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Abstract

Our aim is to show how semi-classical analysis can be useful in
questions of stability appearing in hydrodynamics. We will emphasize
on the motivating examples and see how these problems can be solved
or by harmonic approximation techniques used in the semi-classical
analysis of the Schrödinger operator or by recently obtained semi-
classical versions of estimates for operators of principal type (mainly
subelliptic estimates). These notes correspond to an extended version
of the course given at the course in Cetraro. We have in particularly
kept the structure of these lectures with an alternance between the
motivating examples and the presentation of the theory. Many of the
results which are presented have been obtained in collaboration with
Olivier Lafitte.
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1 General introduction

In Hydrodynamics an important question is to analyze the stability or the
instability of the solutions. This question appears at least at the first stage
(analysis of the linearized problem) appears to be a question of spectral
analysis. This question appears to depend strongly on the various physical
parameters. In some asymptotics regime, this question can be analyzed by
techniques coming from semi-classical analysis : this means that there is a
small parameter h which plays in the analysis the role of the Planck constant
in an analogous way to the Quantum mechanics.

We will emphasize on the motivating examples and see how these prob-
lems can be solved or by harmonic approximation techniques used in the
semi-classical analysis of the Schrödinger operator or by recently obtained
semi-classical versions of estimates for operators of principal type (mainly
subelliptic estimates). In this way, we hope to show that these recent results
are much more than academic transpositions of former theorems developed
more than thirty years ago when analyzing the main properties of Partial
Differential Equations : local solvability, hypoellipticity, propagation of sin-
gularities...(see Egorov [Eg], Trèves [Trev], the treatise by Hörmander [Ho3]
and references therein).

Actually, we will not need at the moment the most sophisticated theorems
of this theory (see the lectures by N. Lerner [Le]) but the most generic.
We will give explicit proofs for the simple examples we have. They are based
mainly on two tools : the semiclassical elliptic theory for h-pseudodifferential
operators and the construction of WKB solutions.
We consider four different models coming from different modelizations ap-
pearing in hydrodynamics. The first one is the Rayleigh-Taylor model. Al-
though the subject has a long story starting with [St] (see also [Cha]), the
semi-classical analysis appears in [La1, La2, HelLaf1]. The problem we meet
in this case is self-adjoint and related to the analysis of the bottom of the
spectrum for a Schrödinger operator. The three other examples are not
selfadjoint. We will see that we meet problems related to the notion of pseu-
dospectrum. The second one extends the previous one by introducing some
velocity at the surface between the two fluids. This is an extension of the
Kelvin-Helmholtz classical model which is analyzed in [CCLa].
The third one, the Rayleigh with convection model was studied in [CCLaRa]
and is a natural generalization with a convective velocity of the classical
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Rayleigh problem for a transition region.
The fourth one is called the Kull-Anisimov ablation front model. It has been
analyzed by many physicists and more recently in the PHD theses of L. Masse
[Mas] and V. Goncharov [Go].

Organization of the course.

This course is divided in five (unequal) lectures.

Lecture 1 is devoted to the analysis of the Rayleigh-Taylor model. We show
how the initial problem of analyzing the possible instability of the model leads
to a spectral problem for a compact selfadjoint operator which appears to be
an h-pseudodifferential operator.
When needed, we will recall various basic things on the h-pseudodifferential
operators.
We are let to the analysis of the largest eigenvalue of a compact operator.
We show that either harmonic analysis or WKB solutions permit to have a
good asymptotic of this eigenvalue.

Lecture 2 is devoted to the presentation of some mathematical tools adapted
to the analysis of non-selfadjoint problems. We first start by presenting a
new example (Kelvin-Helmholtz) as a motivation. We then give the main
definitions related to the pseudo-spectrum. Here we will emphasize on the
“elliptic” h-pseudodifferential theory and on what can be done by WKB con-
structions. We then apply the techniques for analyzing our Kelvin-Helmholtz
model.

Lecture 3 is devoted to the presentation of the results on subellipticity in
the semi-classical context. We will see how the question of the subellipticity
of h-pseudodifferential operators can appear naturally. In comparison with
what was done in the course of N. Lerner [Le], this will illustrate the most
simple examples which were presented !

Lecture 4 explains the origin of two other models. We will show that they
lead to similar questions for some suitable regimes of parameters. Again, we
arrive to the analysis of a system, which can be reduced to a high order non
symmetric differential operator. We then sketch the mathematical treatment
of these two models. This gives us also a good opportunity for presenting
other results in subellipticity mainly obtained by Dencker-Sjöstrand-Zworski.
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2 Lecture 1 : The Rayleigh-Taylor model

2.1 The Rayleigh-Taylor model : Physical origin

The starting point for this model is the analysis of the following differential
system in R4 = R3

x × Rt. With x = (x1, x2, x3) this system reads :

∂t̺+ div (̺~u) = 0
∂t(̺~u) + ∇ · (̺~u⊗ ~u) + ∇p = ̺~g .

(2.1)

The unknowns are ~u = (u1, u2, u3), the density ̺ and the pressure p. We
assume that ~g = (0, 0, 1)g. The second line in (2.1) corresponds to three
equations and reads more explicitly :

∂t(̺u1) + div (̺ u1 ~u) + ∂1p = 0 ;
∂t(̺u2) + div (̺ u2 ~u) + ∂2p = 0 ;
∂t(̺u3) + div (̺ u3 ~u) + ∂3p = ̺g .

(2.2)

Here we have used the short notations :

∂t =
∂

∂t
, ∂i =

∂

∂xi

for i = 1, 2, 3 .

The reader can look in the first pages of the book by P.L. Lions [Li] for the
way to get these equations from the principles of conservation of mass (for
the first line of (2.1)) and of momentum (for the second line of (2.1)).

This system models the so-called Rayleigh-Taylor instability, which occurs
when a heavy fluid is above a light fluid in a gravity field directed from the
heavy to the light fluid. We refer to Chapter X in Chandrasekhar’s book
[Cha] for a presentation of the theory. Here we intend to study the linear
growth rate of this instability in a situation where there is a mixing region.
This linear growth rate will corresponds to γ in (2.16) below.

We would like to analyze the linearized problem around a stationary solution
(i.e. t-independent) :

̺ = ρ0 , ~u = ~u0 = 0 , p = p0 , (2.3)

where ρ0 is assumed to depend only on x3 and p0 and ρ0 are related, as
imposed by the second line in (2.1), by :

∇p0 = ρ0~g . (2.4)
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We assume that the perturbation (~̂u, p̂, ρ̂) is incompressible that is satisfying :

div ~̂u = 0 . (2.5)

The linearized system takes the form :

∂tρ̂+ (ρ0)′û3 = 0 ; (2.6)

ρ0∂tû1 + ∂1p̂ = 0 ; (2.7)

ρ0∂tû2 + ∂2p̂ = 0 ; (2.8)

ρ0∂tû3 + ∂3p̂ = gρ̂ . (2.9)

In order to analyze (at least formally this system) we extract from the system
an equation involving only û3 (by eliminating the other unknowns). This is
done along the following lines.
We first differentiate with respect to t Equation (2.9). This leads to :

ρ0∂2
t û3 + ∂t∂3p̂ = g

∂ρ̂

∂t
. (2.10)

We now use (2.6) in order to eliminate ∂ρ̂

∂t
and get :

ρ0∂2
t û3 + ∂t∂3p̂+ g(ρ0)′(x3)û3 = 0 . (2.11)

We now differentiate (2.7) and (2.8) respectively with respect to x1 and x2.
This gives :

ρ0∂t∂1û1 + ∂2
1 p̂ = 0 , (2.12)

and
ρ0∂t∂2û2 + ∂2

2 p̂ = 0 . (2.13)

Differentiating (2.5) with respect to t and using (2.12) and (2.13), we get :

∆1,2 p̂ = ρ0∂t∂3û3 , (2.14)

where ∆12 is the Laplacian with respect to the two first variables (x1, x2) :

∆12 = ∂2
1 + ∂2

2 .

It remains to eliminate p̂ between (2.11) and (2.14) :

∆12

(
ρ0∂2

t û3 + (ρ0)′gû3

)
+ ∂3ρ

0∂3∂
2
t û3 = 0 . (2.15)

We now look for a solution û3 in the form :

R
3 × R ∋ (x, t) 7→ û3(x1, x2, x3, t) = v(x3) exp(γt+ ik1x1 + ik2x2) , (2.16)

where :

6



• v is an unknown real function in L2(R),

• γ is a real parameter,

• and (k1, k2) is in R
2 and corresponds to the momentum variables dual

to (x1, x2).

This is what is called in the physical literature the analysis in normal modes.
The reader can for example look in the introductory chapter of [Cha] for a
more heuristic explanation. This leads to an ordinary differential equation
(in the x3-variable) for v :

−(k2
1 + k2

2)(ρ
0γ2v + (ρ0)′gv) + γ2 d

dx3

ρ0 d

dx3

v = 0 . (2.17)

Replacing x3 by x (x ∈ R) and dividing by γ2k2 with

k2 = k2
1 + k2

2 ,

we get : [
− 1

k2

d

dx
ρ0 d

dx
+ ρ0 + (ρ0)′

g

γ2

]
v = 0 . (2.18)

So we are interested in analyzing for which value of (γ, k) (with γ > 0) there
exists v satisfying (2.17).
The choice of γ > 0 corresponds to our interest for instability. Actually, we
could have started by looking at possibly complex γ’s but one immediately
get as a necessary condition that γ2 should be real and the pure imaginary
γ’s are not interesting for the problem.

