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Abstract. We consider the Neumann Laplacian with constant magnetic field
on a regular domain. Let B be the strength of the magnetic field, and let λ1(B)
be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It
is proved that B 7→ λ1(B) is monotone increasing for large B. Combined with
the results of [FoHe2], this implies that all the ‘third’ critical fields for strongly
Type II superconductors coincide.

1. Introduction and main result

Let Ω ⊂ R2 be a bounded, simply connected domain with regular boundary. We
keep this assumption in the entire paper.
Let F(x) = (F1, F2) = (−x2/2, x1/2)—a standard choice for a vector potential
generating a unit magnetic field: curlF = 1. We consider H(B), the self-adjoint
operator associated with the closed, symmetric quadratic form,

W 1,2(Ω) ∋ u 7→
∫

Ω

|(−i∇ +BF)u|2 dx.

We will use the notation pA = (−i∇ + A). Then, more explicitly, H(B) is the

differential operator p2
BF

with domain {u ∈ W 2,2(Ω)
∣∣∣ ν · pBFu|∂Ω = 0}, where ν is

the unit interior normal to ∂Ω.
We choose and fix a smooth parametrization γ : |∂Ω|

2π S1 7→ ∂Ω of the boundary.

We may assume that |γ′(s)| = 1 for all s. We will further parametrize |∂Ω|
2π S1 by

[−|∂Ω|/2, |∂Ω|/2] with periodicity being tacitly understood.
For a point p = γ(s) ∈ ∂Ω we define k(p)—also denoted by k(s)—to be the

curvature of the boundary at the point γ(s), i.e.

γ′′(s) = k(s)ν(s),

where ν(s) is the interior normal (to the boundary) vector at the point γ(s). The
maximum of k will play an important role, we define therefore, kmax := maxs{k(s)}.

Define λ1(B) = inf SpecH(B) to be the lowest eigenvalue of H(B). The dia-
magnetic inequality tells us that

λ1(B) ≥ λ1(0),
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for all B ≥ 0.
One may ask whether the more general inequality

0 < B1 < B2 ⇒ λ1(B1) ≤ λ1(B2),

which one can consider as a strong form of diamagnetism, holds (see [Erd1], [Erd2]
and [LoTha]).

In this paper we prove that strong diamagnetism holds for sufficiently large B.

Theorem 1.1.

The one sided derivatives,

λ′1,+(B) = lim
ǫ→0+

λ1(B + ǫ) − λ1(B)

ǫ
, λ′1,−(B) = lim

ǫ→0+

λ1(B) − λ1(B − ǫ)

ǫ

exist for all B > 0 and satisfies

lim inf
B→∞

λ′1,+(B) > 0. (1.1)

Furthermore, there exists a universal constant Θ0 > 0 such that if Ω is not a disc,
then the limit actually exists and satisfies,

lim
B→∞

λ′1,−(B) = lim
B→∞

λ′1,+(B) = Θ0. (1.2)

If Ω is a disc, then

lim sup
B→∞

λ′1,+(B) > Θ0,

0 < lim inf
B→∞

λ′1,+(B) < Θ0.

In particular, in any case, there exists B0 > 0 such that λ1(B) is strictly increasing
on [B0,∞).

Results similar to (1.1) have been proved recently in [FoHe2] under extra assump-
tions. First of all (in [FoHe1]) a complete asymptotics of λ1(B) was derived for Ω
satisfying a certain ‘generic’ assumption, i.e. that the boundary curvature only has
a finite number of maxima, all being non-degenerate. This complete asymptotics
was then used to obtain (1.1). The most prominent domain excluded in this ap-
proach is the disc—where the curvature is constant. However, [FoHe2] includes a
special analysis of the disc proving that Theorem 1.1 remains true in that case.

What remained was the study of all the other ‘non-generic’ cases. Also it seemed
desirable to be able to establish Theorem 1.1 without using the existence of a
complete asymptotic expansion, since such expansions are difficult to obtain and
their structure depends heavily on the different kinds of maxima of the boundary
curvature. In this paper we realize such a strategy. It turns out that for all domains,
except the disc, one can modify the approach from [FoHe2] to obtain (1.1) with only
very limited knowledge on the asymptotic behavior of λ1(B). For the disc one can
use the special symmetry (separation of variables) of the domain to conclude.

Thus the structure of the proof of Theorem 1.1 is as follows. The statements for
the disc follow from the analysis in [FoHe2] which will not be repeated. Thus we
only consider the case where Ω is not a disc. If Ω is not a disc then there exists
a part of the boundary where the ground state will be very small. Thus one can

choose a gauge such that |Âψ| ≪ 1 (for large B and in the L2-sense), where Â is
the vector field F in the new gauge. This new input to the proof in [FoHe2] allows
us to differentiate the leading order asymptotics for λ1(B).

