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Abstract

We show that stationary, asymptotically flat solutions of the electro-
vacuum Einstein equations are analytic at i0, for a large family of gauges,
in odd space-time dimensions higher than seven. The same is true in
space-time dimension five for static vacuum solutions with non-vanishing
mass.

1 Introduction

There is currently interest in asymptotically flat solutions of the vacuum Ein-
stein equations in higher dimensions [5, 9]. It is thus natural to enquire which
part of our body of knowledge of (3 + 1)–dimensional solutions carries over
to higher dimensions. In this note we study that question for asymptotic ex-
pansions at spatial infinity of stationary or static electro-vacuum metrics. We
prove analyticity at i0, up to a conformal factor, for a family of natural ge-
ometric gauges, in even dimensions n ≥ 6. The same result is established in
space-dimension n = 4 for static vacuum metrics with non-vanishing ADM
mass.

2 Static vacuum metrics

We write the space-time metric in the form

ds2 = −e2udt2 + e−
2u

n−2 g̃ijdx
idxj ,

∗E–mail robert.beig@univie.ac.at
†E-mail Piotr.Chrusciel@lmpt.univ-tours.fr, URL www.phys.univ-tours.fr/∼piotr

1



where g̃ is an asymptotically flat Riemannian metric, with ∂tu = ∂tg̃ij = 0.
The vacuum Einstein equations show that u is g̃–harmonic, with g̃ satisfying
the equation

R̃ij =
n− 1
n− 2

∂iu∂ju , (2.1)

where n is the space-dimension, and R̃ij is the Ricci tensor of g̃. We assume
n ≥ 3 throughout.

It is a standard consequence of those equations that, in harmonic coordinates
in the asymptotically flat region, and whatever n ≥ 3, both u and g̃ij have
a full asymptotic expansion in terms of powers of ln r and inverse powers of
r. Solutions without ln r terms are of special interest, because they can be
used to construct smoothly compactifiable hyperboloidal initial surfaces. In
even space-time dimension initial data sets containing such asymptotic regions,
when close enough to Minkowskian data, lead to asymptotically simple space-
times [1, 11]. It has been shown by Beig and Simon that logarithmic terms can
always be gotten rid of by a change of coordinates when space-dimension equals
three [4, 14].

From what has been said one can infer that the leading order corrections
in the metric can be written in a Schwarzschild form, which in “isotropic”
coordinates reads

gm = −
(

1−m/2|x|n−2

1 +m/2|x|n−2

)2

dt2 +
(

1 +
m

2|x|n−2

) 4
n−2

(
n∑

1=1

dx2
i

)

≈ −
(
1− m

r̃n−2

)2
dt2 +

(
1 +

m

r̃n−2

) 2
n−2

(
n∑

1=1

dx2
i

)
, (2.2)

where m is of course a constant, and r̃ = |x| is a radial coordinate in the
asymptotically flat region. This gives the asymptotic expansion

u = − m

r̃n−2
+O(r̃−n+1) , (2.3)

Further we have
g̃ij = δij +O(r̃1−n) . (2.4)

Equation (2.3) shows that for m 6= 0 the function

ω := (u2)
1

n−2 (2.5)

behaves asymptotically as r̃−2, and can therefore be used as a conformal fac-
tor in the usual one-point compactification of the asymptotic region. Indeed,
assuming that m 6= 0 and setting

gij := ω2g̃ij . (2.6)

one obtains a Cn−2,1 metric1 on the manifold obtained by adding a point (which
we denote by i0) to the asymptotically Euclidean region.

1The differentiability class near i0 can be established by examining Taylor expansions there.
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From the fact that u is g̃–harmonic one finds

∆ω = µ , (2.7)

where the auxiliary function µ is defined as

µ :=
n

2
ω−1gij∂iω∂jω . (2.8)

Note that, in spite of the negative power of ω, this function can be extended
by continuity to i0, the extended function, still denoted by µ, being of Cn−2,1

differentiability class.
Let Lij be the Schouten tensor of gij ,

Lij :=
1

n− 2

(
Rij −

R

2(n− 1)
gij

)
. (2.9)

Using tildes to denote the corresponding objects for the metric g̃, from (2.1)
one obtains

L̃ij =
1
4
ωn−4

(
(n− 1)∂iω∂jω −

1
2
gijg

k`∂kω∂`ω
)
. (2.10)

