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Abstract

In this paper, we prove that the Strong Novikov Conjecture for a

residually finite group is essentially equivalent to the Coarse Geomet-

ric Novikov Conjecture for a certain metric space associated to the

group. As an application, we obtain the Coarse Geometric Novikov

Conjecture for a large class of sequences of expanders.

1. Introduction

Let Γ be a finitely generated residually finite group, let {Γn}
∞
n=1 be a se-

quence of finite index normal subgroups of Γ such that Γn ⊇ Γn+1 and⋂∞
n=1 Γn = {e}. The purpose of this paper is to prove that the Strong

Novikov Conjecture for Γ and {Γn}
∞
n=1 is essentially equivalent to the Coarse

Geometric Novikov Conjecture for the box metric space
⊔∞

n=1 Γ/Γn (Theorem

5.2). As an application, we obtain the Coarse Geometric Novikov Conjecture

for a large class of sequences of expanders.
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The Coarse Geometric Novikov Conjecture holds for bounded geometry

metric spaces which are coarsely embeddable into Hilbert space [27]. More

generally, Kasparov and Yu proved the Coarse Geometric Novikov Conjec-

ture for bounded geometry metric spaces which are coarsely embeddable into

uniformly convex Banach spaces [16]. Recall that if Γ is an infinite group

with property T, then the box metric space is a sequence of expanders and

therefore does not admit a coarse embedding into Hilbert space [18, 23].

Lafforgue has constructed residually finite property T groups whose associ-

ated sequences of expanders are not coarsely embeddable into any uniformly

convex Banach space [17]. The Strong Novikov Conjecture holds for many

infinite groups with property T [5, 6, 9, 10, 14, 15, 24, 26, 27]. As a conse-

quence, our main result implies the Coarse Geometric Novikov Conjecture for

a large class of sequences of expanders. In particular, we obtain the Coarse

Geometric Novikov Conjecture for Lafforgue’s sequences of expanders in [17],

which are not coarsely embeddable into any uniformly convex Banach space.

2. Rips complex and its K-homology

In this section, we review the concept of Rips complex and prove a useful

result about equivariant K-homology of Rips complexes.

2.1. Let Γ be a finitely generated discrete group with a finite generating

set S. We assume that S = S−1, that is, g ∈ S if and only if g−1 ∈ S. Define

the word length metric d on Γ by

d(x, y) = min{k | x−1y = g1g2 · · · gk, gi ∈ S, i = 1, 2, · · · , k}.

In this paper, we use |Γ| to denote the underlining metric space of a

finitely generated group Γ endowed with the word length metric. The left

multiplication of Γ gives an isometric Γ-action on (|Γ|, d).

2.2. In this paper, all the discrete metric spaces X are assumed to

have bounded geometry, i.e., for any r > 0, there exists N > 0, such that
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#Br(x) ≤ N , where Br(x) = {y ∈ X : d(y, x) ≤ r}. Note that if X = |Γ|,

the underlying metric space of a finitely generated discrete group Γ, then X

has bounded geometry.

2.3. Definition (Rips Complex). For any d > 0, the Rips complex

Pd(X) is the finite dimensional simplicial polyhedron defined as follows:

(1) the vertex set of Pd(X) is X.

(2) any q+1 vertices x0, x1, · · · , xq span a simplex of Pd(X) if and only if

d(xi, xj) ≤ d, ∀i, j ∈ {0, 1, 2, · · · , q}.

Since X has bounded geometry, for each fixed d, Pd(X) is a locally finite

simplicial complex, that is, each vertex belongs to finitely many simplices.

2.4. Endow Pd(X) with the spherical metric. Recall that on each path

connected component of Pd(X), the spherical metric is the maximal metric

whose restriction to each simplex {
∑q

i=0 tixi|ti ≥ 0,
∑q

i=0 ti = 1} is the metric

obtained by identifying the simplex with Sq
+ via the map

q∑

i=0

tixi 7→

(
t0∑q
i=0 t

2
i

,
t1∑q
i=0 t

2
i

, · · · ,
tq∑q
i=0 t

2
i

)

where Sq
+ := {(s0, s1, · · · , sq) ∈ Rq+1, si ≥ 0,

∑q
i=0 si = 1} is endowed with

the standard Riemannian metric. If y0, y1 belong to two different connected

components Y0, Y1 of Pd(X), we define

d(y0, y1) = min{d(y0, x0) + dX(x0, x1) + d(x1, y1)|x0 ∈ X ∩ Y0, x1 ∈ X ∩ Y1}.

The topology induced by the above metric is the same as the weak topology

of the simplicial complex: a subset S ⊂ Pd(X) is closed if and only if the

intersection of S with each simplex is closed.

If d < d′, then Pd(X) is a subcomplex of Pd′(X). Denote the inclusion of

Pd(X) into Pd′(X) by id′,d. Let P∞(X) =
⋃∞

d=1 Pd(X), with the topology of

simplicial complex, that is, a set A ⊂ P∞(X) is closed if and only if A∩Pd(X)

is closed for each d > 0. Also, denote the embedding from Pd(X) to P∞(X)
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by i∞,d. Note that P∞(X) is not a locally finite simplicial complex unless X

is a finite set.

2.5. If Γ is a finitely generated discrete group, then there is a natural

action of Γ on P∞(Γ):

g(t0x0 + t1x1 + · · · + tqxq) = t0gx0 + t1gx1 + · · · + tqgxq.

This Γ-action is proper, and P∞(Γ) is a model of the universal space EΓ of

proper Γ-actions. We also have g(Pd(Γ)) ⊂ Pd(Γ) for any g ∈ Γ and d > 0.

Note that the topology introduced in [3] is a little different from the above

topology. However, up to weak Γ-homotopy, they are the same.

Note that for any compact subspace C ⊂ P∞(Γ)/Γ, there is a d > 0 such

that C ⊂ Pd(Γ)/Γ.

2.6. Let Z be a universal space for proper Γ-actions, with the quotient

map π : Z → Z/Γ. One can define

KΓ
∗ (Z) = lim

C⊂Z/Γ, C compact
KΓ

∗ (π−1(C)).

It is straight forward to check that

KΓ
∗ (P∞(Γ)) = lim

d→∞
KΓ

∗ (Pd(Γ)).

If Γ′ is a normal subgroup of Γ with Γ/Γ′ finite, then P∞(Γ) with Γ′-action

can also be regarded as a classifying space of proper Γ′ actions (see 1.9 of

[3]). Furthermore,

KΓ′

∗ (P∞(Γ)) = lim
d→∞

KΓ′

∗ (Pd(Γ)).

The following proposition will be used in the proof of our main theorem.

Proposition 2.7. If the classifying space for proper Γ-actions has finite

homotopy type, i.e., there is a model Z of locally finite CW complex with

universal proper Γ-action such that Z/Γ is a compact CW complex, then

for any r > 0, there is R > 0 such that the following is true: for any
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two elements x, y ∈ KΓ′

∗ (Pr(Γ)), where Γ′ is a subgroup of Γ with finite

index, if (i∞,r)∗(x) = (i∞,r)∗(y) in KΓ′

∗ (P∞(Γ)), then (iR,r)∗(x) = (iR,r)∗(y)

in KΓ′

∗ (PR(Γ)).

Proof. By the universal property of Z and P∞(Γ), there are Γ-equivariant

map φ : P∞(Γ) → Z and ψ : Z → P∞(Γ) such that φ ◦ ψ ∼h idZ and

ψ ◦ φ ∼h idP∞(Γ), where the homotopy is within Γ-equivariant maps.

Since Z/Γ is a compact CW complex, there is d0 such that ψ(Z) ⊂ Pd0(Γ).

Let r′ = max{r, d0} and φ′ = φ|Pr′(Γ). Then ψ ◦ φ′ : Pr′(Γ) → P∞(Γ) is Γ-

homotopy equivalent to the inclusion map i∞,r′. Let F : Pr′(Γ) × [0, 1] →

P∞(Γ) be the Γ-homotopy path between ψ◦φ′ and i∞,r′. Since Pr′(Γ)×[0, 1]/Γ

is compact, there is an R > 0 such that F (Pr′(Γ) × [0, 1]) ⊂ PR(Γ). Obvi-

ously, R ≥ r′ = max{r, d0}. Note that Γ-equivariance implies Γ′-equivariance

for any subgroup Γ′. We will prove that R satisfies the requirement. If

(i∞,r)∗(x) = (i∞,r)∗(y) in KΓ′

∗ (P∞(Γ)), then φ∗ ◦ (i∞,r)∗(x) = φ∗ ◦ (i∞,r)∗(y)

in KΓ′

∗ (Z), and ψ∗ ◦φ∗ ◦ (i∞,r)∗(x) = ψ∗ ◦φ∗ ◦ (i∞,r)∗(y) in KΓ′

∗ (Pd0(Γ)). Since

R > d0, (iR,d0)∗◦ψ∗◦φ∗◦(i∞,r)∗(x) = (iR,d0)∗◦ψ∗◦φ∗◦(i∞,r)∗(y) inKΓ′

∗ (PR(Γ)).

Note that, (iR,d0)∗◦ψ∗◦φ∗◦(i∞,r)∗ = (iR,d0 ◦ψ◦φ
′◦ir′,r)∗ and iR,d0 ◦ψ◦φ

′◦ir′,r
is Γ′-homotopic to iR,r within PR(Γ). Hence, (iR,r)∗(x) = (iR,r)∗(y) in

KΓ′

∗ (PR(Γ)), as desired. �

3. Maximal Roe algebras and quasi-representations

In this section, we introduce the concepts of maximal Roe algebras and quasi-

representations. We also discuss the relationship between equivariant Roe

algebras and group C∗-algebras.

3.1. Let X be a discrete metric space with bounded geometry. Let K(H)

be the algebra of all compact operator on a separable infinite dimensional

Hilbert space. The algebra C∗
alg(X) is defined as follows [21]. An element

a ∈ C∗
alg(X) is a function a : X ×X → K(H) with the following properties:

(1) (finite propagation) there exists an r > 0 such that ax,y = 0 if d(x, y) ≥
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r (the smallest such r is defined to be the propagation of a);

(2) there is a constant c such that ‖ax,y‖ ≤ c for all x, y ∈ X, where the

norm is the operator norm in K(H).

