolating such a curve in the gasdynamic context of section 2.6 are
presented in Remark 2.6.a) and θ is a smooth arbitrary scalar function. The function (3.10) and the
requirement (3.11) have in the present example the analogues

F(x, α) ≡ α− θ
{

m∑

ν=0

βν [U(α)]xν

}
= 0 (3.10)′

and

1−
(

m∑

ν=0

dβν
dα

xν

)
dθ

dξ
6= 0. (3.11)′

The simple waves solution u(x, t), represented cf. (3.6)′, fulfils (1.1) in a region of E for which (3.11)′

holds [for example, in a convenient neighbourhood N around u = u∗, x = 0, for α∗ = θ(0)].
It is easy to verify that u(x, t) given by (3.6)′ is a solution of (1.1). Indeed, we compute at u∗

∂uj
∂xk

=
dUj
dα
· ∂α
∂xk

= Ωjωκjβk, (3.16)′

because at u∗ we get from (3.10)′

∂α

∂xk
=

dθ
dξ

1−
(

m∑
ν=0

dβν
dα xν

)
dθ
dξ

βk[U(α)] = ωβk

and take into account the characteristic nature of the arc U(α). Finally, we carry (3.16)′ in (1.1) and use
(2.1).

At this point it is proper to notice from (3.10)′ that, in the mentioned region N ⊂ E, the simple waves
solution (3.9)′ is constant over hyperplanes

∑

ν=0

βν{U [α(x̃)]}(xν − x̃ν) = 0 , x̃ ∈ N . �

Terminology 3.7.a. A simple waves solution constructed cf. Example 3.6 will be said to be planar
([19]). �

3.2.2. Genuine nonlinearity / linear degeneracy: an ad hoc definition

Remark 3.8.a ([4]). The construction (3.9)′ shows that for a (local) “fanning out” of the hyperplanes

which structure this kind of solution it is proper to require
∣∣∣d~βdα

∣∣∣ 6=0 along the [particular] hodograph

characteristic arc of Example 3.6. Such a requirement appears as a planar soft genuine nonlinearity
restriction and induces an implicit character in (3.10)′. The explicit form α(x, t) of the physical half of a
simple waves solution results therefore via the implicit function theorem from (3.10)′. Also a soft linear

degeneracy restriction could be alternatively considered for (3.10)′ in the evident form
∣∣∣d~βdα

∣∣∣≡0 along a

hodograph [particular] characteristic arc. �

3.3. Multidimensional non-planar simple waves solution

3.3.1. Implicit form

Example 3.9 (Peradzyński [20]). If to each characteristic vector ~κ tangent to a characteristic curve in

H a finite (constant, 6= 1) number of k independent exceptional dual vectors ~βj , 1 ≤ j ≤ k, correspond
[see Remark 2.4(iii] then a simple waves solution can be constructed according to

u = U [α(x, t)] (3.6)′′

9



where we have to determine α(x, t) from the implicit representation

α = θ(ξ1, . . . , ξk), ξj =
m∑

ν=0

βjν [U(α)]xν , 1 ≤ j ≤ k (3.9)′′

Again, U(α) is assumed to be a smooth hodograph [particular] characteristic arc and θ is a smooth
arbitrary scalar function. The function (3.10)′ and the requirement (3.11)′ have in the present example
the analogues

F(x, α) ≡ α− θ
{

m∑

ν=0

β1ν [U(α)]xν , ...,

m∑

ν=0

βkν [U(α)]xν

}
= 0 (3.10)′′

and

1−
k∑

µ=1

(
m∑

ν=0

dβµν
dα

xν

)
dθ

dξµ
6= 0. (3.11)′′

The simple waves solution u(x, t) represented cf. (3.6)′′ fulfils (1.1) in a region of E for which (3.11)′′

holds [for example, in a convenient neighbourhood N around u = u∗, x = 0, for α∗ = θ(0, . . . , 0)].
It is easy to verify that u(x, t) given by (3.6)′′ is a solution of (1.1). Indeed, we compute at u∗

∂uj
∂xl

=
dUj
dα
· ∂α
∂xl

=

k∑

µ=1

Ωjωµlκjβµl, (3.6)′′

because at u∗ we get from (3.16)′′

∂α

∂xl
=

k∑
µ=1

∂θ
∂ξµ

βµl[U(α)]

1−
k∑

µ=1

(
m∑
ν=0

dβµν
dα xν

)
∂θ
∂ξµ

=

k∑

µ=1

ωµlβµl[U(α)]

and take into account the characteristic nature of the arc U(α). Finally, we carry (3.16)′′ in (1.1) and
use (2.1). �

Remark 3.10.(i) In case of m > 1 the constancy of a simple waves solution over m-dimensional
hyperplanes, in spite of being possible (cf. Example 3.6), is no more a rule (cf. Example 3.9). (ii) In case
of m > 1 the representantions (3.9)′ and (3.9)′′ indicate that the factorization (3.6)i already noticed for
m = 1, which distinguishes between the physical half and the hodograph half of a simple waves solution,
is seen to persist [cf. (3.6)′, (3.6)′′]. (iii) Examples 3.6, 3.9 essentially correspond to a gasdynamic context
[see Remarks 2.5.a,b]. �

Terminology 3.7.b. A simple waves solution constructed cf. Example 3.9 will be said to be nonplanar
([20]). �

Remark 3.11. Figures 2, 7c correspond to some cases of multiple intersections of two hodograph
characteristic curves. We notice that this results in the possibility for two points (constant states) in H /
two constant regions in E to be connected respectively by (at least) two hodograph characteristic curves
in H / simple waves regions in E. Still, at a point of re-intersection we have to distinguish between the

vectors ~κ [or their dual vectors ~β] respectively associated to the two intersecting hodograph characteristic
arcs in H / simple waves regions in E. �

3.3.2. Genuine nonlinearity / linear degeneracy: an ad hoc definition

Remark 3.8.b. The construction (3.9)′′ shows that for a (local) “fanning out” of the hyperplanes

which structure this kind of solution it is proper to require
k∑

µ=1

∣∣∣d~βµdα

∣∣∣6=0 along the hodograph characteristic

arc of Example 3.9. Such a requirement appears as a nonplanar soft genuine nonlinearity restriction and
induces an implicit character in (3.10)′′. The explicit form α(x, t) of the physical half of a simple waves
solution results therefore via the implicit function theorem from (3.10)′′. Also a soft linear degeneracy

restriction could be alternatively considered for (3.10)′′ in the evident form
k∑

µ=1

∣∣∣d~βµdα

∣∣∣≡0 along a [particular]

hodograph characteristic arc. �
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3.4. Genuine nonlinearity / linear degeneracy:
some gasdynamic two-dimensional examples

• It is easy to show that, cf. (2.9), the hodograph characteristic curves along which, in a gasdynamic
construction, κ1 6= 0 have a genuinely nonlinear character.

• Any smooth curve C placed in a plane c = constant 6= 0 appears to be a hodograph characteristic curve
corresponding to κ1 = 0 in (2.5).

• It is easy to be seen, cf. (2.8), that the hodograph characteristic curves corresponding to κ1 = 0 are
linearly degenerated only if they are straightlines and have a genuinely nonlinear character if they do not
include straightlined arcs.

3.5. Simple waves solution. A general definition

Definition 3.12. A nonconstant continuous solution of the system (1.1) whose hodograph is a
genuinely nonlinear arc of characteristic curve is said to be a simple waves solution. �

Remark 3.13. Definition 3.12 essentially associates to the one-dimensional nature of a solution
hodograph a characteristic and a genuinely nonlinear nature. �

3.6. Genuine nonlinearity: a comparison between
the one-dimensional approach and the multidimensional approach

In the one-dimensional construction of a simple waves solution we could strenghten a soft genuine non-
linearity into a hard genuine nonlinearity [Terminology 3.2.b]. In a multidimensional construction of a
simple waves solution only a soft genuine nonlinearity is available [Remarks 2.5, 3.8.a and 3.8.b].

3.7. The nature of a simple waves solution in its dependence
on the number of equations and codimension: a review

We resume in this section, cf. Scheme 1, the facts connected with the dependence of the structure of a
simple waves solution [considered, in the smooth context of §3] on the number n of the equations in the
system considered and the codimension m.

3.8. Simple waves solutions: a Varley−Peradzyński classification

A suggestive classification of the simple waves solutions corresponding to (2.6), (2.8)/respectively (2.7),
(2.9) is due to Peradzyński [21] and Varley [30]; see the terminology which follows.

Terminology 3.14. From (2.6) and (3.16)′ we compute

∂vx
∂y
− ∂vy

∂x
= −Ωω(β2

1 + β2
2) 6= 0 (3.17)r

while from (2.7) and (3.16)′ we get
∂vx
∂y
− ∂vy

∂x
= 0. (3.17)p

Therefore the simple waves associated cf. Example 3.6 to (2.6), (2.8) /respectively (2.7), (2.9) are said
to be rotational/potential. �

Remark 3.15. (i) The contact discontinuities of an one-dimensional flow described by (1.5) appear
to be (degenerate) rotational (cf. [[c]] = 0, [[vx]] = 0, [[vy]] 6= 0 for ∂

∂y ≡ 0; [[c]] = 0, [[vx]] 6= 0, [[vy ]] = 0

for ∂
∂x ≡ 0). (ii) As n = 3, m = 2/respectively n= 4, m= 3 (evolution of vz considered; three space

dimensions) in (1.5) the rotational simple waves solutions are planar/respectively nonplanar while the
potential simple waves solutions are planar in both these cases. �
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4.1. Introduction

In this paragraph we begin the presentation of an one-dimensional extension of the class of the simple
waves solutions, constructed in §3, to a class related with it: the regular interactions of simple waves
solutions. The nature of the relationship will be described in sections 4.2−4.4, 5.3.4, 7.3, 7.4 and in §8.

In sections 4.2−4.4 the mentioned extension is presented in a Riemann restricted context ([24]). Details
of this context connected to a nonlinearity hierarchy are included in section 4.5.

Finally, for one-dimensional simple waves solutions or, respectively, regular interactions of one-dimensional
simple waves solutions, the Riemann restricted context is relaxed into a Riemann−Lax context (section
4.6) or, respectively, a Riemann−Burnat context (section 5.3.4; see Example 5.1).

4.2. Riemann invariants (I). Frobenius restrictions

4.2.1. Riemann entities. Frobenius restrictions

• For a strictly hyperbolic system (1.2) a Riemann restricted approach would begin with replacing the
entities u by the Riemann entities v via a nonsingular Riemann transform

v = v(u) ; v = (v1, . . . , vn), u = (u1, . . . , un), (4.1)
given by

∂vk
∂ul

= αk(u)
k

Ll(u) 1 ≤ l ≤ n . (4.2)
Let

u = u(v) (4.3)
the inverse of this transform.

• It results from (4.2) that the reality of a substructure vk = vk(u) of the Riemann transform depends
on the integrable character of the Pfaff form

n∑

l=1

k

Ll(u)dul. (4.4)

• Integrability restrictions for (4.4):

∂
k

Li
∂uj
− ∂

k

Lj
∂ui

= 0 i, j = 1, . . . , n. (4.5)k

Theorem 4.1 (G. Frobenius). If
k

L ∈ C1(R) and in R the restrictions (4.5)k are fulfilled, then for
every pair (u∗, v∗k), u∗ ∈ R, v∗k ∈ lR solution vk(u;u∗, v∗k) of the problem

dvk −
k

L(u)du = 0, vk(u∗) = v∗k (4.6)k

exists (uniquely) in the whole region R and vk ∈ C1(R). �
• Integrability restrictions for (4.4) in presence of an integrating factor [cf. (4.2); here for n = 3]:

k

L · rotu
k

L = 0 1 ≤ k ≤ 3. (4.7)k

• There is an essential difference between the case of n > 2 and the case of n ≤ 2. Precisely, the form
(4.4) is unconditionally integrable in case of n ≤ 2. Restrictions (4.5) guarantee the integrability of (4.4)
as n > 2; see Example 4.2 here below for a partial fulfilment of (4.7).

• Here is an example for which only an incomplete set of Riemann invariants exists.

