SPECTRA OF POSITIVE MATRICES AND
THE MARKOV GROUP CONJECTURE

J.F.C. Kingman

1 Markov semigroups and groups

The survey paper [6] contained a reminder that the 1965 conjecture by D.G.
Kendall [4], usually called the Markov group conjecture (MGC), remains un-
resolved, despite important contributions by Speakman [9], Williams [10] and
Mountford [7]. The purpose of this paper is to relate the incomplete results
around the MGC to other open questions in the theory of positive ! matrices
and that of power series with positive coeflicients.

In the classical theory [1] of Markov processes in continuous time with a
countable state space and stationary transition probabilities, a Markov semi-
group is a family of functions

pij : (0,00) — [0,1] (1.1)

indexed by ¢ and j running over some finite or countably infinite ‘state space’
S, and satisfying

dopit)<1 (i€S), (1.2)
JjES

limpi;(t) = 0i (.5 €5), (1.3)

and the Chapman-Kolmogorov equation

pij(t+u) = pin(t)prs (u) (1.4)

kesS

for t,u >0,1,5 € 5.
Such a family determines operators

Pl — 1 (t > 0) (15)

IThroughout this paper words like ‘positive’ and ‘increasing’ are used in the weak sense;
z is positive if z > 0.



on the space 1 = [1(.5) of real-valued sequences
x=(x;;i€9)
with

] = > | < o0 (1.6)
€S
by the recipe
(th)i = inpij(t) . (17)
€S
Condition (1.2) shows that the operator norm of P, satisfies
1P| = sup > " Ipis ()] < 1, (1.8)
€S jes
while (1.4) is the semigroup property
Pt+u:PtPu (t,’U,>O), (19)
Equation (1.3) is equivalent to

ltllr{)l lxP, — || =0 (xely) (1.10)

and implies that, if Py is the identity operator I on [, the function
t— P ([0,00) — 1) (1.11)

is strongly continuous for all x € ;. It does not however imply the stronger
condition
lim||P; —I||=0. (1.12)
t10

A Markov semigroup satisfying (1.2) is said to be uniform or g-bounded.

To the operator semigroup (P;) it is possible to apply the powerful Hille-
Yosida theory [3] of strongly continuous one-parameter semigroups. One result
of that theory is that the semigroup is uniform if and only if it can be expressed
in the form

X n
Py =exp(tQ) =) —Q" (1.13)
n=0
for some bounded operator @ : Iy — ;. Then @Q is represented by a matrix
(gij ;4,5 € S) with
¢ <0, g 206 #5), > _4i; <0, (1.14)
jes

Since

Il

sup qij
>

jeS

= sup | |giil + > qij | < 2suplgl,
J#i !



we have
sup(—¢ii) < ||Q] < 2sup(—gis) - (1.15)
icS icS

A matrix @ satisfying (1.14) is called a Q-matriz; if (—g¢;;) is bounded, the
associated operator on [ is here called a Q-operator.

Kendall [4] observed that, for a uniform semigroup, the formula (1.13) is
meaningful even if ¢ is negative, and implies an embedding into a group

(Pt €R) (1.16)

of operators satisfying (1.9) for all ¢,u € R. However, except in the trivial case
P, = I, the P, for t < 0 do not have all matrix elements positive, nor do they
satisfy (1.8).

The best partial result is expressed in terms of the function

= inf p; (t) . 1.1
9(t) = inf pii(t) (1.17)
This is interesting because, for ¢ > 0,
1—g(t) <[P — I <2{1-g(0)}, (1.18)
so that (1.12) is equivalent to

ltll%lg(t) =1. (1.19)

Mountford showed in [7] that, if the semigroup is not uniform, then

git) <3 (t>0). (1.20)

This result is best possible, because Williams [10] has an example with g(t) = %

2
for all ¢ > 0.
The relation of Mountford’s theorem to the MGC is that, if there is equality
in (1.2) and so
[P =1 = 2{1 = g(8)} ,
(1.20) means that
1P —1I|| >1. (1.21)

The negation of (1.21) is a sufficient, but not a necessary, condition for the
inevitability of P;.

However, the most compelling evidence for the truth of the MGC is that 40
years have elapsed without the emergence of a counterexample.