2.2 Rayleigh-Taylor mathematically

In the case of the Rayleigh-Taylor model, as we have seen in (2.18), the main
point is to analyze as a function of δ ∈ R the kernel in L2(R) of :

P (h, δ) := −h2 d

dx
̺(x)

d

dx
+ ̺(x) + δ̺′(x) . (2.19)

Here h > 0 and ̺(x) ∈ C∞(R) satisfies :

limx→−∞ ̺(x) = ρ− > 0 ,
limx→+∞ ̺(x) = ρ+ > 0 ,

(2.20)

̺(x) > 0 , ∀x ∈ R , (2.21)
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ρ− 6= ρ+ , (2.22)

lim
|x|→+∞

̺′(x) = 0 . (2.23)

We look at h→ 0 (see1 [HelLaf1] for the case h→ +∞). The problem comes
from the analysis of the Euler equations in a gravity field. The physical
parameters are the intensity g of the gravity, a wave number k > 0 and a
parameter γ which measures the large time behavior of the solution. The
mathematical problem is to determine a pair (u, γ) such that

P

(
1

k
,
g

γ2

)
u = 0 .

This means that the link between the physical parameters (g, k, γ) and the
mathematical parameters is :

δ =
g

γ2
, h =

1

k
. (2.24)

The physical situation leads to analyze the case δg > 0. This implies γ2 > 0,
and we choose γ > 0.

Note that the instability is only analyzed when

ρ+ 6= ρ− .

This implies that ̺′(x) is not identically 0.

The most physical case corresponds to :

ρ− > ρ+ , g > 0 ,

so δ is positive and ̺′ is negative somewhere.

Generally ̺ is assumed monotone but the semi-classical techniques are not
limited to this case.

2.3 Elementary spectral theory

First we observe that there is no problem for defining the selfadjoint extension
of P (h, δ) in L2(R) (which is unique starting from C∞

0 (R)) and it is immediate
that P (h, 0) is injective. More precisely, the bottom of its spectrum is strictly
positive.

1In this case the limiting model corresponds to ρ = ρ
−

for x < 0 and ρ = ρ+ for x > 0.
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Definition 2.1
We call generalized spectrum of the family P (h, δ) the set of the δ’s in R such
that P (h, δ) is non injective.

The standard analysis of the solution at ∞ for ordinary differential equations
shows that, for all δ, the dimension of kerP (h, δ) is zero or one.
The next result is relatively well known (connected to the Birman-Schwinger
principle [Si1]).

Proposition 2.2
Under the previous assumptions and assuming in addition that ̺′ is not iden-
tically 0, then the generalized spectrum P (h, δ) is the union of two sequences
(possibly empty or finite) δ+

n et δ−n s.t :

0 < δ+
n < δ+

n+1 ,
limn→+∞ δ+

n = +∞ ,
(2.25)

0 < −δ−n < −δ−n+1 ,
limn→+∞ δ−n = −∞ .

(2.26)

Proof.
If we observe that :

kerP (h, δ) 6= {0} iff ker(K(h) − 1

δ
) 6= {0} , (2.27)

where
K(h) = −P (h, 0)−

1
2̺′(x)P (h, 0)−

1
2 . (2.28)

the proof is immediately reduced to the standard result for K(h), which is a
compact selfadjoint operator.
For the compactness of K(h), we can for example observe that the operator

P (h, 0)−
1
2 belongs to L(L2(R);H1(R)) and that, under Assumption (2.23),

the operator of multiplication by ρ′ is compact from H1(R) in L2(R).
Note that when ̺′ < 0, which is the simplest natural physical case, the op-
erator K(h) is positive.

Let us also mention an a priori “universal” estimate of [CCLaRa]. If u is, for
some δ 6= 0, in the kernel of P (h, δ), we get by taking the scalar product in
L2 by u :

∫ +∞

−∞
̺(h2u′(x)2 + u(x)2) dx = −δ

∫ +∞

−∞
̺′(x)u(x)2 dx

= 2δ
∫ +∞

−∞
̺u(x)u′(x) dx .

(2.29)
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Using Cauchy-Schwarz, we get :
∫ +∞

−∞

̺(x)(1 − |δ|
h

)(u′(x)2 + u(x)2) dx ≤ 0 . (2.30)

This implies

kerP (h, δ) = {0} , ∀δ ∈] − h, h[ . (2.31)

Universal upper bound.
We could have started from the operator :

−h2̺−
1
2
d

dx
̺
d

dx
̺−

1
2 + 1 + δ

̺′(x)

̺(x)
,

which shows more clearly the role of the function ̺′/̺.
One way is to change of functions introducing

u = ̺(x)−
1
2v .

This shows also that if :

1 + δ
̺′(x)

̺(x)
> 0 , ∀x ∈ R , (2.32)

then δ is not in the generalized spectrum.

Remark 2.3
The theory can be extended to the cases ρ+ = 0 or ρ− = 0, under Condition
(2.34).

2.4 A crash course on h-pseudodifferential operators

At least if the profil ̺ is regular, the h-pseudodifferential calculus gives an
easy way for getting the extremal eigenvalues of K(h) in the semi-classical
limit. Let us briefly describe this tool.

A family (h ∈]0, h0]) of h-pseudodifferential operators

Ah = Oph(a) ,

associated to a symbol (x, ξ) 7→ a(x, ξ; h) is defined for u ∈ S(Rm) by :

(Oph(a)u)(x) =

(2πh)−m
∫

Rm×Rm exp( i
h
(x− y) · ξ) a(x+y

2
, ξ; h) u(y) dydξ .

(2.33)
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The function a is called the Weyl symbol (or h-Weyl symbol if we want to
recall the dependence on h) of Ah. We refer to the book of D. Robert [Rob]
for a course on this theory which is specifically semi-classical (and to the
course of N. Lerner [Le] in this volume2) and the assumptions which can be
done on the symbols.

Here it is enough to consider as symbols C∞ (with respect to the variables
(x, ξ) ∈ R

n × R
n) functions a s.t., for some given p, p′, q and h0 > 0, there

exists, for all α and β in Nm, constants Cα,β s.t., for all h ∈]0, h0],

|Dα
xD

β
ξ a(x, ξ; h)| ≤ Cα,β h

q 〈x〉p−|α|〈ξ〉p′−|β| .

When the symbol satisfies this condition, we write simply a ∈ S(q,p,p′), and
the corresponding operator Op h(a) is said to belong to Op hS

(q,p,p′).
This class is an algebra by composition and the composition is just a multipli-
cation for the principal symbols. Typically, if a ∈ S(q,p,p′) and b ∈ S(q1,p1,p′1),
then there exists c in S(q+q1,p+p1,p′+p′1) s.t. :

Op h(a) ◦ Op h(b) = Op h(c) ,

and
c− ab ∈ S(q+q1+1,p+p1−1,p′+p′1−1,) .

This leads to the natural definition of “ principal symbol”.
In the current situation, the symbol a ∈ Sq,p,p′ has more properties. It admits
the formal expansion :

a(x, ξ; h) ∼ hq
∑

j≥0

hjaj(x, ξ) ,

with :
aj(x, ξ) ∈ S0,−j,−j ,

and one has, for any N > 0, a good control of the remainders

rN(x, ξ, h) := a(x, ξ; h) − hq
∑

0≤j≤N

hjaj(x, ξ) ,

in S(q−N,−N,−N).
The symbol a0(x, ξ) is called the principal symbol. The symbol a1(x, ξ) is

2N. Lerner has a slightly different convention for the quantization. But taking h = 1

2π

in (2.33) leads to this convention.
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called the subprincipal symbol. We note that the principal symbol is inde-
pendent of the quantization (this is not the case for the subprincipal symbol).

We have natural continuity theorems (based on the Calderon-Vaillancourt
Theorem) in Hs(Rm), where moreover the constants are controlled with re-
spect to h.
In addition compact operators on L2(Rn) can be recognized as the operators
whose symbol in S(0,0,0) tends to 0 as |x| + |ξ| → +∞.

Typically, an operator in Op hS
(q,p,p′) with p < 0 and p′ < 0 is compact. The

role of q is to give the size of the norm of the operator with respect to h.
Finally, let us briefly discuss invertibility. As the principal symbol of an
operator (sat in Op h(S

0,0,0, is invertible (=elliptic), one can inverse the
operator for h small enough. This is indeed very simple. If Bh is the operator
of h-Weyl symbol 1

a0
, then the calculus gives that :

Bh Ah = I + hRh

with Rh ∈ Op h(S
(0,−1,−1)).

Then the uniform control in L(L2) of Rh gives the invertibility of (I + hRh)
in L(L2) and hence the invertibility of Ah.
For the invertibility, modulo O(h∞), one can also inverse (I + hRh) by using
the Neumann series :

(I + hRh)
−1 ∼

∑

j≥0

(−1)jhj(Rh)
j .

2.5 Application for Rayleigh-Taylor : Semi-classical
analysis for K(h).

Under strong assumptions on ̺, one can use the previous h- pseudodifferential
calculus. We assume :

|Dα
x̺(x)| ≤ Cα̺(x)〈x〉−|α| . (2.34)

This assumption permits to see that :

K(h) = −(−h2 d

dx
̺
d

dx
+ ̺)−

1
2̺′(x)(−h2 d

dx
̺
d

dx
+ ̺)−

1
2 (2.35)

is an h-pseudodifferential operator. More precisely it belongs to Op hS
(0,0,0).