Example 4.2. We consider the system (1.4) associated to an QT^I[>A�Lb^jBED�MGX¢[fH (strictly adiabatic) gasdy-
namic flow. The eigenelements of this system are computed to be

λ1(u) = vx + c(p, ψ), λ2(u) = vx, λ3(u) = vx − c(p, ψ),

R
1

(u) = Λ1(u)[ζ(p, ψ), 1, 0]t, R
2

(u) = Λ2(u)[0, 0, 1], R
3

(u) = Λ3(u)[−ζ(p, ψ), 1, 0]t

L
1

(u) = Θ1(u)[1, ζ(p, ψ), 0], L
2

(u) = Θ2(u)[0, 0, 1], L
3

(u) = Θ3(u)[−1, ζ(p, ψ), 0]

(4.8)
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with
ζ(p, ψ) = ρ(p, ψ)c(p, ψ).

We normalize the right eigenvectors R of a genuinely nonlinear index i by

R
i

(u) · graduλi(u) = 1 , i = 1, 3,

and the right eigenvectors R of a linearly degenerate index by
∣∣∣∣
∣∣∣∣R

2

(u)

∣∣∣∣
∣∣∣∣ = 1.

Then we normalize the left eigenvectors L by

R
i

· L
i

= 1 , 1 ≤ i ≤ 3.

We find in the normalized expressions (4.8):

Λ1(u) =

[
ζ(p, ψ)

(
∂c

∂p

)

ψ

+ 1

]−1

= Λ3(u) , Λ2(u) = 1 ,

Θ1(u) =
1

2ζ

[
ζ(p, ψ)

(
∂c

∂p

)

ψ

+ 1

]
= Θ3(u) , Θ2(u) = 1 .

Finally we calculate

− 1

Θ2
1(u)

L
1

(u) · rot L
1

(u) =
1

Θ2
3(u)

L
3

(u) · rot L
3

(u) =
∂ζ

∂ψ
6= 0 (4.9)

L
2

(u) · rot L
2

(u) = 0 . (4.10)

Only the substructure v2 = v2(u) of an (incomplete) Riemann transform is available in this case cf. (4.7),
(4.10). In case of an [>A�Lb^jBED�MGXK[fH flow, equation (1.4)3 is identically fulfiled so that (1.4)1,2 appears as a

coherent system of two equations (n = 2). This aspect is compatible with ∂ξ
∂ψ ≡ 0 in (4.9). �

4.2.2. Connecting the physical space and the hodograph space in presence of a complete Riemann
transform. Regular integrability

• Next, we use the entities v to structuring the connection between the hodograph space and the
physical space. Precisely, on the complete fulfilment of integrability restrictions (4.5) /(4.7) we use (4.2)
to compute for each k:

αk(u)
k

L(u)

[
∂u

∂t
+ a(u)

∂u

∂x

]
=

n∑

j=1

∂vk
∂uj
· ∂uj
∂t

+ λk(u)αk(u)
k

L(u)
∂u

∂x
=
∂vk
∂t

+ λk(v)
∂vk
∂x

, 1 ≤ k ≤ n.

• The Riemann invariants v1(x, t), . . . , vn(x, t), connecting the hodograph structure associated to the
Riemann entities v of 4.2.1 with a physical structure, satisfy a diagonal system

∂vk
∂t

+ λk(v)
∂vk
∂x

= 0, 1 ≤ k ≤ n; λk(v) ≡ λk[u(v)] (4.11)

associated to (1.2).

• A Riemann invariant vk is constant, cf. (4.11), along each characteristic line of index k [the constant
depends on line generally] in a given region of E.

• If the Frobenius restrictions (4.5) or (4.7) are fulfiled for each k = 1, ..., n we are led [cf. (4.3)] to a
Riemann representation

u = u[v1(x, t), . . . , vn(x, t)] (4.12)
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which will be associated with a regular integrability of (1.2) corresponding to some smooth initial data

u(x, 0) = u0(x). (1.2)0

The arguments v1(x, t), . . . , vn(x, t) in (4.12) result from a Cauchy problem which associates [cf (4.1)] to
the diagonal system (4.11) the initial data

v(x, 0) = v[u0(x)]. (4.1)0
• We could transcribe (4.11) through

(
∂vk
∂t

,
∂vk
∂x

)
= ηk~βk[u(v)], 1 ≤ k ≤ n. (4.13)

4.3. Riemann invariants (II). Frobenius restrictions.
Hodograph characteristic coordinates.
One-dimensional indices. Structuring through indices

4.3.1. Frobenius restrictions. Hodograph characteristic coordinates.
One-dimensional indices. Riemann hodograph structures

• We notice from (4.2) that
i

R · graduvk = 0 i 6= k (4.14)
as

i

R ·
k

L = 0 for i 6= k i, k = 1, . . . , n.

• From (4.14) it results the importance of the (n− 1)-dimensional hypersurfaces

vk(u) = constant = vk(u∗) (4.15)k
through an arbitrary point u∗ ∈ R.

From (4.14) we notice that if an arc of characteristic curve of index i, 1 ≤ i ≤ n, i 6= k passes through
a point of hypersurface (4.15) then this arc appears to entirely belonging to this hypersurface. This
indicates, particularly, that a hodograph characteristic curve of index i appears to be an intersection of
n − 1 hypersurfaces vk(u) = constant. To each hypersurface (4.15) a characteristic system of n − 1
coordinates will be associated via the intersections of this hypersurface with vj(u) = constant, j 6= k.

To each intersection of some hypersurfaces (4.15) a characteristic system of coordinates will be associated
similarly. A complete fulfilment [for each k = 1, . . . , n] of Frobenius restrictions (4.5) or (4.7) (locally)
results in existence of a hodograph characteristic system of coordinates. To each characteristic field of
coordinates, in such a system, an index will be associated. Hypersurfaces (4.15) or their intersections
of various dimensions appear to be Riemann hodograph structures.

Terminology 4.3. A hodograph hypersurface with a characteristic system of coordinates is said to
be a characteristic hypersurface. �

Remark 4.4. Riemann hodograph structures mentioned above are characteristic hypersurfaces. �
• A characteristic hodograph hypersurface is associated to a set of indices and reflects their genuinely
nonlinear / linearly degenerate character. A characteristic hypersurface will be therefore regarded as
structured through indices (also see section 7.3).

• In presence of Frobenius restrictions the circumstance depictet in Figure 3b is avoided: Figure 3a is
selected.

• The hodograph characteristic coordinates have a local character generally.

Example 4.5 (Smoller [27]). For the system

∂u1

∂t
− ∂u2

∂x
= 0,

∂u2

∂t
+

∂

∂x
[exp(−u1)] = 0 (4.16)

the Riemann entities v are related with u cf. v1(u) ≡ u2−2 exp
(
− 1

2u1

)
+2, v2(u) ≡ u2+2 exp

(
− 1

2u1

)
−2.

At the points of the field line of index 1 through u∗1 =(0, α1)∈H we have u2−(α1+2)=−2 exp
(
− 1

2u1

)
<0.

At the points of the field line of index 2 through u∗2 =(0, α2)∈H we have u2−(α2−2)=2 exp
(
− 1

2u1

)
>0.

Therefore an intersection of the two mentioned lines is not possible as α2 − α1 > 4. �

15



4.3.2. Types of Riemann hodograph structures.
Their formal relation with a solution hodograph

• A characteristic hypersurface (4.15) has the dimension n − 1. Characteristic hypersurfaces of a di-
mension p < n − 1 result as intersections of hypersurfaces vk(u) = constant. We notice in this respect
that n − 1 appears to be a maximal possible dimension of a hodograph characteristic hypersurface. We
also notice that a smooth solution u = u(x0, . . . , xm) of (1.1) is described in the hodograph space by a
hypersurface of a dimension p ≤ m+ 1. Therefore m+ 1 appears to be a maximal effective dimension for
such a hypersurface.

• For n > 2 we have n − 1 > 1 coordinates on a characteristic hypersurface vk(u) = constant through
u∗ ∈ R.

ki

kj

Sij

( )H

field lines
of index jfield lines

of index i

( )H

n=3,
Frobenius restrictions

not fulfilled

(b)(a)

Figure 3

• The set of hypersurfaces v has a specific role − depending on n and m. For example,
- for n = 2, m = 1 a hypersurface (4.15) has the dimension n− 1 = 1 which shows that it is reduced

in this case to a characteristic line through u∗. In this case a two-dimensional solution hodograph is
structured [cf. (4.12)] by hypersurfaces (4.15) which describe characteristic curves of indices k = 1, 2.
Each such a characteristic curve corresponds to a physical characteristic curve; see section 4.7 here below.

- For n = 3, m = 1, and in a Riemann restricted context, representation (4.12) indicates three types
of solutions of (1.2) with a hodograph laid on a hypersurface (4.15); example: the hodograph of solution
u = u[v1(x, t), v∗2, v3(x, t)] is laid on v2(u) = v∗2.

- For n > 3, m = 1, and in a Riemann restricted context, representation (4.12) indicates some types
of solutions of (1.2) with a hodograph laid on an intersection of hypersurfaces (4.15). See 4.4.2 here
below.

R
1

R
2

R
3

v
1
=const.

v
3
=const.

v
2
=const.

Figure 4

4.4. Two remarkable classes of constructions

• Two classes of smooth initial data can be identified as remarkable for (1.2) in presence of a Riemann
restricted context: (i) those which evolve, in presence of a genuine nonlinearity, through a simple waves
solution, and, (ii) those which evolve, in presence of an [adapted] genuine nonlinearity, through a regular
interaction of simple waves solutions [see below].
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4.4.1. One-dimensional simple waves solutions

• For a genuinely nonlinear index j we structure in (4.12):

u = u[v∗1, . . . , v
∗
j−1, vj(x, t), v

∗
j+1 . . . , v

∗
n], v∗k = constant; k 6= j. (4.17)1

with vk[u0(x̃)] ≡ v∗k = constantk for k 6= j in (4.1)0.

• The hodograph of solution (4.17)1 appears as an intersection of n−1 hypersurfaces (4.15)k, k 6= j.

interaction
region

resultant
simple waves

regions

incident
simple waves

regions x

t

t *

u'
m

ur

um

ul

( )E

(a)

(b)

u'm

ur

um

ul
( )H( )E

(c)

Figure 5

• If a Riemann restricted context is not available the construction of an analogue of (4.17)1 is described
in 4.6 in terms of a Riemann−Lax approach.

4.4.2. Regular interactions of one-dimensional simple waves solutions

• As a smooth solution of (1.2) with a maximal rank has a two-dimensional hodograph we could naturally
extend (4.17)1 by the solution structure:

u = u[v∗1, . . . , v
∗
i−1, vi(x, t), v

∗
i+1 . . . , v

∗
j−1, vj(x, t), v

∗
j+1, . . . , v

∗
n], v∗k = constant; k 6= i, k 6= j. (4.17)2

with vk[u0(x̃)] ≡ v∗k = constantk for k 6= i, k 6= j in (4.1)0.

• The hodograph of solution (4.17)2 appears as an intersection of n−2 hypersurfaces (4.15).

• If a Riemann restricted context is not available the construction of an analogue of (4.17)2 is described
in §5 in terms of a Riemann−Burnat approach.

• If the indices i and j are genuinely nonlinear such a solution describes a regular interaction of one-
dimensional simple waves solutions [see Figures 3a and 5].
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4.5. A Riemann restricted characterization of the quasilinearity hierarchy

• We also compute from (4.2)

∂λi
∂uj

=

n∑

k=1

∂λi
∂vk
· ∂vk
∂uj

=

n∑

k=1

αk(u)
k

Lj(u)
∂λi
∂vk

i

R(u) · graduλi(u) =

n∑

j=1

i

Rj(u)

n∑

k=1

αk(u)
k

Lj(u)
∂λi
∂vk

= αi(v)
∂λi
∂vi

and respectively transcribe the restrictions of genuinely nonlinearity / linear degeneracy of an index i
[see (3.3)/(3.4)] by

∂λi
∂vi
6= 0, v ∈ R (4.18)

or
∂λi
∂vi
≡ 0 in R. (4.19)

• At this point we shall use (4.18), (4.19) in order to characterize the quasilinearity hierarchy

linear ≺ semilinear ≺ quasilinear [≺ nonlinear ]. (4.20)

• As a complete Riemann transform always exists for n = 2 we notice that a representative and most
suggestive characterization of the mentioned hierarchy can be done for this case.