One can define the multiplication by

(a · b)x,y =
∑

z∈X

ax,z · bz,y.

Since X has bounded geometry, the above sum is a finite sum for each pair

(x, y) and it is easy to check that a·b is in the algebra. Define (a∗)x,y = (ay,x)
∗.

Then C∗
alg(X) is a ∗-algebra.

3.2. Let φ : C∗
alg(X) → B(ℓ2(X,H)) be the faithful ∗-representation:

(φ(a)ξ)x =
∑

y∈X

ax,yξy, ∀ξ ∈ ℓ2(X,H).

It is easy to check that, for each a ∈ C∗
alg(X), φ(a) is a bounded operator.

Define C∗
r (X) to be the closure of C∗

alg(X) under operator norm [20]. C∗
r (X)

is called the reduced Roe algebra.

3.3. We need some preparations to define the maximal Roe algebra.

All the diagonal elements a ∈ C∗
alg(X) (i.e., ax,y = 0 if x 6= y) together

form the C∗-algebra Cb(X,K(H)) of all bounded, compact operator valued

functions on X. For any ∗-representation φ : Cb(X,K(H)) → B(H ′), where

H ′ is a Hilbert space, we have ‖φ(a)‖ ≤ supx∈X ‖ax,x‖. To define the maxi-

mum Roe algebra, we need the following lemma.

Lemma 3.4. For each element a ∈ C∗
alg(X), there is a non-negative

number ca such that if φ : C∗
alg(X) → B(H ′) is a ∗-representation, then

‖φ(a)‖ ≤ ca for any a ∈ C∗
alg(X).

Proof. Let r be a positive number larger than the propagation of a. That

is, ax,y = 0 for all x, y with d(x, y) > r. Since X has bounded geometry,

there is an N such that for any x ∈ X, #B2r(x) ≤ N . One can write

X = X1 ∪ X2 ∪ · · · ∪ XN+1 such that Xi ∩ Xj = ∅ for i 6= j, and that
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d(x, y) > 2r if x, y ∈ Xi for the same i. This can be done in the following

way.

Consider X1, X2, · · · , XN+1 as N+1 boxes and we will put each element of

X into those boxes. At the beginning, the boxes are empty. First, list all the

elements of X as x1, x2, · · · , xk, · · ·. Put x1 in X1. Once each of x1, x2, · · · , xk

has been put into one of the boxes Xi, the element xk+1 should be put into

box Xi for the smallest i such that

d(xk+1, Xi ∩ {x1, x2, · · · , xk}) > 2r.

Here, we use the convention d(x, ∅) = ∞. Such i exists, since there are at

most N elements in B2r(xk+1).

Let E = {(x, y) : d(x, y) ≤ r}. Then supp(a) ⊆ E, where supp(a) :=

{(x, y) ∈ X × X : ax,y 6= 0}. Let Ei = E ∩ (Xi × X), and let x ∈ Xi.

Then there are at most N elements y1, y2, · · · , yN such that (x, yj) ∈ Ei

for any j ∈ {1, 2, · · · , N}. So one can write Ei = ∪N
j=1Eij such that, if

y1 6= y2, then (x, y1) and (x, y2) of Ei will be in different set Eij. That is, if

(x, y1), (x, y2) ∈ Eij then y1 = y2. Rename Eij as Gi, 1 ≤ i ≤ (N + 1)N , we

write

E =

(N+1)N⋃

i=1

Gi

with the following property: if two different elements (x, y) and (x′, y′) are

in Gi, then d(x, x′) > 2r, and consequently, y 6= y′.

For any a ∈ C∗
alg(X), let ai be defined by

(ai)x,y =

{
ax,y, if (x, y) ∈ Gi,

0, otherwise.

Then a =
∑
ai, and

(a∗iai)x,y =
∑

(a∗i )x,z · (ai)z,y

=
∑

((ai)z,x)
∗ · (ai)z,y

=

{ ∑
z: (z,x)∈Gi

a∗z,x · az,x, if x = y,

0, otherwise.
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Furthermore, for each x, there is at most one z such that (z, x) ∈ Gi. Hence,

a∗iai is a diagonal element such that each entry has norm at most C2, where

C is a number satisfying ‖ax,y‖ ≤ C for all x, y ∈ X. From 3.3, we know

that for each ∗-representation φ : C∗
alg(X) → B(H ′),

‖φ(a)‖ ≤
∑N(N+1)

j=1 ‖φ(aj)‖

≤
∑N(N+1)

j=1 ‖φ(a∗jaj)‖
1/2

≤ C ·N(N + 1)

as desired. �

3.5. For each a ∈ C∗
alg(X), define

‖a‖max := supφ{‖φ(a)‖ : φ : C∗
alg(X) → B(H ′), a ∗-representation}.

We define the maximal Roe algebra C∗
max(X) to be the completion of C∗

alg(X)

with respect to the maximum norm.

3.6. Next we introduce the concept of quasi-representations and study

its properties. For any l ≥ 0, let C∗
alg, l(X) denote the subset of C∗

alg(X)

consisting of those elements whose propagation is at most l, that is, a ∈

C∗
alg, l(X) if and only if ax,y = 0 for all (x, y) with d(x, y) > l. Obviously,

(C∗
alg, l(X))∗ = C∗

alg, l(X) and (C∗
alg, l1

(X)) · (C∗
alg, l2

(X)) ⊆ C∗
alg, l1+l2

(X). In

particular, C∗
alg, 0(X) = Cb(X,K(H)) is a subalgebra of C∗

alg(X).

An l-quasi-representation of C∗
alg, l(X) is a linear map φ : C∗

alg, l(X) →

B(H ′) such that

(1) if a ∈ C∗
alg, l(X), then φ(a∗) = φ(a)∗;

(2) if a, b, a · b ∈ C∗
alg, l(X), then φ(a · b) = φ(a) · φ(b).

We list the following trivial facts of l-quasi-representations:

(a) If l′ > l, then any l′-quasi-representation is also an l-quasi-representation.

(b) A 0-quasi-representation is a ∗-representation of the subalgebra Cb(X,K(H)),

the algebra of diagonal elements in C∗
alg(X).

(c) A ∗-representation of C∗
alg(X) is an l-quasi-representation for any l.

Lemma 3.7. For any a ∈ C∗
alg, l(X), there is a number ca such that
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if φ : C∗
alg, m(X) → B(H ′) is an m-quasi-representation with m ≥ l, then

‖φ(a)‖ ≤ ca.

Proof. Since X has bounded geometry, a can be decomposed as a =∑N(N+1)
i=1 ai as in the proof of Lemma 3.4. Note that ‖φ(ai)‖

2 = ‖φ(a∗i )φ(ai)‖ =

‖φ(a∗iai)‖, the Lemma follows from the fact that a∗i ai has propagation 0. �

3.8. For any element a ∈ C∗
alg, l(X) and m ≥ l, define

‖a‖m = supφ{‖φ(a)‖ : φ m-quasi-representation}.

By 3.7, ‖a‖m < ∞ for all m > l. By 3.6, ‖a‖m ≥ ‖a‖m′ if m ≤ m′. Define

‖a‖∞ = limm→∞ ‖a‖m. Then ‖a‖∞ is well defined and is finite for all element

a ∈ C∗
alg(X).

Lemma 3.9. ‖a‖∞ = ‖a‖max for all a ∈ C∗
alg(X).

Proof. By 3.6(c), ‖a‖max ≤ ‖a‖m for any m. Hence, ‖a‖max ≤ ‖a‖∞.

On the other hand, it is straight forward to check that ‖ · ‖∞ satisfies the

following conditions:

(i) ‖a+ b‖∞ ≤ ‖a‖∞ + ‖b‖∞ and ‖λa‖∞ = |λ| · ‖a‖∞ for any λ ∈ C.

(ii) ‖a · b‖∞ ≤ ‖a‖∞ · ‖b‖∞.

(iii) ‖a‖2
∞ = ‖a∗a‖∞.

Hence, the completion of C∗
alg(X) with respect to the norm ‖ · ‖∞ is a

C∗-algebra, denoted by A. Let ψ : A → B(H ′) be a faithful representation.

Then ‖a‖∞ = ‖ψ(a)‖ ≤ ‖a‖max for all a ∈ C∗
alg(X), as desired. �

3.10. In the rest of this section, we discuss the connection between

equivariant Roe algebras and group C∗-algebras.

Let Γ be a finitely generated discrete group. There are two natural unitary

representations L,R : Γ → B(ℓ2(Γ)) by (Lγξ)(x) = ξ(γ−1x) and (Rγξ)(x) =

ξ(xγ).

Recall that the group algebra C∗
alg(Γ) is the set of all functions a : Γ → C

with finite support. The product and involution are defined by (a · b)γ =∑
δ∈Γ aδbδ−1γ and (a∗)γ = aγ−1 . We will regard C∗

alg(Γ) as a subalgebra of
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B(ℓ2(Γ)) by the right ∗-representation defined by (a · ξ)γ =
∑

δ∈Γ aδξγδ for

any ξ ∈ ℓ2(Γ).

The above representation also induces a representation of C∗
alg(Γ)⊗K(H)

on ℓ2(Γ, H) = ℓ2(Γ)⊗H by the same formula. But this time, aδ is a compact

operator on H and ξγδ is an element in H .

3.11. We identify C∗
alg(|Γ|) with a ∗-subalgebra of B(ℓ2(Γ)) through its

natural faithful representation in 3.2. The natural left unitary representa-

tion of Γ on ℓ2(Γ, H), still denoted by L, induces a Γ-action on the algebra

C∗
alg(|Γ|) by γ(T ) = Lγ ◦ T ◦ Lγ−1 for all T ∈ C∗

alg(|Γ|). The entries of γ(T )

are given by

(γ(T ))x,y = Tγ−1x,γ−1y.