The operator K(h) appears indeed as the composition of three h-pseudo-

differential operators (−h2 d
dx
ρ d

dx
+ρ)−

1
2 , −ρ′(x) and again (−h2 d

dx
ρ d

dx
+ρ)−

1
2 .
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So the h-pseudodifferential calculus gives that it is an h-pseudodifferential
operator.
The principal symbol of K(h) is

(x, ξ) 7→ p(x, ξ) = −(ξ2 + 1)−1̺
′(x)

̺(x)
. (2.36)

For the analysis of the extremal eigenvalues, we have first to determine the
extrema of this symbol. If these extrema are non degenerate then we can
apply the harmonic approximation as in [HelSj1]. The tunneling effect to-
gether with the decay of the eigenfunctions can also be analyzed (see[BrHe],
[HePa]). There is indeed a natural extension of Agmon Estimates for h-
pseudodifferential operators whose symbol admit an holomorphic extension
in suitable bands |Im ξ| ≤ R in the ξ variable.
This leads to the following computations. We get

∂p

∂ξ
(x, ξ) = 2ξ ̺′(x)

̺(x)
(ξ2 + 1)−2 ,

∂p

∂x
(x, ξ) = −(̺′′(x)̺(x) − ̺′(x)2)(̺(x))−2(ξ2 + 1)−1 .

The condition ̺′(x) = 0 should be excluded because it does not correspond
to an extremum of p(x, ξ). So we get :

ξ = 0 ; ̺′′(x)̺(x) − ̺′(x)2 = 0 .

This corresponds to the condition that x0 is a critical point of the map
x 7→ −̺′(x)/̺(x).
It remains to verify that the extrema are non degenerate. We obtain at a
critical point (x0, 0) :

∂2p

∂ξ2 (x0, 0) = +2̺′(x0)/̺(x0)
∂2p

∂ξ ∂x
(x0, 0) = 0

∂2p

∂x2 (x0, 0) = −̺′′′(x0)̺(x0)−̺′(x0)̺′′(x0)
̺(x0)2

It is then easy to determine if (x0, 0) corresponds to :

• a minimum of p,
if ̺′(x0)/̺(x0) > 0
and ̺′′′(x0)̺(x0) − ̺′(x0)̺

′′(x0)) < 0,

• a maximum of p,
if ̺′(x0)/̺(x0) < 0
and ̺′′′(x0)̺(x0) − ̺′(x0)̺

′′(x0) > 0.
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When ρ′ < 0 and ρ > 0, then the maxima of the symbol correspond to ξ = 0
and to the x’s such that −ρ′

ρ
is maximal.

We recall that the simplest physical situation corresponds to ̺′(x) < 0. In
this case we have only maxima, which actually are the points of interest if
looking for largest eigenvalue.

2.6 Harmonic approximation

If we are interested in the largest eigenvalue of K(h) a very general theory
has been developed (of course for Schrödinger, but also for more general h-
pseudodifferential operators.

We just sketch what corresponds to the first approximation.
We have just to consider the following harmonic operator associated to a
point (x0, 0) corresponding to a maximum of p, and to consider the spectrum
of

p(x0, 0) + h

(
1

2

∂2p

∂ξ2
(x0, 0)D2

y +
1

2

∂2p

∂x2
(x0, 0)y2

)
+ hp1(x0, 0) ,

where p1 is the subprincipal Weyl symbol of K(h), which actually is 0.

This operator is consequently

−̺
′(x0)

̺(x0
(1 − hD2

y) − h
̺′′′(x0)̺(x0) − ̺′(x0)̺

′′(x0)

2̺(x0)2
y2

The largest eigenvalue of this operator (which is semi-bounded from above !)
is explicitly known and gives the existence of an eigenvalue for K(h) (with

some error O(h
3
2 )).

If there are more than one critical maximum point for p, the largest eigenvalue
of K(h) is well approximated by the largest (over the maxima of p) of the
largest eigenvalue of the approximating harmonic oscillators.

2.7 Instability of Rayleigh-Taylor: an elementary ap-
proach via WKB constructions

We present here what simple constructions of WKB solutions can give for
the model of Rayleigh-Taylor. A very detailed analysis have been given in
[HelLaf1] extending previous works by Cherfils, Lafitte, Raviart [CCLaRa].
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Here we present a simpler analysis but this will only give conditions under
which one can construct approximate solutions in the kernel of P (h, δ).

In the semi-classical situation, we look for a solution in the form

u(x, h) = a(x, h) exp−φ(x)

h
(2.37)

near some point x0 (to be determined!) with

a(x, h) ∼
∑

j≥0

hjaj(x) , (2.38)

δ(h) ∼
∑

j

hjδj (2.39)

such that

exp
φ

h
· P (h, δ(h)) · u(h) ∼ 0 . (2.40)

Here “∼ 0” means that the right hand side should be O(h∞).
Concretely, we expand exp φ

h
·P (h, δ(h)) ·u(h) in powers of h and express the

cancellation of each coefficient of hj.

We get as first eikonal equation

−̺(x)φ′(x)2 + ̺(x) + δ0̺
′(x) = 0 . (2.41)

In order to have an (exponentially) localized (as h → 0) in a neighborhood
of x0, it is natural to impose the condition that φ admits a minimum at x0.
So the first condition is :

φ′(x0) = 0 . (2.42)

Ths leads as a first necessary condition to

̺(x0) + δ0̺
′(x0) = 0 . (2.43)

A second necessary condition is obtained by differentiating the eikonal equa-
tion :

−̺′(x)φ′(x)2 − 2̺(x)φ′(x)φ′′(x) + ̺′(x) + δ0̺
′′(x) = 0 .

This gives at x0 :
̺′(x0) + δ0̺

′′(x0) = 0 . (2.44)
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We are asking for a non-degenerate minimum of φ at x0.
Differentiating two times the eikonal equation, we obtain :

−2̺(x0)(φ
′′(x0))

2 + ̺′′(x0) + δ0̺
′′′(x0) = 0 (2.45)

which implies
̺′′(x0) + δ0̺

′′′(x0) > 0 . (2.46)

We recover the condition obtained in the previous analysis.

Till now, we just looked for a phase. The next step is to determine the
amplitude. The coefficient δ1 will be determined by looking at the first
transport equation :

2̺(x)φ′(x)a′0(x) + ̺′(x)φ′(x)a0(x)
+̺(x)φ′′(x)a0(x) + δ1̺

′(x)a0(x) = 0 .
(2.47)

If we impose the condition3

a0(x0) = 1 ,

a necessary (and actually sufficient) condition for solving is :

̺(x0)φ
′′(x0) + δ1̺

′(x0) = 0 . (2.48)

We then obtain a0 by simple integration :

a′0(x)/a0(x) = (̺′(x)φ′(x) + ̺φ′′(x) + δ1̺
′(x)) / (2̺(x)φ′(x)) .

The condition (2.48) permits indeed to extend the right hand side as a C∞

function and we get explicitly :

a0(x) = exp

∫ x

x0

(̺′(τ)φ′(τ) + ̺φ′′(τ) + δ1̺
′(τ)) / (2̺(τ)φ′(τ)) dτ . (2.49)

It is then not difficult to iterate at any order the construction : At each step
the cancellation of the coefficient of hj in the expansion of exp φ

h
·P (h, δ(h)) ·

u(h) permits to determine δj and to find aj−1(x), with, for j ≥ 2, the initial
condition

aj−1(x0) = 0 .

We have now constructed a formal solution. Let us recall now how one
can associate to this formal expansion an explicit realization. The first

3This condition corresponds to the idea that we look for the ground state, hence non
vanishing
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idea is to consider a finite sum. We let δN(h) =
∑N

j=0 δjh
j and introduce

aN (x, h) =
∑N

j=0 h
jaj(x) which is well defined in the neighborhood of x0.

We then introduce a cut-off χ which localizes in a neighborhood of x0. We
then let

uN
χ (x, h) = χ(x)aN (x, h) exp−(φ(x)/h) .

Computing P (h, δN(h))uN
χ (x, h), we find :

P (h, δN(h))uN
χ (x, h)

= (χhNrN(x, h) + χ̃(x)b0(x, h)) exp−φ(x)
h
,

(2.50)

where χ̃ is C∞, with a support disjoint of x0. Here it is important to observe
that exp−φ(x)

h
is exponentially small on the support of χ̃ (Here we have used

that φ has a local minimum at x0).

What can we deduce from this construction ? Under the previous assump-
tions, P (h, δ) is selfadjoint and we can deduce that, in an interval ] −
ChN ,+ChN [, the spectrum of P (h, δN(h)) is not empty for h small enough.
Assumption (2.20) permits also to say that near 0 the spectrum is discrete.

This is not the complete answer to our question. But this strongly suggests
the existence, close to δN(h)) (modulo O(hN )) of an effective δ(h) such that
P (h, δ(h) has a non zero kernel. Note that the answer to this last question
is easier when ̺ is stricly monotone. Note that the question is more delicate
as for example ρ− = 0. The essential spectrum of P (h, δ) contains indeed 0.
The previous analysis (see [HelLaf1]) based on the h-pseudodifferential cal-
culus avoids this difficulty (finally artificial) if ̺′

̺
→ 0 at ∞ and if ̺ is regular.

Three remarks for ending this first lecture.

• One can take N = +∞ by using a summation procedure à la Borel.
The Borel Lemma says that for a given sequence of reals αn (n ∈ N))
one can always find a C∞ function h 7→ f(h) admitting

∑
n αnh

n as
Taylor expansion at 0.

Here we need a version with parameters, but we can define some re-
alizations of

∑∞
j=0 δjh

j and
∑∞

j=0 h
jaj(x), permitting to replace the

remainder O(hN) by O(h∞).
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• With more work, one can also hope a result in the analytic category
by using the notion of analytic symbol introduced by J. Sjöstrand.

We should assume in this case that the function x 7→ ̺(x) is analytic.

We warn the reader that this does not mean that the above formal
sums become convergent. This simply means that one can prove that,
in a fixed complex neighborhood of x0, |aj(x)| is bounded by Cj+1j!
and that we have similar estimates for the sequence (δj)j∈N (cf the
works by J. Sjöstrand [Sj1], Helffer-Sjöstrand [HelSj1], Klein-Schwarz
[KlSc90]).