• So, for n = 2, a strong quasilinearity means

∂λ1

∂v1
6= 0 ,

∂λ2

∂v2
6= 0 in R

a medium quasilinearity requires

∂λ1

∂v1
6= 0,

∂λ2

∂v2
≡ 0 or

∂λ1

∂v1
≡ 0,

∂λ2

∂v2
6= 0 in R

and a weak quasilinearity has the signification

∂λ1

∂v1
≡ 0,

∂λ2

∂v2
≡ 0 in R. (4.21)

• A nontrivial form of (4.21) is complementarily characterized by

∂λ1

∂v2
6= 0,

∂λ2

∂v1
6= 0 in R. (4.22)

As (4.21) and (4.22) hold we set
r = λ2(v1), s = λ1(v2)

in order to transform the corresponding system (4.11) into

∂r

∂t
+ s

∂r

∂x
= 0,

∂s

∂t
+ r

∂s

∂x
= 0. (4.23)

Then, we calculate from (4.23)
∂r

∂t

∂s

∂x
− ∂r

∂x

∂s

∂t
= (r − s) ∂r

∂x

∂s

∂x
(4.24)

and
∂r

∂t
+ r

∂r

∂x
= (r − s) ∂r

∂x
,

∂s

∂t
+ s

∂s

∂x
= (s− r) ∂s

∂x
. (4.25)
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• Now, if we weaken the restriction (4.22), allowing for example that

∂λ1

∂v2
≡ 0

[
yet

∂λ2

∂v2
6= 0

]
in R,

then (4.24) takes the form

∂r

∂t
+ h

∂r

∂x
= 0,

∂s

∂t
+ r

∂s

∂x
= 0, constant h

which reduces to a linear equation:
∂s

∂t
+ r0(x− ht)

∂s

∂x
= 0.

It appears that the restrictions (4.21) and (4.22) characterize the lowest level of nonlinearity in the weak
quasilinearity connected with n = 2.

• We finally notice that a solution of (4.23) for which r ≡ s corresponds to a degeneration of the
weakly quasilinear system (4.23). In this degeneration the two equations (4.23) become coincident in the
genuinely nonlinear equation

∂r

∂t
+ r

∂r

∂x
= 0.

The mentioned degeneration implies a replacement of a n = 2 linear degeneracy by a n = 1 genuine
nonlinearity.

4.6. Riemann−Lax invariance. Riemann−Lax invariants

Construction of an one-dimensional simple waves solution begins [cf. 3.1.1] with isolating an orbit of the
system (2.4)i. We start this section by presenting this part of construction in terms of the first integrals
of the system (2.4)i. This part of construction will be seen to essentially contribute to the approach in
section 8.2.

Terminology 4.6. We say that a nonconstant function ϕ(u), which is C1 in R0 ⊂ R, is a first
integral in R0 for the system (2.4)i if it keeps constant along each orbital arc of (2.4)i included in R0

(the constant depends on orbit). �
Terminology 4.7 (associated to the contribution in Lax [16]). We say that a nonconstant function

ϕ(u), which is C1 in R0 ⊂ R, is a Riemann–Lax characteristic invariance function of index i (abreviated
i-RLIF) in R0 if it satisfies in R0 the equation

i

R(u) · graduϕ(u) = 0. (4.26)
�
• Terminology 4.7 is motivated by (4.14) and 4.3.1.

• The proposition which follows states the equivalence between the Terminologies 4.6 and 4.7.

Proposition 4.8. The function ϕ(u) is an i-RLIF in R0 iff it is a first integral of (2.4)i in R0. �
This shows a hodograph invariance of each i-RLIF along an orbital arc (which appears, cf. (2.4)i, to be
a characteristic arc).

Since R does not contain critical points of the system (2.4)i, we have

Proposition 4.9. (i) There exist exactly n − 1 independent i-RLIF,
i
ϕ1(u), . . .

i
ϕn−1(u), in a

neighbourhood U(u∗) of every point u∗ ∈ R [see Figure 6] 1

(ii) The general solution of (23) can be represented as

i
ϕ(u) ≡ F [

i
ϕ1(u), . . . ,

i
ϕn−1(u)], u ∈ W ⊂ U(u∗)

1 We say that the functions gi(u), 1 ≤ i ≤ k are independent in a neighbourhood of u∗

if rank

‚‚‚‚
∂gi
∂uj

‚‚‚‚
u=u∗

= k ≤ n [1 ≤ i ≤ k; 1 ≤ j ≤ n].
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where F is an arbitrary C1 function defined in a neighbourghood V of the point

[
i
ϕ1(u∗), . . . ,

i
ϕn−1(u∗)]. �

Corollary 4.10.

(i)
i

R(u), gradu
i
ϕ1(u), . . . gradu

i
ϕn−1(u) are independent in U(u∗),

(ii)
k

L(u), gradu
i
ϕ1(u), . . . , gradu

i
ϕn−1(u), k 6= i, are dependent in U(u∗); L are left eigenvectors of

a(u) in (1.2). �

Remark 4.11. Each hypersurface
i
ϕj(u) = constant =

i
ϕj(u

∗), 1 ≤ j ≤ n− 1, contains the character-
istic curve of index i through u∗ ∈ R. Therefore, the (one-dimensional) intersection of these hypersurfaces
is seen to consist in this, mentioned, characteristic curve. In fact, Proposition 4.9 (i) indicates a way of
(locally) describing a characteristic curve through u∗ ∈ R. �

R
1

R
2

R
3

j
2

1

=const.

j
1

1

=const.

j
2

2

=const.

j
1

2

=const.

j
1

3

=const.

j
2

3

=const.

Figure 6

• We notice the local character of Proposition 4.9. Still, here is an example for which we have to replace
U by R in Proposition 4.9 (i).

Example 4.12. For the system (1.4) the explicit expressions of the Riemann–Lax characteristic
invariance functions, valid in the whole R, are [u = (p, vx, vy)t, arbitrary p0]

1
ϕ1(u) = vx −

∫ p

p0

dξ

ρ(ξ, ψ)c(ξ, ψ)
,

1
ϕ2(u) = ψ, £�¤Wl�¥&¦�§P¨�©

2
ϕ1(u) = vx,

2
ϕ2(u) = p, £fªhl�¥&¦�§P¨�©

3
ϕ1(u) = vx +

∫ p

p0

dξ

ρ(ξ, ψ)c(ξ, ψ)
,

3
ϕ2(u) = ψ. £e«�l�¥,¦�§P¨ )

�
We conclude by remarking, cf. Proposition 4.8, that a hodograph characteristic curve can be constructed
generally as a (local) intersection of hypersurfaces described by Riemann–Lax characteristic invariance
functions (Figure 6; see comparatively Figure 4). A significant gasdynamic example of such a construction
could take into account the Example 4.12.

Terminology 4.13. It is proper to notice at this point that, in case of an i- simple waves solution
u(x, t), the Riemann-Lax hodograph invariance along a characteristic curve appears to characterize the
hodograph range of the application u : D ⊂ E → H . This suggests a special terminology: we call

ϕ
i
j(x, t)

def
= φ

i

j [u(x, t)] , 1 ≤ j ≤ n, j 6= i

to be [>l�¥�[fL�`�QT^I^�¬T¦�QT5[E^I®WQTDb[fQi^jB>A connected with the i- simple waves solution u. �

Remark 4.14. A nonconstant solution u(x, t) of (1.2) for which φ
i
j [u(x, t)]=constantj , 1≤ j ≤n, j 6= i

has an one-dimensional characteristic hodograph and, cf. (3.6)i it is an i- simple waves solution. In section
4.4.1 we have presented the construction of a simple waves solution in a Riemann restricted context. If
such a context is not available the mentioned construction persists in a Riemann−Lax version. �
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4.7. Correspondence between the physical characteristics
and the hodograph characteristics

• Since the eigenvectors ~κi, 1 ≤ i ≤ n, of the matrix a(u) in (1.2) generate lRn we get at u∗ ∈ H the
representation

∂u

∂t
=

n∑

k=1

η̃k~κk,
∂u

∂x
=

n∑

k=1

ηk~κk (4.27)

where from (1.2) we obtain
η̃k = −λkηk, 1 ≤ k ≤ n. (4.28)

• Then for any solution of (1.2) we have [see (2.3)]

(
∂ul
∂t

,
∂ul
∂x

)
=

n∑

k=1

ηkκkl(u)~βk(u), 1 ≤ l ≤ n. (4.29)

• We shall notice in fact from (4.27) that

∂ul
∂t

+ λj(u)
∂ul
∂x

=

n∑

k=1

ηk
k

Rl(λj − λk), 1 ≤ l ≤ n. (4.30)

• For n = 2 the system (4.30) has the form





∂u

∂t
+ λ1(u)

∂u

∂x
= η2R

2
(λ1 − λ2)

∂u

∂t
+ λ2(u)

∂u

∂x
= η1R

1
(λ2 − λ1)

(4.31)

which indicate that
u(C1) ⊂ C̃2, u(C2) ⊂ C̃1 (4.32)

where C1, C2 and C̃1, C̃2 are characteristic arcs in E and H respectively.

• A similar to (4.31) result does not hold for n ≥ 3 generally.

Example 4.15. In case of n = 3 the system (4.30) takes the form





∂u

∂t
+ λ1(u)

∂u

∂x
= η2R

2
(λ1 − λ2) + η3R

3
(λ1 − λ3)

∂u

∂t
+ λ2(u)

∂u

∂x
= η1R

1
(λ2 − λ1) + η3R

3
(λ2 − λ3)

∂u

∂t
+ λ3(u)

∂u

∂x
= η1R

1
(λ3 − λ1) + η2R

2
(λ3 − λ2).

(4.33)

• A regular interaction implying a hodograph characteristic system of coordinates with three [or more]
fields is clearly not possible for m = 1 [see Examples 4.15, 4.17]. Still, such a regular interaction could
have a chance of being possible if n ≥ 3, m ≥ 2 [see §5 and section 8.4].

• A particular form of (4.30) corresponds to the case of a j- simple waves solution and it assumes (cf.
section 3.1.1) ηk ≡ 0 as k 6= j. �

Example 4.16. For η1 ≡ 0, η2 ≡ 0, η3 /≡ 0 in (4.33) we obtain





∂u

∂t
+ λ1(u)

∂u

∂x
= η3R

3
(λ1 − λ3)

∂u

∂t
+ λ2(u)

∂u

∂x
= η3R

3
(λ2 − λ3)

∂u

∂t
+ λ3(u)

∂u

∂x
= 0

(4.34)

which indicates that

21



- u(x, t) = constant along each characteristic arc C3 [of index 3] in the domain of solution [the constant
depends on the characteristic arc generally]; this shows that u(x, t) is a 3- simple waves solution;

- because, let u∗ be a constant state adjacent on the left [/right] side to this simple waves solution in

the physical plane. We consider in the hodograph space the characteristic arc C̃∗3 through u∗ to

notice, cf. (4.34)1,2 that u(C1)⊂C̃∗3 and u(C2)⊂C̃∗3 . In fact, the mentioned [3- simple waves] solution

u(x, t) has C̃∗3 as a [one-dimensional] hodograph;

- a point on C̃∗3 is associated to an arbitrary characteristic arc C3 in the domain of this solution; as
[cf. (4.34)3] u(x, t) = constant along each arc C3 [the constant depends on the characteristic arc
generally].