Let C∗
alg(|Γ|)

Γ be the fixed point algebra of Γ-action on C∗
alg(|Γ|), that is,

a ∈ C∗
alg(|Γ|)

Γ if and only if ax,y = aγ−1x,γ−1y for any γ ∈ Γ. If Γ′ is a normal

subgroup of Γ with Γ/Γ′ finite, then any Γ action induces a Γ′ action. Denote

by C∗
alg(|Γ|)

Γ′

the algebra of fixed points of the Γ′ action on C∗
alg(|Γ|).

3.12. Regard both C∗
alg(|Γ|)

Γ and C∗
alg(Γ) ⊗ K(H) as subalgebras of

B(ℓ2(Γ, H)). It is clear that C∗
alg(|Γ|)

Γ = C∗
alg(Γ) ⊗ K(H). The correspon-

dence a ∈ C∗
alg(Γ) ⊗K(H) 7→ ã ∈ C∗

alg(|Γ|)
Γ is given by

ãx,y = ax−1y.

The propagation of ã is

max{length(γ) : aγ 6= 0},

where the length is the word length of the group Γ with the given finite

generating set.

3.13. Define the reduced equivariant Roe algebra C∗
r,Γ(|Γ|) to be the

closure of C∗
alg(|Γ|)

Γ as a subalgebra of B(ℓ2(Γ, H)). We have C∗
r,Γ(|Γ|) =

C∗
r (Γ) ⊗K(H).

3.14. Recall that the maximum norm on C∗
alg(|Γ|)

Γ is defined to be

‖a‖max = supφ{‖φ(a)‖ : φ ∗-representation of C∗
alg(|Γ|)

Γ}.
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The completion of C∗
alg(|Γ|)

Γ under this maximum norm will be called the

maximal equivariant Roe algebra and denoted by C∗
max,Γ(|Γ|). The C∗-

algebra C∗
max,Γ(|Γ|) is isomorphic to C∗

max(Γ) ⊗ K(H), where C∗
max(Γ) is the

maximal group C∗ -algebra. Similarly, one can define C∗
max,Γ′(|Γ|) for a nor-

mal subgroup Γ′ ⊂ Γ with Γ/Γ′ finite (see 3.11). It is easy to see that

C∗
max,Γ′(|Γ|) ∼= C∗

max(Γ
′) ⊗K(H).

We caution that the restriction of the maximum norm of C∗
alg(|Γ|) to its

subalgebra C∗
alg(|Γ|)

Γ might not be the maximum norm of C∗
alg(|Γ|)

Γ.

3.15. Similar to 3.6, for any l ≥ 0, let C∗
alg, l(|Γ|)

Γ be the subset of

C∗
alg(|Γ|)

Γ consisting of elements with propagation at most l. Furthermore,

the l-quasi-representations of C∗
alg, l(|Γ|)

Γ can be defined in a way similar to

the corresponding case in 3.6. The following lemma is similar to Lemma 3.4

and Lemma 3.9, but the proof is much easier.

Lemma 3.16. For any a ∈ C∗
alg(|Γ|)

Γ = C∗
alg(Γ) ⊗ K(H) with prop-

agation l, there is a constant Ca such that for any m-quasi-representation

φ : C∗
alg, m(|Γ|)Γ → B(H ′) with m ≥ l, it is true that ‖φ(a)‖ ≤ Ca.

Proof. Note that a ∈ C∗
alg(Γ) ⊗ K(H) has finite support, and if γ ∈

supp(a), then length(γ) ≤ l. We write a =
∑

γ aγ, where aγ is supported

only on a single point γ ∈ Γ. Then a∗γaγ is supported on the unit e ∈ Γ. So

a∗γaγ corresponds to an element in Cb(|Γ|,K(H)). In fact, it corresponds to

a constant function in Cb(|Γ|,K(H)). Hence,

φ(a∗γaγ) ≤ ‖a∗γaγ‖,

where ‖ · ‖ is the operator norm in K(H). �

3.17. One can define a norm ‖ · ‖m for any element a ∈ C∗
alg, l(|Γ|)

Γ and

m ≥ l by ‖a‖m = supφ{‖φ(a)‖}, where the sup is taken over all m-quasi-

representations φ of C∗
alg(|Γ|)

Γ. Evidently, ‖a‖m ≥ ‖a‖m′ if m ≤ m′. Define

‖a‖∞ = limm→∞ ‖a‖m. The proof of the following lemma is similar to the

proof of Lemma 3.9 and will be omitted.

Lemma 3.18. ‖a‖max = ‖a‖∞ for any a ∈ C∗
alg(|Γ|)

Γ.
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Note that we use the same notations ‖ · ‖m and ‖ · ‖∞ for the norms on

both C∗
alg(X) and C∗

alg(|Γ|)
Γ. It will be clear from the context which one we

will be using.

4. The Coarse Geometric Novikov Conjecture

and the Strong Novikov Conjecture

In this section, we formulate a version of the Coarse Geometric Novikov

Conjecture and recall two versions of the Strong Novikov Conjecture.

4.1. Let X be a locally compact metric space. An X-module HX is

a separable Hilbert space equipped with a faithful and non-degenerate ∗-

representation π of C0(X) whose range contains no nonzero compact opera-

tors. When HX is an X-module, for each f ∈ C0(X) and h ∈ HX , we denote

(π(f))h by fh.

Definition 4.2. ([20]) (1) The support of a bounded linear operator

T : HX → HX is defined to be the complement of the set of all points

(x, y) ∈ X × X for which there exist g, g′ ∈ C0(X) such that g′Tg = 0 but

g(x) 6= 0, g′(y) 6= 0. (2) A bounded operator T : HX → HX is said to have

finite propagation if

sup{d(x, y) : (x, y) ∈ supp(T )} <∞.

And this number is called the propagation of T . (3) A bounded operator

T : HX → HX is said to be locally compact if the operators gT and Tg are

compact for all g ∈ C0(X).

4.3. Denote the algebra of all locally compact, finite propagation op-

erators by C∗
alg(X). It is easy to check that the definition of C∗

alg(X) is

independent of the choice of the X-module HX . If X is a discrete metric

space with bounded geometry, then the above definition of C∗
alg(X) is the

same as the definition given in subsection 3.1. One can see this by choos-
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ing X-module HX = ℓ2(X) ⊗H , where H is a separable Hilbert space, and

C0(X) acts on ℓ2(X) ⊗H by multiplications on ℓ2(X).

4.4. Let Y be a discrete subspace of X such that there are ε and r such

that d(x, y) > ε for any x, y ∈ Y , and d(x, Y ) ≤ r for any x ∈ X. Then

Y is coarsely equivalent to X and C∗
alg(Y ) is isomorphic to C∗

alg(X). Let us

describe a precise isomorphism between these two algebras. Take a regular

measure µ on X such that for any compact set A ⊂ X, µ(A) is finite and for

any non empty open set U ⊂ X, µ(U) > 0. Choose HX = L2(X,µ) ⊗H to

be the X-module in the definition of C∗
alg(X). One can construct a partition

X =
⋃

y∈Y Ay, where each Ay is a Borel subset of X with nonzero measure

such that for any z ∈ Ay, d(y, z) ≤ r and Ay ∩ Ay′ = ∅ if y 6= y′. We

have HX =
⊕

y∈Y L
2(Ay, µ) ⊗H . We choose the Y -module in the definition

of C∗
alg(Y ) to be HY = ℓ2(Y ) ⊗ H ′, where H ′ is a separable Hilbert space.

Choose a unitary U : HX → HY by identifying each L2(Ay, µ) ⊗H with H ′

via a unitary. Note that the unitary U intertwines the representations of the

algebras C∗
alg(Y ) and C∗

alg(X) on HY and HX , i.e., T ∈ C∗
alg(X) ⊂ B(HX) if

and only if UTU−1 ∈ C∗
alg(Y ) ⊂ B(HY ).

4.5. Let X be a locally compact metric space. An element in K0(X)

can be described by a triple (HX , π, T ) such that HX is a Hilbert space

with a ∗-representation π of C0(X) and T ∈ B(H), T ∗T − I and TT ∗ − I

are locally compact, and π(f)T − Tπ(f) are compact for all f ∈ C0(X).

We can always choose HX to be an X-module. In this case, we use the

pair (HX , T ) to denote the triple (HX , π, T ). In particular, we can assume

HX = L2(X,µ)⊗H , where µ is a measure on X and H is a separable Hilbert

space. (Note that each X-module HX can be embedded into L2(X,µ) ⊗H ,

so that one can write L2(X,µ)⊗H = HX ⊕H⊥
X , where H⊥

X is the orthogonal

complement of HX in L2(X,µ) ⊗ H . Let T ′ = T ⊕ IH⊥

X
. Then (HX , T ) is

equivalent to (L2(X,µ) ⊗H, T ′). )

4.6. The assembly maps

µmax : K0(X) → K0(C
∗
max(X)),
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µred : K0(X) → K0(C
∗
r (X))

are defined as below. Let (HX , T ) represent a cycle in K0(X). Let {Ui}i

be a locally finite, uniformly bounded open cover of X and {φi}i be a

continuous partition of unity subordinate to the open cover {Ui}i. Define

F =
∑

i φ
1
2
i Tφ

1
2
i , where the sum converges in the strong topology. It is not

hard to see that (HX , T ) and (HX , F ) are equivalent in K0(X). Note that F

has finite propagation, and F ∗F − I, and FF ∗ − I are in C∗
alg(X). Let

W =

(
I F

0 I

)(
I 0

−F ∗ I

)(
I F

0 I

)(
0 −I

I 0

)
∈ B(HX ⊕HX).

Then

W

(
I 0

0 0

)
W−1 −

(
I 0

0 0

)
∈ C∗

alg(X) ⊗M2(C),

since both W and W−1 have finite propagation. Hence
[
W

(
I 0

0 0

)
W−1

]
−

[(
I 0

0 0

)]

defines an element in K0(C
∗
max(X)) by considering C∗

alg(X) as a subalgebra

of C∗
max(X), denoted by µmax([(HX , T )]) ∈ K0(C

∗
max(X)). One can also de-

fine an element µred([(HX , T )]) ∈ K0(C
∗
r (X)) by considering C∗

alg(X) as a

subalgebra of C∗
r (X). Hence, we obtain two assembly maps µmax : K0(X) →

K0(C
∗
max(X)) and µred : K0(X) → K0(C

∗
r (X)). Similarly, we can define

µmax : K1(X) → K1(C
∗
max(X)) and µred : K1(X) → K1(C

∗
r (X)).