2 The direct sum construction

Kendall [4] and Speakman [9] make use of special cases of the following con-
struction. Suppose that, for each n =1,2,3, ..., there is a Markov semigroup

P = (py;(t);i,5 € Sn) (2.1)



on the countable set S,,. Let S be the disjoint union of the S, and define
pij(t)(i,j € S) by

pis() =p (1) (1,5 €S, n>1), (2.2)
pij(t) =0 (i€ Sp,j €S, m#n).

It is immediate that these functions satisfy (1.2), (1.3) and (1.4), so that
Py = (pi;(t); 1,5 € 5) (2.3)

is a Markov semigroup on .9, called the direct sum of the semigroups (2.1). The
same construction holds, of course, if n runs over any countable set.
If each of the semigroups (2.1) is uniform, there is for each n a Q-operator
@, with
Pt(n) = exp(tQn) - (2.4)

This formula makes sense even if ¢ is negative, and extends each pgl) to a function
(not usually positive) on R. Equation (2.2) then defines p;; as a function on R,
satisfying (1.4) for all real ¢ and w.

However, (2.3) does not necessarily define a bounded operator P, on [; for
negative t. It is easy to prove the following result, implicit in [9].

Lemma 1 For t > 0, the direct sum (2.8) of uniform Markov semigroups
defines an invertible operator Py on ly if and only if

[[P—¢|| = sup || exp(—tQn)|| < o0. (2.5)

The direct sum is a uniform semigroup if and only if

sup ||Qn|l < co. (2.6)
Condition (2.6) implies (2.5) because

lexp(=tQu)| = 1| D (—tQu)" /7|
r=0

oo
< D t@nll"/rt = eflonl
r=0

A counterexample to the MGC could be constructed if it were possible to find a
sequence of Q-operators @, with || exp(—Q,)|| bounded but ||Q, || unbounded.
Attempts to find such @,, have so far failed. For example, if each .S, has two

elements and
—Qp Qnp
Qn = ( 5. g ) (2.7)



with a, > G, > 0, then ||Q,| = 2, and

2c
exp(—Q, = 14+ —" (ethn 1
[ exp(=Qn) el )
> 142" —1) — (2.8)

if a,, — oo. This is a special case of an observation by Speakman, that there
is no counterexample to the MGC consisting of a direct sum in which the S,
are finite sets of bounded size.

Although the direct sum construction has not so far permitted a disproof
of the MGC, it does enable existing results to be strengthened. For instance,
Mountford’s theorem leads at once to the following.

Theorem 1 For any & € (0,3) there exists a constant M(8) such that any
uniform semigroup P; = exp(tQ) with

9(to) = inf pis(to) > 3+96 (2.9)

for some tg > 0 satisfies
QI < M)ty (2.10)

Proof Suppose the theorem false for a particular value of §. Then, for any
n > 1, there is a uniform semigroup (2.4) and ¢, > 0 such that

gn(tn) = 5+ 06, [Qnll >nt;". (2.11)
The semigroup
B = P (2.12)
has _
Qn = thn )
so that ~
Gn(1) =1 +0, |Qu] >n. (2.13)

The direct sum of the semigroups (2.12) has
9(1) =infg,(1) > 5 +9

and by Mountford’s theorem is uniform. There is thus a contradiction between
(2.6) and (2.13), which proves the theorem.

The proof does not of course yield any upper bound M (d). Calculation using
Q-operators of the form (2.7) gives the inequality

M(0) > —3log(26), (2.14)

but this must be very far from sharp.



3 Consequences of the Markov group conjecture

It was pointed out in [5] that the MGC is related to a number of unsolved
problems about positive matrices, and the purpose of this section is to try to
make that connection more precise. This is done by studying some important
quantities denoted by the letter K (in honour of Kendall as M in the last section
recognises Mountford).

For any countable S and any m > 1, define K(m,S) < oo as the supremum
of ||Q] over all Q-operators with

[ exp(=Q)[| < m. (3.1)

Clearl
' K(,S) : (1,00) — (0,00]

is an increasing function.
Suppose that ¢ : S — S’ is an injection from one countable set into another.
Then a Markov semigroup P; on S induces a semigroup on S’ by setting

Pirjr (t) = pij(t)
if i' = ¢(i), 7/ = ¢(j) for some i,j € S, and
P jr () = i
otherwise. It follows easily that
K(m,S) < K(m,S5"). (3.2)

Taking ¢ to be a bijection shows that K (m,S) depends only on the cardinality

of S. Thus there are increasing functions K (), Ka(-), ..., K(-) on (1, 00) with
Ki(m) < K3(m) < Ks(m) < ... < K(m), (3.3)

such that
K(m,S) = Ky(m) (3.4)

if S is a finite set with N elements, and
K(m,S)=K(m) (3.5)

if S is infinite.