We see that for n ≥ 3 the tensor L̃ij is bounded on the one-point compactifica-
tion at infinity, and for n ≥ 4 it is as differentiable as dω and the metric allow.
This last property is not true anymore for n = 3, however the following objects
are well behaved:

L̃ijD
jω =

2n− 3
4n

ωn−3µDiω , L̃i[jDk]ω = − 1
4n
ωn−3µgi[jDk]ω . (2.11)

3 Conformal rescalings

We recall the well-known transformation law of the Schouten tensor under the
conformal rescaling (2.6)

Lij = L̃ij + ω−1DiDjω −
1
2
ω−2gijg

k`∂kω∂`ω ; (3.1)

we emphasize that this holds whether or not ω is related to L̃ as in (2.10).
Taking a trace of (3.1) and using (2.7) one finds

R =
(n− 1)(n− 2)

2n
ωn−3µ . (3.2)

In our subsequent manipulations it is convenient to rewrite (3.1) as an equa-
tion for DiDjω,

DjDiω = ω(Lij − L̃ij) +
1
n
µgij . (3.3)

We note that the right-hand-side is well-behaved at ω = 0 for all n ≥ 3.
Let Cijk denote the Cotton tensor,

Cijk := DkLij −DjLik , (3.4)
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and let Cijkl be the Weyl tensor of g. Note the identity

DiCijkl = (3− n)Cjkl . (3.5)

Applying Dk to (3.3) and anti-symmetrising over j and k one obtains

ωCijk + Ckji`D
`ω = L̃ijk , (3.6)

where
L̃ijk := 2D[k(ωL̃j]i) + 2gi[jL̃k]`D

`ω . (3.7)

Writing down the second term in (3.7) and using (2.11) and again (3.3), we find
that the terms with ωn−4 drop out and there results

L̃ijk =
1
2
ωn−2

(
−(n− 1)D[jω(Lk]i − L̃k]i) + gi[j(Lk]` − L̃k]`)D

`ω︸ ︷︷ ︸
)
.

(3.8)
Here L̃ij should be expressed in terms of ω, dω and µ using (2.11). It should
be emphasized that the underbraced expression is regular at ω = 0.

Let Bij denote the Bach tensor,

Bij := DkCijk − Lk`Ckji` . (3.9)

Applying Dk to (3.6) and using (3.5) and (3.3) one obtains

Bij − (n− 4)ω−1CijkD
kω = ω−1DkL̃ijk − Ckji`L̃

k` . (3.10)

Note that the factor ω−1 in front of the divergence DkL̃ijk is compensated by
ωn−2 in (3.7), so that for n ≥ 4 the right-hand-side is a well-behaved function
of the metric, of ω, and of their derivatives at zeros of ω. Alternatively we can,
using (3.6), rewrite (3.10) as

Bij + (n− 4)ω−2CkijlD
kωDlω = ω3−nDk(ωn−4L̃ijk)− CkijlL̃

kl . (3.11)

Note that the right-hand-side of (3.11) is regular also for n = 3. Recall, now,
the identity

Bij = ∆Lij −DiDj(trL) + Fij

=
1

n− 2
∆Rij −

1
2(n− 1)

( 1
n− 2

∆Rgij +DiDjR
)

+ Fij , (3.12)

where Fij depends upon the metric and its derivatives up to order two. We
eliminate the Ricci scalar terms using (3.2). The terms involving derivatives of
R will introduce derivatives of µ, which can be handled as follows. Differenti-
ating (2.8) and using (3.3) one obtains

Diµ = −n(Lij − L̃ij)Djω

= −nLijD
jω +

2n− 3
4

ωn−3µDiω , (3.13)

which allows us to eliminate each derivative of µ in terms of µ, ω and dω.
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3.1 Space-dimensions three and four

In dimension three the term involving ω−2Ckji`L
k` on the left-hand-side of

(3.11) goes away because the Weyl tensor vanishes. In dimension four its coef-
ficient vanishes. In those dimensions one therefore ends up with an equation of
the form

∆Rij = Fij(n, ω, dω, ∂2ω, g, ∂g, ∂2g) . (3.14)

with a tensor field Fij which is well behaved at ω = 0. Here we have used the
expression of µ as a function of the metric, ∂g, ∂ω and ∂2ω which follows from
(2.7).