4.7. Let Y be a locally finite simplicial complex of finite dimension.

There is a naturally defined Connes-Chern map

ch : K0(Y ) →
∞⊕

i=0

H2i(Y,R)

where the homology group is the locally finite homology group. In partic-

ular, if Y is compact, then the Connes-Chern map is an isomorphism after

tensoring with R. We remark that this is not true when Y is noncompact.
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Let X be a locally finite discrete metric space with bounded geometry,

then by passing to inductive limit, we have a Connes-Chern map

ch : lim
d→∞

K0(Pd(X)) → lim
d→∞

∞⊕

i=0

H2i(Pd(X),R).

Similarly, we have a Connes-Chern map

ch : lim
d→∞

K1(Pd(X)) → lim
d→∞

∞⊕

i=0

H2i+1(Pd(X),R).

4.8. For any locally finite discrete metric space X of bounded geometry,

we know that C∗
max(Pd(X)) is isomorphic to C∗

max(X) for any d > 0, since X is

a discrete subspace of Pd(X) and is coarsely equivalent to the latter (see 4.4).

Passing to inductive limit, the assembly map: K0(Pd(X)) → K0(C
∗
max(X))

defines a map

µmax : lim
d→∞

K0(Pd(X)) → K0(C
∗
max(X)).

We can similarly define

µmax : lim
d→∞

K1(Pd(X)) → K1(C
∗
max(X)).

The Coarse Geometric Novikov Conjecture:

For any z in limd→∞K∗(Pd(X)), if µmax(z) = 0 in K∗(C
∗
max(X)), then

ch(z) = 0 in limd→∞

⊕∞

i=0H2i+∗(Pd(X),R).

4.9. Let us recall some facts about the Connes-Chern map. Assume

that Y is a countable union of mutually disjoint path connected components

{Yj}j, namely, Y =
⊔∞

j=1 Yj and let us assume that all Yj are compact. Then

K0(Y ) =
∞∏

j=1

K0(Yj),

H2i(Y,R) =
∞∏

j=1

H2i(Yj,R)
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and the Connes-Chern map

ch : K0(Y ) −→
m⊕

i=0

H2i(Y,R) =
∞∏

j=1

( m⊕

i=0

H2i(Yj,R)
)
,

where m = [dim(Y )/2], satisfies

ch(x1, x2, · · · , xj , · · ·) = (ch(x1), ch(x2), · · · , ch(xj), · · ·).

Recall that if Y is compact, then a cycle in K0(Y ) is represented by (HY , T )

such that T ∗T−I, TT ∗−I and [f, T ] are compact operators for all f ∈ C(Y ).

The map π : Y → {pt} induces a map π∗ : K0(Y ) → K0({pt}) = Z, which is

given by

π∗(HY , T ) = ind(T ),

where ind(T ) is the Fredholm index of T . Let Y = Y1 ⊔ Y2 ⊔ · · · ⊔ Yj ⊔ · · ·,

where each Yj is a path connected compact space. Suppose that

((HY1 , T1), (HY2, T2), · · · , (HYj
, Tj), · · ·)

represents (x1, x2, · · · , xj, · · ·) ∈ K0(Y ) =
∏∞

j=1K0(Yj), then

ch0(x1, x2, · · · , xj, · · ·) = (ind(T1), ind(T2), · · · , ind(Tj), · · ·)

∈
∞∏

j=1

Z ⊆
∞∏

j=1

R =
∞∏

j=1

H0(Yj,R).

4.10. Let Y1, Y2, · · · , Yi, · · · be a sequence of discrete metric spaces, each

of which consists of finitely many elements. Let us assume that the metric

d on Yi satisfies the following conditions: d(y, y′) is an integer and there

is a sequence y = y0, y1, y2, · · · , ym = y′ such that d(yi, yi+1) = 1 for any

two points y, y′ ∈ Yi. In particular, Pd(Yi) are path connected if d ≥ 1.

Furthermore, let us assume that for r > 0, there is an N ≥ 0 such that for

any Yi and y ∈ Yi

#{z ∈ Yi : d(y, z) < r} ≤ N.

One can endow a metric d on Y = ⊔∞
i=1Yi such that (i) d|Yi

is the metric on

Yi, and (ii) limi+j→∞,i6=j d(Yi, Yj) = ∞.

16



It is straight forward to check that for any two metrics d1 and d2 satisfying

the conditions (i) and (ii), (Y, d1) and (Y, d2) are coarsely equivalent, and

the coarse equivalence is implemented by idY . Without loss of generality, we

assume that d satisfies the following conditions

d(Yi, Yn) > d(Ym, Yn), d(Yi, Yn) > d(Yi, Ym), d(Yn, Yn+1) > d(Ym, Ym+1)

provided that n > m > i. Then for any d ≥ 1, there is an integer n(d) ∈ Z+

such that d(Yn(d)−1, Yn(d)) ≤ d and d(Yn(d), Yn(d)+1) > d. Let Y 0 =
⊔n(d)

i=1 Yi,

then Pd(Y ) = Pd(Y
0) ⊔

⊔∞

i=n(d)+1 Pd(Yi), where each Pd(Y
0) and Pd(Yi),

i ≥ n(d) + 1, is path connected and compact. Let m = n(d) + 1, and let

x ∈ K0(Pd(Y )). Then x can be written as x = (x0, xm, xm+1, · · ·), where x0 ∈

K0(Pd(Y
0)) and xi ∈ K0(Pd(Yi)) for i ≥ m. Assume that x is represented by

(
HPd(Y 0) ⊕

∞⊕

i=m

HPd(Yi), T 0 ⊕
∞⊕

i=m

Ti

)
.

Then
ch0(x) = (ind(T 0), ind(Tm), ind(Tm+1), · · ·)

∈ Z ⊕
∏∞

i=m Z

⊆ R ⊕
∏∞

i=m R

= H0(Pd(Y
0),R) ⊕

∏∞

i=mH0(Pd(Yi),R).

If d′ > d, let n(d′) be the largest integer such that d(Yn(d′)−1, Yn(d′)) ≤ d′.

Let m′ = n(d′) + 1, Ỹ 0 =
⊔m′−1

i=1 Yi. Recall that the inclusion id′,d : Pd(Y ) →

Pd′(Y ) induces the map (id′,d)∗ : K0(Pd(Y )) → K0(Pd′(Y )). It is clear that

(id′,d)∗(x) can be written as (x̃0, x̃m′ , x̃m′+1, · · ·), where

x̃0 = (id′,d)∗(x
0 + xm + xm+1 + · · ·+ xm′−1)

and

x̃i = (id′,d)∗(xi)

for all i ≥ m′. In particular,

ch0((id′,d)∗(x)) =
(
ind(T 0) +

∑m′−1
i=m ind(Ti), ind(Tm′), ind(Tm′+1), · · ·

)

∈ Z ⊕
∏∞

i=m′ Z

⊆ R ⊕
∏∞

i=m′ R

= H0(Pd′(Ỹ
0),R) ⊕

∏∞
i=m′ H0(Pd′(Yi),R).
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Lemma 4.11. Let Y be as in 4.10, and let x ∈ limd→∞K0(Pd(Y )). If

µmax(x) = 0 in K0(C
∗
max(Y )), then ch0(x) = 0 in limd→∞H0(Pd(Y ),R).

Proof. For each Yj, choose a point wj ∈ Yj. LetW = {w1, w2, · · · , wj, · · ·}.

Let i : W → Y be the inclusion and π : Y → W be the map taking every

point in Yj to wj. Then both i and π are proper, and π ◦ i = idW . The

lemma follows from the Coarse Baum-Connes Conjecture for W and the

isomorphism

lim
d→∞

H0(Pd(Y ),R) ∼= lim
d→∞

H0(Pd(W ),R).

(Note thatW has asymptotic dimension zero, hence the coarse Baum-Connes

conjecture holds for W [26].) �

4.12. Let X be a locally compact metric space with proper Γ-action.

Recall that C∗
alg(X) ⊂ B(L2(X) ⊗ H) consists of locally compact, finite

propagation operators. Γ acts on L2(X) ⊗H by

(γξ)(x) = ξ(γ−1x), ∀γ ∈ Γ.

Similar to the discrete case in 3.11, there is a natural action of Γ on C∗
alg(X)

by

γ(T ) = γ · T · γ−1.

Denote by C∗
alg(X)Γ the algebra of all Γ-invariant elements in C∗

alg(X). Simi-

lar to the discrete case again, one can define C∗
max,Γ(X) to be the completion

of C∗
alg(X)Γ with respect to the maximum norm. To prove the existence of the

maximum norm, first choose a Γ-invariant discrete subset Y which is coarsely

equivalent to X. Then Y has bounded geometry and C∗
alg(X)Γ ∼= C∗

alg(Y )Γ.

The existence of the maximum norm follows from the following lemma.

Lemma 4.13. For any a ∈ C∗
alg(Y )Γ, there exists Ca > 0 such that for

any ∗-representation φ : C∗
alg(Y )Γ → B(H ′), one has ‖φ(a)‖ ≤ Ca.

Proof. The proof is similar to the proof of Lemma 3.4. The only differ-

ence is that we need to write a as the sum of Γ-invariant elements ai such

that a∗i ai ∈ Cb(Y,K(H)). �
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4.14. Let Γ be a finitely generated discrete group. Let X be a locally

compact space with a proper Γ-action. In this subsection, we define the

Baum-Connes map [1, 3, 22]

µ : KΓ
∗ (X) → K∗(C

∗
max, Γ(X)).

Recall that an equivariant K-cycle in KΓ
0 (X) is described by a triple

(HX , π, T ), where

(1) HX is a Hilbert space endowed with a unitary representation of Γ.

(2) π is a covariant representation of C0(X) on HX , i.e., π : C0(X) →

B(HX) is a ∗-homomorphism such that

π(γ(f)) = γπ(f)γ−1, ∀γ ∈ Γ, f ∈ C0(X).