It is true, but not quite obvious, that Ky(m) is finite for all N,m. An
explicit bound will be given in Theorem 3, justifying Speakman’s observation.
It is not known whether K(m) is finite (for some or all m), and this is related
to the MGC by the following theorem.

Theorem 2 If the MGC is true, then K(m) is finite for all m > 1, and any
invertible Markov semigroup is expressible in the form (1.13) with

tlQll < K(I1PHD) (3.6)



for allt > 0.

Proof Suppose that K (m) is infinite for some m > 1. Then, for any n > 1,
there exists a Q-operator Q,, with

|exp(—Qn)|| < m, ||Qunll >n.

Lemma 1 shows that the direct sum of the corresponding Markov semigroups
is invertible but not uniform, contradicting the MGC. Thus the MGC implies
that K(m) is finite for all m > 1. Applying the definition of K (m) with

m =[P = [lexp(~tQ)|

gives [[tQ] < K(m), proving (3.6).
Thus the MGC could be disproved by showing that K(m) = oo for some
m > 1. This would follow from (3.3) if

lim Kn(m) = o0, (3.7

— 00

which is a statement solely about finite matrices. The following upper bound is
consistent with (3.7), but does not prove it.

Theorem 3 For any countable S, let k(S) be the supremum of ||Q|| over all
Q-operators on S whose spectrum lies in

H={CeC; Re(>-1} (3.8)

Then k(S) depends only on the cardinality of S; denote it by ky if S is finite of
size N, and k if S is infinite. Then

kn < 2N'/? (3.9)
and
k1 <ks<ks<...<k. (3.10)
Form > 1,
Ky(m) < knlogm, K(m) < klogm. (3.11)

If k < 0o and the MGC is true, every invertible Markov semigroup satisfies

tQIl < klog([1 £ (3.12)

Proof The same argument used to prove (3.2) shows that, if there is an
injection ¢ : S — S’, then
k(S) < k(S").



This shows that k(S) depends only on the cardinality of S, justifies the notation
kn, k, and proves (3.10).

If Q is a Q-operator with || exp(—Q)|| < m, the spectral radius of exp(—Q)
is at most m, so that the spectrum of ) lies in

{CeCile™| <m}={C€C; Re (= —logm}.
Hence the spectrum of (logm)~1Q lies in H, so that

[(logm) ' QI < k(S).

This shows that
K(m,S) < k(S)logm,

proving (3.11). In particular, if k is finite and the MGC is true, (3.12) follows
from (3.6).

It remains to prove the inequality (3.9). Let Q be a Q-matrixon {1,2,...,N}.
The inequalities (1.14) show by standard Perron-Frobenius theory that the
eigenvalues Aq, Ag, ..., Ay of @ have negative real part. If they lie in H, they
satisfy

—1< Re M- <0,

so that Re (A2) < ( Re A\,)? < 1. Hence

N
N > Z Re ()\f) = tr(QQ)
r=1 N
= Y wwi =Y a4

> max(q}) > {5]lQI}.

Thus ||Q|| < 2N'/2, proving (3.9) and completing the proof of the theorem.

4 Symmetric and other special matrices

Theorems 2 and 3 leave several important gaps in present knowledge. It is quite
possible that K(m) < oo for all m > 1, but that the MGC is false. To prove
otherwise would require the approximation of an invertible semigroup P by
uniform semigroups

Pt(m) = exp(tQr) (4.1)
in such a way that the boundedness of P_; implies a bound for
| exp(=Qn)|l - (4.2)



A natural candidate would be
in view of Hille’s exponential formula [3]

P, = lim zexp(tQy) (x ely), (4.4)

but this does not necessarily imply that (4.2) is bounded.

It is also possible that, for each m, Ky(m) is bounded but K(m) = oo.
Again, it is possible that K (m) is finite but that k = oo, or that ky is bounded
but & = oco. This construction of counterexamples is made more difficult by the
fact that @Q-matrices which allow explicit calculation belong to classes of matrix
that behave too well.