This simply means that, by a “finite” tricky summation (N(h) = C0

h

depending on h), one gets the existence of ǫ0 > 0, such that :

P (h, δN(h)(h))uN
χ (x, h) = O(exp−ǫ0

h
) exp−φ(x)

h
. (2.51)

•
Here we have used the self-adjointness property for getting information
on the spectrum. We will now see in the next lecture that for more
complicate models the selfadjoint character of the problem disappears.
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3 Lecture 2 : Towards non self-adjoint mod-

els

3.1 Instability for Kelvin-Helmoltz I : Physical origin

As a motivation, we will start with a generalization of the Kelvin-Helmoltz
model. We refer to Chapter XI in Chandrasekhar’s book [Cha] for a complete
exposition of the origin of the model. This is a generalization [CCLa] of the
classical Kelvin-Helmholtz instability which appears when two fluids move
with different parallel velocities on each side of an interface.

When linearizing along the stationary solution (̺0, ~u0, p0) for a given density
̺0 and a given (this time not zero) velocity u0 (see (2.3)), where u0 is the
first component of ~u0, and following what we have done for Rayleigh-Taylor,
we get the following one dimensional question.
Can we analyze in function of the parameters (k1, k2, g, γ, k) with
k2 = k2

1 + k2
2, if the operator

PKH(γ, k1, k2, g) :=
− d

dx
̺0

d
dx

(γ + ik1u0(x))
2 + k2̺0(x)(γ + ik1u0(x))

2

−ik1(γ + ik1u0(x))
d
dx
̺0u

′
0(x) + gk2̺′0((x)

is approximately injective (say for large values of k).

Like in Rayleigh-Taylor which corresponds to k1 = 0 (or actually to u0 = 0),
our semi-classical parameter will be h = 1

k
. The parameter γ = Γ0 + iΓ1 is

not necessarily real but we are interested in approximate null solutions for
which Γ0 is as large as possible (or complementarily) to show that Γ0 should
necessarily remain bounded in the regime k large.
So we divide by k2 in the equation above and meet the following semi-classical
operator :

Pk(x, hDx) := −h d
dx
̺0h

d
dx

(γ + ik1u0(x))
2

+̺0(x)(γ + ik1u0(x))
2

−ihk1(γ + ik1u0(x))h
d
dx
̺0u

′
0(x)

+g̺′0(x) .

So in our regime k1 is fixed such that |k1| ≤ k = 1
h
, this last inequality will

not be a restriction in the semi-classical regime.
Semi-classically, the principal symbol is given by

p0(x, ξ) := ̺0(1 + ξ2)(γ + ik1u0(x))
2 + g̺′0(x) . (3.1)
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This symbol is not real, hence the associated operator is clearly not sym-
metric and cannot be extended as a selfadjoint operator. Our aim is to
describe a rather systematic strategy for constructing approximate null so-
lutions or to decide that we can not construct such solutions. This question
is naturally related the notion of pseudo-spectra for families (depending in
particular on h but also on other parameters) and adapted to the analysis
of h-pseudodifferential operators. This is what we will explain now before to
treat the various physical examples including this one.

3.2 Around the ǫ-pseudo-spectrum

Definition 3.1
If A is a closed operator with dense domain D(A) in an Hilbert space H, the
ǫ-pseudospectrum σǫ(A) of A is defined by

σǫ(A) := {z ∈ C | ||(zI −A)−1|| ≥ 1

ǫ
}.

We take the convention that ||(zI − A)−1|| = +∞ if z ∈ σ(A), where σ(A)
denotes the spectrum of A, so it is clear that we always have :

σ(A) ⊂ σǫ(A) .

When A is selfadjoint (or more generally normal), σǫ(A) satisfies, by the
Spectral Theorem

σǫ(A) = {z ∈ C | d(z, σ(A)) ≤ ǫ} .

So this is only in the case of non self-adjoint operators that this new concept
(first appearing in numerical analysis, see Trefethen [Tref]) becomes interest-
ing.
Although formulated in a rather abstract way, the following result by Roch-
Silbermann [RoSi] explains rather well to what corresponds the pseudo-
spectrum

σǫ(A) =
⋃

{δA∈L(H) s. t. ||δA||L(H)≤ǫ}

σ(A+ δA) .

In other words, z is in the ǫ-pseudo-spectrum of A if z is in the spectrum of
some perturbation A+δA of A with ||δA|| ≤ ǫ. This is indeed a natural notion
thinking of the fact that the models we are analyzing are only approximations
of the real problem and of the fact that the numerical analysis of the model
goes through the analysis of explicitly computable approximated problems.
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3.3 Around the h-family-pseudospectrum

We are mainly interested in the semiclassical version of this concept attached
to a family (indexed by h ∈]0, h0]) of operators Ah. Here we are inspired by
various presentations of the subject including [Sj2], [DeSjZw] and [Pra3],
without to necessary follow their terminology.

For a given µ ≥ 0, the h-family-pseudospectrum of index µ of a family Ah

(indexed by h ∈]0, h0]) (of closed operators with a dense domain D(Ah) in a
fixed Hilbert Space H) is defined by

Ψµ((Ah))
:= {z ∈ C | ∀C > 0, ∀h0 > 0 s.t. ∃h ∈]0, h0],

||(Ah − z)−1|| ≥ C h−µ} .
(3.2)

We can then define
Ψ∞((Ah)) =

⋂

µ≥0

Ψµ((Ah)) . (3.3)

May be it is easier to understand the quantifiers by observing that the h-
family pseudoresolvent set corresponds to the z such that ∃C > 0 and h0 > 0
such that ∀h ∈]0, h0]

||(Ah − z)−1|| ≤ C h−µ .

If one thinks of applications to Physics, these concepts are more stable by
perturbation than the corresponding notion of spectrum and they are for
this reason particularly relevant in the non self-adjoint case. Practically, one
will exhibit the existence of this h-family-pseudo-spectrum by constructing
quasimodes or approximate solutions. This leads to another natural defini-
tion.
For a given µ ≥ 0, the h-family-quasispectrum of index µ of the family Ah is
defined by

ψµ((Ah))
:= {z ∈ C | ∀C > 0, ∀h0 > 0 s.t. ∃h ∈]0, h0],

∃uh ∈ D(Ah) \ {0} s.t
||(Ah − z)uh|| ≤ C hµ||uh||} .

(3.4)

We can then define
ψ∞((Ah)) =

⋂

µ≥0

ψµ((Ah)) . (3.5)
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The main point is then that

ψµ((Ah)) ⊂ Ψµ((Ah)) .

Note that the converse is not true (see the discussion in [Pra3]) in general.
We will particularly interested in using these tools when Ah is ac-
tually an h-pseudodifferential operator.

The elliptic theory (with suitable conditions at ∞) for h-pseudodifferential
operators says for example that

Proposition 3.2 (see the book of D. Robert)
If z 6∈ Σ(p), where

Σ(p) := {λ ∈ C , | ∃(xn, ξn) s.t λ = lim
n→+∞

p(xn, ξn)} , (3.6)

then z 6∈ Ψµ( Op h(p)).

This will actually also be true for any Ah = Op h(ph), for which the principal
symbol of Ah is p.
The proof is very easy once an h-pseudodifferential calculus has been con-
structed. It is enough to use Op h((p − z)−1) as first approximate inverse
and then to use a Neumann series. The reader can look at the end of Sub-
section 2.4 for more details.

So the first natural thing to do when analyzing the h-pseudospectrum of the
family is to analyze the numerical range Σ(p) of its principal symbol.

3.4 The Davies example by hand

We present a variant of the proof of the generalization, by Pravda-Starov
[Pra1], of the Davies result on the h-family pseudo-spectrum for the Schrödinger
operator

Ah := −h2 d
2

dx2
+ V (x) .

This proof is inspired by similar proofs in [HelLaf2, Mar].

Remark 3.3
Davies treats a particular case by hand. Then Zworski observes that it can be

22



interpreted as a semi-classical version of a result for operators of principal
type (Hörmander [Ho1], [Ho2], Duistermaat-Sjöstrand [DuSj]). This was
pushed further by Dencker-Sjöstrand-Zworski [DeSjZw], N. Lerner (together
with collaborators) (see in [Le] and references therein), Pravda-Starov [Pra1].

One should of course compare with the selfadjoint result at the bottom of
the well but here what is crucial is the non-selfadjointness !!

Theorem 3.4 (Davies-Pravda)
Let us assume that there exist x0 and z such that

z − V (x0) ∈ R
+ , (3.7)

and such that, for an even k ≥ 0,

ImV (j)(x0) = 0 , ∀j ≤ k , (3.8)

and
ImV (k+1)(x0) 6= 0 . (3.9)

Then z ∈ ψ∞((Ah)).

Some elementary proof by a WKB construction.
The crucial point is that there exists ξ0 > 0 such that

ξ2
0 + V (x0) = z .

In other words, there exists (x0, ξ0) such that p(x0, ξ0) = z . Hence, z ∈ Σ(p)
as defined in (3.6) and we are not at the boundary of Σ(p).
Following the construction described in the first Lecture (see (2.37)-(2.40)),
we look for a solution in the form

u(x, h) = a(x, h) exp−φ(x)

h
(3.10)

near x0 with
a(x, h) ∼

∑

j≥0

hjaj(x) , (3.11)

such that

exp
φ

h
(Ah − z0)u(·; h) ∼ 0 . (3.12)

Let us emphasize that (conversely to what was done in the analysis of the
Rayleigh-Taylor model) we keep z0 fixed and did not look for an expansion
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z(h) ∼
∑

j≥0 zjh
j .