(3) T ∈ B(HX) such that [T, π(f)], π(f)(T ∗T − I), π(f)(TT ∗ − I) and

π(f)[γ, T ] are compact operators on HX for any f ∈ C0(X) and γ ∈ Γ.

The Hilbert space HX can always be chosen to be an X-module. In this

case, we denote the triple (HX , π, T ) by the pair (HX , T ). Since the Γ-action

is proper, one can assume that [γ, T ] = 0. As in 4.5, one can also assume

that HX = L2(X,µ)⊗H , where µ is a Γ-invariant measure, H is a separable

Hilbert space, and γ ∈ Γ acts on HX by

(γ(ξ ⊗ h))(x) = ξ(γ−1x) ⊗ h, ∀ξ ⊗ h ∈ L2(X,µ) ⊗H,

and, furthermore, C0(X) acts on HX by multiplications on L2(X,µ). We can

choose a locally finite and uniformly bounded open cover {Ui}i such that,

for each γ ∈ Γ and each i, there exists j satisfying γUi = Uj . Let {φi}i be a

continuous partition of unity subordinate to {Ui}i such that, for each γ ∈ Γ

and each i, there exists j satisfying γ(φi) = φj . We define F =
∑

i φ
1
2
i Tφ

1
2
i ,

where the sum converges in the strong topology. Note that F has finite

propagation and is Γ-invariant. It is easy to see that [(HX , T )] = [(HX , F )]

in KΓ
∗ (X). Let

W =

(
I F

0 I

)(
I 0

−F ∗ I

)(
I F

0 I

)(
0 −I

I 0

)
.
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Then W has finite propagation, and

W

(
I 0

0 0

)
W−1 −

(
I 0

0 0

)
∈ C∗

alg(X)Γ.

Define the Baum-Connes map

µ
(
[(HX , T )]

)
=

[
W

(
I 0

0 0

)
W−1

]
−

[(
I 0

0 0

)]

∈ K0(C
∗
max,Γ(X)).

Similarly, we can define

µ : KΓ
1 (X) → K1(C

∗
max, Γ(X)).

4.15. In this paper, we will use two versions of the Strong Novikov

Conjecture [3, 14]. The first version is as follows.

The Strong Novikov Conjecture (I):

The Baum-Connes map

µ : lim
d→∞

KΓ
∗ (Pd(Γ)) → lim

d→∞
K∗(C

∗
max,Γ(Pd(Γ))) ∼= K∗(C

∗
max(Γ))

is rationally injective, i.e., if x ∈ KΓ
∗ (Pd(Γ)) such that µ(x) = 0 in K∗(C

∗
max(Γ)),

then there are d′ ≥ d and n ∈ N such that nx = 0 in KΓ
∗ (Pd′(Γ)).

Note that |Γ| and Pd(Γ) are coarsely equivalent. Therefore,

C∗
max,Γ(Pd(Γ)) ∼= C∗

max,Γ(|Γ|) ∼= C∗
max(Γ) ⊗K(H).

4.16. The second version of the Strong Novikov Conjecture involves

classifying space for free actions. Throughout this paper, all free actions are

assumed to be proper. Namely, an action of Γ on X is said to be free if for

any x ∈ X there is a neighborhood U ⊂ X of x such that γ1U ∩ γ2U = ∅ for

any γ1, γ2 ∈ Γ with γ1 6= γ2.

Let EΓ with a free Γ-action be a universal space for free actions, and let

BΓ = EΓ/Γ be the classifying space. One can choose BΓ to be a simplicial
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complex (not necessarily finite) and then EΓ is a Γ-simplicial complex. Let

B1 ⊂ B2 ⊂ B3 ⊂ · · · be a sequence of finite sub-simplicial complex of BΓ

with BΓ =
⋃∞

k=1Bk. Let EkΓ = π−1(Bk) ⊂ EΓ. Then

E1Γ ⊂ E2Γ ⊂ · · · ⊂ EkΓ ⊂ · · ·

is a sequence of locally finite simplicial complexes. One can endow each EkΓ

with a Γ-invariant metric so that each EkΓ is a locally compact metric space

with free Γ-action. By definition, we have

KΓ
∗ (EΓ) = lim

k→∞
KΓ

∗ (EkΓ).

The Strong Novikov Conjecture (II):

The Baum-Connes map

µ : lim
k→∞

KΓ
∗ (EkΓ) → lim

k→∞
K∗(C

∗
max,Γ(EkΓ)) ∼= K∗(C

∗
max(Γ)))

is rationally injective.

Since the Γ-action is free, EkΓ is coarsely equivalent to Γ. Therefore,

C∗
max,Γ(EkΓ) ∼= C∗

max,Γ(|Γ|) ∼= C∗
max(Γ) ⊗K(H).

Since a free action is also a proper action, there is a map

Φ : lim
k→∞

KΓ
∗ (EkΓ) → lim

d→∞
KΓ

∗ (Pd(Γ))

such that the following diagram commutes

limk→∞KΓ
∗ (EkΓ)

Φ
//

µ
))RRRRRRRRRRRRR

limd→∞KΓ
∗ (Pd(Γ))

µ
uukkkkkkkkkkkkkk

K∗(C
∗
max(Γ))

.

It is well known that the map Φ is rationally injective [1, 3]. Hence, the

Strong Novikov Conjecture (I) implies the Strong Novikov conjecture (II).

4.17. If Γ′ is a normal subgroup of Γ with Γ/Γ′ finite, then EkΓ/Γ
′ is a

finite cover over EkΓ/Γ. Hence, the map

KΓ
∗ (EkΓ) → KΓ′

∗ (EkΓ)

is rationally injective.
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5. The Main Theorem

In this section, we state and prove the main result of this paper.

5.1. Let Γ be a finitely generated residually finite group. We can assume

that there is a sequence of normal subgroups of finite index

Γ1 ⊇ Γ2 ⊇ · · · ⊇ Γi ⊇ · · ·

such that
∞⋂

i=1

Γi = {e}.

Endow Γ/Γi with the quotient metric, that is,

d(aΓi, bΓi) = min{d(aγ1, bγ2) : γ1, γ2 ∈ Γi}.

Let X(Γ) =
⊔∞

i=1 Γ/Γi be the disjoint union of Γ/Γi. We endow a metric

on X(Γ) such that its restriction to each Γ/Γi is the quotient metric defined

above and

lim
n+m→∞, n 6=m

d(Γ/Γn,Γ/Γm) = ∞.

The metric space X(Γ) is called the box metric space [23].

The main theorem of this paper is the following

Theorem 5.2. Let Γ be a finitely generated residually finite group and

let X(Γ) be the space associated to Γ as in 5.1. Then the following state-

ments hold:

(1) The Coarse Geometric Novikov Conjecture forX(Γ) implies the Strong

Novikov Conjecture (II) for Γ and all subgroups Γn, n = 1, 2, · · ·.

(2) If the classifying space (
⋃∞

d=1 Pd(Γ))/Γ for proper Γ-actions has ho-

motopy type of a compact CW complex, then the Strong Novikov Conjecture

(I) for Γ and all subgroups Γn (n = 1, 2, 3, · · ·) implies the Coarse Geometric

Novikov Conjecture for X(Γ).

(3) If the classifying space EΓ/Γ for free Γ-actions has homotopy type

of a compact CW complex, then the Strong Novikov Conjecture (II) for Γ
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and all subgroups Γn (n = 1, 2, 3, · · ·) implies the Coarse Geometric Novikov

Conjecture for X(Γ).

Lafforgue has constructed residually finite property T groups whose as-

sociated sequences of expanders are not coarsely embeddable into any uni-

formly convex Banach space [17]. Lafforgue’s groups satisfy condition (2)

of Theorem 5.2. By Theorem 5.2, we obtain the Coarse Geometric Novikov

Conjecture for Lafforgue’s sequences of expanders in [17].

Remark 5.3. (a) From Theorem 5.2 (1) and (3), we know that if EΓ/Γ

has homotopy type of a compact CW complex, then the Strong Novikov

Conjecture (II) for Γ and all Γn (n = 1, 2, 3, · · ·) is equivalent to the Coarse

Geometric Novikov Conjecture for X(Γ). This gives a geometrization of the

Strong Novikov Conjecture for these groups.

(b) In part (2) of Theorem 5.2, we assume that the Strong Novikov Con-

jecture (I) holds not only for Γ, but also for all its subgroups Γn. We remark

that, for all the known examples of groups satisfying the Strong Novikov

Conjecture (I), their subgroups also satisfy the Strong Novikov Conjecture

(I).

(c) Note that if EΓ/Γ has homotpy type of a compact CW complex, then

Γ is torsion free. In this case, the Strong Novikov Conjecture (I) and (II) are

equivalent. Hence, statement (2) implies statement (3), and we need only to

prove (1) and (2).

5.4. We need some preparations to prove Theorem 5.2. We shall prove

Theorem 5.2 for the even case, i.e., when ∗ = 0. The odd case can be proved

in a similar way by a suspension argument.

For convenience, we also assume that, if n > m > i, then

d(Γ/Γi,Γ/Γn) > d(Γ/Γm,Γ/Γn),

d(Γ/Γi,Γ/Γn) > d(Γ/Γm,Γ/Γi),

d(Γ/Γn,Γ/Γn+1) > d(Γ/Γm,Γ/Γm+1).
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The proof will occupy the rest of this section. In what follows, we will

denote X(Γ) by X. Let an element θ ∈ K0(Pd(X)) be represented by the

pair

(L2(Pd(X)) ⊗H, T ),

where T ∈ B(L2(Pd(X)) ⊗ H) is an operator with finite propagation, and

(T ∗T − I)f , (TT ∗ − I)f and Tf − fT are compact for all f ∈ C0(X). We

will denote its class in K0(Pd(X)) by [T ].

We assume that the propagation of T is l. Let n be large enough such

that

dΓ(γ, e) > 2l + 2d, ∀γ ∈ Γn,

and

dX(Γ/Γn,Γ/Γn+1) > 2l + 2d.

Let Y =
⊔∞

i=n Γ/Γi ⊂ X. Note that Pd(Y ) is a closed and open subset of X.