For instance, one familiar class is of matrices which are symmetric, or at
least symmetrisable in the sense that there are constants «; > 0(i € S) with

@igij = a;qji (1 # j). (4.5)
Such a matrix has a spectrum lying on the real axis, and the diagonal elements
@i; lie in the convex hull of the spectrum. This implies a strong version of (3.12):

tQIl < 2log |27 (4.6)

Thus symmetrisable matrices are no good for disproving the MGC.

E.B. Davies has shown me a similar result for Q-operators which are bipartite
in the sense that S can be divided into subsets S; and Sy such that ¢;; = 0
if ¢ # j and ¢ and j are in the same subset. Thus bipartite matrices are also
ineligible as counterexamples.

5 Essentially positive matrices

The conditions (1.14), which arise naturally in the theory of Markov semigroups,
are rather special in the general context of matrix theory. The essential condition
is that the non-diagonal g;;(i¢ # j) are positive, because the diagonal elements
can be made positive by adding multiples of I.
Call a matrix
A= (aij;Lj S S) (51)

essentially positive (EP) if
aij 20 (i,j € 5,i#j). (5.2)

When S is infinite, we also impose the condition

JA]| = sup Y _Ja;| < oo (5.3)
by



to ensure that A can be regarded as a bounded operator, with norm ||Al|, on I;.
(There are of course many other matrix operator norms that would work just
as well.)
Condition (5.3) implies that |a;;| is bounded, so that for sufficiently large b
the matrix
B=A+0bl (5.4)

is positive in the sense that

for all i, j € S. The Perron-Frobenius theorem [8] shows that the spectral radius
r(B) is in the spectrum of B, and that there are & > 0 with

Z bij& < r(B)& (5.6)

for all 7. The spectrum of B lies in

{GIdI<r(B)} C{G Re (< r(B)}.

Thus
p=r(B)=b (5.7)

lies in the spectrum of A, and that spectrum is contained in
{p} U{¢; Re ¢ <p}. (5.8)

The value of p is independent of the choice of (sufficiently large b), and the &;
can also be chosen independent of b, and satisfy

Y aié < péi. (5.9)
J

It then follows that

Gij = aij(§;/&) — pdij (5.10)
defines a Q-operator. Thus general results about Q-operators translate at once
into results about E P matrices.

Suppose for example that we have been able to prove k < co. Then any
(Q-operator satisfies

QI < ks,
where —s is the infimum of Re ¢ for ¢ in the spectrum sp(Q) of Q. In particular,

gii = —ks

for all . Applying this to (5.10) shows that



where o = p — s is the infimum of Re ( for ¢ € sp(A). We therefore have the
inequality

p—Fk(p—0o)<aiy <p, (5.11)
where [o, p] is the convex hull of
{Re ¢;¢ €sp(A)}. (5.12)

The inequality (5.11) only has force when we know that k is finite. However,
if A is a finite N x N matrix, we can replace k by ky, which is known to be
finite. More explicitly, (3.9) shows that

p—2NY2(p—0) <ayu <p. (5.13)

This is certainly not best possible. The worst example I know is the 3 x 3
(Q-matrix

0 -1 1 (5.14)

which has eigenvalues —3, —3,0. This shows that

3 <ks<2V3. (5.15)

6 The Feller identity

A powerful tool for the study of positive matrices, finite or infinite, is Feller’s
concept of a renewal sequence and the associated recurrent event identity [2].
Let

B = (bij;i,5 € 5) (6.1)

be a positive matrix on the countable set .S, with finite norm (5.3) if S is infinite.
Select a ‘home state’ h in S, and write w,, for the (h,h) element of the matrix
power B™. Thus

tn =3 (k)b 2) - b h) (6.2)
where we have for clarity written b(i,j) for b;;. The sum extends over all
JsJ2s -+ dn—1 € S, and is absolutely convergent because || B|| is finite.