Expanding in powers of h and expressing the cancellation of each coefficient
of hℓ, we first get an eikonal equation. The phase ϕ (appearing in (3.10))
should satisfy (we can after a change of notations assume that z = 0 :

−ϕ′(x)2 + V (x) = 0 , (3.13)

where V satisfies by assumption ReV (x0) < 0 ,
(3.8) and (3.9).
The existence of ϕ(x), with ϕ(x0) = 0 and ϕ′(x0) = iξ0 is evident. So the
important point, in order to have an approximate eigenfunction which is
localized at x0, is to verify that Reϕ has actually a local minimum at x0.
Taking the real and imaginary parts in (3.13), we get

−Reϕ′(x)2 + Imϕ′(x)2 + ReV (x) = 0 , (3.14)

and
−2Reϕ′(x) · Imϕ′(x) + ImV (x) = 0 , (3.15)

in a neighborhood of x0.
In particular, this implies at x0

Reφ′(x0) = 0 , ξ2
0 = Imφ′(x0)

2 = −ReV (x0) .

What we now need is to verify that the first non zero derivative of Reϕ at
x0 is even and strictly positive.
We start from

Reϕ′(x) =
ImV (x)

2 Imϕ′(x)
.

But it is immediate from the assumptions that

Reϕ(j)(x0) = 0 , for j ≤ k + 1 ,

and

Reϕ(k+2)(x0) =
ImV (k+1)(x0)

2Imϕ′(x0)
.

We can now choose the sign of ξ0 in order to have

Reϕ(k+2)(x0) > 0 .

Due to the fact that (∂ξp)(x0, ξ0) = ξ0 6= 0, the solution of the transport
equations does not create problems like in the case of Rayleigh-Taylor and
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we can construct a solution uh = a(x, h) exp−ϕ(x)
h

in the neighborhood of
x0.
Let us briefly show how to treat the cancellation of the coefficient of h which
leads to the so-called first transport equation. This equation reads

2ϕ′(x)a′0(x) + ϕ′′(x)a0(x) = 0 , (3.16)

with as initial condition
a0(x0) = 1 .

But ϕ′(x0) = iξ0 6= 0, so it is immediate to find in a neighborhood of x0 the
main amplitude a0 by

a0(x) = exp−1

2

(∫ x

x0

ϕ′′(τ)

ϕ′(τ)
dτ

)
.

The next equation has the same structure as in (3.16) except that there is a
r.h.s. This equation reads

2ϕ′(x)a′1(x) + ϕ′′(x)a1(x) = a′′o(x) , (3.17)

with as initial condition
a1(x0) = 0 ,

and has again a unique explicite solution.
More generally all the succcessive equations read

2ϕ′(x)a′j(x) + ϕ′′(x)aj(x) = a′′j−1(x) , (3.18)

with as initial condition
aj(x0) = 0 ,

and can be solve by recursion for j ≥ 2.

Remark 3.5
K. Pravda-Starov constructs a solution in the form exp−ϕ(x,h)

h
with

ϕ(x; h) ∼
∑

j h
jϕj(x) but this is not really different when working with a

groundstate which is supposed to have no zero.

Remark 3.6
Note that if z 6∈ Σ(p), then the elliptic theory says that it is impossible to
construct an approximate solution, so it leaves open only the points at the
boundary of Σ(p).
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3.5 Kelvin-Helmoltz II : mathematical analysis

We now come back to our motivating model and see if the ideas behind the
treatment of Davies example are efficient.
Note also that our question is a little different and could be reformulated as :
For which values of the parameters is 0 in the h-family pseudospec-
trum of the family (with h = 1

k
)?

So we have to analyze if 0 belongs to Σ(p0), where p0 was defined in (3.1).
We just do the local analysis (the analysis of the ellipticity at ∞ should be
interesting to do). According to (3.1), we have :

Re p0(x, ξ) = ̺0(x)(ξ
2 + 1)(Γ2

0 − (k1u0(x) + Γ1)
2) + g̺′0(x) ,

Im p0(x, ξ) = 2̺0(x)(ξ
2 + 1)Γ0(k1u0(x) + Γ1) .

(3.19)

Assuming that
Γ0 6= 0 , (3.20)

and that
̺0(x) > 0 , ∀x ∈ R , (3.21)

we observe that

Im p0(x, ξ) = 0 iff k1u0(x) + Γ1 = 0 .

When this condition is satisfied, we get

Re p0(x, ξ) = ̺0(x)(ξ
2 + 1)Γ2

0 + g̺′0(x) .

If
̺′0 < 0 , on R , (3.22)

then we see (g > 0), that, if

Γ2
0 > gmax

x
−̺

′
0(x)

̺0(x)
,

then the principal symbol is elliptic.
Hence no local approximate null solution can be constructed. 0 does not
belong to the h-family-pseudospectrum of the operator.
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We also observe that this condition is the same as for Rayleigh-Taylor (see
for example (2.32), with in mind (2.24)) !

Conversely, when

Γ2
0 < gmax

x
−̺

′
0(x)

̺0(x)
,

one can, for any x0 such that

−g̺
′
0(x0)

̺0(x0)
> Γ2

0 ,

find some ξ0 6= 0 such that

Γ2
0(1 + ξ2

0) = −g̺
′
0(x0)

̺0(x0)
.

We are now looking on the condition under which the operator Ah, which is
not elliptic at (x0, ξ0) which determines the parameter Γ1 by,

Γ1 = −k1u0(x0) ,

is not subelliptic at this point (we will explain later in the next lecture (The-
orem 4.1) what we can do in this case).
The computation of the bracket of Re p0 and Im p0 gives

{Re p0, Im p0}(x0, ξ0) = 4k1ξ0̺0(x0)
2u′0(x0)Γ

3
0 . (3.23)

So it is immediate by playing with the sign of k1 (or of ξ0) to get the condi-
tion (4.1) satisfied if u′0(x0) 6= 0.

A detailed analysis of what is going on for γ = Γ0 + iΓ1 with Γ0 close to Γ̃0

with

Γ̃2
0 = gmax

x
−̺

′
0(x)

̺0(x)

should surely be interesting. The techniques presented at the end of the last
lecture will be helful.

Here the simplest toy model should be

h2D2
x + ik1x ,
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the complex Airy operator, which is for k1 6= 0 a particular case of Davies
example and can be also analyzed close to 0 by Dencker-Sjöstrand-Zworski
result.
Let us explain more in detail how we guess this model. We do not try
to be rigorous. For convenience we assume that ̺′ is strictly negative so
the associated K(h) (see (2.28)) appearing in the treatment of the Rayleigh-

Taylor model is positive. At least locally near a maximum of x 7→ −̺′(x)
̺(x)

, one

can (this is an interesting exercise in semi-classical analysis) modulo O(h∞)
rewrite our problem of research of approximate null solutions in looking for
which values of γ, the operator

√
K(h) − ik1u1(x) + hp1(x, hDx, h, k1, γ)) − γ

has approximate null solutions.

There is a technique (functional calculus of Helffer-Robert ([Rob] and refer-
ences therein) or direct approach for the square root) for recognizing f(K(h))
as an h-pseudodifferential operator if f is regular. In our case, one can use a
C∞-positive function coinciding with

√
t on [2ǫ0,+∞[ and equal to a strictly

positive constant for t ∈] −∞, ǫ0].

If we forget the dependence on γ in p1, we are facing a very standard question
of h-family-pseudospectrum.
The question becomes simply :

Is γ in the pseudospectrum of

√
K(h) − ik1u1(x) + hp1(x, hDx, h, k1, γ)) ?

Taking the harmonic approximation of
√
K(h) at a point where the principal

symbol of
√
K(h) (which is the square root of the principal symbol of K(h))

and the linear approximation of u1 at x0 leads (up to the constants) to the
toy model.

3.6 Other Toy models

Other toy models have been analyzed in detail. Let us mention

h2D2
x + ihDx + x2 ,
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whose symbol is p(x, ξ) = ξ2 + iξ + x2 (See [DeSjZw], p. 3).

The spectrum is easy to determine as given by the sequence 1
4

+ (2n + 1)h
(n ∈ N), the corresponding eigenfunctions being directly related with the
hermite functions and which permit to diagonalize the operator BUT in a
non othonormal basis.
The h-family pseudospectrum is given by the numerical range of the principal
symbol of the operator :

Σ(p) = {z ∈ C | |Im z|2 ≤ Re z} .

More generally the h-family pseudospectrum of the Schrödinger operators
−h2∆ + V (x), with V quadratic has been analyzed in great detail in the
PHD thesis of Pravda-Starov [Pra3].
Other models appear in connection with the analysis of the resolvent of the
Fokker-Planck operator (see Risken (for the quadratic case, [Ris], Hérau-Nier
[HerNi], Helffer-Nier [HelNi], Hérau-Sjöstrand-Stolk [HerSjSt]) or for other
models (See Hager [Ha] and works in progress from Hager-Sjöstrand).
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4 Lecture 3 : On semi-classical subellipticity

4.1 Introduction

The references for this lecture are papers by Davies [Da2], Zworski [Zw],
Dencker-Sjöstrand-Zworski [DeSjZw], Lerner [Le] (and references therein).
We would like to show how the microlocal techniques (suitably adapted to
the semi-classical context) permit to recover or complete the previous results.
We will see in the last lecture how one can also analyze the transition between
the elliptic region and the non elliptic one. We have already seen that many
results of non-existence of approximate null solutions are just the consequence
of “elliptic” semi-classical results. As a second step, we can look if, at non-
elliptic points, some subellipticity condition is satisfied, starting by 1

2
-semi-

classical subellipticity. This would again imply the same type of results.
Conversely, if the operator is not subelliptic, one can try to construct directly
WKB solutions in the form a(x, h) exp−φ(x)

h
with φ admitting a minimum at

some point x0 or to apply more general theorems in semi-classical analysis.
We start in the next subsection by a typical result of the last alternative.

4.2 Non subellipticity : generic result

The main relevant theorem in our context can be stated in the following way
(see [DeSjZw]). One considers an h-pseudodifferential Ah := a(x, hDx) with
principal symbol a0 and one is looking for a simple criterion underwhich 0
belongs to the h family pseudospectrum of Ah.