Furthermore, Pd(Y ) =
⊔∞

i=n Pd(Γ)/Γi. We have

T |L2(Pd(Y ))⊗H = diag{Tn, Tn+1, · · ·},

where Ti ∈ B(L2(Pd(Γ)/Γi) ⊗ H). The local compactness of the operator

(T ∗T − I) is equivalent to the fact that the operators (T ∗
i Ti − I) for i ≥ n

and

(T ∗T − I)|L2(Pd(⊔n−1
i=1 Γ/Γi)⊗H)

are all compact.

We shall lift each operator Ti ∈ B(L2(Pd(Γ/Γi)) ⊗ H) to a Γi-invariant

operator Si ∈ B(L2(Pd(Γ)) ⊗ H). Let B be the fundamental domain of

Pd(Γ) in the sense that Pd(Γ) = ∪γ∈Γ γB and γ1B ∩ γ2B has measure zero if

γ1 6= γ2 ∈ Γ.

Such a fundamental domain can be obtained in the following way by using

the barycentric subdivision of Pd(Γ). Let B be the union of all simplices of

the barycentric subdivision of Pd(Γ) with the identity e ∈ Γ ⊂ Pd(Γ) as a

vertex. If γ 6= e, then any point x ∈ γB ∩ B will be in a proper face of a
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simplex, which has e as a vertex and therefore has lower dimension. If we

choose the measure careful enough, then such a set has measure zero.

Now we identify L2(Pd(Γ)/Γ) with H1 := L2(B). Similarly, L2(Pd(Γ)/Γi)

is identified with ℓ2(Γ/Γi)⊗H1, and L2(Pd(Γ)) is identified with ℓ2(Γ)⊗H1.

To define Si in

B(L2(Pd(Γ)) ⊗H) ∼= B((ℓ2(Γ) ⊗H1) ⊗H) ∼= B(⊕x∈Γ(H1 ⊗H)),

one needs only to specify each entry Si;x,y ∈ B(H1 ⊗ H) for x, y ∈ Γ. For

each x ∈ Γ, let [x] = xΓi ∈ Γ/Γi be the coset corresponding to x. We define

Si;x,y =

{
Ti;[x],[y], if d(x, y) ≤ l,

0, otherwise,

where, for [x], [y] ∈ Γ/Γi, the operator Ti;[x],[y] ∈ B(H1 ⊗H) is the ([x], [y])-

entry in the matrix form of Ti ∈ B(ℓ2(Γ/Γi)⊗H1 ⊗H). It is straightforward

to verify that Si is Γi-invariant, with propagation at most l, and locally

compact. Therefore, Si defines an element in KΓi

0 (Pd(Γ)). (Another way to

view Si is to identify L2(Pd(Γ)) with ℓ2(Γi) ⊗ L2(Pd(Γ)/Γi) since Γi acts on

Pd(Γ) freely for i ≥ n, and let Si = Iℓ2(Γi) ⊗ Ti.)

Note that Γi acts freely on Pd(Γ) for i ≥ n. Therefore,

KΓi

0 (Pd(Γ)) ∼= K0(Pd(Γ)/Γi).

This isomorphism takes [Ti] ∈ K0(Pd(Γ)/Γi) to [Si] ∈ KΓi

0 (Pd(Γ)). Hence,

[Ti] = 0 if and only if [Si] = 0. The lifting defines a map

α : K0(Pd(X)) →
∞∏

i=1

KΓi

0 (Pd(Γ))
/ ∞⊕

i=1

KΓi

0 (Pd(Γ)).

Lemma 5.5. The map α in 5.4 satisfies the following condition:

Given d0 > 0, for any [T ] ∈ K0(Pd0(X)), let {[Si]}i≥n ∈
∏∞

i=nK
Γi

0 (Pd0(Γ))

represent α([T ]). If [Si] are torsion elements except for finitely many i, then

there is d > d0 such that chj((id,d0)∗([T ])) ∈ H2j(Pd(X),R) are zero for all

j ≥ 1.
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We remark that ch0([T ]) may be different from zero.

Proof. Suppose that [Si] is a torsion element for every i ≥ n. Without

loss of generality, we can assume that n satisfies the conditions in 5.4, that

is, dΓ(γ, e) > 2l + 2d for γ ∈ Γn, and dX(Γ/Γn,Γ/Γn+1) > 2l + 2d for

Si as defined in 5.4. Let Z =
⊔n−1

i=1 Γ/Γi, and let [T 0] ∈ K0(Pd0(Z)) and

[Ti] ∈ K0(Pd0(Γ)/Γi) for i ≥ n be induced by [T ] ∈ K0(Pd(X)). Then [Ti]

are torsion elements for i ≥ n. Hence,

ch([Ti]) = 0 ∈ Heven(Pd0(Γ)/Γi, R). (∗)

Of course, it will be zero, considered as an element in Heven(Pd(Γ)/Γi, R)

for any d ≥ d0. Choose d large enough such that diameter(Z) < d. Then

the map Pd0(Z) → Pd(X) is homotopic to a map Pd0(Z) → {x}, where

x ∈ Pd(X) is any chosen point. Hence,

ch((id,d0)∗([T
0])) ∈ Heven(Pd(X),R)

factors throughHeven({pt},R) = H0({pt},R). This implies chj((id,d0)∗([T
0])) =

0 for j > 0. Combining this with (∗), we obtain the lemma. �

5.6. Next we shall define a homomorphism

φ : C∗
max(X) →

∞∏

i=1

C∗
max,Γi

(|Γ|)
/ ∞⊕

i=1

C∗
max,Γi

(|Γ|).

Here, C∗
max,Γi

(|Γ|) is the completion of the algebra C∗
alg(|Γ|)

Γi of all Γi invari-

ant elements in C∗
alg(|Γ|), with respect to the maximum norm (see 3.14).

Let T ∈ C∗
alg(X) ⊂ B(ℓ2(X)⊗H). Suppose that T has finite propagation

l. Let n be the smallest positive integer such that d(γ, e) > 2l for γ ∈ Γn

and dX(Γ/Γn,Γ/Γn+1) > 2l. Let Z =
⊔n−1

i=1 Γ/Γi, Y =
⊔∞

i=n Γ/Γi. Evidently,

T induces operators T 0 ∈ B(ℓ2(Z)⊗H) and Ti ∈ B(ℓ2(Γ/Γi)⊗H) for i ≥ n.

Let Si ∈ B(ℓ2(Γ) ⊗H) be defined by

Si;x,y =

{
Ti;[x],[y], if d(x, y) ≤ l,

0, otherwise,
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where, for x, y ∈ Γ, Si;x,y denotes the (x, y)-entry of the matrix form of Si and,

for [x], [y] ∈ Γ/Γi, the operator Ti;[x],[y] ∈ B(H) is the ([x], [y])-entry in the

matrix form of Ti ∈ B(ℓ2(Γ/Γi) ⊗H). Then Si ∈ C∗
alg(|Γ|)

Γi ⊆ C∗
max,Γi

(|Γ|),

and the correspondence T 7→ {Si}i≥n defines a map

φl : C∗
alg, l(X) →

∞∏

i=n

C∗
max,Γi

(|Γ|)

which satisfies

‖φl(T )‖ ≤ ‖T‖l,

where C∗
alg,l(X) is defined as in 3.6 and ||T ||l is defined as in 3.8. Hence, by

Lemma 3.9, let l go to infinity, one obtains a ∗-homomorphism

φ : C∗
alg(X) →

∞∏

i=1

C∗
max,Γi

(|Γ|)
/ ∞⊕

i=1

C∗
max,Γi

(|Γ|)

and ‖φ(T )‖ ≤ ‖T‖∞ = ‖T‖max, where we used the fact that

‖(sn, sn+1, · · ·)‖ = limm→∞‖sm‖

for an element in
∞∏

i=1

C∗
max,Γi

(|Γ|)
/ ∞⊕

i=1

C∗
max,Γi

(|Γ|)

represented by (sn, sn+1, · · ·). Hence, φ can be extended to a ∗-homomorphism

φ : C∗
max(X) →

∞∏

i=1

C∗
max,Γi

(|Γ|)
/ ∞⊕

i=1

C∗
max,Γi

(|Γ|).

Note that C∗
max,Γi

(|Γ|) ∼= C∗
max(Γi) ⊗ K(H). So φ is a homomorphism from

C∗
max(X) to

(
∞∏

i=1

C∗
max(Γi) ⊗K(H)

)/( ∞⊕

i=1

C∗
max(Γi) ⊗K(H)

)
.

5.7. Since every element x ∈ K0(C
∗
max(Γi) ⊗ K(H)) can be realized as

a formal difference of projections [p] − [q] with p, q ∈ C∗
max(Γi) ⊗ K(H), we
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have

K0(
∏∞

i=1(C
∗
max(Γi) ⊗K(H))) =

∏∞

i=1K0(C
∗
max(Γi) ⊗K(H))

=
∏∞

i=1K0(C
∗
max(Γi)).

Consequently,

K0

(∏∞

i=1(C
∗
max(Γi) ⊗K(H))

/⊕∞

i=1(C
∗
max(Γi) ⊗K(H))

)

∼=

(∏∞

i=1K0(C
∗
max(Γi))

)/(⊕∞

i=1K0(C
∗
max(Γi))

)
.

Hence, φ induces a map

φ∗ : K0(C
∗
max(X)) →

∞∏

i=1

K0(C
∗
max(Γi))

/ ∞⊕

i=1

K0(C
∗
max(Γi)).

5.8. The proof of (2) of Theorem 5.2.

From 5.4, 5.6 and 5.7, there is a commuting diagram

K0(Pd0(X))
α

−→
(

Q

∞

i=1 KΓi
0 (Pd0

(Γ))

)/(
L

∞

i=1 KΓi
0 (Pd0

(Γ))

)

µmax

y
y

Q

∞

i=1 µi

K0(C
∗
max(X))

φ∗

−→
(

Q

∞

i=1 K0(C∗
max(Γi))

)/(
L

∞

i=1 K0(C∗
max(Γi))

)
,

where µi denotes the Baum-Connes map for Γi. Let x ∈ K0(Pd0(X)) and

assume that

µmax(x) = 0 ∈ K0(C
∗
max(X)).

