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Abstract

We prove strong cosmic censorship for T
2-symmetric cosmological space-

times (with spatial topology T
3 and vanishing cosmological constant Λ)

with collisionless matter. Gowdy symmetric spacetimes constitute a spe-
cial case. The formulation of the conjecture is in terms of generic C

2-
inextendibility of the metric. Our argument exploits a rigidity property
of Cauchy horizons, inherited from the Killing fields.

1 Introduction

Strong cosmic censorship is one of the fundamental open problems of classical
general relativity. Properly formulated [7], it is the conjecture that the maximal
development of generic compact or asymptotically flat initial data for suitable
Einstein-matter systems be inextendible as a suitably regular Lorentzian mani-
fold.

In recent years, progress has been made when the initial data are restricted
to symmetry classes, in particular, spherical [6, 11, 12] and Gowdy [9, 18] sym-
metry. The nature of the difficulties in these two classes is very different. In
addition to the case of a horizon arising from a singular point on the centre,
Cauchy horizons in spherical symmetry can arise on account of a global property
of the causal geometry of the Lorentzian quotient manifold of group orbits. An
example is provided by the Reissner-Nordström solution. The stability or in-
stability of this phenomenon depends on what is essentially a completely global
analysis.1 In the Gowdy case with spatial topology T 3, Cauchy horizon for-
mation is a local phenomenon from the point of view of the quotient, and is
related to the group orbits becoming null. The remarkable recent progress [18]
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1This already indicates that strong cosmic censorship in its full generality can never be
approached by a local analysis in the style of the so-called “BKL proposal”.
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on the C2-inextendibility version of cosmic censorship in the Gowdy case for the
vacuum equations rests on a detailed asymptotic analysis of the local behaviour
of a solution near points of the past boundary of the maximal development.

Gowdy symmetric spacetimes are a sub-class of so-called T 2-symmetric space-
times, i.e. spacetimes which admit a torus action. The asymptotic analysis
of [18] seems prohibitively difficult in this more general case, leaving to far in
the future the task of pursuing this approach for proving strong cosmic censor-
ship in this class.

The aim of the present paper is to show that this difficult analysis can in fact
be completely circumvented if one is willing to couple the Einstein equations
with the Vlasov equation, i.e. to consider spacetimes with collisionless matter.
We will thus here give an elementary proof of strong cosmic censorship (in
the C2-inextendibility formulation) for general T 2-symmetric spacetimes (with
spatial topology T 3) solving the Einstein-Vlasov system. The proof relies on a
previous characterization of the boundary of the maximal development proven
by Weaver [19].2 Our method can be expected to apply when additional matter
fields are also coupled, but the presence of the Vlasov field is essential.

The main idea of the method is quite simple: Let us suppose that our space-
time is C2-past extendible with Cauchy horizon H−. The characterization [19]
of the past boundary of the maximal development allows us to deduce that
there is a null vector in the span of the Killing fields for a dense open subset
of H−. It turns out that this fact gives the Cauchy horizon considerable rigid-
ity, in particular, Ric(K, K) ≤ 0 where K denotes the null generator of H− at
regular points, and thus, by the null convergence condition, Ric(K, K) = 0. On
the other hand, we can bound the Ricci curvature away from 0 by following
geodesics back to initial data, provided that the matter is supported initially on
a suitably large portion of the mass shell, specifically, that its support intersects
every open set. By exploiting conservation of the inner product of velocity with
a Killing vector along any geodesic, we may weaken this to the condition that
the matter intersects every open set of sufficiently small tangential momentum.
The contradiction yields strong cosmic censorship.

The arguments of the present paper have been adapted from our recent
work [14] on strong cosmic censorship in surface symmetry, in particular, the
case of hyperbolic symmetry. In the context of the type of arguments employed
here, the hyperbolic symmetric case is in fact considerably more complicated
than the T 2 symmetric case, because its Lie algebra is non-abelian and Killing
vectors can vanish. Moreover, the hyperbolic symmetric case also may admit
Cauchy horizons on account of global phenomena, and these must be treated
by a separate and very different method. The reader is strongly encouraged to
look at [14].

