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Excited by a quantum field: Does shape matter?1
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Abstract. The instantaneous transition rate of an arbitrarily accelerated Unruh-DeWitt
particle detector on four-dimensional Minkowski space is ill defined without regularisation. We
show that Schlicht’s regularisation as the zero-size limit of a Lorentz-function spatial profile
yields a manifestly well-defined transition rate with physically reasonable asymptotic properties.
In the special case of stationary trajectories, including uniform acceleration, we recover the
results that have been previously obtained by a regularisation that relies on the stationarity.
Finally, we discuss evidence for the conjecture that the zero-size limit of the transition rate is
independent of the detector profile.

1. Introduction

Starting with the seminal work of Unruh [1], it has now been recognised for 30 years that a
uniformly accelerated observer in Minkowski space sees Minkowski vacuum as a thermal state
in temperature T = a/(2π), where a is the magnitude of the proper acceleration. This result
is of interest already in its own right within flat spacetime quantum field theory, and it has
been confirmed by a number of methods [1, 2, 3, 4, 5]. For relativists, the result is of particular
interest because of its close mathematical similarity to the thermal properties of quantum fields
in stationary black hole spacetimes [1, 6].

A conceptually concrete way to address quantum effects in accelerated motion is to analyse a
particle detector coupled to the quantum field. For the uniformly accelerated motion, a subtlety
in such an analysis arises from the fact that the motion is stationary , that is, the orbit of a
timelike Killing vector. Because of stationarity, the first-order perturbation theory transition
probability over the whole trajectory is infinite, owing to the infinite total proper time. However,
this probability can be formally factorised into the product of the total proper time and a finite
remainder, and the remainder can by stationarity be interpreted as the transition rate per unit
proper time [7, 8, 9, 10]. This regularisation prescription can be extended from stationary
trajectories in Minkowski space to curved spacetime [11], both for the Unruh-DeWitt monopole
detector [1, 2] and a variety of its generalisations. A recent review can be found in [12].

For nonstationary motions the transition rate need not be constant along the detector’s
trajectory, and a regularisation that relies on stationarity is no longer available. The first
message of this talk is:

1 Based on a talk given at “Recent Developments in Gravity” (NEB XII), Nafplio, Greece, 29 June – 2 July 2006.
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• For an Unruh-DeWitt monopole detector, the instantaneous transition rate is ill-defined
without regularisation.

This observation appears to have been first made by Schlicht [13, 14], who showed that
a conventional iǫ regularisation yields a Lorentz-noninvariant transition rate for uniformly
accelerated motion. We discuss the mathematical reason for this phenomenon and show that the
iǫ regularisation leads to a Lorentz-noninvariant transition rate for every non-inertial trajectory.
The conventional iǫ prescription does therefore not provide a physically acceptable regularisation
for the instantaneous transition rate.

Schlicht proposed to regularise the transition rate in arbitrary motion by making the detector
spatially extended in its instantaneous rest frame, with a spatial sensitivity profile that has
a certain fixed shape but depends on a size parameter, and then letting the size parameter
approach zero [13, 14]. He showed that this regularisation yields the expected Planckian
spectrum for uniform acceleration, and he analysed a selection of nonstationary trajectories
via mainly numerical methods. We show that Schlicht’s regularisation yields a well-defined
transition rate for every trajectory satisfying certain technical conditions, and we express the
result as a manifestly finite integral formula that no longer involves regulators or limits. For the
stationary trajectories the result agrees with that obtained in [2, 7, 8], and for nonstationary
trajectories we extract asymptotic results that appear physically reasonable. The second message
of this talk thus is:

• A spatial sensitivity profile is a viable regulator for the instantaneous transition rate.

The rest of the talk will put some flesh on these messages. The main conclusions rely on
a particular choice of the spatial profile function, but in section 6 we present some evidence
suggesting that that the zero size limit may be insensitive to the detailed form of the profile.
The talk is based on [15], where further detail can be found.

We work in four-dimensional Minkowski spacetime with metric signature (−+++) and in
units in which ~ = c = 1. Boldface letters denote spatial three-vectors and sans-serif letters
spacetime four-vectors, and a square of a spatial vector (respectively spacetime vector) is
understood in the sense of the Euclidean (Minkowskian) scalar product.

2. Unruh-DeWitt detector

Consider a pointlike detector that moves in four-dimensional Minkowski space on the world
line x(τ), where τ is the proper time. We take the detector to have two quantum states,
denoted by |0〉d and |1〉d, which are eigenstates of the detector internal Hamiltonian Hd with
the respective eigenvalues 0 and ω, ω 6= 0. The detector is coupled to the real, massless scalar
field φ with the interaction Hamiltonian

Hint = cχ(τ)µ(τ)φ(x(τ)) , (1)

where c is a coupling constant and µ(τ) is the detector’s monopole moment operator, evolving
in the Heisenberg picture under Hd. χ(τ) is a switching function, which specifies how the
interaction is switched on and off by an external agent.