We need to prove that there is a d > 0 such that

ch((id,d0)∗(x)) = 0 ∈
∞⊕

i=0

H2i(Pd(X),R).

Let

α(x) = [(y1, y2, · · · , yn, · · ·)] ∈
∞∏

i=1

KΓi

0 (Pd0(Γ))
/ ∞⊕

i=1

KΓi

0 (Pd0(Γ)).
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The assumption (
∏∞

i=1 µi)(α(x)) = 0 implies that there is a positive integer n

such that µi(yi) = 0 for all i ≥ n. By the Strong Novikov Conjecture (I) for

Γ and that for the subgroups Γi (this is the condition Theorem 5.2(2)), for

each i ≥ n, there is Ri > d0 such that yi is a torsion element in KΓi

0 (PRi
(Γ)).

By Proposition 2.7, one can choose Ri independent of i, denoted by R. By

Lemma 5.5 applied to (iR,d0)∗(x), there is d > R such that

chj((id,d0)∗(x)) = 0

for all j ≥ 1. From Lemma 4.11, and the fact µmax(x) = 0, by increasing d,

we also have

ch0((id,d0)∗(x)) = 0 ∈ H0(Pd(X),R),

so we have

ch((id,d0)∗(x)) = 0 ∈
∞⊕

i=0

H2i(Pd(X),R)

as desired. �

5.9. Let EΓ be the classifying space of free Γ-actions. As in 4.16, we can

write EΓ = ∪∞
k=1EkΓ, where EkΓ are locally finite Γ-subsimplicial complex

of EΓ. Recall that EΓ =
⋃∞

d=1 Pd(Γ) is the classifying space of proper Γ-

actions. In particular, a free action is proper. For each EkΓ, there is d(k)

depending on k, and a Γ-equivariant map td(k),k : EkΓ → Pd(k)(Γ). This map

induces a map

(td(k),k)∗ : KΓ
0 (EkΓ) → KΓ

0 (Pd(k)(Γ)).

Passing to inductive limit, we obtain a map

t : lim
k→∞

KΓ
0 (EkΓ) → lim

d→∞
KΓ

0 (Pd(Γ))

which relates to the two Baum-Connes maps as follows

limk→∞KΓ
0 (EkΓ)

t
//

µ
))RRRRRRRRRRRRR

limd→∞KΓ
0 (Pd(Γ))

µ
uukkkkkkkkkkkkkk

K0(C
∗
max(Γ))

.

29



The map EkΓ → Pd(k)(Γ) also induces a sequence of maps

KΓn

0 (EkΓ) → KΓn

0 (Pd(k)(Γ)),

n = 1, 2, 3, · · ·, which give a homomorphism π from

lim
k→∞

(
∞∏

n=1

KΓn

0 (EkΓ)
/ ∞⊕

n=1

KΓn

0 (EkΓ)

)

to

lim
d→∞

(
∞∏

n=1

KΓn

0 (Pd(Γ))
/ ∞⊕

n=1

KΓn

0 (Pd(Γ))

)
.

Lemma 5.10. π is an isomorphism.

Proof. We shall construct a commutative diagram:

Q

∞

n=1 KΓn
0 (Ek1

Γ)

ffi

L

∞

n=1 KΓn
0 (Ek1

Γ)

(td1,k1
)∗

��

(ik2,k1
)∗

// Q

∞

n=1 KΓn
0 (Ek2

Γ)

ffi

L

∞

n=1 KΓn
0 (Ek2

Γ)

(td2,k2
)∗

��

// · · · · · ·

��
Q

∞

n=1 KΓn
0 (Pd1

(Γ))

ffi

L

∞

n=1 KΓn
0 (Pd1

(Γ))

(sk2,d1
)∗

33

(id2,d1
)∗
// Q

∞

n=1 KΓn
0 (Pd2

(Γ))

ffi

L

∞

n=1 KΓn
0 (Pd2

(Γ))

55

// · · · · · ·

where k1 ≤ k2 ≤ · · · and d1 ≤ d2 ≤ · · · will be chosen in the next paragraph,

ik2,k1 : Ek1Γ → Ek2Γ and id2,d1 : Pd1(Γ) → Pd2(Γ) are the standard embed-

dings, and td1,k1 : Ek1Γ → Pd1(Γ) is given in 5.9 as td(k),k. In the following,

we shall construct sk2,d1 : Pd1(Γ) → Ek2Γ which will be Γn-equivariant for n

large enough.

Let k1 = 1 and d1 = d(k1) as in 5.9. In such a way, we obtain (td1,k1)∗ as

in the diagram. For such d1, choose n1 such that

d(γ, e) > 2d1, ∀γ ∈ Γn1.

Then Γn1 acts freely on Pd1(Γ). Also, EΓ = ∪∞
k=1EkΓ can be regarded as the

classifying space for free Γn1-actions. Therefore, there is a k′2 > k1 and a Γn1

equivariant map

sk′

2,d1
: Pd1(Γ) → Ek′

2
Γ.
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Consider two Γn1 equivariant maps ik′

2,k1
and sk′

2,d1
◦ td1,k1. Since EΓ =

∪∞
k=1EkΓ is also the classifying space for free Γn1-actions, by universality,

there exists k2 > k′2 such that, after composition with ik2,k′

2
, the above two

maps are Γn1-homotopic to each other. Let sk2,d1 = ik2,k′

2
◦ sk′

2,d1
, we obtain

the following commuting diagram:

KΓi

0 (Ek1Γ)

(td1,k1
)∗

��

(ik2,k1
)∗
// KΓi

0 (Ek2Γ)

KΓi

0 (Pd1(Γ))

(sk2,d1
)∗

55llllllllllllll

for each i ≥ n1. Hence, we obtain the first piece of the desired diagram by

passing to direct product. Let d′2 = d(k2) and consider the maps td′2,k2
◦ sk2,d1

and id′2,d1
: Pd1(Γ) → Pd′2

(Γ). Again ∪∞
d=1Pd(Γ) is the classifying space for

proper Γn1-actions. By universality, there is d2 > d′2 such that id2,d′2
◦ td′2,k2

◦

sk2,d1 and id2,d′2
◦ id′2,d1

= id2,d1 are Γn1 homotopic to each other. Let

td2,k2 = id2,d′2
◦ td′2,k2

.

We have the following diagram:

KΓi

0 (Ek2Γ)

(td2,k2
)∗

��

KΓi

0 (Pd1(Γ))

(sk2,d1
)∗

66lllllllllllll

(id2,d1
)∗
// KΓi

0 (Pd2(Γ))

for i ≥ n1. Passing to direct product, we obtain the second piece of the

desired diagram. Let n2 be such that d(γ, e) > 2d2 for all γ ∈ Γn2 . Then

Γn2 acts freely on Pd2(Γ), and we can repeat the above procedure with n2 in

the place of n1 to obtain the next two diagrams. The whole diagram can be

constructed inductively. The fact that π is an isomorphism follows from the

commuting diagram. �

5.11. The forgetful map fi : KΓ
0 (EkΓ) → KΓi

0 (EkΓ) and fi : KΓ
0 (Pd(Γ)) →
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KΓi

0 (Pd(Γ)) give rise to the following commutative diagram

limk→∞KΓ
0 (EkΓ)

Q

∞

i=1
fi

−→ limk→∞

(∏∞

i=1K
Γi

0 (EkΓ)
/⊕∞

i=1K
Γi

0 (EkΓ)
)

y

yπ

limd→∞KΓ
0 (Pd(Γ))

Q

∞

i=1
fi

−→ limd→∞

(∏∞

i=1K
Γi

0 (Pd(Γ))
/⊕∞

i=1K
Γi

0 (Pd(Γ))
)
.

5.12. One can define a ∗-homomorphism

ψ : C∗
max(Γ) ⊗K(H) → C∗

max(X)

as below. First, note that C∗
alg(Γ) ⊂ B(ℓ2(Γ)) is generated by the translations

γξ(x) = ξ(γ−1x), where γ ∈ Γ is considered as an element in C∗
alg(Γ). For

any γ ∈ Γ, we also define a translation on
⊕∞

i=1 ℓ
2(Γ/Γi) by:

(γη)([x]) =
∞⊕

i=1

ηi([γ
−1x]),

where η = ⊕∞
i=1ηi ∈

⊕∞
i=1 ℓ

2(Γ/Γi), and [x] ∈ Γ/Γn is a coset. We obtain

a map C∗
alg(Γ) ⊗ K(H) → C∗

alg(X) ⊂ C∗
max(X), which gives rise to a ∗-

homomorphism:

ψ : C∗
max(Γ) ⊗K(H) → C∗

max(X)

5.13. Let θ ∈ KΓ
0 (Pd(Γ)). Then θ can be represented by

(L2(Pd(Γ)) ⊗H, T ), where T is a Γ-invariant operator of finite propagation.

Suppose the propagation of T is l. Let n = n(d, l) be the integer (depending

on d and l) such that d(γ, e) > 2l + 2d for γ ∈ Γn, and dX(Γ/Γn,Γ/Γn+1) >

2l + 2d. Then for each i ≥ n, one can define Si ∈ B(L2(Pd(Γ)/Γi) ⊗H) by

(Si)[x],[y] =

{
Tx,y, if d(x, y) ≤ l, x ∈ [x], y ∈ [y],

0, otherwise.

Then (
∞⊕

i=n

ℓ2(Γ/Γi) ⊗H,
∞⊕

i=n

Si

)
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defines an element in K0(Pd(⊔
∞
i=nΓ/Γi)) ⊆ K0(Pd(X)). Let us denote this

element by Ψ(θ) ∈ K0(Pd(X)). Obviously, the map θ 7→ Ψ(θ) depends on

the choice of the integer n. However, the composition

α ◦ Ψ : KΓ
0 (Pd(Γ)) −→

∞∏

i=1

KΓi

0 (Pd(Γ))
/ ∞⊕

i=1

KΓi

0 (Pd(Γ))

does not depend on the choice of n, and α ◦ Ψ =
∏∞

i=1 fi, where

fi : KΓ
0 (Pd(Γ)) −→ KΓi

0 (Pd(Γ))

is as in 5.11.