2Strictly speaking, the characterization of the boundary in [19] concerns a class of initial
data too special, for in the present paper it will be assumed that the support of f on the mass
shell is non-compact. These results can be easily adapted, however. See for instance [14] for
this adaptation in the surface symmetric case.
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2 The Einstein-Vlasov system

Let (M, g) be a 4-dimensional spacetime with C2 metric. Let P ⊂ TM denote
the set of all future directed timelike vectors of length −1. We will call P the
mass shell. Let f denote a nonnegative function f : P → R. We say that
{(M, g), f} satisfies the Einstein-Vlasov system (with vanishing cosmological
constant Λ) if

Rµν −
1

2
gµνR = 8πTµν , (1)

pα∂xαf − Γα
βγpβpγ∂pαf = 0, (2)

Tαβ(x) =

∫

π−1(x)

pαpβf, (3)

where pα define the momentum coordinates on the tangent bundle conjugate to
xα, where π : P → M denotes the natural projection, and the integral in (3) is
to be understood with respect to the natural volume form on π−1(x).

We call f the Vlasov field. The equation (2) is just the statement in co-
ordinates that f be preserved along geodesic flow on P . In physical language,
f describes thus the distribution of so-called collisionless matter, and some-
times we shall refer to solutions of the system (1)–(3) as collisionless matter
spacetimes.

For any null vector V , in view of the condition f ≥ 0, (3) and (1), one
obtains the inequality

RµνV µV ν ≥ 0. (4)

Collisionless matter spacetimes thus satisfy the null convergence condition.
For a full discussion of the Einstein-Vlasov system, see [1, 17].

3 T
2 symmetry

We will say that a spacetime (M, g) is T 2 symmetric if the Lie group T 2 acts
differentiably on (M, g) by isometry, and the group orbits are spatial. See [3]
for a general discussion. The Lie algebra is spanned by two commuting Killing
fields X and Y which are nonvanishing. We may normalise these so that the
quantity

R = g(X, X)g(Y, Y ) − g(X, Y )2 (5)

gives the area element of the group orbits when multiplied by X ∧ Y . In par-
ticular, X and Y are nowhere vanishing in the spacetime.

The Gowdy case studied in [19] is a special case of the above, when the
so-called twists of X and Y vanish. Note that in the vacuum case, if (M, g) is
globally hyperbolic and spatially compact, then either it is Gowdy, or its spatial
topology is T 3.
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4 The main theorem

Theorem 4.1. Let (M, g) be a globally hyperbolic T 2-symmetric spacetime with
C2 metric, with compact Cauchy surface Σ = T 3 topologically, let X and Y be
globally defined Killing fields spanning the Lie algebra, let R be as in (5). Assume

1. All past incomplete causal geodesics γ(t) satisfy R(t) → 0, and

2. f : P → R is such that g, f satisfy the Einstein-Vlasov system, with
f ∈ C0, and

3. There exists a constant δ > 0 such that for any open U ⊂ P ∩ π−1(Σ) we
have that f does not vanish identically on U∩{p : g(p, X)2+g(p, Y )2 < δ}.

Then (M, g) is past inextendible as a C2 Lorentzian manifold.

With the usual convention for time orientation, Assumption 1 above has been
shown in [19] for maximal developments of all sufficiently regular T 2 initial data
sets (with topology T 3) for (1)–(3), for which f does not vanish identically, pro-
vided that f is initially compactly supported in P ∩ π−1(Σ). As in [14], this
argument can easily be adapted to some class where the data remain compactly
supported in the tangential momentum directions, but are allowed in other di-
rections to decay sufficiently fast initially with respect to linear coordinates on
P . Assumption 2 of course holds for such maximal developments by defini-
tion. Within this extended class, Assumption 3 can be viewed as a genericity
assumption. Thus the above theorem implies strong cosmic censorship (in its
C2-inextendibility formulation) in the past direction.