• An other particular form of (4.29), (4.30) parallelling (4.31)] assumes ηk ≡ 0 for k 6= i, k 6= j in (4.29),
(4.30); it corresponds to the case of a solution with a two-dimensional characteristic hodograph. �

Example 4.17. For η1 ≡ 0, η2 /≡ 0, η3 /≡ 0 in (23) we get





∂u

∂t
+ λ1(u)

∂u

∂x
= η2R

2
(λ1 − λ2) + η3R

3
(λ1 − λ3)

∂u

∂t
+ λ2(u)

∂u

∂x
= η3R

3
(λ2 − λ3)

∂u

∂t
+ λ3(u)

∂u

∂x
= η2R

2
(λ3 − λ2)

(23)

which indicates that u(C2) ⊂ C̃3 and u(C3) ⊂ C̃2. We still have, complementarily, that u(C1) is laid on

the surface generated, in presence of Frobenius restrictions, by the families C̃2, C̃3 [cf. Figure 3a; here for
i = 2, j = 3]. �

¯ �*������� (4���������&(,	h��(4�2���7�°�@��3o�)��5�6� ���#�)������(43<5�_��(���3f�7�
�S�&='��3f(2	����2����	�(��7�)�������4"��@�53o������6�±�����)�����#(#3<�)�6�@153f�y¡{(,�&�,�*����3��2�)�������

5.1. Introduction

This paragraph presents an extension (in the sense of M. Burnat) of the theory of regular interactions of
simple waves solutions [see §4] with two valencies:

(i) considering the one-dimensional case of an incomplete Riemann transform [for which the Riemann
restricted context of §4 is not available], and,

(ii) considering the multidimensional case.

In a multidimensional context construction of a regular interaction of simple waves solutions essentially
assumes, in presence of Remark 2.6.b, that

• some (extended) indices are available; saving the indices depends on the details of an extended
(adapted) form of the ¨ID�M�aCLb^I[EFIA�DCLJACBEDb[fHJBE[fMi^jA (section 5.2);

• the Frobenius requirements are completed with some DCLJACBEDb[fHJBE[fMi^jA2MCO�D�L²�]FIV³QiD,[E^jBeL��TDCQha�[>V´[>BE� (sections
5.3−5.5);

• the two sets of restrictions mentioned before are finally completed by some D�LC��FK[EDCLb`'Lb^jBfA+MPO0��L�^IFK[E^�L
^�Mi^jV [E^�LCQiDb[>BE� (§7; also see [4])

In fact, in contrast with the one-dimensional case, it can be shown that in the multidimensional case
a fulfilment of the Frobenius restrictions does not lead to regular integrability generally (section 5.6).
Incidentally, the multidimensional approach considered in this paragraph appears to be useful for the
analysis of the case (i) mentioned above.
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5.2. Hodograph details of Riemann−Burnat “algebraic” multidimensional
construction. Frobenius restrictions. Multidimensional indices

• A hypersurface S is considered, to begin with, in the hodograph space − to eventually support the
image of a solution of the system (1.1).

• In the multidimensional case an infinite number of hodograph characteristics pass through a given
point u∗ ∈ H [Remark 2.6.b]. This is in contrast with the one-dimensional case where a finite number
of hodograph characteristics pass through a given point u∗ ∈ H [Remark 2.4.b] [this results in a finite
number of indices available at that point]. Still, in the multidimensional case we have the possibility of
identifying, on the considered hypersurface, of some (finite, local, nonunique) systems of characteristic
coordinates. Then, a finite number of indices could be associated to such a system of characteristic
coordinates − thus parallelling formally the one-dimensional issue.

• Some Frobenius restrictions are then taken into account at the points of this hypersurface to identify
such a characteristic system of coordinates. The presence of such a system would have a structuring
importance for an eventual solution with the hodograph on this mentioned hypersurface.

• Let ~κ1, . . . ~κk be, independent at each point, vector fields tangential to the hypersurface S which span
the tangent space TuS at each point u ∈ S.

Then the Frobenius conditions 1

[~κi, ~κj ] ∈ {~κi, ~κj}
are necessary and sufficient for the local existence of a coordinate system whose lines are tangent to the
vector fields ~κ1, . . . ~κk [i.e. of a characteristic system of coordinates] 2.

• In a multidimensional approach the indices appear concurrently with the identification, in presence of
Frobenius restrictions, of a system of characteristic coordinates. The multidimensional indices essentially
contribute to the structuring details of a regular interaction solution.

5.3. Connecting the physical space and the hodograph space.
Riemann−Burnat invariants. Regular integrability.
Regular interaction of multidimensional simple waves solutions

(a formal approach)

5.3.1. A class of solutions of the system (1.1)

• Let R1, . . . , Rp be characteristic coordinates on a given p-dimensional characteristic region R of a
hodograph hypersurface S. In presence of a m > 1 planar gasdynamic duality we are looking for (Burnat
[2], [3]) solutions of the system

∂ul
∂xs

=

p∑

k=1

ηkκkl(u)βks(u), u ∈ R; 1 ≤ l ≤ n, 0 ≤ s ≤ m (5.1)

(for a certain labelling of the coordinate fields).

• It easy to be shown [via (2.1)] that these solutions appear to satisfy the system (1.1). This indicates
an “algebraic” importance of the concept of dual pair.

• We formally call these solutions regular interactions (“of simple waves solutions”). A more complete
information would be available from the inspection of the nature of their hodographs [see §7 below].

5.3.2. Connecting the hodograph space and the physical space. Riemann invariants

• If a set of Riemann invariants exists, structuring the dependence of the solution u on x, we get for the

1 [ ~X, ~Y ] is the commutator of the fields ~X , ~Y

[ ~X, ~Y ]
def
= ( ~X · grad )~Y − (~Y · grad ) ~X

and { ~X, ~Y , . . . , ~Z} is the linear space generated by ~X, ~Y , . . . , ~Z.
2 See for example Sh. Sternberg, Lectures on differential geometry, Prentice Hall, Englewood Cliffs, 1964
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solution mentioned in 5.3.1 a regular interaction representation

ul = ul[R1(x0, . . . , xm) , . . . , Rp(x0, . . . , xm)], 1 ≤ l ≤ n. (5.2)

We could compute (Burnat [2], [3])

∂ul
∂xs

=

p∑

k=1

ηk
∂ul
∂Rk

· ∂Rk
∂xs

=

p∑

k=1

ηkκkl(u)
∂Rk
∂xs

, 1 ≤ l ≤ n; 0 ≤ s ≤ m . (5.3)

Then we use the independence of the vectors ~κk, 1 ≤ k ≤ n [of the coordinates Rk] to obtain the
(overdetermined and Pfaff) system

∂Rk
∂xs

= ηkβks[u(R)], 1 ≤ k ≤ p, 0 ≤ s ≤ m (5.4)

for identifying the Riemann invariants {Rk(x)}1≤k≤p and the functions {ηk(x)}1≤k≤p.

• It is proper to remark, cf. (4.11) and (2.3), that in the one-dimensional case we similarly have [see
(4.13)] (

∂vk
∂t

,
∂vk
∂x

)
= ηk~βk[u(v)], k = i or k = j. (5.5)

5.3.3. Regular integrability

• Existence of Riemann invariants could be connected with existence of a restricted integrability: we
call it regular integrability.

5.3.4. One-dimensional regular interaction vs. multidimensional regular interaction

• System (5.4) is determined for p=1, 2 [p=2 may correspond to an MT^�LJl�RT[E`�L�^jA6[fMi^�QWV regular interaction].

Example 5.1. Example 4.2 considered the case of the system (1.4) of the anisentropic gas dynamics
for which the Riemann transform (4.1) is incomplete [cf. (4.9); only a part of it is available in the
form v2 = v2(u), cf. (4.10)]. We look for a solution of (1.4) whose hodograph is laid on a surface
v2(u) = constant = v∗2 = v2(u∗). In our example this surface plays the role of the given p-dimensional
hodograph hypersurface of 5.3.1 (here for p = 2). We notice that on this surface a characteristic system
of coordinates exists and has two coordinate fields . For the mentioned solution we therefore follow the
suggestions of 5.3.1 to pass the representation (5.2) into the regular interaction representation

u = u[v1(x, t), v∗2, v3(x, t)] (5.6)

where v1(x, t) and v3(x, t) are Riemann−Burnat invariants.
On eliminating ηk from (5.4) [in notations (5.5) with p = 2, m = 1] we get for v1(x, t), v3(x, t) the

system 



∂v1

∂t
+ λ1(v1, v

∗
2, v3)

∂v1

∂x
= 0

∂v3

∂t
+ λ3(v1, v

∗
2, v3)

∂v3

∂x
= 0.

(5.7)

Finally we have to solve (5.7) for some smooth data and carry its solution v1(x, t), v3(x, t) into (5.6) in
order to make (5.6) active. �
• For a `�FIVµBE[fRi[E`'Lb^jA6[fMT^�Q�V regular interaction we have to solve an overdetermined system (5.4) generally

and, in this case, some restrictions on the exceptional vectors ~β could appear to be required at the points
of S (see sections 5.4−5.6). This reflects the Remark 2.6.b. Also see [21], [22].

• In the multidimensional case the Frobenius restrictions are associated with a first step of the approach
only. This step must be completed with a second step needed to guarantee that a connection exists between
the physical space and the hodograph space − via identifying a suitable set of Riemann invariants; in
fact via identifying a regular integrability of (1.1). Example 5.4 here below indicates a case in which the
fulfilment of the Frobenius restrictions does not lead to a regular integrability. This is in contrast with
the one-dimensional approach which does not distinguish between the two mentioned steps [cf. 4.2.1].
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Finally, we have to essentially complete the previously mentioned steps with a third step to guarantee a
genuinely nonlinear character of the solution considered (§7; also see [4]).

5.4. Cartan−Peradzyński approach

• A class of involution restrictions has been isolated in an analytical planar context in Peradzyński
[19] by means of a variant of Cartan’s theorem 1 concerning the existence of an analytic solution for a
system of Pfaff forms in a convenient neighbourhood of a regular point of this system (see D. Yang 2 for
a non-analytic extension).

Theorem 5.2 ([19]). If, around a regular point (x∗, R∗, η∗) of it, the system (5.4) is analytic and
fulfils the conditions of involution

~βk ∧
(
~βj ∧

∂~βk
∂Rj

)
= 0, k, j = 1, . . . , p, k 6= j (5.8)

(no summation) then, in a neighbourhood V of the mentioned regular point a general analytic solution
exists which depends on p arbitrary analytic functions of one variable. �
• If the Cartan−Peradzyński restrictions (5.8) are not fulfilled at the points of the hodograph charac-
teristic hypersurface considered in section 5.3.1 it could be not possible to connect the hodograph and
physical spaces [through a solution] even in presence of a suitable set of Frobenius restrictions guaran-
teeing a characteristic structure for the hodograph [see Example 5.4 below (section 5.6)].

5.5. Tsarev−Ferapontov two-dimensional approach

• Another class of restrictions has been isolated in [7]−[12] following Tsarev [29] and Ferapontov (referred
in [29]) for a two-dimensional approach. The steps of this concurrent approach follow.

• For m = 2 we eliminate the functions η from the system (5.4) and put this system into the form

∂Rk
∂t

= λk(R)
∂Rk
∂x

,
∂Rk
∂y

= µk(R)
∂Rk
∂x

; λk(R) ≡ βk0

βk1
, µk(R) ≡ βk2

βk1
; R = (R1, ..., Rp). (5.9)

• The requirement of commutativity of the flows (5.9) is equivalent to the restrictions on their charac-
teristic speeds:

∂
∂Rj

λk

λj − λk
=

∂
∂Rj

µk

µj − µk
, j 6= k ; (5.10)

(no summation).

• Once these conditions are met, the general solution of (5.9) is given by Tsarev’s implicit ”generalized
hodograph” formula [29]:

νk(R) = x+ λk(R)t+ µk(R)y , 1 ≤ k ≤ p ; R = (R1, ..., Rp) (5.11)

where νk(R) are characteristic speeds of the general flow commuting with (5.9), that is the general solution
of the linear system

∂
∂Rj

νk

νj − νk
=

∂
∂Rj

λk

λj − λk
=

∂
∂Rj

µk

µj − µk
, j 6= k . (5.12)

• In the two-dimensional Tsarev−Ferapontov context the Cartan approach of section 5.4 is replaced
with a Darboux approach (see [29]).