Suppose first that the switching function is smooth and has compact support, so that the
initial and final states can be described in terms of the uncoupled system. If before the interaction
the field is in the Minkowski vacuum |0〉 and the detector in the state |0〉d, the first-order
perturbation theory probability of finding the detector in the state |1〉d after the interaction is
[1, 2, 3, 5, 16]

P (ω) = c2 |d〈0|µ(0)|1〉d |
2F (ω) , (2)

where the response function F (ω) is given by

F (ω) =

∫ ∞

−∞

dτ ′

∫ ∞

−∞

dτ ′′ e−iω(τ ′−τ ′′) χ(τ ′)χ(τ ′′)W (τ ′, τ ′′) , (3)



and the correlation function W is the pull-back of the Wightman distribution,

W (τ ′, τ ′′) := 〈0|φ(x(τ ′))φ(x(τ ′′))|0〉 . (4)

As W is a well-defined distribution on R × R [16], the transition probability given by (2)–(4) is
well defined.

Suppose then that no friendly neighbourhood external agent is available to switch the
interaction off before we observe the detector. We wish to ask: What is the probability of finding

the detector in the state |1〉d while the interaction is still switched on? This is arguably the
question encountered in a practical measurement where one looks at an ensemble of accelerated
detectors (say, atoms or ions) at a given moment of time and counts what fraction of the detectors
are in an excited state.

An attempt to answer this question within the detector model (1) would be to introduce in
the switching function a sharp cutoff, χ(τ ′) → χ(τ ′)Θ(τ − τ ′), where τ is the proper time at
which the detector is read and Θ is the Heaviside function. If we further push the switch-on
to the asymptotic past, this would mean making in (2)–(4) the replacement χ(τ ′) → Θ(τ − τ ′).
Formal manipulations then yield for the τ -derivative of the response function the expression

Ḟτ (ω) = 2Re

∫ ∞

0
ds e−iωs W (τ, τ − s) . (5)

Ḟτ (ω) differs from the instantaneous transition rate only by a multiplicative constant that is
independent of the trajectory, and we shall from now on suppress this constant.

The problem with these manipulations is that formula (5) is ambiguous, since W is a
distribution with a singularity at the coincidence limit and the integration range has a sharp
boundary at this singularity. To see that the problem is significant, suppose we go to a specific
Lorentz frame, x = (t,x), replace the Wightman distribution by its conventional iǫ regularisation,

〈0|φ(x)φ(x′)|0〉ǫ =
−1

4π2

1

(t − t′ − iǫ)2 − |x − x′|2
, ǫ > 0 , (6)

and take the limit ǫ → 0+ after performing the integral in (5). Assuming that the trajectory is
sufficiently differentiable and has suitable falloff properties in the distant past, the result is [15]

Ḟτ (ω) = −
ω

4π
+

1

2π2

∫ ∞

0
ds

(

cos(ωs)

(∆x)2
+

1

s2

)

−
1

4π2

ẗ

(ṫ2 − 1)
3/2

[

ṫ
√

ṫ2 − 1 + ln
(

ṫ −
√

ṫ2 − 1
)]

, (7)

where ∆x := x(τ) − x(τ − s). The last term in (7) vanishes for inertial trajectories but is
Lorentz-noninvariant wherever the proper acceleration is nonzero. In the usual distributional
setting of integrating against smooth test functions, the functions (6) duly converge to the
Lorentz-invariant Wightman distribution as ǫ → 0 [17], but the instantaneous transition rate
(5) falls outside this setting because of the sharp switch-off and retains a Lorentz-noninvariant
piece even in the limit ǫ → 0+.

Moral: The instantaneous transition rate (5) is ill-defined as it stands and needs to be
regularised.

3. Spatial profile

Schlicht [13, 14] proposed to regularise the transition rate (5) by giving the detector a spatial
sensitivity profile that is rigid in the detector’s instantaneous rest frame. This idea can be
motivated by the observation that real material systems (say, atoms or ions) are not pointlike.