On the other hand, the future inextendibility requirement for strong cosmic
censorship holds for maximal developments of arbitrary T 2-symmetric initial
data (with topology T 3) for (1)–(3) in view of the results of [2, 13]. The results
of [13] are more elementary than those here, but also rest on the extendibility
of the Killing vectors.

Thus, Theorem 4.1 implies strong cosmic censorship for T 2 symmetric space-
times with collisionless matter and spatial topology T 3.

5 Cauchy horizon rigidity

We show in this section that under the first assumption of Theorem 4.1, Cauchy
horizons must inherit a certain rigidity, namely, at regular points, the Ricci
curvature in the direction of the null generator must vanish.

Proposition 5.1. Let (M, g) be a globally hyperbolic T 2 symmetric spacetime
as in Theorem 4.1, satisfying Assumption 1, but not necessarily Assumptions 2
and 3. Suppose (M, g) is past extendible and let H− denote the past Cauchy
horizon of Σ in the extension (M̃, g̃). Then there exists a dense subset S̃ ⊂ H−,
at which TpH− is a hyperplane whose orthogonal complement is spanned by a
null vector V , for which

Ric(V, V ) ≤ 0.
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Proof. H− is an achronal Lipschitz submanifold [16]. By the results of [8], it is
differentiable on a dense subset S, on which its tangent plane must clearly then
be null.

In what follows we will relate the null generator to TpH− at regular points
to the span of the Killing vector fields.

By the results of [13], X and Y extend C2 through H−. (That is to say,
they can be extended to C2 vector fields on M̃, not necessarily Killing.)

Let p ∈ H− be regular. The vectors X and Y must clearly be tangent to
H− at p. This follows since the integral curves of X , Y through points of M
stay in M.

Define
H−

2 = {X ∧ Y 6= 0} ∩ H−,

and
H−

1 = int({X ∧ Y = 0, X 6= 0, Y 6= 0}),

where int denotes the interior with respect to the topology of H−. These are
clearly open subsets of H−.

Lemma 5.1. If p ∈ H−

2 , then X(p), Y (p) span a null plane, tangent to H−

if in addition p ∈ S. If p ∈ H−

1 , then X and Y lie in a null direction, again
tangent to H− if in addition p ∈ S. Finally,

H− = H−

1 ∪H−

2 . (6)

Proof. By the assumption that R → 0 along any causal geodesic approaching
H−, it follows that R extends to a C2 function vanishing along H−. From (5),
it is clear that at points p ∈ H−

2 , the plane spanned by X(p) and Y (p) is null.
The first statement of the Lemma follows in view also of the fact that X and Y
are tangent to H− at S.

To prove (6), it is equivalent to prove that the set

{X = 0} ∪ {Y = 0}

has empty interior in H−. This in turn will follow from the following statement:
Let Z be a vector field in the span of X and Y , such that Z does not identically
vanish on the spacetime. Since R > 0 in the spacetime, in fact, it follows that
Z vanishes nowhere in the spacetime. Then {Z = 0} has empty interior in H−.

Let Z be then as above, and let U denote the interior of {Z = 0}.
We will first show that ∇Z vanishes identically in U . For q ∈ U ∩ S, let

E1(q), E2(q), L(q), K(q) denote a null frame where E1(q), E2(q), K(q) are
tangent to H− at q. For any vector W (q), we compute:

g(∇Ei
Z, W ) = Eig(Z, W ) − g(Z,∇Ei

W ) = 0,

g(∇KZ, W ) = Kg(Z, W ) − g(Z,∇KW ) = 0,

g(∇LZ, Ei) = −g(∇Ei
Z, L) = 0,

g(∇LZ, K) = −g(∇KZ, L) = 0,
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g(∇LZ, L) = 0,

where we have used the Killing property of Z and its vanishing in U . Thus ∇Z
vanishes identically in U ∩S, and thus, by density and continuity, identically on
U .