Theorem 4.1
Let us assume that at a point (x0, ξ0), we have

a0(x0, ξ0) = 0 , {Re a0, Im a0}(x0, ξ0) < 0 . (4.1)

Then there exists an L2- normalized solution uh, whose h-wave front is
(x0, ξ0), and such that (x0, ξ0) is not in the h-wave front of Ahuh.

We recall that, for a bounded family of L2 functions vh, we say that a point
(y, η) is not in the h-wave front set4, if there exists a C∞

0 function χ equal to
1 in the neighborhood of y, such that (Fhχvh)(ξ) := h−

n
2 χ̂vh(ξ/h) = O(h∞)

in a neighborhood ofη.

4Another terminology used for example in [Rob] is to speak of frequency set.
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Another (equivalent) definition is to use the Fourier-Bros-Iagolnitzer (which
will be familiar to the users of the Gabor transform) as intensively developed
by J. Sjöstrand [DiSj].
We say that (x0, ξ0) is not in the h-Wave front set of a bounded family uh in
L2 if the function

(x, ξ) 7→ h−
3n
4

∫
exp

i

h
(x− y) · ξ exp−(x− y)2

2h
uh(y) dy ,

is O(h∞) in some (h-independent) neighborhood of (x0, ξ0).
Applications.
Let us see what this theorem say for the two examples we have already met :
the Davies example and the Kelvin-Helmoltz example.
In the first case, we have

Re a0(x, ξ) = ξ2 + ReV (x) − Re z0 , Ima0(x, ξ) = ImV (x) − Im z0 . (4.2)

The Poisson Bracket at (x0, ξ0) is

{Re a0, Im a0}(x0, ξ0) = 2ξ0ImV ′(x0) , (4.3)

and we recall that ξ0 6= 0 with ξ2
0 determined. So if ImV ′(x0) 6= 0, (which

corresponds to k = 0 in Davies-Pravda theorem), the non-sub-elliptic theo-
rem applies for the right choice of the sign x0.

In the second case, we send back the reader to Formula (3.23).

4.3 Link with the standard non-hypoellipticity results
for operators of principal type

In the theory of Partial Differential Equations, Theorem 4.1 corresponds
to a result of non-hypoellipticity. The basic simplest model is Dx + ixDt,
which is known to be non hypelliptic microlocally at (0, 0) in the direction
(0,−1). Hence it is not hypoelliptic. But one should keep in mind that the
link between the two problems is microlocal. As already explained in the
lectures by N. Lerner [Le] (see also [Trev]), the link between the two theories
is through the partial Fourier transform in the t-variable. For an operator
in the form Dx + ib(x)Dt, we first get the family in τ , Dx + ib(x)τ , that we
have to analyze for |τ | large. With h = 1

|τ |
, we get two semi-classical families

of operators to analyze hDx ± ib(x), each one corresponding to a microlocal
analysis in the direction (0, 1) or (0,−1).
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4.4 Elementary proof for the non-subelliptic model

We give an elementary proof (cf [Mar]) under the additional assumption that

a0(x, iξ) ∈ R , ∀(x, ξ) ∈ R
2 , (4.4)

which appears to be satisfied for the two last physical models, which will be
analyzed in the next section, but is not satisfied for the Davies example and
the Kelvin-Helmoltz model.
In this case, we define the real symbol

q0(x, ξ) = a0(x, iξ) , ∀(x, ξ) ∈ R
2 ,

and we look for a point (x0, 0) such that

q0(x0, 0) = 0 ,

and for a non negative real phase ϕ defined in a neighborhood of x0 such
that ϕ(x0) = 0 admitting at x0 a local minimum and solution of

q0(x, ϕ
′(x)) = 0 . (4.5)

Under the condition that ∂ξq0(x0, 0) it is immediate to find ϕ by the implicit
function theorem.
The first natural condition for having a minimum is then to see under which
condition one has

ϕ′′(x0) > 0 .

Differentiating the eiconal equation (4.5), we obtain

(∂xq0)(x, ϕ
′(x)) + (∂ξq0)(x, ϕ

′(x))ϕ′′(x) = 0 ,

hence

ϕ′′(x0) = −∂xq0(x0, 0)

∂ξq0(x0, 0)
.

So we are done if the r.h.s. is strictly positive :

−∂xq0(x0, 0)

∂ξq0(x0, 0)
> 0 . (4.6)

Let us now control that this condition can be recognized as the condition of
the theorem.
From the relations

∂xq0(x, ξ) = ∂xa0(x, iξ) , ∂ξq0(x, ξ) = i∂ξa0(x, iξ) ,

32



we get at any point (x, 0) :

∂xIm a0(x, 0) = 0 , ∂ξRe a0(x, 0) = 0
∂xRe a0(x, 0 = ∂xq0(x, 0) , ∂ξIm a0(x, 0) = −∂ξq0(x, 0) .

So this gives the relarion :

{Re a0, Im a0}(x, 0) = ∂xq0(x0, 0)∂ξq0(x0, 0) ,

and the result becomes clear.

The second step is to construct a quasimode in the form

uh := b(x, h) exp−ϕ(x)

h
,

with
b(x, h) ∼

∑

j≥0

bj(x)h
j .

The equation for b0 reads

(∂ξq0)(x, ϕ
′(x))b′0(x) +

(
ϕ′′(x)

2
(∂2

ξ q0)(x, ϕ
′(x)) + q1(x, ϕ

′(x))

)
b0(x) = 0 ,

where q1 is the “subprincipal” symbol. One can always solve this equation
with b0(x0) = 1 (see (3.16)).

Remark 4.2
When the first Poisson bracket of a0 and a0 is 0 (which is equivalent to
∂xq0(x, 0) = 0), one can find a criterion involving higher order brackets. See
[Pra3], [Mar] and the standard results on subelliptic operators obtained in the
seventie’s.
We are in a particular case of the following more general situation. We look
for solutions of a(x, hDx)uh = O(h∞) which are localized in a neighborhood
of a point (x0, ξ0) such that

a0(x0, ξ0) − z = 0 , (∂ξa0)(x0, ξ0) 6= 0 .

In addition, we have

−i(ad a0)
k({a0, a0})(x0, ξ0) = 0 ,

for k < k0 and
−i(ad a0)

k0({a0, a0})(x0, ξ0) > 0 ,

where ad p is the operator of commutation

(ad p)q = {p, q} .
This time we have to take a complex phase.
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4.5 1
2 semi-classical subellipticity

When the principal symbol is not elliptic, the best we can hope is a sub-
elliptic result. The next theorem corresponds to the first (and the most
generic) result of this type.

Theorem 4.3 ( 1
2

-subellipticity) .
If (uh)h∈]0,h0] is an L2 normalized solution in the domain of Ah such that
Ahuh = O(h∞), then if for some (x0, ξ0) we have

a0(x0, ξ0) = 0 , {Re a0, Im a0}(x0, ξ0) > 0 ,

then (x0, ξ0) does not belong to the h-wave front set of the family uh.

Remark 4.4
In PDE theory this corresponds to the simplest result of microlocal hypoellip-
ticity. The basic simplest model isDx+ixDt, which is known to be hypoelliptic
(with loss of 1

2
derivatives microlocally at (0, 0) in the direction (0, 1)).

We will come back later in the last lecture to high order subellipticity.

Remark 4.5
Note that the elliptic theory simply says that if z 6∈ Σ(p), then z is not in
the pseudospectrum of −h2∆ + V . So what remains is simply a more precise
analysis at ∂Σ(p).

About the proof
We refer to the lectures of N. Lerner [Le]. Let us just sketch the semi-classical
proof. If we write

Ah = Bh + iCh ,

with Bh and Ch selfadjoint respectively of principal symbol Re a0 and Im a0,
the basic point is that

A∗
hAh = B2

h + C2
h + i[Bh, Ch] ,

and to observe that i
h
[Bh, Ch] is positive elliptic at the points where Ah is

not elliptic.
We can use rather weak forms of the Garding inequality, We refer to the Lec-
tures of N. Lerner ([Le]) for discussions around this point and the Fefferman-
Phong inequality.
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Remarks 4.6

• Here we gave the impression that everything is done globally but let us
now emphasize that one has to do very often the argument microlocally.

• Note that we do not really need this result. In the case of the symbol
appearing in Kelvin-Helmoltz model the sign of the Poisson bracket at
(x0, ξ0) is opposite to the sign at (x0,−ξ0).
This will not be the case for the two next models for which we will have
ξ0 = 0 at the non-elliptic points.
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5 Lecture 4 : Other non self-adjoint models

coming from Hydrodynamics

5.1 Introduction

The two next models are deduced from the mass conservation and the mo-
mentum conservation equation of the Euler equation, and differ through the
modelling of the energy equation. For simplicity the systems are written in
R2

x̃,ỹ × Rt (instead of R3
x̃,ỹ,z̃ × Rt).

The density of the fluid satisfies, for some strictly positive constant ρa > 0 ,

ρ(x̃, ỹ) → ρa when x̃→ +∞ ,

and the velocity of the fluid satisfies, for some Va > 0,

~U := (u, v) → (−Va, 0) when x̃→ +∞ .

ρa is the density of the ablated fluid and Va the modulus of the velocity of
the ablated fluid.

The Rayleigh model with convection assumes that the perturbation of
the velocity is incompressible. This means that there exists a function ~U0(x̃),
called the convective velocity, such that

div (~U − ~U0) = 0 .