Technically, Schlicht’s proposal is to replace the field operator in the interaction Hamiltonian
(1) by a spatially smeared field operator,

φ(x(τ)) →

∫

d3ξ ǫ−3f(ξ/ǫ)φ
(

x(τ) + ξi
ei(τ)

)

, (8)

where ei are three unit vectors that together with the velocity ẋ form an orthonormal tetrad,
Fermi-Walker transported along the trajectory. The four quantities (τ, ξ) = (τ, ξ1, ξ2, ξ3) are
thus Fermi-Walker coordinates in a neighbourhood of the trajectory [18]. The profile function
f : R

3 → R is assumed to be non-negative and to integrate to unity, and ǫ is a positive
parameter that determines the characteristic size of the smeared detector. When f is chosen to
be the Lorentzian function,

f(ξ) =
1

π2

1

(|ξ|2 + 1)2
, (9)

Schlicht showed that W in (5) gets replaced by

Wǫ(τ, τ
′) =

1

4π2

1

[x − x
′ − iǫ(ẋ + ẋ

′)]2
, (10)

where the unprimed and primed quantities are evaluated respectively at τ and τ ′. Note that Wǫ

(10) is manifestly Lorentz covariant. Schlicht further showed that the ǫ → 0+ limit yields the
Planckian spectrum for the uniformly accelerated motion, thus agreeing with the regularisation
that relies on stationarity [1, 3, 5]. He also examined the ǫ → 0+ limit for a number of other
trajectories, with physically reasonable results.

Schlicht’s results have been generalised by P. Langlois [12, 19] to a variety of situations,
including Minkowski space in an arbitrary number of dimensions, quotients of Minkowski space
under discrete isometry groups, the massive scalar field, the massless Dirac field and certain
curved spacetimes. Langlois also observed that an alternative way to arrive at Wǫ (10) is to
regularise the mode sum expression for the Wightman function by an exponential frequency
cut-off in the detector’s instantaneous rest frame, rather than in a fixed Lorentz frame.

4. Lorentz-function profile: Zero-size limit

When the regularised correlation function (10) is substituted in (5), the existence of an ǫ → 0+

limit is not obvious for an arbitrary trajectory since ǫ appears under the integral. However, for
trajectories that are sufficiently differentiable and have suitable falloff properties in the distant
past, the limit exists and equals [15]

Ḟτ (ω) = −
ω

4π
+

1

2π2

∫ ∞

0
ds

(

cos(ωs)

(∆x)2
+

1

s2

)

. (11)

Since the integrand in (11) remains finite at s → 0+ and since (∆x)2 ≤ −s2, formula (11) is
manifestly well-defined.

Formula (11) gives the transition rate as split into its odd and even parts in ω. Another
useful split is into the inertial part and the noninertial correction, as introduced for stationary
trajectories in [7, 8]. This can be accomplished by a suitable addition and a subtraction in the
integrand, with the result

Ḟτ (ω) = −
ω

2π
Θ(−ω) +

1

2π2

∫ ∞

0
ds cos(ωs)

(

1

(∆x)2
+

1

s2

)

. (12)



The first term in (12) is the transition rate of a detector in inertial motion, and the integral
term is thus the correction due to acceleration. As the correction is even in ω, we see that the
acceleration induces excitations and de-excitations with the same probability.

Note that the correction term in (12) is nonvanishing for every noninertial trajectory. Note
also that inversion of the cosine transform in (12) shows that Ḟτ (ω) fully determines (∆x)2 as a
function of s and τ .

From (12) it follows that Ḟτ (ω) has a large |ω| expansion that proceeds in inverse powers
of ω2, with coefficients given by τ -derivatives of x(τ). In the leading order we obtain

Ḟτ (ω) = −
ω

2π
Θ(−ω) +

ẍ · x(3)

24π2ω2
+ O

(

ω−4
)

as |ω| → ∞ , (13)

which shows that for a generic trajectory the first correction to the inertial response is of
order ω−2.

5. Examples

A case-by-case analysis of all stationary trajectories shows that the transition rate (11) for them
agrees with that obtained with the regularisation that relies on stationarity [7, 8]. In particular,
in the special case of uniform acceleration of magnitude a we have the Planckian spectrum,

Ḟτ (ω) =
ω

2π

1

e2πω/a − 1
. (14)

As an example of nonstationary motion, consider a detector that moves in a timelike plane
with the proper acceleration a/(1 + e−aτ ), where a is a positive constant. In the distant past
the trajectory is asymptotically inertial, and we obtain the transition rate

Ḟτ (ω) = −
ω

2π
Θ(−ω) + O(e2aτ ) , τ → −∞ , (15)

where the O-term holds uniformly in ω. In the distant future the trajectory has asymptotically
uniform acceleration of magnitude a, and we obtain the transition rate

Ḟτ (ω) =
ω

2π

1

e2πω/a − 1
+ o(1) , τ → ∞ , (16)

where o(1) stands for a term that goes to zero as τ → ∞. The first term in (16) is the transition
rate (14) in uniform acceleration. The asymptotics thus agrees with what one would expect on
physical grounds, both in the future and in the past.