From the well known relation

∇α∇βZγ = RαβγδZ
δ

which holds for any Killing vector field Z, by considering a family of timelike
geodesics transverse to H−, it follows immediately that, if U 6= ∅, then Z must
vanish identically in a neighborhood of S ∩U in M. Since Z does not vanish at
any point of M, and S is dense in U , we must have U = ∅. This shows (6).

We turn to show the second statement of the Lemma. Consider a point
p ∈ H−

1 ∩ S. Completing X to a C2 frame X , V1, V2, V3 for the tangent bundle
in a neighborhood of p, we may write

Y = αX + β1V1 + β2V2 + β3V3

where βi, α are C2 functions. Since H−

1 is open, we have

β1 = β2 = β3 = 0 (7)

in a neighborhood in H− of p.
From [X, Y ] = 0 we obtain

(Xα)X + (Xβ1)V1 + (Xβ2)V2 + (Xβ3)V3 = 0,

and thus α in particular is constant along integral curves of X . On the other
hand, for V tangent to H− at p,

0 = g(∇V Y, V )

= g(∇V (αX + β1V1 + β2V2 + β3V3), V )

= αg(∇V X, V ) + (V α)g(X, V ) +
∑

βig(∇V Vi, V ) +
∑

i

(V βi)g(Vi, V )

= (V α)g(X, V ).

If X is spacelike, then the orthogonal space of X is transverse to H− at p,
and thus the above implies that V α = 0 for a dense set of directions, and
thus by continuity argument for all directions tangent to H−. By an additional
continuity argument we obtain that Y is a constant multiple aX in the connected
component of p in H−

1 . Defining Z = Y − aX and applying the previous result
that {Z = 0} has empty interior in H−, we obtain a contradiction. Thus X is
null.

To proceed we will first need the following
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Lemma 5.2. Let p ∈ S and let K denote a Killing vector field such that K(p)
is null. Then

∇KK(p) = κ(p)K(p), (8)

for a real number κ.

Proof. Complete K(p) to a null frame K(p), L(p), E1(p), E2(p) at TpM̃, such
that E1, E2 are in TpH−.

Note first that

E1g(K, K)(p) = E2g(K, K)(p) = 0,

since p is a local minimum of g(K, K) along H− to which both E1 and E2 are
tangent. Thus, by the Killing equation,

0 = E1g(K, K)(p) = 2g(∇E1
K, K)(p) = −g(∇KK, E1)(p),

0 = E2g(K, K)(p) = 2g(∇E2
K, K)(p) = −g(∇KK, E2)(p).

On the other hand Kg(K, K) = 0 on account of the Killing equation, and thus
similarly we have g(∇KK, K) = 0. Thus, ∇KK(p) is in the direction K, and κ
of (8) can be obtained from

1

4
Lg(K, K)(p) =

1

2
g(∇LK, K)(p) = −

1

2
g(∇KK, L)(p)

.
= κ.

We will need a further partition of H−

1 and H−

2 . Applying Lemma 5.2
to points p ∈ H−

1 ∩ S and the vector K = X , we deduce ∇XX = κ(p)X . By
density and continuity, ∇XX = κX for all points of H−

1 , where κ is a continuous
function on H−. Define

H−

1,0 = {p ∈ H−

1 , κ(p) = 0}

and
H−

1,reg = H−

1 \ H−

1,0.

The set H−

1,reg is clearly open.

On the other hand, let p ∈ H−

2 , and let L denote a C2 null vector field
transverse to the C2 distribution spanned by X and Y in a a neighborhood of
p. Consider the C1 function LR on M̃. LR restricted to H− is continuous.
Define

H−

2,0 = {p ∈ H−

2 , LR = 0}

and
H−

2,reg = H−

2 \ H−

2,0.