Notice that if Ω is not a disc, then it satisfies the following assumption :
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Assumption 1.2.

If we denote by Π the set of maxima for the curvature, i.e.

Π = {p ∈ ∂Ω
∣∣ k(p) = kmax},

then
Π 6= ∂Ω .

Finally, we will prove in Section 3 (Theorem 3.3) that all the natural definitions
of the third critical field appearing in the theory of superconductivity coincide with-
out any other geometric assumption than regularity and simply connectedness.

2. The analysis of the diamagnetism

Two universal constants Θ0, C1 will play an important role in this paper, as in
any investigation of the magnetic Neumann Laplacian. For detailed information
about these constants, one can refer to [HeMo]. For the second constant C1, we
only use the fact that it is strictly positive. The first, Θ0 can be defined as the
ground state energy of the magnetic Neumann Laplacian with unit magnetic field
in the case of the half-plane,

Θ0 := λ1(B = 1), for Ω = R
2
+.

The numerical value of Θ0 can be calculated with precision (Θ0 ≈ 0.59), however
for our purposes the following (easily established) rigorous bounds

0 < Θ0 < 1,

suffice.
We recall the following general, leading order asymptotics of λ1(B) proved in

[HeMo].
Proposition 2.1.

As B → +∞, then

λ1(B) = Θ0B + o(B) . (2.1)

If a state u is localized away from the boundary, i.e. u ∈ C∞
0 (Ω), we have the

following standard inequality

〈u , H(B)u〉 ≥ B‖u‖2
L2(Ω) ,

where, for v, w in L2(Ω), 〈v , w〉 denotes the L2 scalar product of v and w.
Using that Θ0 < 1 it is therefore a standard consequence of (2.1) (for the proof see
[HeMo]) that ground states are exponentially localized near the boundary.

Lemma 2.2 (Normal Agmon estimates).
There exists α,M,C > 0 such that if B ≥ 1 and ψ1( · ;B) is a ground state of H(B)
then ∫

Ω

e2α
√

Bdist(x,∂Ω)
{
|ψ1(x;B)|2 +

1

B
|pBFψ1( · ;B)|2

}
dx

≤ C

∫

{
√

Bdist(x,∂Ω)≤M}
|ψ1(x;B)|2 dx . (2.2)

In particular, for all N > 0,∫
dist(x, ∂Ω)N |ψ1(x;B)|2 dx = O(B−N/2). (2.3)
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From [HeMo, Proposition 10.5] we also get the following (stronger than (2.1))
result,

Proposition 2.3.

Let Θ0, C1 be the usual universal constants and define, for C > 0

UB(x) =

{
B, dist(x, ∂Ω) ≥ 2B−1/6,

Θ0B − C1k(s)
√
B − CB1/3, dist(x, ∂Ω) ≤ 2B−1/6.

Then, if B ≥ 1 and C is sufficiently big, we have for all ψ ∈W 2,2(Ω),

〈ψ , H(B)ψ〉 ≥
∫

Ω

UB(x)|ψ(x)|2 dx.

Proposition 2.3 and a corresponding improved upper bound (also proved in
[HeMo]),

λ1(B) = Θ0B − C1kmax

√
B + o(

√
B), (2.4)

imply, by suitable Agmon estimates, that ground states have to be localized near
the set Π. We actually only need the following very weak version of this localization.

Lemma 2.4.

Let ǫ0 > 0. Then, for all N > 0, there exists C > 0 such that if ψ1( · ;B) is a
ground state for H(B), then

∫

{dist(x,Π)≥ǫ0}
|ψ1(x;B)|2 dx ≤ C B−N .

We now introduce adapted coordinates near the boundary. Define, for t0 > 0

Φ :
|∂Ω|
2π

S
1 × (0, t0) → Ω Φ(s, t) = γ(s) + tν(s).

For t0 sufficiently small we have that dist(Φ(s, t), ∂Ω) = t and that Φ is a diffeomor-
phism with image {x ∈ Ω | dist(x, ∂Ω) < t0}. Furthermore, the Jacobian satisfies
|DΦ| = 1 − tk(s).

Lemma 2.5.

Let us define for ǫ ≤ min(t0/2, |∂Ω|/2) and s0 ∈ ∂Ω

Ω(ǫ, s0) := {x = Φ(s, t)
∣∣ t ≤ ǫ, |s− s0| ≥ ǫ}.