Feller splits up the sum (6.2) according to the smallest value of r with j, = h.
This gives the identity

Uy = i frtn—r (n21) (6.3)
r=1

with the convention ug = 1, where f,, is the same sum as (6.2) but restricted to
J1:J2, -y n-1 7 h

11



Because u,, < ||B"|| and U 4n = Umln, it is easy to see that

0< fn < up <r(B)", (6.4)
so that the power series
UQ) =Y unC", F(Q) =D ful" (6.5)
n=oo n=1

converge in the disc D = {¢ € C; r(B)|¢| < 1}. The identity (6.3) translates
into the power series identity

1
U()=——— (CeD). 6.6
©O=1—Fg €eD) (6.6
This implies that F(z) < 1 for 0 < z < r(B)~!, so that
> far(B)TM <1 (6.7)
n=1
Thus F has a continuous extension to the closure of D, with |F(g)| < 1 there.
A sequence (u,) satisfying (6.3) for some positive sequence (f,,) with
Y <1 (6.8)
n=1

is called a renewal sequence. Thus the equation (6.2) always generates a sequence
such that, for some 7, (u,r~™) is a renewal sequence.
The function U(() is the (h, h) element of the operator-valued power series

o

Y B"=(I-¢B)"'  (CeD). (6.9)

n=0

Thus U(¢) can be continued analytically to
{CeC; (T #sp(B)}, (6.10)

and so U(() contains information about the spectrum of the parent matrix B.
This raises the possibility of approaching the search for inequalities like (5.11)
through a study of the analytic functions U and F. Note that the form of
(5.11) is invariant under translations by multiples of the identity, so that the
positive matrix B also gives information about the essentially positive matrix
A=B-bl.

The situation is most clearest when S is finite. By Cramer’s Rule, the
function U(() is a rational function with U(co) = 0, and (6.6) shows that F'(¢)
is also rational. Indeed, (6.6) is then best regarded as a formal algebraic identity
between the rational functions U and F. The problem is to make effective use
of the conditions f, > 0.

12



I can offer only one non-trivial use of these ideas, which is an inequality in
the spirit of (5.11) for a matrix (finite or infinite) with all its elements positive
except for one strictly negative diagonal element. The important aspect of this
inequality is that it is independent of the size of the matrix.

Theorem 4 Let

A= (a5 ij€S) (6.11)

be a matriz of finite norm on the countable set S. Suppose that, for some h # S,
Then

—ann <2 (14 V2) + (4). (6.13)

Proof Start by observing that the proof of the Feller identity (6.3) is purely
algebraic, and does not depend on positivity. It is only necessary to check that
all the sums are absolutely convergent, and this follows easily from the fact that

D laisl < [14] (6.14)
jeSs

for all i. Thus the (h,h) element wu, of A™ satisfies (6.3), where f, is given
by the sum (6.2) with the restriction j, # h. This restriction also means that,
when n > 2, all the summands are positive, so that

f20  (n>2). (6.15)

Of course,
fi=u =apy = —« (say) (6.16)
and there is no loss of generality in supposing that o > 0. From (6.14),

fa <AL, fual < [|A]™, (6.17)

so that - -
UQ) = ual", G =D ful" (6.18)

n=0 n=2

converge in |¢| < ||A]|7!, and

UO{l+a¢ -G} =1 (6.19)
in that disc. Moreover, U(¢) actually converges in the larger disc

D={¢; [¢] < r(A)}. (6.20)

13



Write
p=2(1+v2) =4828... (6.21)

and note that
K =4(k+1). (6.22)

To prove (6.13) by contradiction, suppose that
a > kr(A), (6.23)
so that the radius of convergence of U(() is
r(A)~! > ka .

Thus U(¢) converges in a disc (centre 0) of radius greater than xa~!. The
identity (6.19) defines an extension of G({) to a mesomorphic function in that
disc, with poles exactly at the zeros of U(¢). Moreover, taking ¢ real, (6.19)
shows that

l+ax—G(z) >0 (0 <z < /ﬁa_l) . (6.24)

Because the coefficients f,(n > 2) in the power series of G are positive, this
shows that the series converges in || < ka1, and that

Glra ™) <1+4+k=(
But G(z)z~2 is increasing in z, so that
G (204_1) < (2&‘1) G (/-ea_l) <1.
Hence |G(¢)] < 1 on [¢| = 2a~!, and Rouché’s theorem implies that
1+ a¢—G(Q) and 14+ a¢

have the same number of zeros inside this circle, namely 1. Thus U(({) has a
pole in |¢| < 2a~!, contradicting (6.23). This completes the proof.
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