6. Does shape matter?

The above results rely on the choice (9) for the profile function. While all sufficiently regular
profile functions are known to yield the same ǫ → 0+ limit for inertial motion [13], it is at
present not known to what extent the ǫ → 0+ limit might depend on the profile function for
more general motions.

There is however a modified notion of spatial smearing in which we have been able to establish
a result on profile-independence. For positive ǫ, the transition rate with this modified smearing
reads

Ḟ (ǫ)
τ (ω) :=

∫

ξ6=ξ′

d3ξ d3ξ′ ǫ−6f(ξ/ǫ) f(ξ′/ǫ)Gτ (ξ, ξ′;ω) , (17)

where

Gτ (ξ, ξ′;ω) := 2Re

∫ ∞

0
ds e−iωs 〈0|φ

(

x(τ) + ξi
ei(τ)

)

φ
(

x(τ − s) + ξ′jej(τ − s)
)

|0〉 . (18)



Equations (17) and (18) would follow from (5) with the replacement (8) if it were known that
the interchange of the ds and d3ξ d3ξ′ integrals is valid in a sense in which Gτ (ξ, ξ′;ω) (18)
contains no distribution with support at ξ = ξ′. While we do not know whether the interchange
can be justified in this sense, we shall take equations (17) and (18) as a definition of a detector
model in their own right, arguing that this model captures at least some of the effects of the
spatial smearing of section 3.

Now, if the trajectory is real analytic and satisfies suitable falloff conditions in the distant
past, and if the profile function f is smooth and has compact support, it can be shown [15] that

Ḟ
(ǫ)
τ (ω) is well defined by (17) and (18) for sufficiently small ǫ, and the ǫ → 0+ limit exists and

is given by (11). As this limit agrees with that obtained with the Lorentzian profile function (9)
(which is not of compact support), we suspect that the equivalence of the two models of spatial
smearing could be established for at least some classes of profile functions.

7. Discussion

We have shown that regularising the transition rate of an accelerated Unruh-DeWitt detector
on Minkowski space by a spatial profile is a mathematically well-defined procedure and yields
physically viable predictions in a number of situations. For the Lorentz-function spatial profile
(9) the zero size limit could be computed explicitly, leading to the transition rate (11). For
other spatial profiles the results remain to some extent inconclusive but they suggest that the
zero-size limit may not be sensitive to the details of the profile.

We re-emphasise that the need for a spatial smearing arose because we chose to address the
instantaneous transition rate while the interaction continues to be switched on, rather than the
total excitation probability after the interaction has been smoothly switched on and off by an
external agent. It would be of interest to examine in comparison a pointlike detector whose
smooth switching function is allowed to approach the step-function: Might there exist limiting
prescriptions that reproduce the effects of spatial smearing?

If the detector is turned on sharply at the finite proper time τ0, the transition rate formula
(11) is replaced by [15]

Ḟτ (ω) = −
ω

4π
+

1

2π2

∫ τ−τ0

0
ds

(

cos(ωs)

(∆x)2
+

1

s2

)

+
1

2π2(τ − τ0)
, τ > τ0 , (19)

which is asymptotically proportional to (τ − τ0)
−1 as τ → τ0. The total transition probability,

obtained by integrating the transition rate (19), is therefore infinite, owing to the violent switch-
on event, regardless how small the coupling constant in the interaction Hamiltonian is. For the
stationary trajectories the transition rate (11) of a detector switched on in the asymptotic past is
constant in time, and the total transition probability is again infinite, now owing to the infinite
amount of time elapsed in the past. In these situations one may therefore have reason to view our
results, all of which were obtained within first-order perturbation theory, as suspect. However,
in situations where the detector is switched on in the asymptotic past of infinite proper time
and the total probability of excitation (ω > 0) is finite, the first-order perturbation theory result
should be reliable at least for the excitation rate, although the total probability of de-excitation
(ω < 0) then still diverges. This situation occurs for the asymptotically inertial trajectory
discussed in section 5, and we expect it to occur whenever the proper acceleration vanishes
sufficiently fast in the distant past.

It would be interesting to investigate to what extent our results can be generalised to the
variety of situations to which Schlicht’s Lorentzian profile detector was generalised in [12, 19].
For example, do the formulas (11) and (19) generalise to spacetime dimensions other than four,
and if yes, what is the form of the subtraction term? Does the clean separation of the spectrum
into its even and odd parts continue? Further, to what extent can the notion of spatial profile be



employed to regularise the transition rate in a curved spacetime, presumably reproducing known
results for stationary trajectories [11] but also allowing nonstationary motion? In particular,
might there be a connection with the regularisation prescriptions of the classical self-force
problem [20, 21, 22, 23]? Finally, would a nonperturbative treatment be feasible?
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