Then there exists φ ∈ C∞(Ω) such that Â = F + ∇φ satisfies

|Â(x)| ≤ C dist(x, ∂Ω),

for x ∈ Ω(ǫ, s0).
Proof.

Let Ã = (Ã1, Ã2) be the magnetic 1-form pulled back to (s, t) coordinates,

F1dx+ F2dy = Ã1ds+ Ã2dt.

Taking the exterior derivative, and using dx ∧ dy = |DΦ|ds ∧ dt, we find

curl s,tÃ = ∂sÃ2 − ∂tÃ1 = (1 − tk(s)).

Since {(s, t) | t ≤ ǫ, |s−s0| ≥ ǫ} is simply connected there exists φ̃ ∈ C∞(φ−1(Ω(ǫ, s0)))
such that

Ã + ∇s,tφ̃ = (t− t2k(s)/2, 0).
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Let χ ∈ C∞(Ω),

χ = 1 on {x | t ≤ ǫ, |s− s0| ≥ ǫ},
χ = 0 on {x | dist(x, ∂Ω) ≥ 2ǫ or |s− s0| ≤ ǫ/2},

and define φ(x) = φ̃(Φ−1(x))χ(x). Then φ solves the problem. �

Proof of Theorem 1.1.
The existence of λ′1,+(B), λ′1,−(B) follows from analytic perturbation theory. We
recall that the theorem was proved already in [FoHe1] in the case of the disk, so it re-
mains to consider the case where Ω is not the disc. Thus Ω satisfies Assumption 1.2.
Therefore, there exist s0 ∈ [−|∂Ω|/2, |∂Ω|/2] and 0 < ǫ0 < min(t0/2, |∂Ω|/4) such
that

[s0 − 2ǫ0, s0 + 2ǫ0] ∩ Π = ∅.
Let Â be the vector potential defined in Lemma 2.5 and let Ĥ(B) be the operator

(−i∇+BÂ)2 with Neumann boundary conditions. Then Ĥ(B) and H(B) are uni-
tarily equivalent and thus have the same spectrum. For a suitable choice of ground

state eigenfunction ψ1( · ;B) of Ĥ(B) we can therefore calculate (using analytic
perturbation theory to get the first equality) for β > 0,

λ′1,+(B) = 〈ψ1( · ;B) ,
(
Â · pB bA

+ pB bA
· Â

)
ψ1( · ;B)〉

=
〈
ψ1( · ;B) ,

{ Ĥ(B + β) − Ĥ(B)

β
− β|Â|2

}
ψ1( · ;B)

〉

≥ λ1(B + β) − λ1(B)

β
− β

∫

Ω

|Â|2 |ψ1(x;B)|2 dx . (2.5)

By Lemma 2.5 we can estimate
∫

Ω

|Â|2 |ψ1(x;B)|2 dx ≤ C

∫

Ω

dist(x, ∂Ω)2|ψ1(x;B)|2 dx

+ ‖Â‖2
∞

∫

Ω\Ω(ǫ0,s0)

|ψ1(x;B)|2 dx. (2.6)

Combining Lemmas 2.2 and 2.4 we therefore find the existence of a constant C > 0
such that : ∫

Ω

|Â|2 |ψ1(x;B)|2 dx ≤ C B−1 . (2.7)

We now choose β = η B, where η > 0 is arbitrary. By the weak asymptotics (2.1)
for λ1(B), we therefore find :

lim inf
B→∞

λ′1,+(B) ≥ Θ0 − η C . (2.8)

Since η was arbitrary this implies

lim inf
B→∞

λ′1,+(B) ≥ Θ0 . (2.9)

Applying the same argument to the derivative from the left, λ′1,−(B), we get (the
inequality gets turned since β < 0)

lim sup
B→∞

λ′1,−(B) ≤ Θ0. (2.10)

Since, by perturbation theory, λ′1,+(B) ≤ λ′1,−(B) for all B, we get (1.2). �
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3. Application to superconductivity

As appeared from the works of Bernoff-Sternberg [BeSt], Del Pino-Felmer-Stern-
berg [dPiFeSt], Lu-Pan [LuPa1, LuPa2, LuPa3], and Helffer-Pan [HePa], the deter-
mination of the lowest eigenvalues of the magnetic Schrödinger operator is crucial
for a detailed description of the nucleation of superconductivity (on the boundary)
for superconductors of Type II and for accurate estimates of the critical field HC3

.
In this section we will clarify the relation between the different definitions of criti-
cal fields considered in the mathematical or physical literature and all supposed to
describe the same quantity. This is a continuation and an improvement of [FoHe2] :
we will be indeed able to eliminate all the geometric assumptions of that paper.