1 E. Goursat, Leçons sur le problème de Pfaff, Librairie Scientifique J. Hermann, Paris, 1922;
M. Kuranishi, On Cartan’s prolongation theorem of exterior differential systems, American J. of Math.,

79(1957), 1−47;
M. Kuranishi, Lectures on involutive systems of partial differential equations, Publicaçoes da Sociedade de

Matematica de Sao Paulo, Sao Paulo, 1967;
W. Ślebodziński, Exterior forms and their applications, PWN − Polish Scientific Publ., Warszawa, 1970.

2 Deane Yang, Involutive hyperbolic differential systems, Memoirs of AMS, No.370 (1987).
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• Next, we take into account in (5.12) the expressions of λ and µ in terms of ~β [cf. (5.9)] in order to
transcribe (5.10) by

(
~βk ∧ ~βj

)
∧
(
~βk ∧

∂~βk
∂Rj

)
= 0 , j 6= k . (5.13)

• We notice the following relation between the Cartan−Peradzyński and Tsarev−Ferapontov restrictions:

(
~βk ∧ ~βj

)
∧
(
~βk ∧

∂~βk
∂Rj

)

︸ ︷︷ ︸
Tsarev−Ferapontov

= ~βk ∧
[
~βk ∧

(
~βj ∧

∂~βk
∂Rj

)]

︸ ︷︷ ︸
Cartan−Peradzyński

+
(
~βk · ~βj

)(
~βk ∧

∂~βk
∂Rj

)
, j 6= k. (5.14)

which suggests the missing of a hierarchy (/order) of these two sets of restrictions.

• The same as in 5.4, if the Tsarev−Ferapontov restrictions (5.10) are not fulfilled it could be not possible
to connect the hodograph and physical spaces [through a solution] even in presence of a suitable set of
Frobenius restrictions guaranteeing a characteristic structure for the hodograph [see section 5.6].

5.6. Importance of Cartan−Peradzyński or Tsarev−Ferapontov restrictions.
A gasdynamic example of degeneracy

Terminology 5.3. A region of a manifold in the hodograph space is said to be nondegenerate
/degenerate with respect to the system (1.1) if a continuous (local) solution of (1.1) can/cannot be found
whose hodograph is laid on this region. �

• The Cartan−Peradzyński or Tsarev−Ferapontov restrictions corresponding to the system (1.5) are not
fulfilled at the points of the surface c = c∗. It is interesting to notice that a solution of (1.5) does not
exist with a hodograph on this surface. A case of degeneracy is considered in the Example which follows.

Example 5.4. The hodograph of a rank two solution of the system (1.5) cannot be laid on the plane
c = c∗ 6= 0. Indeed, for c ≡ c∗ > 0 in (1.5) we obtain

∂vx
∂x

+
∂vy
∂y

= 0,
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= 0,
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= 0. (5.15)

The last two equations (5.15) can be combined to give

∂

∂t
A = A2 + vx

∂

∂x
A+ vy

∂

∂y
A− 2B , C = vyB , D = −vxB

A ≡ ∂vx
∂x

+
∂vy
∂y

, B ≡ D(vx, vy)

D(x, y)
=
∂vx
∂x

∂vy
∂y
− ∂vx

∂y

∂vy
∂x

, C ≡ D(vx, vy)

D(t, x)
, D ≡ D(vx, vy)

D(t, y)
.

We use the first equation of (5.15) and find that the rank of the Jacobian matrix associated to the
considered solution is unity. Hence the only smooth solutions with a hodograph on c = c∗ are the
(rotational) simple waves solutions. �

• Incidentally, an infinity of characteristic coordinates can be constructed on c = c∗: genuinely nonlinear,
linearly degenerate, hybrid. This indicates a fulfillement of Frobenius restrictions.

• The genuinely nonlinear characteristic coordinates could be regarded as hodographs of simple waves
solutions.

• Still, as the Cartan−Peradzyński or Tsarev−Ferapontov restrictions corresponding to the system (1.3)
are not fulfilled at the points of the surface c = c∗, this surface will not support the hodograph of a
regular interaction of simple waves solutions. And this surface will not support the hodograph of a
hybrid interaction.

• In other words: the Cartan−Peradzyński or Tsarev−Ferapontov restrictions are not fulfilled and it is
not possible in this case to connect the hodograph and physical spaces [through a solution] even in pres-
ence of a suitable set of Frobenius restrictions guaranteeing a characteristic structure for the hodograph.
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6.1. Constructive details

In order to obtain (local) solutions of the system (1.5) of the isentropic two-dimensional gas dynamics
we put around the point (x0, y0, t0) of the physical space E

ξ =
x− x0

t− t0
, η =

y − y0

t− t0
(6.1)

and present the mentioned system in the form





(vx − ξ)
∂c2

∂ξ
+ (vy − η)

∂c2

∂η
+ (γ − 1)c2

(
∂vx
∂ξ

+
∂vy
∂η

)
= 0

∂c2

∂ξ
+ (γ − 1)(vx − ξ)

∂vx
∂ξ

+ (γ − 1)(vy − η)
∂vx
∂η

= 0

∂c2

∂η
+ (γ − 1)(vx − ξ)

∂vy
∂ξ

+ (γ − 1)(vy − η)
∂vy
∂η

= 0.

(6.2)

We shall consider for the system (6.2) examples of local solutions for which

vx = aξ + bη + c, vy = aξ + bη + c; real constant a, b, c, a, b, c . (6.3)

6.2. The exhaustive list of elements of the class considered above

In §7 certain representative examples, cf. §5, will be taken from the following exhaustive list [see the
Appendix 2 for details].

[cf. (A2.12)] vx ≡ c , vy ≡ c, c2 ≡ K; arbitrary K (6.4)

[cf. (A2.13)] vx ≡ c , vy ≡ η, c2 ≡ 0 (6.5)

[cf. (A2.14)] vx ≡ c , vy ≡
2

γ + 1
η + c, c2 =

(
γ − 1

γ + 1
η − c

)2

(6.6)

[cf. (A2.15)] vx = ξ, vy ≡ c, c2 ≡ 0 (6.7)

[cf. (A2.16)] vx = ξ, vy = η, c2 ≡ 0 (6.8)

[cf. (A2.17)] vx = ξ, vy =
3− γ
γ + 1

η + c, c2 =
3− γ

4

(
2
γ − 1

γ + 1
η − c

)2

(6.9)

[cf. (A2.18)] vx =
2

γ + 1
ξ + c , vy ≡ c, c2 =

(
γ − 1

γ + 1
ξ − c

)2

(6.10)

[cf. (A2.19)] vx =
3− γ
γ + 1

ξ + c , vy = η, c2 =
3− γ

4

(
2
γ − 1

γ + 1
ξ − c

)2

(6.11)
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[cf. (A2.20)]

vx =
1

γ
ξ + c , vy =

1

γ
η + c,

c2 =
1

2

[(
γ − 1

γ
ξ − c

)2

+

(
γ − 1

γ
η − c

)2
] (6.12)

[cf. (A2.30)]

vx = aξ ± η
√

a(1− a) +K
√

1− a, K =
c√

1− a
= ∓ c√

a

vy = ±ξ
√

a(1− a) + η(1− a)∓K
√

a,

c2 ≡ 0

0 < a < 1 (6.13)

[cf. (A2.31)]

vx =
√

a

(
ξ
√

a± η
√

2

γ + 1
− a

)
+ c

vy = ±
√

2

γ + 1
− a

(
ξ
√

a± η
√

2

γ + 1
− a

)
+ c

c2 =
γ+1

2

[
γ−1

γ+1

(
ξ
√

a±η
√

2

γ+1
−a

)
−
(

c
√

a±c

√
2

γ+1
−a

)]2

0 < a <
2

γ + 1
(6.14)

[cf. (A2.32)]

vx = aξ ± η
√

(1− a)

(
a− 3− γ

γ + 1

)
+K
√

1− a, K =
c√

1− a
= ∓ c√

a− 3−γ
γ+1

vy = ±ξ
√

(1− a)

(
a− 3− γ

γ + 1

)
+ η

(
4

γ + 1
− a

)
∓K

√
a− 3− γ

γ + 1

c2 =
(3− γ)(γ − 1)

2(γ + 1)

(
ξ
√

1− a∓ η
√

a− 3− γ
γ + 1

−K
)2

3− γ
γ + 1

< a < 1 (6.15)

[cf. (A2.36)] vx ≡ c , vy = aξ + η + c, c2 ≡ 0 (6.16)

[cf. (A2.37)] vx = ξ, vy = aξ + c, c2 ≡ 0 (6.17)

[cf. (A2.38)] vx = aξ + bη + c , vy =
a(1− a)

b
ξ + η(1− a)− a

b
c , c2 ≡ 0 (6.18)

Remark 6.1. (i) Solution (6.13) tends to (6.5) in the limit a → 0 and to (6.7) in the limits a → 1.
Solution (6.14) tends to (6.6) in the limit a→ 0 and to (6.10) in the limit a→ 2

γ+1 . Solution (6.15) tends
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to (6.11) in the limit a → 3−γ
γ+1 and to (6.9) in the limit a→ 1. (ii) The solution (6.16) tends to (6.5) in

the limit a→ 0, c→ 0. Solution (6.17) tends to (6.7) in the limit a→ 0. Solution (6.18) tends to (6.13)
in the limit b2 → a(1− a). �

6.3. The nature of solutions on the exhaustive list.
Identifying the nontrivial elements

Incidentally, and remarkably, all the solutions on the exhaustive list could be characterized according to
the facts of §§3−5.

Remark 6.2. • In this section we only notice that (6.6), (6.10) and (6.14) are one-dimensional simple

waves solutions [respectively corresponding to α(y, t) ≡ η, α(x, t) ≡ ξ or α(x, y, t) ≡ ξ
√

a ± η
√

2
γ+1 − a

in (3.11)i] and (6.4) is the trivial solution. Solution (6.14) appears to be one-dimensional after an

evident replacement of the frame x, y by an orthogonal frame X,Y for which X = x
√

a ± y
√

2
γ+1 − a.

• Solution (6.12) is characterized in section 7.1 to be a regular interaction of multidimensional simple
waves solutions. • Solutions (6.9), (6.11) and (6.15) are characterized in section 7.2 as regular interactions
of one-dimensional simple waves solutions. • Solutions (6.5), (6.7), (6.8), (6.13), (6.16), (6.17), (6.18) are
constitutively inadmissible because of the requirement c2 ≡ 0. �
We have finally to remove from the exhaustive list (6.4)−(6.18) the trivial and the constitutively inad-
missible solutions and, cf. Remark 6.1(i), to close the intervals to which a belongs in (6.13)–(6.15).
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7.1. A first significant solution in the class mentioned above

• Let us consider in the hodograph space corresponding to the system (1.5) (n = 3) the circular semi-cone

A2c2 −B2(V 2
x + V 2

y ) = 0, c > 0. (7.1)

c

circular
cone of
(2.5)

vy

vx critical
position

(b)

vy

vx

c

conical
helices

(a)

( )H

(c)

Figure 7

• A coordinate system results by considering two families of conical helices on this semi-cone. The
equation of a conical helix on (7.1) is

c = B exphR, Vx = A exphR cosR, Vy = A exphR sinR. (7.2)
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We compute from (7.2) the tangent direction to this helix and notice that it is laid on the cone

(h2 + 1)A2(c− c∗)2 = h2B2[(Vx − V ∗x )2 + (Vy − V ∗y )2] (7.3)

with the vertex at the point U∗ = (c∗, V ∗x , V
∗
y ) of (7.1). Therefore, the mentioned direction results at

each U∗ on (7.1) by intersecting this semi-cone with (7.3).

c c

vy vy

vx vx

R+

R
+

R
-

R
-

c c

vy vy

vx vx

R
0

R
0

R
+ R

-R
-R

+

R0
R

0

Figure 8

A helix is a spatial curve whose tangents keep a constant inclination with respect to a fixed direction.
A particularity of the helix is the preserving of a constant quotient curvature/torsion at its points. For
the construction of (7.2) the axis of the cone (7.3) appears to be a fixed direction.