The system will be denoted by (RC) and writes

(RC)





∂tρ+ ∂x̃(ρu) + ∂ỹ(ρv) = 0 ,
∂t(ρu) + ∂x̃(ρu

2 + p) + ∂ỹ(ρuv) = −ρg ,
∂t(ρv) + ∂x̃(ρuv) + ∂ỹ(ρv

2 + p) = 0 ,

div (~U − ~U0) = 0 ,

where the unknowns are the density ρ, the velocity (u, v) and the pressure
p .
The ablation front model uses an energy equation with heat conduction.
The enthalpy is defined by

h = CpT , (5.1)
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With T (t, x̃, ỹ) denoting the temperature of the fluid (at a point x̃, ỹ and a
time t) and Cp being a constant characterizing the calorific capacity of the
fluid, the enthalpy satisfies the equation :

ρ(∂t + ~U · ∇)h− (∂t + ~U · ∇)p = −div ~Jq (5.2)

Here ~Jq is the heat flux given by the Fourier conduction law

~Jq = −λ(T )∇T .

In this law, λ(T ) is proportional to a power of the temperature, that is
satisfying, for some constants κ > 0 and ν > 0,

λ(T ) = κT ν .

Note that these formulas assume that T > 0 and consequently, with p related
with T as below in (5.3) to the condition p > 0. The parameter ν is called
the conduction index.
We now write the perfect gas relation

p = ρT (Cp − Cv) , (5.3)

where Cv is the calorific capacity at constant volume. Cp/Cv is 5/3. Starting
from (5.2) and then using (5.1) , (5.3) and the first equation in (RC), we
get :

Cp ρT div ~U + Cv(∂t + ~U · ∇)ρT + div ~Jq = 0 . (5.4)

We shall not analyze this model, in particular because this model has no
stationary solution. So the physicists use other models for which we can just
explain (without being in any way rigorous) how they can be obtained.

5.2 Quasi-isobaric model (Kull and Anisimov) [KullA]

The starting point consists in replacing the perfect gas relation by the rela-
tion :

ρT = D0 , (5.5)

where D0 is a constant.
Implementing (5.5) in (5.4) gives :

D0Cp div ~U + div ~Jq = 0 .
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This constant is identified through the hypothesis that T → Ta, Ta > 0,
when x̃ goes to +∞ (temperature of the ablated fluid).

Hence

D0 = ρaTa and T =
ρaTa

ρ
.

For a derivation of this model, see [Go, Mas, La3]. A similar model arises
alos in the Low Mach approximation (see [Li]).
The system of equations writes

(KA)





∂tρ+ ∂x̃(ρu) + ∂ỹ(ρv) = 0 ,
∂t(ρu) + ∂x̃(ρu

2 + p) + ∂ỹ(ρuv) = −ρg ,
∂t(ρv) + ∂x̃(ρuv) + ∂ỹ(ρv

2 + p) = 0 ,

div (~U − κ
Cpρa

T ν
a (ρa

ρ
)ν∇ρa

ρ
) = 0 ,

where the unknowns are the functions
(t, x̃, ỹ) 7→ (ρ, u, v, p) .
Of course we can recover T by the equation ρT = ρaTa , but in this approxi-
mation, we will no more impose that the perfect gas relation is satisfied when
pursuing the analysis. So the solution of (KA) will not be satisfied with p
constant as we could have thought by combining previous equations.

5.3 Stationary laminar solution

Both systems are studied around a stationary laminar (independent of ỹ and
t) solution of the equations.

For the system (RC), we are given an arbitrary convective velocity ~U0, and
for the system (KA) it is deduced from the energy equation. In both cases a
reference length L0 plays an important role (for defining in which asymptotic
regime we are).

For the system of Rayleigh with convection,

~U0(x̃) = (ũ0(x̃), 0) ,

with

ũ0(x̃) = u0(
x̃

L0

) .

For the ablation front model,

L0 = κ
T ν+1

a

CpρaVa

.
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We use the rescaled variable

x :=
x̃

L0
.

The stationary laminar solution is given by

(x̃, ỹ) 7→ (ρ̃0(x̃), ũ0(x̃), 0, p̃0(x̃))

with
ρ̃0(x̃) = ρ0(

x̃
L0

) , p̃0(x̃) = p0(
x̃
L0

) .

Here ρ0, u0, p0 are functions on R

{
ρ0(x)u0(x) = −ρaVa ,
d
dx

(
ρ0(x) u0(x)

2 + p0(x)
)

= −ρ0(x)gL0 .

Note that p0 is determined modulo a constant C0 by :

ρ0(x) u0(x)
2 + p0(x) = −gL0

∫ x

0

ρ0(t)dt+ C0 .

Finally, we introduce the adimensionalized density profile ̺(x) which is the
function

̺(x) =
ρ0(x)

ρa

.

5.4 From the physical parameters to the relevant math-

ematical parameters

Following [CCLaRa], we can now associate with the physical parameters,
g, L0, Va, k, the parameters

α =

√
gkL0

Va

, β = Va

√
k

g
,

and the relevant constants of this study (the constant σc stands for the
Rayleigh with convection model and the constant σa is characteristic of the
ablation front model)

h =
1

kL0

=
1

αβ
, σc =

h
1
2

β
, σa =

h2

β2
.

These constants are linked to the reduced wave number

ε = kL0 ,
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and the Froude number,

Fr =
V 2

a

gL0
.

They are linked to α and β through

Fr =
β

α
, ε = αβ .

From the growth rate γ̄, we deduce two dimensionless growth rates

γ =
γ̄√
gk

,

and

Γ =
γ̄

kVa

=
γ

β
. (5.6)

The growth rate γ is the growth rate generally used in the classical Rayleigh-
Taylor analysis,

and the growth rate Γ is the one relevant in the semiclassical regime, that
we study here.

As a conclusion, Semi-classical analysis can be applied when the
Froude Number is small enough.

5.5 The convection velocity model

In our rescaled variable x, the linearized system writes (with q4 = r4̺− q1) :

(LRC)





dq1

dx
+ αγ(̺2r4 − ̺q1) − αβ̺q3 = 0 ,

dq2

dx
+ αγq1 + αβq3 + α

β
(̺2r4 − ̺q1) = 0 ,

dq3

dx
− αβ(q2 + 2q1+q4

̺
) − αγ̺q3 = 0 ,

dr4

dx
− αβq3 = 0 .

Here (q1, q2, q3, q4) correspond to infinitesimal variation of the new unknowns
(ρu, ρu2 + p, ρuv, u).

This system rewrites, with dh = h d
dx

,

dh




q1
q2
q3
r4


 +




−Γ̺ 0 −̺ Γ̺2

Γ − ̺

β2 0 1 ̺2

β2

−1
̺

−1 −Γ̺ −1

0 0 −1 0







q1
q2
q3
r4


 = 0 .
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The main point is now that we can reduce the analysis of the system to the
analysis of one equation.

Proposition 5.1
The C4-valued function (q1, q2, q3, r4) is a solution of the linearized system
(LRC),
if and only if q4 := r4̺− q1 belongs to the kernel of the operator (ELRC),

Pc(x,
1
i
h d

dx
, h, σc,Γ)

:= dh[(dh − Γ̺)(dh(
1
̺′

(dh − Γ̺))) − 2
̺′

(dh − Γ̺) + h
̺
]

+σ2
c̺+ dh(

1
̺′

(dh − Γ̺)) + Γ( ̺

̺′
(dh − Γ̺) − h) .

Here the interesting point is that we have only two effective parameters (h, σc)
which will make the discussion about various asymptotic regimes easier. The
semi-classical regime will correspond to fix σc > 0 and to analyze the ques-
tion when h→ 0.

The semi-classical principal symbol is

(x, ξ) 7→ P0
c (x, ξ) := − 1

̺′
(iξ − Γ̺)2(ξ2 + 1) + ̺σ2

c . (5.7)

Assumption 1
The profil ̺ satisfies :

1. ̺ ∈ C∞(R; ]0, 1[) ,

2. limx→−∞ ̺(x) = ̺− ≥ 0 ,

3. limx→+∞ ̺(x) = ̺+ = 1 ,

4. ̺′ > 0 ,

5. lim|x|→+∞
̺′(x)
̺(x)

= 0 .

Remark 5.2
The reader should be aware that, in comaprison with the two first models, we
have changed the convention in order to be coherent to the reference [HelLaf2]
in which the reader can find additional details.
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Assumption 2
The maximum of ̺′

̺
is attained at a unique xmax :

0 <
̺′

̺
(xmax) := (ϑmax

c )2 ,

and the map x 7→ ̺′(x)
̺(x)

is strictly increasing over ]−∞, xmax[ and then strictly

decreasing over ]xmax,+∞[ .

Local ellipticity condition
The imaginary part of the symbol is

ImP0
c (x, ξ) =

2ξ

̺′(x)
Γ ̺(x)(ξ2 + 1) .

It is non zero except for
ξ = 0 .

Looking at the real part restricted to ξ = 0, we obtain that

ReP0
c (x, 0) = −Γ2̺

2(x)

̺′(x)
+ ̺(x)σ2

c .

This leads us to the following local ellipticity condition :

Γ

σc

> ϑmax
c .

5.6 The model for the ablation regime

Similarly, the linearization of the system (KA) leads to the following system

(LKA) dh~q +M0(̺(x))~q = 0 ,

where

~q =




q1
q2
q3
p4

q5



.
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and the matrix is

M0(̺) =




0 0 ̺ hΓ̺ν+2 0
Γ 0 −1 h

β2̺
ν+2 0

2
̺

1 −Γ̺ h̺ν 0
1
̺

0 0 h̺ν −1

0 0 1 −1 0




.

Proposition 5.3
The C5-valued function ~q is a solution of (LKA) if and only if its fourth
component p4 is in the kernel of the operator (ELKA) :

Pa(x,
1
i
dh, h, σa,Γ) :=[
dh(dh − Γ̺)dh − (dh − Γ̺)

]
×

× ̺

̺′

[
dh(dh + h̺ν) − 1 − hΓ̺ν+1

]

+h
(
dh (dh − Γ̺) (dh(dh + h̺ν) − 1)

)

+h(d2
h − 1) + σa ̺

ν+2 .