We recall that the Ginzburg-Landau functional is given by

E [ψ,A] = Eκ,H [ψ,A] =

∫

Ω

{
|pκHAψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

+ κ2H2|curlA − 1|2
}
dx , (3.1)

with (ψ,A) ∈ W 1,2(Ω; C) ×W 1,2(Ω; R2).
We fix the choice of gauge by imposing that

div A = 0 in Ω , A · ν = 0 on ∂Ω . (3.2)

We recall that the domains Ω are assumed to be smooth, bounded and simply-
connected and refer the reader to [Bon],[BonDa] and [BonFo] for the analysis of the
case with corners.

By variation around a minimum for Eκ,H we find that minimizers (ψ,A) satisfy
the Ginzburg-Landau equations,

p2
κHA

ψ = κ2(1 − |ψ|2)ψ
curl 2A = − i

2κH (ψ∇ψ − ψ∇ψ) − |ψ|2A

}
in Ω ; (3.3a)

(pκHAψ) · ν = 0
curlA − 1 = 0

}
on ∂Ω , (3.3b)

with

curl 2A = (∂x2
(curlA),−∂x1

(curlA)) .

It is known that, for given values of the parameters κ,H , the functional E has
(possibly non-unique) minimizers. However, after some analysis of the functional,
one finds (see [GiPh] for details) that, for any κ > 0, there exists H(κ) such that if
H > H(κ) then (0,FΩ) is the only minimizer of Eκ,H (up to change of gauge).
Here we choose FΩ as the unique solution in Ω of curlFΩ = 1 satisfying (3.2).
Following Lu and Pan [LuPa1], one can therefore first define

HC3
(κ) = inf{H > 0 : (0,FΩ) is a minimizer of Eκ,H} . (3.4)

In the physical interpretation of a minimizer (ψ,A), |ψ(x)| is a measure of the
superconducting properties of the material near the point x. Therefore, HC3

(κ) is
the value of the external magnetic field, H , at which the material loses its super-
conductivity completely.
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Actually, as already used implicitly in [LuPa1] and more explicitly in [FoHe2],
we should also introduce an upper critical field, HC3

(κ) ≤ HC3
(κ), by

HC3
(κ) = inf{H > 0 : for all H ′ > H, (0,FΩ) is the only minimizer of Eκ,H′} .

(3.5)

The physical idea of a sharp transition from the superconducting to the normal
state, requires the different definitions of the critical field to coincide.

Most works analyzing HC3
relate (more or less implicitly) these global critical

fields to local ones given purely in terms of spectral data of the magnetic Schrödinger
operator H(B), i.e. in terms of a linear problem. The local fields are defined as
follows.

H
loc

C3
(κ) = inf{H > 0 : for all H ′ > H, λ1(κH

′) ≥ κ2} ,
H loc

C3
(κ) = inf{H > 0 : λ1(κH) ≥ κ2} . (3.6)

The difference between H
loc

C3
(κ) and H loc

C3
(κ)—and also between HC3

(κ) and
HC3

(κ)—can be retraced to the general non-existence of an inverse to the function
B 7→ λ1(B), i.e. to lack of strict monotonicity of λ1. In the previous section,
we have solved this monotonicity question and we now explain, following mainly
[FoHe2], how this permits to close the discussion about this ‘third’ critical field in
the high κ regime.

The next theorem, which is proved in [FoHe2], is typical of Type II materials, in
the sense that it is only valid for large values of κ.

Theorem 3.1.

There exists a constant κ0 > 0 such that, for κ > κ0, we have

HC3
(κ) = H loc

C3
(κ) , HC3

(κ) = H
loc

C3
(κ) . (3.7)

On the other hand, we have from Theorem 1.1 :

Proposition 3.2.

There exists κ0 such that, if κ ≥ κ0, then the equation for H:

λ1(κH) = κ2 , (3.8)

has a unique solution H(κ).

In other words, for large κ, the upper and lower local fields, defined in (3.6),
coincide. We define, for κ ≥ κ0, the local critical field H loc

C3
(κ) to be the solution

given by Proposition 3.2, i.e.

λ1(κH
loc
C3

(κ)) = κ2 . (3.9)

Using Proposition 3.2 we can identify the lower and upper local fields and there-
fore find the following result.

Theorem 3.3.

Suppose Ω is smooth, bounded and simply connected. There exists κ0 > 0 such that,
when κ > κ0, then

H loc
C3

(κ) = HC3
(κ) = HC3

(κ) . (3.10)
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Remark 3.4.

This result was established in [FoHe2] under the additional assumption that Ω was
either a disk or a domain whose boundary has only a finite number of points of
maximal curvature (with in addition some non degeneracy condition).
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