A conical helix becomes a characteristic curve if (7.3) coincides with the circular branch of (2.5). Such
a coincidence requires

B2

A2
=

(γ − 1)2

4
· h

2 + 1

h2
. (7.4)

To a particular choice of h in (7.2) a particular from of (7.1) corresponds cf. (7.4). For example, for
h = ±1 and A = 1 in (7.4) we have to replace (7.1) by

c2 =
(γ − 1)2

2
(V 2
x + V 2

y ), c > 0. (7.5)

Two families of conical helices given, cf. (7.2), by





c =
γ − 1√

2
exp[−(R+ +R−)]

Vx = exp[−(R+ +R−)] cos(R+ −R−)

Vy = exp[−(R+ +R−)] sin(R+ −R−)

(7.6)

describe locally, around each point U∗ of the semi-cone (7.1), a characteristic coordinate system R+, R−.
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• We consider the solution (6.12)

vx =
1

γ
ξ + c , vy =

1

γ
η + c ; arbitrary c , c ,

c2 =
1

2

[(
γ − 1

γ
ξ − c

)2

+

(
γ − 1

γ
η − c

)2
] (7.7)

on the exhaustive list above. The hodograph of this solution is a characteristic conical surface.

• It results from (7.7) a concrete form (7.5) with

Vx = vx − c∗, Vy = vy − c∗ ; c∗ =
γ

γ − 1
c , c∗ =

γ

γ − 1
c (7.8)

for the cone (7.1).

• Finally, we compare (7.7) and (7.8) with (7.6) to get the concrete form − connecting the hodograph
and physical spaces − of the Riemann invariants R+(ξ, η), R−(ξ, η). We include this form into (7.6) and
take into account the genuinely nonlinear character of the hodograph characteristics, the two families of
helices, to obtain a structured representation of a regular interaction of multidimensional simple waves
solutions. The physical structure of such a regular interaction is presented in Figure 9 below.

b1

b1

b2

b2

b1
b2

s
s

s

s

s

planes which
stratify the

simple waves
region 1

interaction
region

( )x y t0 0 0, ,

planes which
stratify the

simple waves
region 2

developable
surfaces

simple
waves

region 3
simple
waves

region 4

( )E

Figure 9

• In the one-dimensional case of Figure 5a the four simple waves solutions implied by a regular interaction
will be classified to be incident or resultant. This classification appears to be useless in the two-dimensional
case of Figure 9.

• A third family of hodograph characteristics on the semi-cone (7.5) will result from the intersection of
this semi-cone with the planar branch of (2.5).

• As the characteristic curves of this family do not include straightlined arcs, these curves have a genuinely
nonlinear character too and appear to be available for supporting a hodograph of (multidimensional)
simple waves solution (cf. section 3.4).

• The solution (7.7), which is a regular interaction of simple waves solutions could be structured in three
distinct manners. To each manner a pair of Riemann invariants contribute:

R+(ξ, η), R−(ξ, η) ; R+(ξ, η), R0(ξ, η) ; R−(ξ, η), R0(ξ, η) ,

which result when the solution (7.7) is compared with its Riemann invariance structure. The possibility
of several Riemann structures appears to be a ^�L�kSObQhHGB of the multidimensional approach.
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7.2 A second significant solution in the class mentioned above

7.2.1. Importance of the genuine nonlinearity

• Let us consider in the hodograph space corresponding to the system (1.5) (n = 3) the plane

c− c∗ = A(vx − v∗x) +B(vy − v∗y) (7.9)

through the point u∗ = (c∗, v∗x, v
∗
y). Two families of characteristic straightlines could be drawn in this

plane if the intersection of (7.9) with the circular branch of the cone (2.5),

(c− c∗)2 =
(γ − 1)2

4
[(vx − v∗x)2 + (vy − v∗y)2], (7.10)

is real. The straightlines of these families appear to be the coordinate lines of a characteristic system of
coordinates around u∗. The reality of the intersection of (7.9) and (7.10) is guaranteed by requiring

A2 +B2 − (γ − 1)2

4
> 0. (7.11)

The vectors ~κ± are then normalized by κ2
vx + κ2

vy = 1 and their orientations are a priori chosen.

• A coordinate system R+, R− on (7.9) around the point u∗ is described by




c− c∗ = κ+
c R+ + κ−c R−

vx − v∗x = κ+
vxR+ + κ−vxR−

vy − v∗y = κ+
vyR+ + κ−vyR−

(7.12)

where the vectors ~κ± correspond to intersection directions of (7.9) and (7.10) [Figure 10].
We compute

(κ±c , κ
±
vx , κ

±
vy ) =

{
γ − 1

2

[
A
γ − 1

2
±B

√
A2 +B2 − (γ − 1)2

4

]
,−
[
B2 − (γ − 1)2

4

]
,

[
AB ± γ − 1

2

√
A2 +B2 − (γ − 1)2

4

]}
.

• For 3−γ
γ+1 < a < 1 we consider the solution (6.15)

vx = aξ ± η
√

(1− a)

(
a− 3− γ

γ + 1

)
+K
√

1− a, K =
c√

1− a
= ∓ c√

a− 3−γ
γ+1

vy = ±ξ
√

(1− a)

(
a− 3− γ

γ + 1

)
+ η

(
4

γ + 1
− a

)
∓K

√
a− 3− γ

γ + 1

c = ε

√
(3− γ)(γ − 1)

2(γ + 1)

(
ξ
√

1− a∓ η
√

a− 3− γ
γ + 1

−K
)
, ε = ±1

(7.13)

on the exhaustive list above, with
K =

c√
1− a

= ∓ c√
a− 3−γ

γ+1

.

The hodograph of this solution is a double characteristic (planar) surface.

• It results from (7.13) a concrete form for the plane (7.9):

A = ε

√
γ2 − 1

2(3− γ)

√
1− a, B = ∓ε

√
γ2 − 1

2(3− γ)

√
a− 3− γ

γ + 1
; ε = ±1

v∗x = K
√

1− a, v∗y = ∓K
√

a− 3− γ
γ + 1

, c∗ = −εK
√

(γ − 1)(3− γ)

2(γ + 1)
.

(7.14)
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We compute

A2 +B2 − (γ − 1)2

4
=
γ + 1

3− γ ·
(γ − 1)2

4
> 0.

to guarantee that a characteristic system exists whose coordinate lines are straightlines.

• Finally, we compare (7.12) and (7.13) to get the concrete form − connecting the hodograph and
physical spaces − of the Riemann invariants R+(ξ, η), R−(ξ, η). We include this form into (7.12) and
take into account the genuinely nonlinear character of the characteristic straightlines supported by the
vectors ~κ± to obtain a structured representation of a regular interaction of one-dimensional simple waves
solutions 1 (see again Figure 9).

7.2.2. Possibility of a partial linear degeneracy

• A third family of hodograph characteristics on a plane (7.9) will result from the intersection of this
plane with the planar branch of (2.5) [Figure 10].

• A coordinate system R+, R0 in (7.9) around the point u∗ is described by





c− c∗ = κ+
c R+ + κ0

cR0

vx − v∗x = κ+
vxR+ + κ0

vxR0

vy − v∗y = κ+
vyR+ + κ0

vyR0

(7.15)

where
~κ0 = (0,−B,A) (7.16)

[as determined by the mentioned intersection].

• As the hodograph characteristic curves of the third family (index 0) are horizontal straightlined arcs,
these curves have a linearly degenerate character (cf. section 3.4). We identify the index (0) to be a
linearly degenerated index.

• The solution (7.13) could be again structured in three distinct manners. To each manner a pair of
Riemann invariants contribute:

R+(ξ, η), R−(ξ, η) ; R+(ξ, η), R0(ξ, η) ; R−(ξ, η), R0(ξ, η) ,

which result when the solution (7.13) is compared with its Riemann invariance structure (7.12) or (7.15).

• The Riemann representation corresponding to the pair R+(ξ, η), R−(ξ, η) is associated with a regular
interaction of simple waves solutions.

• The representations corresponding to the pairs R+(ξ, η), R0(ξ, η) or R−(ξ, η), R0(ξ, η) could be as-
sociated to a regular hybrid interaction. This possibility appears as an other essential ^�Lbk»OGQ�HJB of the
multidimensional approach 1.

From (7.15) we notice that for R+ = 0 we have c = c∗ in (7.9). Therefore R+ = 0 corresponds to the
hodograph straightline

c− c∗ = 0, A(vx − v∗x) +B(vy − v∗y) = 0 (7.17)

whose pre-image in the physical space, cf. (7.12) and (7.13), is the hyperplane [ex. for ε = 1 in (7.13)]:

ξ
√

1− a− η
√

a− 3− γ
γ + 1

= 0. (7.18)

If the axes x, y are changed with the axes X,Y and VX , VY denote, respectively, at each point (X,Y ) ∈lR2,
the projections of the velocity vector on these new axes, we get

X = αxxx+ αxyy, Y = αyxx+ αyyy

αxx = cos θ = αyy, αxy = sin θ = −αyx; −π < θ < π
(7.19)

1 We put, for example, R−=0 in (7.12) and use the resulted c(R+), vx(R+), vy(R+) to express at each R+ the

dual vector ~β(R+) [cf. (2.9)]. We find d~β+

dR+
6= 0. Finally, we carry the computed ~β(R+) in the construction (3.9)′ of

a simple waves solution. Similarly, we put, for example, R+ =0 in (7.15) and use the resulted c(R0), vx(R0), vy(R0)

to express at each R0 the dual vector ~β(R0) [cf. (2.8)]. We find in this case d~β0

dR0
= 0.
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and correspondingly,
VX = αxxvx + αxyvy, VY = αyxvx + αyyvy. (7.20)

then the form (1.5) is seen to persist (see (A3.1) in Appendix 3).
We take in this case in (7.19)

cos θ =
A

A2 +B2
, sin θ =

B

A2 +B2
, (7.21)

and put

ξ̃ =
X −X0

t− t0
, η̃ =

Y − Y0

t− t0
, (7.22)

to find by (7.19) 



ξ̃ = ξ cos θ − η sin θ =

√
γ + 1

2(γ − 1)

[
ξ
√

1− a− η
√

a− 3− a

γ + 1

]

η̃ = ξ sin θ + η cos θ =

√
γ + 1

2(γ − 1)

[
ξ

√
a− 3− γ

γ + 1
− η
√

1− a

] (7.23)

with ξ̃ = 0 at the points of (7.18).
Next we use (7.22), (7.23) to re-arrange (7.13) into

VX =
3− γ
γ + 1

ξ̃ + V ∗X , VY = η̃, c = ξ̃
γ − 1

γ + 1

√
3− γ + c∗

V ∗X = K

√
2
γ − 1

γ + 1
, V ∗Y = 0, c∗ = −K

√
2

(γ − 1)(3− γ)

γ + 1
.

(7.24)

At the points of (7.18) we have ξ̃ = 0 and we therefore obtain from (7.24)

c = c∗, VX = V ∗X (7.25)
and

VY = η̃. (7.26)

The details (7.25) together with the linearly degenerated character of the hodograph (7.17) suggest an
affinity between solution (7.24) and an one-dimensional piecewise constant solution with a contact dis-
continuity associated to the same hodograph (7.17) (see Appendix 3).

We have to remark two significant aspects here. The pre-image of (7.17) corresponding to solution

(7.13) is ξ̃ = 0 [cf. (7.18)] while the pre-image of the same hodograph (7.17) is different [ξ̃ = V ∗X 6= 0]
when the mentioned one-dimensional solution (Appendix 3) is used. If (7.17) is associated with the
two-dimensional solution (7.13) then each point of this hodograph will appear to be significant: running
through the hodograph only depends on varying η̃ in (7.26). This is in contrast with the case when
(7.17) corresponds to the mentioned one-dimensional solution (Appendix 3). In this last case the passage
between two points (states) u∗, u belonging to (7.17) is made by a jump (corresponding to a contact
discontinuity), so that only the two ends of the segment of (7.17) limited by u∗, u will be significant. This
indicates a degeneracy of the hodograph (7.17) as associated with an one-dimensional linearly degenerated
index.

We have to notice in this respect that in a regular interaction with the hodograph (7.9) this hodograph
must be associated to solution (7.13). Because, a degenerated character of this hodograph would induce
a degenerated character of the interaction.

The possibility of (7.15) to reflecting a continuous (nondegenerated) solution, thus being compatible
with the alternative representation (7.12), is guaranteed by the multidimensional context.