5.14. Note that K(⊕∞
i=1ℓ

2(Γ/Γi) ⊗ H) is an ideal of C∗
max(X). Let

H1 = ⊕∞
i=1ℓ

2(Γ/Γi) ⊗H . We have the following short exact sequence

0 → K(H1) → C∗
max(X) → C∗

max(X)/K(H1) → 0.

We shall prove that i∗ : K0(K(H1)) → K0(C
∗
max(X)) is injective. Let Z =

⊔n
i=1Γ/Γi. Then

K(ℓ2(Z) ⊗H) ⊆ K(⊕∞
i=1ℓ

2(Γ/Γi) ⊗H) ⊆ C∗
max(X).

Let i : K(ℓ2(Z) ⊗H) → C∗
max(X). We have the following lemma.

Lemma 5.15. i∗ : K0(K(ℓ2(Z) ⊗H)) → K0(C
∗
max(X)) is injective.

Proof. Let π : C∗
max(X) → C∗

r (X) be the quotient map. We only need

to prove that

π∗ ◦ i∗ : K0(B(ℓ2(Z)) ⊗K(H)) → K0(C
∗
r (X))

is injective. Note that B(ℓ2(Z)) ⊗ K(H) ∼= K(ℓ2(Z) ⊗H) since Z is a finite

set. Let p0, p1 be two projections in B(ℓ2(Z)) ⊗ K(H). Then p0, p1 can be

considered as projections in

C∗
alg(X) ⊆ C∗

r (X) ⊆ B(ℓ2(X) ⊗H).
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We have π∗ ◦ i∗([p0]) = π∗ ◦ i∗([p1]) ∈ K0(C
∗
r (X)). This implies that p0 ∼h p1

in C∗
r (X). Let p(t) be the homotopy path of projections with p(0) = p0 and

p(1) = p1. Choose

0 = t0 < t1 < t2 < · · · < tm = 1

such that ‖p(t) − p(s)‖ ≤ 1
100

if t, s ∈ [tk−1, tk].

There exist self adjoint elements q(ti) ∈ C∗
alg(X) such that q(0) = p(0)

and q(1) = p(1) and

‖q(ti) − p(ti)‖ ≤
1

100
, ∀i ∈ {0, 1, · · · , m}.

Define

q(t) =
t− tk−1

tk − tk−1
q(tk) +

tk − t

tk − tk−1
q(tk−1), ∀tk−1 ≤ t ≤ tk.

Then

‖q(t) − p(t)‖ ≤
5

100
, ∀0 ≤ t ≤ 1.

Each q(tk) has finite propagation, so there is l > 0 such that all q(tk) have

propagation at most l. Hence, all q(t) have propagation at most l, since they

are linear combinations of elements of propagation at most l. Let m be the

least integer such that

d(Γ/Γm,Γ/Γm+1) > 2l.

Let W = ⊔m−1
i=1 Γ/Γi and Y = ⊔∞

i=mΓ/Γi. Then d(W,Y ) > 2l. Hence, ℓ2(W )⊗

H and ℓ2(Y ) ⊗H are reducing subspaces for each q(t), that is,

q(t) ∈
(
B(ℓ2(W )) ⊗K(H)

)⊕(
B(ℓ2(Y ) ⊗H) ∩ C∗

alg(X)
)
.

Note that the spectrum of q(t) is contained in [−5/100, 5/100]∪[1−5/100, 1+

5/100]. Let

χ : [−5/100, 5/100]∪ [1 − 5/100, 1 + 5/100] → {0, 1}
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be the function sending [−5/100, 5/100] to 0 and [1− 5/100, 1+ 5/100] to 1.

Then p′(t) = χ(q(t)) ∈ B(ℓ2(W )) ⊗ K(H) and p′(t) is a path of projections

connecting p0 and p1. Hence, [p0] = [p1] ∈ K0(B(ℓ2(W ))⊗K(H)). Note that

Z ⊂ W ; Z and W are finite. Therefore,

K0(B(ℓ2(Z) ⊗K(H))) ∼= K0(B(ℓ2(W )) ⊗K(H)) ∼= Z,

and the isomorphism is induced by the inclusion B(ℓ2(Z)) → B(ℓ2(W )). So

[p0] = [p1] ∈ K0(B(ℓ2(Z)) ⊗K(H)) as desired. �

5.16. From 5.14 and 5.15, we have the following exact sequence

0 → K0(K(H1)) → K0(C
∗
max(X)) → K0(C

∗
max(X)/K(H1)) → 0.

Denote the above quotient map by π. Recall that µmax : K0(Pd(X)) →

K0(C
∗
max(X)) is the assembly map defined in §4. Again the map θ →

µmax(Ψ(θ)) depends on the choice of n in 5.13. However, the homomorphism

π ◦ µmax ◦ Ψ : KΓ
0 (Pd(Γ)) → K0(C

∗
max(X)/K(H))

does not depend on the choice of n. Furthermore, we have

π ◦ µmax ◦ Ψ = π ◦ ψ∗ ◦ µ,

where µ : KΓ
0 (Pd(Γ)) → K0(C

∗
max(Γ) ⊗K(H)) is the Baum-Connes map and

ψ∗ : K0(C
∗
max(Γ) ⊗K(H)) → K0(C

∗
max(X)) is induced by ψ defined in 5.12.

5.17. Since Γ acts on EkΓ freely and Γn are normal subgroups of Γ,

EkΓ/Γn is a finite cover over EkΓ/Γ. Therefore,

fn : KΓ
0 (EkΓ) → KΓn

0 (EkΓ)

is rationally injective. In particular, for any θ ∈ KΓ
0 (EkΓ), if fn(θ) is a torsion

element, then θ is a torsion element.

5.18. Proof of (1) of Theorem 5.2.

Note that for every subgroup Γn (n = 1, 2, · · ·) the box metric space

X(Γn) =
⊔∞

i=n+1 Γn/Γi is coarsely equivalent to X(Γ) =
⊔∞

i=1 Γ/Γi. Hence,
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the Coarse Geometric Novikov Conjecture for the box metric space X(Γ)

implies the Coarse Geometric Novikov Conjecture for the box metric space

X(Γn). So, it suffices to prove that the Coarse Geometric Novikov Conjecture

for X(Γ) implies that

µ : lim
k→∞

KΓ
0 (EkΓ) → K0(C

∗
max(Γ))

is rationally injective.

In this proof, X(Γ) will be denoted by X. Let θ ∈ KΓ
0 (EkΓ) be such that

µ(θ) = 0. We need to prove that θ is a torsion element in limk→∞KΓ
0 (EkΓ).

Let θ′ = t(θ) ∈ KΓ
0 (Pd(Γ)) for certain d, where t is defined as in 5.9. Then

µ(θ′) = µ(θ) = 0 in K0(C
∗
max(Γ)). Let η = Ψ(θ′) ∈ K0(Pd(X)). Then

π ◦ µmax(η) = π ◦ ψ∗ ◦ µ(θ′) = 0

in K0(C
∗
max(X)/K(H)). One can choose an element η′ ∈ K0(Pd(Γ/Γ1)) such

that µmax(i∗(η
′)) = µmax(η), where i∗ : K0(Pd(Γ/Γ1)) → K0(X) is induced

by the embedding i : Pd(Γ/Γ1) → Pd(X). Hence, µmax(η − i∗(η
′)) = 0. By

the coarse geometric Novikov conjecture for X, there is d1 > d such that

ch(η − i∗(η
′)) = 0 ∈

∞⊕

i=0

H2i(Pd1(X),R),

where we use the same notation for η and (id1,d2)∗(η). We assume that

η − i∗(η
′) ∈ K0(Pd1(X)) is represented by an operator with propagation l,

and let m be the integer satisfying

d(γ, e) > 2l + 2d1, ∀γ ∈ Γ/Γm

and

dX(Γ/Γm,Γ/Γm+1) > 2l + 2d1.

Then η − i∗(η
′) defines ηm, ηm+1, · · ·, where ηi ∈ K0(Pd1(Γ)/Γi) and

ch(ηi) = 0 ∈
∞⊕

i=0

H2i(Pd1(Γ)/Γi,R),
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for every i ≥ m. Hence, ηi is a torsion element. Let θi ∈ KΓi

0 (Pd1(Γ))

be the corresponding element of ηi ∈ K0(Pd1(Γ)/Γi) under the isomorphism

KΓi

0 (Pd1(Γ)) ∼= K0(Pd1(Γ)/Γi) (note that Γi acts freely on Pd1(Γ) for i ≥ m).

Then

[(0, · · · , 0, θm, θm+1, · · ·)] = α((0, · · · , 0, ηm, ηm+1, · · ·))

∈
∏∞

i=1K
Γi

0 (Pd(Γ))/
⊕∞

i=1K
Γi

0 (Pd(Γ)).

Note that α(i∗(η
′)) = 0. So

α(η) = [(0, · · · , 0, θm, θm+1, · · ·)].

Hence,

(
∏∞

i=1 fi)(θ) = [(0, · · · , 0, θm, θm+1, · · ·)]

∈
∏∞

i=1K
Γi

0 (Pd(Γ))/
⊕∞

i=1K
Γi

0 (Pd(Γ))

with each θi being a torsion element. By using the following commutative

diagram

limk→∞KΓ
0 (EkΓ)

Q

∞

i=1
fi

−→ limk→∞

(∏∞
i=1K

Γi

0 (EkΓ)
/⊕∞

i=1K
Γi

0 (EkΓ)
)

y
yπ

limd→∞KΓ
0 (Pd(Γ))

Q

∞

i=1
fi

−→ limd→∞

(∏∞
i=1K

Γi

0 (Pd(Γ))
/⊕∞

i=1K
Γi

0 (Pd(Γ))
)
.

and the isomorphism of π, we know that for k1 large enough and n large

enough, fn(θ) is a torsion element in KΓn

0 (Ek1Γ). By 5.17., θ is a torsion

element in KΓ
0 (Ek1Γ). This completes the proof. �
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