We can calculate the laplacian of µ by taking a divergence of (3.13) and elim-
inating again the second derivatives of ω in terms of µ, and the first derivatives
of µ, as before. This leads to a fourth-order equation for ω of the form

∆2ω = F (n, ω, dω, ∂2ω, g, ∂g,Ric) , (3.15)

with F — well behaved at ω = 0, where Ric stands for the Ricci tensor. Note
that one should use the Bianchi identities to eliminate the term involving the
divergence of Lij which arises in the process:

DjLij =
1

2(n− 1)
DiR .

In harmonic coordinates, Equations (3.14)-(3.15) can be viewed as a system
of equations of fourth order for the metric g and the function ω, with diagonal
principal part ∆2. The system is elliptic so that usual bootstrap arguments
show smoothness of all fields. In fact the solutions are real-analytic by [13], as
we wished to show.

3.2 Higher even dimensions

A natural generalisation of the Bach tensor in even dimensions n ≥ 6 is the
obstruction tensor Oij of Fefferman and Graham [10, 12]. It is of the form

Oij = ∆
n−4

2 [∆Lij −DiDj(trL)] + Fn
ij , (3.16)

where Fn
ij is a tensor constructed out of the metric and its derivatives up

to order n − 2. This leads us to expect that further differentiations of the
equations above leads to a regular expression for ∆

n−2
2 Bij in terms of ω and

its derivatives up to order n − 3. However, we have not been able to conclude
using this approach. Instead, we proceed as in [6]:

In coordinates xi which are harmonic with respect to the metric g̃, (2.1)
and the harmonicity condition for u lead to a set of equations for u and

f := (g̃ij − δij)

of the form

g̃ij∂i∂jf = F (f)(∂f)2 + (∂u)2 , g̃ij∂i∂ju = 0 .
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Setting

Ω =
1
r2
, f̃ = Ω−n−2

2 f , ũ = Ω−n−2
2 u , yi =

xi

r2
,

one obtains a set of regular elliptic equations in the coordinates yi after a con-
formal rescaling δij → Ω2δij of the flat metric, provided that n ≥ 6. The reader
is referred to [6] for a detailed calculation in a Lorentzian setting, which carries
over with minor modifications (due to the quadratic rather than linear zero
of Ω) to the current situation; note that n in the calculations there should be
replaced by n−1 for the calculations at hand. We further note that the leading
order behavior of f̃ is governed by the mass, which can be made arbitrarily
small by a constant rescaling of the metric and of the original harmonic coordi-
nates xi; this freedom can be made use of to ensure ellipticity of the resulting
equations. Finally we emphasise that this result, contrary to the one for n equal
three or four, does not require the non-vanishing of mass.

4 Stationary vacuum solutions

We consider Lorentzian metrics n+1g in odd space-time-dimension n + 1 ≥ 7,
with Killing vector X = ∂/∂t. In adapted coordinates those metrics can be
written as

n+1g = −V 2(dt+ θidx
i︸ ︷︷ ︸

=θ

)2 + gijdx
idxj︸ ︷︷ ︸

=g

, (4.1)

∂tV = ∂tθ = ∂tg = 0 . (4.2)

The vacuum Einstein equations (with vanishing cosmological constant) read
(see, e.g., [8]) 

V∇∗∇V = 1
4 |λ|

2
g ,

Ric(g)− V −1HessgV = 1
2V 2λ ◦ λ ,

div(V λ) = 0 ,
(4.3)

where
λij = −V 2(∂iθj − ∂jθi) , (λ ◦ λ)ij = λi

kλkj .

We consider metrics satisfying, for some α > 0,

gij − δij = O(r−α) , ∂kgij = O(r−α−1) , V = O(r−α) , ∂kV = O(r−α−1) .
(4.4)

As is well known [2], one can then introduce new coordinates, compatible with
the above fall-off requirements, which are harmonic for g.

Next, a redefinition t→ t+ ψ, introduces a gauge transformation

θ → θ + dψ ,

and one can exploit this freedom to impose restrictions on θ. We will assume a
condition of the form

gij∂iθj = Q(g, V︸︷︷︸
p

; ∂g, ∂V, θ︸ ︷︷ ︸
q

) , (4.5)
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where Q is a smooth function of the variables listed near (δ, 1; 0, 0, 0), with a
zero of order two or higher with respect to q:

Q(p; 0) = ∂qQ(p; 0) = 0 .