• Finally, we have to observe that the (multidimensional) representation (7.15) does not reflect an
interaction of simple waves solutions.

7.3. Genuine nonlinearity / linear degeneracy: an ad hoc extension.

Criterion 7.1. If several regular representations are possible for a given solution and among them
there exist some genuinely nonlinear representations [structured by genuinely nonlinear hodograph char-
acteristic fields] we shall select as QhRT`5[>APA6[faJV³L the genuinely nonlinear representations thus avoiding the
hybrid representations [whose structure include linearly degenerated hodograph characteristic fields]. �
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Terminology 7.2. A hodograph characteristic hypersurface is said to be genuinely nonlinear if it
is structured by genuinely nonlinear hodograph characteristic fields. The genuinely nonlinear character,
naturally introduced in §3, as associated to a simple waves solution, is thus amplified to a natural extension
of the class of simple waves solutions: the regular interactions of simple waves solutions. �
• Identifying elements of this extended class depends on completing the two anterior steps of construction
described in §5 [identifying Frobenius restrictions, identifying regular integrability restrictions] with a
third, final step: characterizing the nature of the structuring hodograph characteristic fields [genuinely
nonlinear, hybrid, linearly degenerated]. Completing this third step would indicate, in presence of an
implicit “algebraic” nondegeneracy, the genuinely nonlinear heredity of a regular interaction solution as
essentially constructed from [genuinely nonlinear] simple waves solutions.

• In [5] a parallel [“differential”] form of nondegeneracy is described as distinct from the present “alge-
braic” one.

7.4. Bibliographical note

A pioneering study on the double waves solutions of the equations of steady two-dimensional potential
isentropic gasdynamic flow is due to J. Giese [15]. In this study an analogue of results 7.1 is discussed.
The conical solution corresponding to this analogue reflects the well-known Taylor–Maccoll flow ([28]).
On this subject see also a paper of P. Germain [14]. Examples of irregular interactions of simple waves
solutions from a numerical prospect are considered in [25], [26], [31], [32]. In these papers an essential
classifying role is revealed for the pseudo Mach number

M̃ =
1

c

√
(vx − ξ)2 + (vy − η)2. (7.27)

For the example presented in section 7.1 we compute M̃ ≡
√

2 > 1 and, for the example presented in
section 7.2, we similarly calculate M̃ ≡ constant = 2√

3−γ > 1. In this respect, our regular interactions,

in an analytical form, correspond to two purely pseudo supersonic solutions.
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8.1. Introduction

Some applications of the regular integrability are included in this paragraph to structuring and charac-
terizing rank partitions of solutions in the class of regular interactions of simple waves solutions.

8.2. One-dimensional details. A theorem of K.O. Friedrichs

Lemma 8.1. The boundary of a constant region contained in the domain D of a continuous solution
is a polygonal line whose sides are segments of characteristic straighlines.

Argument. For a hyperbolic system the characteristics are straightlines in a constant region. Let C be a
noncharacteristic arc of the boundary of a constant region. It appears that the constant solution can be
continued outside the constant region, a contradiction. �

Terminology 8.2 (Friedrichs [13]). We say that an open segment (a connected set which does not
contain vertices) of the polygonal boundary of a constant region is essentially isolated; see Figure 12a.�

Theorem 8.3 (Friedrichs [13]). Let D be the domain of a continuous solution u and D0, D̃1 open
subsets of D adjacent along an open arc C. Denote u, ũ1 the restrictions of solution u to D0 and respec-
tively D̃1.

If u is constant, ũ1 is smooth and nonconstant and C is essentially isolated then there exists a region
D1 ⊂ D̃1 adjacent to D0 along C so that restriction u1 of u to D1 is a simple waves solution ; see Figure 12b.

Proof. Here is a significant application of the Riemann−Lax approach (section 4.6). Let u = u(D0) and
let i be the index of the characteristic C. According to Corollary 4.10(ii) we have in a neighbourhood U

36



of u in H

L
k

(u) =

n−1∑

j=1

θkj(u) gradu ϕ
i
j(u), 1 ≤ k ≤ n, k 6= i. (8.1)

By (1.2) and (8.1) we obtain in D̃1 :

0 = L
k

(u)

[
∂u

∂t
+ a(u)

∂u

∂x

]
= L

k

(u)

[
∂u

∂t
+ λk(u)

∂u

∂x

]

=
n−1∑

j=1

θkj(u)


∂ϕ

i
j(u)

∂t
+ λk(u)

∂ϕ
i
j(u)

∂x


 , 1 ≤ k ≤ n k 6= i .

(8.2)

We put

~ϕ = [ ϕ
i

1(u), . . . , ϕ
i
k(u), . . . , ϕ

i
n(u)︸ ︷︷ ︸

n−1 components

] , k 6= i

and transcribe (8.2) by

Θ(u)
∂~ϕ(u)

∂t
+ Λ(u)Θ(u)

∂~ϕ(u)

∂x
= 0 ,

a system of n− 1 equations which can be re-arranged finally into the form

∂~ϕ(u)

∂t
+ Λ̃(u)

∂~ϕ(u)

∂x
= 0 , Λ̃ = Θ−1ΛΘ . (8.3)

We notice therefore that the matrix Λ̃(u) has the eigenvalues λj(u), j 6= i.

Let us consider in D̃1 the Cauchy problem which consists in the linear hyperbolic system (associated to
solution u)

∂~Ψ(x, t)

∂t
+ Λ̃[u(x, t)]

∂~Ψ(x, t)

∂x
= 0 , dim ~Ψ = n− 1 (8.4)

and the data
~Ψ(x, t) = constant = ~ϕ(u) , 1 ≤ k ≤ n− 1, along C. (8.5)

The characteristics of (8.4) have the slopes λj(u), j 6= i so that the straighline C is not a characteristic of

(8.4). Then the problem (8.4), (8.5) has an unique solution in D1 ⊂ D̃1. This solution can be continously
continued through C with an identically constant contribution in D0

~Ψ(x, t) ≡ constant = ~ϕ(u) . (8.6)

On the other hand, we have in D1 [cf. (8.3)] ~Ψ(x, t) ≡ ~ϕ[u(x, t)]. We finally use Remark 4.14. �

D
1

D
0

D
0

D
1

(a) (b)

Figure 12

Corollary 8.4 (Friedrichs [13]). Let D1 ⊂ D be a simple waves region. Region D1 cannot be
adjacent in D along an essentially isolated segment of a characteristic straightline but to a constant
region or a simple waves region of the same index. �
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8.3. One-dimensional regular rank partition

Corollary 8.4 shows how can we characterize the rank of a smooth solution in its domain D as this domain
contains a constant region D0. So, let, in a DCQT^UÀ#XZQTDJBo[>BE[fMi^ , Dj be a rank j region (j = 0, 1, 2). We have
to assume that the region D2 corresponds to a regular interaction. Corollary 8.4 and the regular nature
of D2 imply that D1 must be a simple waves region and that D2 and D0 cannot have in common but
isolated points.

A typical example of Friedrichs rank partition is depicted in Figure 13 (we ignore the change of the simple
waves index in the regions D1 of this figure).

A natural context for wich the rank partition description can be extended is presented in section 8.4.
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8.4. Multidimensional regular rank partition

Proposition 8.5 (Peradzyński [19]). If a regular interaction of p simple waves solutions can be
constructed [corresponding to a system of p Riemann−Burnat invariants {Rj(x)}1≤j≤n] then regular
interactions of s simple waves solutions, s < p, can be obtained when the values of p − s among the
mentioned p invariants are fixed.

Proof ([19]). Cf. the hierarchy coherence of the Cartan involution restrictions (5.8). �
• Proposition 8.5 indicates a natural way of extending, in absence of a Riemann restricted context, the
hierarchies of Riemann structures mentioned in sections 4.2−4.4.

• Representation (5.2) corresponds to a particular type [“algebraic”, with a characteristic hodograph] of
solutions with a constant rank.

• Proposition 8.5 shows how can we put together, in presence of a regular integrability, solutions of
constant rank − in order to build more ample structures. Such kind of structures will be called ÁCÂ²ÃTÄ¢ÅÇÆTÁ
ÁCÆiÈIÉ,ÊhÆiÁJËEÌ>ËoÌfÍTÈjÎ . Examples of such structures, made of simple waves solutions and/or regular interactions
of simple waves solutions have been already presented in sections 4.4.2, 7.1, 7.2; cf. Figure 5a and Figure 9.
In [5] an example is included of “nonalgebraic” regular rank partition.

An interaction of one-dimensional simple waves solutions implies four simple waves solutions [divided
into incident and resultant; section 4.4.2, Figure 5a; due to an even codimension]. An interaction of
two-dimensional simple waves solutions implies a simultaneous contribution of four interacting simple
waves solutions [due to an odd codimension (sections 7.1, 7.2, Figure 9); in contrast with the previous
case]. A multidimensional approach has essentially a local character. The ranks of two adjacent
regions of constant rank are equal or differ by unity. This is a consequence of Proposition 8.5; cf. the
constructive details of the adjacency. A È�ÂbÏÑÐGÆ�ÒJË concerning the multidimensional regular interactions
is that, in the physical space E, an interaction region is not necessarily limited by adjacent simple waves
solutions [as it happens in the one-dimensional case]. Examples could be produced, cf. Proposition 8.5,
of such regions which are limited by regions of regular interaction of an inferior (by unity) rank.

Ó�Ô7Õ�Ö+×7Ø�ÙEÚ7Û�Ü_Ú0ÝÞÚ0Ö�ß¢à
I have much pleasure in thanking Roger Grimshaw for kindly inviting me to contributing in the Nonlinear
Waves and Fluid Dynamics Seminar. I am particularly grateful to Eugene Ferapontov for stimulating
discussions.
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1. Anisentropic (strictly adiabatic) gasdynamic flow

An QT^U[>ACLb^jBoDCMGX¢[fH (strictly adiabatic) gasdynamic flow results behind a shock discontinuity of nonconstant
velocity which penetrates into a region of uniform flow. Such a flow is described, in usual notations, by
the system of conservation laws





∂ρ

∂t
+
∂(ρvx)

∂x
= 0

∂(ρvx)

∂t
+

∂

∂x

(
ρv2
x + p

)
= 0

∂(ρS)

∂t
+
∂(ρvxS)

∂x
= 0 , S = S(p, ρ)

(A1.1)

where the entropy density S is constant along each particle line with the constant value depending on
the particle line, cf. the evident transcription of (A1.1)3

∂S

∂t
+ vx

∂S

∂x
= 0 , S = S(p, ρ). (A1.2)

The particle function ψ introduced by (A1.1)1 cf.

ρ =
∂ψ

∂x
, ρvx = −∂ψ

∂t

fulfils (A1.2)
∂ψ

∂t
+ vx

∂ψ

∂x
= 0 (A1.3)

− which indicates a dependence S = f(ψ) [we assume that f is smooth and nonconstant]. This depen-
dence will be put together with the structure S = S(p, ρ) of the entropy density into a relation

S(p, ρ) = f(ψ) (A1.4)

which is used finally to express
ρ = ρ(p, ψ). (A1.5)

We transcribe (A1.2) by

∂S

∂p

(
∂p

∂t
+ vx

∂p

∂x

)
+
∂S

∂p

(
∂p

∂t
+ vx

∂p

∂x

)
= 0 for each given ψ (A1.6)

and identify

c2 = −
∂S
∂ρ

∂S
∂p

= c2(p, ψ) =

[(
∂ρ

∂p

)

ψ

]−1

(A1.7)

as an ad hoc anisentropic sound speed to give (A1.6) the form
(
∂p

∂t
+ vx

∂p

∂x

)
− c2(p, ψ)

(
∂ρ

∂t
+ vx

∂ρ

∂x

)
= 0 for each given ψ. (A1.8)

Finally we use (A1.8) and (A1.3) to put (A1.1) into the form




∂p

∂t
+ vx

∂p

∂x
+ ρ(p, ψ)c2(p, ψ)

∂vx
∂x

= 0

∂vx
∂t

+ vx
∂vx
∂x

+
1

ρ(p, ψ)

∂p

∂x
= 0

∂ψ

∂t
+ vx

∂ψ

∂x
= 0 .