The principal symbol (in the semi-classical sense) is

P0
a(x, ξ, σa,Γ) =

̺(x)

̺′(x)
(iξ − Γ̺(x))(ξ2 + 1)2 + σa̺(x)

ν+2 . (5.8)

The analysis of the zeroes of the symbol is similar to the other model. We
have :

ReP0
a(x, ξ, σa,Γ) =

̺(x)

̺′(x)
(−Γ̺(x))(ξ2 + 1)2 + σa̺(x)

ν+2 ,

and

ImP0
a(x, ξ, σa,Γ) =

̺(x)

̺′(x)
ξ(ξ2 + 1)2 .

The zero set of ImP0
a is in {ξ = 0} and :

ReP0
a(x, 0, σa,Γ) =

̺(x)

̺′(x)
(−Γ̺(x)) + σa̺(x)

ν+2 ,

which leads to the analysis of the solutions of :

σa̺(x)
ν̺′(x) = Γ

or
σa̺(x)

2ν+1(1 − ̺(x)) = Γ .
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Hence we have first to analyze the variation of the function :

[0, 1] ∋ t 7→ θ(t) := (1 − t)t2ν+1 . (5.9)

If ν > 0, θ is an application from ]0, 1[ onto ]0, ϑmax
a ], with

ϑmax
a =

(2ν + 1)2ν+1

(2ν + 2)2ν+2
. (5.10)

0 < ϑmax
a < 1 ,

and the maximum in ]0, 1[ is obtained at

tmax
a =

2ν + 1

2ν + 2
.

For L ∈]0, ϑmax
a [, two solutions of θ(t) = L, satisfying :

0 < t−(L) < tmax
a < t+(L) .

x 7→ ̺(x) is a bijection of R onto ]0, 1[.

For any L ∈]0, ϑmax
a [, there exist two points x±(L) such that

̺(x±(L)) = t±(L) ,

and consequently
θ(̺(x±(L))) = L .

We note also that, when ξ = 0,

(∂P0
a/∂ξ)(x, 0) = i

̺(x)

̺′(x)
6= 0 ,

which shows that P0
a is also of principal type.

Finally when Γ
σa

> ϑmax
a , is satisfied, one gets the local ellipticity of the

symbol P0
a .

5.7 Semi-classical regimes for the ablation models

Let us emphasize at this stage the analogies between the three last physical
models. As in the case of the Kelvin-Helmoltz model, two different “effec-
tive” parameters have been exhibited corresponding to each situation of the
convective velocity problem (parameter denoted by σc) and in the ablation
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front problem (parameter denoted by σa), together with h. Both problems
lead to a h−differential equation on one of the unknowns, and consist in
finding a function u(x, h) such that

Pp(x,
1

i
h
d

dx
, h, σp,Γ)u = 0 ,

where Pp is a fifth or fourth order h−differential operator. The main results
will take the following form :

Under suitable relations on the reference density profile at x̃→ ±∞, then, if

Γ ∈]0, ϑmax
p σp[ ,

then 0 belongs to the h-family-pseudospectrum of

Pp(x,
1

i
h
d

dx
, h, σp,Γ) .

More precisely there exists xp(Γ, σp) such that there exists a WKB solution
of

Ppu = O(h∞)

localized in the neighborhood of the point xp(Γ, σp).

Note that in the three models there is no quantization of Γ. The result is
with this respect quite different from the solution of the problem linked with
pure Rayleigh-Taylor instability.
The assumptions are essentially optimal in this semi-classical regime :
Under the same assumptions on the density profile, and, for Γ > ϑmax

p σp , no
approximate (in the WKB sense) bounded solution can be constructed, if h
is small enough.

This was a consequence of the ellipticity of the operator for this regime of
operators. Let us now look at what is obtained by application of Theorem 4.1.

5.7.1 Application to the (ELRC) model.

We start from a0 = Q0
c :

a0(x, ξ) = (ξ + iΓ̺)2(ξ2 + 1) + ̺̺′σ2
c .

45



We obtain
Re a0(x, ξ) = (ξ2 − Γ2̺2)(ξ2 + 1) + ̺̺′σ2

c ,

and
Im a0(x, ξ) = 2Γ̺ξ(ξ2 + 1) .

Let us compute the Poisson bracket at (xc, 0)

{Re a0, Im a0}(xc, 0)
= −2Γ̺(xc)[−2Γ2̺(xc)̺

′(xc) + σ2
c (̺̺

′)′(xc)] ,

which is effectively strictly negative and Theorem 4.1 can be applied.

5.7.2 Application to the (ELKA) model.

The principal symbol is here :

P0
a(x, ξ) =

̺(x)

̺′(x)
(iξ − Γ̺(x))(ξ2 + 1)2 + σa̺

ν+2 . (5.11)

Because we are interested in null solutions, it is equivalent to apply the
criterion for

a0(x, ξ) = (iξ − Γ̺(x))(ξ2 + 1)2 + σa̺(x)
2ν+2(1 − ̺(x)) .

We get
Re a0 = −Γ̺(x)(ξ2 + 1)2 + σa̺(x)

2ν+2(1 − ̺(x)) ,

and
Im a0 = ξ(ξ2 + 1)2 .

A point in a−1
0 (0) should satisfy ξ = 0, and for the real part :

−Γ̺(x0) + σa̺(x0)
2ν+1(1 − ̺(x0)) = 0 .

Let us compute the Poisson bracket at (x0, 0) :

{Re a0, Im a0}(x0, ξ0) = Γ̺′(x0)
−σa(2ν + 2)̺′(x0)̺

2ν+1(x0)
+σa(2ν + 3)̺′(x0)̺

2ν+2(x0) .

Dividing by ̺′(x0) (which is positive), we get that this bracket is negative if :

Γ
σa

< (2ν + 2)̺2ν+1(x0) − (2ν + 3)̺2ν+2(x0)

= ̺2ν+1(x0) ((2ν + 2) − (2ν + 3)̺(x0)) .
(5.12)

Hence Theorem 4.1 can be applied if this last condition is verified.
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5.8 Subellipticity II : at the boundary of Σ(a0).

In the case of our example the neighborhood of the maximal Γ, for which one
can construct quasimodes can be analyzed by analyzing the iterated brack-
ets. One can then apply the results, which were recalled in [DeSjZw] which
are related to the much older theory of the subelliptic operators (see [Ho3]
and references therein). More recent work have been performed by N. Lerner
(See his lectures in this conference) and by K. Pravda-Starov in his quite
recent PHD [Pra2].

The theorem in [DeSjZw] reads :

Theorem 5.4
We assume that a0 is a C∞ bounded function together with all its derivatives
and that our operator is an h-pseudodifferential operator with principal sym-
bol (x, ξ) 7→ a0(x, ξ). Then if z0 ∈ ∂Σ(a0) is of finite type for a0 of order
k ≥ 1, then k is even and there exists C > 0 such that, for h small enough,

||(A(h) − z0)
−1|| ≤ C h−

k
k+1 . (5.13)

Here Σ(a0) is the closure of the numerical range of a0.

The condition that a0 is of finite type for the value z0 is that a0 is of principal
type (i.e. ∇x,ξa0(x, ξ) 6= 0) at any point (x, ξ) such that a0(x, ξ) = z0 and
that at these points there is at least one non zero (possibly iterated) bracket
of Re a0 and Im a0.

Remarks 5.5

• The authors in [DeSjZw] mention that one can reduce more general
cases to this one by use of the functional calculus. This can be verified
more directly in our case.

• In the case of (ELRC), it is enough to compose on the left by (I −
h2∆)−2. In the second case, the situation is a little more delicate. See
[HelLaf2].

Let us show how this theorem can be applied in this case, with k = 2.
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Application to (ELRC) model.
Coming back to this model, we first observe that

{Re a0 , Im a0}(x, ξ) = −2Γ̺[−2Γ2̺̺′ + σ2
c (̺̺

′)′] + O(ξ2) , (5.14)

When
Γ = Γc := ϑmax

c σc , (5.15)

we can verify that

a0(xc, 0) = 0 , {Re a0 , Im a0}(xc, 0) = 0 ,

and that, under the additional assumption that the point xc is a non degen-
erate maximum of ̺′

̺
,

{Im a0, {Re a0, Im a0}}(x0, 0) 6= 0 . (5.16)

This implies that the operator is of type 2.

Application to the (ELKA) model.
We consider, after a small change, as principal symbol the function :

(x, ξ) 7→ −Γ̺(x) + σa̺(x)
2ν+2(1 − ̺(x))(1 + ξ2)−2 + iξ . (5.17)

Here we choose Γ/σa = ϑmax
a , where ϑmax

a is defined in (5.10). The Pois-
son bracket {Re a0, Im a0} vanishes at (x0, 0), where x0 is the point such as
̺(x0) = 2ν+1

2ν+2
. Now the computation of the first iterated bracket gives

{Im a0 , {Im a0 , Re a0}}(x0, 0)
= (2ν + 1)̺′(x0)

2̺(x0)
2ν 6= 0 .

(5.18)

As in the case of the ellipticity zone, one can eliminate the problem at ∞.

Remark 5.6
The Dencker-Sjöstrand-Zworski Theorem shows that there exists C > 0 and
h0 such that, when Γ belongs to ]Γp − Ch

2
3 ,Γp] and h ∈]0, h0], then no ap-

proximate solution in the kernel of Pp(x,
1
i
dh, h, σp,Γ) exists.
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Partielles, Ecole Polytech., Palaiseau (2001).

[La2] O. Lafitte. Quelques rappels sur les instabilités linéaires. Talk at
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