Examples include the harmonic gauge, 2n+1gt = 0, which reads

∂i(
√

det gV gijθj) = 0 , (4.6)

as well as the maximal gauge,

∂i(
V 3
√

det g gij√
1− V 2gk`θkθ`

θj) = 0 . (4.7)

Equation (4.6) can always be achieved by solving a linear equation for ψ, cf.,
e.g., [2, 7] for the relevant isomorphism theorems. On the other hand, (4.7) can
always be solved outside of some large ball [3]. More generally, when non-linear
in θ, equation (4.5) can typically be solved outside of some large ball using the
implicit function theorem in weighted Hölder or weighted Sobolev spaces.

In harmonic coordinates, and in a gauge (4.5), the system (4.3) is elliptic
and, similarly to the static case, standard asymptotic considerations show that
gij is Schwarzschild in the leading order, and that there exist constants αij such
that

θi =
αijx

j

rn
+O(r−n) .

To prove analyticity at i0 one proceeds as in Section 3.2: thus, one first
rewrites the second of equations (4.3) as an equation for

g̃ij := e
2u

n−2 gij ≡ V
2

n−2 gij ,

which gets rid of the Hessian of V there. It should then be clear that, in
coordinates which are harmonic for g̃, the first two equations in (4.3) have the
right structure for the argument of Section 3.2. It remains to check the third
one. For this we note that, in g̃–harmonic coordinates so that ∂i(

√
det g̃ g̃ij) = 0,

div(V λ)k =
1√

det g
∂i

(√
det gV 3gij(∂jθk − ∂kθj)

)
=

V
n

n−2

√
det g̃

∂i

(√
det g̃V 2g̃ij(∂jθk − ∂kθj)

)
= V

n
n−2 g̃ij∂i

(
V 2(∂jθk − ∂kθj)

)
= V

n
n−2

(
g̃ij∂i∂jθk + 2V g̃ij∂iV (∂jθk − ∂kθj)

− g̃ij∂i∂kθj︸ ︷︷ ︸
=V

− 2
n−2 (∂k(gij∂iθj︸ ︷︷ ︸

Q

)+∂kgij∂iθj)

)
.

IfQ in (4.5) is zero, then the vanishing of div(V λ) immediately gives an equation
of the right form for θ. Otherwise, ∂Q leads to nonlinear terms of the form ∂2

xg θ,
etc., which are again of the right form, see the calculations in [6]. Note that such
terms do not affect the ellipticity of the equations because of their off-diagonal
character.
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5 Einstein-Maxwell equations

The above considerations immediately generalise to the stationary Einstein-
Maxwell equations, with a Killing vector which approaches a time-translation
in the asymptotically flat region. Indeed, the calculations of Section 4 carry
over to this setting, as follows:

Stationary Maxwell fields can be described by a time-independent scalar
field ϕ = A0 and a vector potential A = Aidx

i, again time-independent. Here
one needs to assume that, in addition to (4.4), one has

Aµ = O(r−α) , ∂kAµ = O(r−α−1) .

Maxwell fields lead to supplementary source terms in the right-hand-sides of
(4.3) which are quadratic in the first derivatives of ϕ and A, hence of the right
form for the argument so far. Next, if we write the Maxwell equations as

1√
n+1g

∂µ

(√
n+1g n+1gµρ n+1gνσ∂[νAσ]

)
= 0 ,

and impose the Lorenz gauge,

1√
n+1g

∂µ

(√
n+1g n+1gµνAν

)
= 0 ,

the equations ∂tAµ = 0 allow one to rewrite the above as

gij∂i∂ja = H(f, V, θ; ∂f, ∂V, ∂θ; ∂a) ,

where a = (ϕ,Ai), with a function H which is bilinear in the second and third
groups of arguments. This is again of the right form, which finishes the proof
of analyticity of f̃ , ϕ̃, Ã and θ̃ at i0 for even n ≥ 6, where the original fields are
related to the tilde-ones via a rescaling by Ω

n−2
2 , e.g. ϕ = Ω

n−2
2 ϕ̃, and so on.
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