(A1.9)

In the [>ACLb^jBoDCMGX¢[fH case equations (A1.2) and (A1.3) [i.e. (A1.9)3] are identically satisfied so that (A1.9)1,2

appears to make a coherent system of two equations (n = 2). Because, in this case ρ in (A1.5) and c in
(A1.7) do not depend on ψ.
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2. Details concerning the class mentioned above (§6)

From (6.2)2,3 we obtain cf. (6.3)
∂vx
∂ξ

+
∂vy
∂η

= a + b (A2.1)





−∂c
2

∂ξ
= (γ − 1)a[(a− 1)ξ + bη + c] + (γ − 1)b[aξ + (b− 1)η + c]

−∂c
2

∂η
= (γ − 1)a[(a− 1)ξ + bη + c] + (γ − 1)b[aξ + (b− 1)η + c]

(2)

The requirement
∂c2

∂ξ∂η
=

∂c2

∂η∂ξ
takes, cf. (A2.2), the form

(b− a)(a + b− 1) = 0. (A2.3)

Now, the expression of c2 could be calculated in two ways. On one hand, an expression of c2 results from
(A2.2) and (A2.3). On the other hand, an expression of c2 results from (6.2)1, (A2.1) and (A2.2). Since
the two expressions obtained for c2 are identical we get, by identifying the coefficients of ξ2, ξη, η2, ξ, η
respectively:

1

2
[a(a− 1) + ba][(γ + 1)a + (γ − 1)b− 2] + a2(a + b− 1) = 0 (A2.4)

2ab(a− 1) + (b + a)(a− 1)(b− 1) + ba(b + a) + 2ab(b− 1) + (γ − 1)b(a + b)(a + b− 1) = 0 (A2.5)

1

2
[b(b− 1) + ab][(γ − 1)a + (γ + 1)b− 2] + b2(a+ b− 1) = 0 (A2.6)

2ac(a− 1) + bc(a− 1) + bca + ca2 + ac(a− 1) + 2abc + (γ − 1)(a + b)(ac + bc) = 0 (A2.7)

2bc(b− 1) + ca(b− 1) + bac + b2c + bc(b− 1) + 2abc + (γ − 1)(a + b)(ca + bc) = 0. (A2.8)

Therefore we have a nonlinear algebraic system (A2.3)–(A2.8) with six equations for the six coefficients
a , a, b, b, c , c in (6.3). We begin by presenting an exhaustive list of solutions for the system (A2.3)–(A2.8).

The requirement (A2.3) suggests the importance of two cases.

Case 1. This case takes into account the circumstance

b− a = 0 (A2.9)

in (A2.3). From (A2.4)–(A2.6) and (A2.9) we obtain the following system for a , b, b:





b2{2[2(a−1) + b] + (γ−1)(a + b)}+ a(a−1)[2(a−1) + (γ−1)(a + b)] = 0

b{2b2 + [2a(a−1) + 2(a− 1)(b−1) + 2b(b−1) + (γ−1)(a + b)(a + b−1)]} = 0

b2{2[2(b−1) + a] + (γ−1)(a + b)}+ 2b(b−1)[2(b−1) + (γ−1)(a + b)] = 0.

(A2.10)

Next, we have to distinguish cf. (A2.10)2 between the possibilities b = 0 or b 6= 0.
We begin our analysis with the subcase b = 0. In this subcase, from (A2.10)1,3 we obtain for a, b the

system {
a(a− 1)[(γ + 1)a + (γ − 1)b− 2] = 0

b(b− 1)[(γ − 1)a + (γ + 1)b− 2)] = 0.
(A2.11)

Therefore we get the following exhaustive list of solutions of (A2.10) corresponding to the mentioned
subcase [we complete this list with the information concerning a, c , c; cf. (A2.7),(A2.8),(A2.9)]

a = 0, b = 0, b = 0, a = b, arbitrary c , c (A2.12)

a = 0, b = 0, b = 1, a = b, arbitrary c ; c = 0 (A2.13)

a = 0, b = 0, b =
2

γ + 1
, a = b, arbitrary c , c (A2.14)

a = 1, b = 0, b = 0, a = b, c = 0, arbitrary c (A2.15)

a = 1, b = 0, b = 1, a = b, c = 0, c = 0 (A2.16)
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a = 1, b = 0, b =
3− γ
γ + 1

, a = b, c = 0, arbitrary c (A2.17)

a =
2

γ + 1
, b = 0, b = 0, a = b, arbitrary c , c (A2.18)

a =
3− γ
γ + 1

, b = 0, b = 1, a = b, arbitrary c ; c = 0 (A2.19)

a =
1

γ
, b = 0, b =

1

γ
, a = b, arbitrary c , c. (A2.20)

We extend our analysis by considering the subcase b 6= 0. In this subcase we use (A2.10)2 in order to
eliminate b2 from (A2.10)1,3. We notice that the equations (A2.10)1,3 are not distinct in this subcase. In
fact, we denote

X = a− 1, Y = b− 1, Z = X + Y = a + b− 2 (A2.21)

and obtain the following common form of equations (A2.10)1,3

(γ + 1)2Z3 + (γ + 1)(5γ − 1)Z2 + 2(4γ2 − γ − 1)Z + 4γ(γ − 1) = 0 (A2.22)

with the roots

Z1 = − 2γ

γ + 1
, Z2 = −1, Z3 = −2(γ − 1)

γ + 1
. (A2.23)

Finally we put (A2.23) in the form

a + b =
2

γ + 1
[cf. (A2.23)1] (A2.24)

a + b = 1 [cf. (A2.23)2] (A2.25)

a + b =
4

γ + 1
[cf. (A2.23)3]. (A2.26)

For (A2.25) we obtain cf. (A2.10)2

b2 = a(1− a)

and therefore
0 ≤ a ≤ 1 and b = ±

√
a(1− a). (A2.27)

Similarly, we get, cf. (A2.10)2,

b2 = a

(
2

γ + 1
− a

)

hence

0 ≤ a ≤ 2

γ + 1
and b = ±

√
a

(
2

γ + 1
− a

)
(A2.28)

for (A2.24), and

b2 =

(
a− 3− γ

γ + 1

)
(1− a)

or, equivalently,

3− γ
γ + 1

≤ a ≤ 1 and b = ±
√(

a− 3− γ
γ + 1

)
(1− a) (A2.29)

for (A2.26).

Consequently, we complete the list (A2.12)–(A2.20) which corresponds, for b = 0, to the case (A2.9) with
the following circumstances [which take into account (A2.7), (A2.8) and (A2.24)–(A2.26)]

0 < a < 1, b = ±
√

a(1− a), a = b, b = 1− a, arbitrary c ; c = ∓c

√
a

1− a
(A2.30)

0 < a <
2

γ + 1
, b = ±

√
a

(
2

γ + 1
− a

)
, a = b, b =

2

γ + 1
− a ; arbitrary c , c (A2.31)
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3− γ
γ + 1

< a < 1, b = ±
√(

a− 3− γ
γ + 1

)
(1− a), a = b, b =

4

γ + 1
− a, arbitrary c ; c = ∓c

√
a− 3−γ

γ+1

1− a
.

(A2.32)
�

Case 2. This case considers in (A2.3) the circumstance

a + b− 1 = 0. (A2.33)

We use (A2.33) in order to give to (A2.4)–(A2.6) the form




[2(a− 1) + (γ − 1)][ba + a(a− 1)] = 0

(b + a)[ba + a(a− 1)] = 0

[2a− (γ − 1)][ba + a(a− 1)] = 0

(A2.34)

of a system for a , b, a.
A single relation results from (A2.34) for a , b, a:

ba + a(a− 1) = 0. (A2.35)

Now, the circumstance (A2.33) could be completely described by the following list of possibilities
[which also considers the contribution of equations (A2.7), (A2.8) for c , c]:

a = 0, b = 0; arbitrary a; b = 1; arbitrary c ; c = −ac (A2.36)

a = 1, b = 0; arbitrary a; b = 0; c = 0, arbitrary c (A2.37)

arbitrary a ; arbitrary b 6= 0; a =
a(a− 1)

b
; b = 1− a ; arbitrary c ; c = −a

b
c. (A2.38)

�

We notice that (A2.12)−(A2.20), (A2.30)−(A2.32), (A2.36)−(A2.38) represents an exhaustive list of
possibilities. An exhaustive list of local solutions of the form (6.3) for the system (6.2) of the isentropic
gas dynamics results from the above mentioned list: see section 6.2.

3. Details corresponding to section 7.2.2

• In the system (1.5) vx, vy denote, at each point (x, y) ∈lR2, the projections of the velocity vector on
the axes x, y respectively. If the axes x, y are changed by the axes X,Y and VX , VY denote, respectively,
at each point (X,Y ) ∈lR2, the projections of the velocity vector on these new axes then the form (1.5) is
seen to persist cf. 




∂c

∂t
+ VX

∂c

∂X
+ VY

∂c

∂Y
+
γ − 1

2
c

(
∂VX
∂X

+
∂VY
∂Y

)
= 0

∂VX
∂t

+ VX
∂VX
∂X

+ VY
∂VX
∂Y

+
2

γ − 1
c
∂c

∂X
= 0

∂VY
∂t

+ VX
∂VY
∂X

+ VY
∂VY
∂Y

+
2

γ − 1
c
∂c

∂Y
= 0.

(A3.1)

In particular, (A3.1) results by considering in (1.5) the change of variables

X = αxxx+ αxyy, Y = αyxx+ αyyy

αxx = cos θ = αyy, αxy = sin θ = −αyx; −π < θ < π
(A3.2)

and correspondingly,
VX = αxxvx + αxyvy, VY = αyxvx + αyyvy. (A3.3)

The restriction ∂
∂Y ≡ 0 in (A3.1) leads to a system of the form (1.2) for which we get [independent

variables: t,X ]

~β
(σ)
tX = Θ

(σ)
tX [−λ(σ)

tX , 1, 0] ↽⇀ ~κ
(σ)
tX = R

(σ)

tX =

[
ε
γ − 1

2
, |ε|, 1− |ε|

]
;

λ
(σ)
tX = VX + εc

(
ε = −1, 0, 1

σ = sign ε = −, 0,+

)
. (A3.4)
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Next, we use (A3.2), (A3.3) to obtain for the vectors (A3.4) representations corresponding respectively

to the frames (t, x, y) [for ~β] and (c− c∗, vx − v∗x, vy − v∗y) [for ~κ]. These representations have the forms

~β(0) = Θ(0)[−(vx cos θ + vy sin θ), cos θ, sin θ] ↽⇀ ~κ(0) = (0,− sin θ, cos θ), (A3.5)

and

~β(±) = Θ(±)[−(vx cos θ + vy sin θ)∓ c, cos θ, sin θ] ↽⇀ ~κ(±) =

(
±γ − 1

2
, cos θ, sin θ

)
. (A3.6)

We finally notice that the vectors ~κ(±) are laid in the plane

VY − V ∗Y ≡ −(vx − v∗x) sin θ + (vy − v∗y) cos θ = 0

through the point u∗ ∈ H and the vector ~κ(0) is placed along the axis VY through u∗ [we have to compare
~κ(0) of (A3.5), (7.21), with ~κ of (7.16)].

• In the one-dimensional case mentioned by (A3.4) [independent variables: t,X ] the linearly degenerated
field [of index 0] is asociated to the eigenvalue λ = VX . We notice (see for example [17]) that a piecewise
constant solution with a contact discontinuity could be associated to this linearly degenerated eigenvalue
with the properties:

c = c∗, VX = V ∗X

[see (7.25)], and, along the characteristic line ξ̃ = V ∗X 6= 0 1 associated [in the physical plane t,X ] to a
linearly degenerated index, a jump in VY is allowed:

[[VY ]] = VY − V ∗Y 6= 0.

In the physical spaces t,X, Y or t, x, y, ξ̃ = V ∗X 6= 0 represents a plane, distinct from (7.18) and parallel
with axis Y [cf. ∂

∂Y ≡ 0].
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[22] Z. Peradzyński, On double waves and wave-wave interaction in gas dynamics, Arch. Mech., 48(1996),
1069−1088.
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