Again, the set H−

2,reg is clearly open. Note that H−

1,0 ∩ S coincides with set of
points p where κ(p) = 0 for any κ(p) given by Lemma 5.2.
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We have

H− = H−

1,reg ∪H−

2,reg ∪H−

1,0 ∪H−

2,0

= H−

1,reg ∪H−

2,reg ∪ (H−

1,0 ∪H−

2,0) ∩ S. (9)

We would like to do certain computations with frames “adapted” to the
horizon H−. For this, we will need that the various parts of the horizon have
sufficient regularity. Our first result in this direction is the following

Lemma 5.3. H−

1,reg is a C3 hypersurface.

Proof. First we show that H−

1,reg is C2. Consider the function

h = g(X, X).

This extends C2 through H−. Clearly, if κ 6= 0, then ∇h 6= 0, and thus, since
then H−

1,reg ⊂ h−1(0), we have then that H−

1,reg is C2.

Now consider the C2 orthogonal distribution to the one-dimensional distri-
bution spanned by X . Since H−

1,reg has been shown to be C1 (in fact C2), and
its normal coincides with X on S, then its normal is in the direction of X every-
where, i.e. its tangent space is the orthogonal complement of X . Thus H−

1,reg is

an integral manifold of the above mentioned C2 distribution, and, consequently,
is in fact C3.

For H−

2,reg we similarly show

Lemma 5.4. H−

2,reg is a C3 hypersurface.

Proof. As before, first we show that H−

2,reg is C2. Recall that the function R

extends as a C2 function through the boundary. Moreover,

H−

2,reg ⊂ {R = 0}. (10)

Given p ∈ H−

2,reg, since by definition LR(p) 6= 0 for some L defined near p, it

follows that ∇R 6= 0. Thus {R = 0} is a C2 submanifold near p, which must
thus coincide with the Lipschitz manifold H−

2,reg in view of (10). Thus, H−

2,reg

is C2.
To show additional regularity, we shall construct a 3-dimensional C2 distri-

bution tangent to H−

2,reg.
The vectors X and Y span a two-dimensional distribution satisfying XR =

0, Y R = 0. Let E be a C2 section of the C2 distribution orthogonal to
that spanned by X and Y . Consider a regular point p ∈ H−

2 ∩ S. We may
choose Killing fields X̃, Ỹ so that X̃(p) is null, normalised so that again R =
g(X̃, X̃)g(Ỹ , Ỹ ) − g(X̃, Ỹ )2. We have at p

ER(q) = Eg(X̃, X̃)g(Ỹ , Ỹ ) + g(X̃, X̃)Eg(Ỹ , Ỹ ) − 2g(X̃, Ỹ )Eg(X̃, Ỹ )

= g(∇X̃X̃, E)g(Ỹ , Ỹ )

= g(κ̃X̃, E)g(Ỹ , Ỹ )

= 0,
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where we have used g(X̃, X̃) = 0, g(X̃, E) = 0 and Lemma 5.2. Thus, ER = 0
on H−

2 ∩ S and thus by continuity and density, on H−

2 .
One easily sees that H−

2 is an integral manifold of the distribution spanned
by the C2 vector fields E, X , and Y , and is thus C3. (We in fact only need the
C2 statement in what follows.)

Lemma 5.5. For q ∈ H−

2,reg, let K denote a Killing vector field such that

K(q) is a null generator for TqH
−

2,reg. K can be completed to a C2 frame K,

L, E1, E2 for the tangent bundle of M̃ near q, such that at q, the vectors
K(q), N(q), E1(q), E2(q) constitute a null frame, the vector field E1 is Killing
in M, E2 is tangent to the Cauchy horizon and

g(K,∇E1
E1)(q) = 0, (11)

E1E1g(K, K)(q) = 0, (12)

g(K,∇E2
E2)(q) = 0, (13)

E2E2g(K, K)(q) = 8(g(∇E2
K, E1))

2(q). (14)

Proof. Let E1 denote a Killing field such that g(E1, E1)(q) = 1, and let E2

denote (as in the proof of Lemma 5.4) a C2 section (in a neighborhood of q)
of the distribution orthogonal to that spanned by the Killing fields, with the
additional restriction that g(E2, E2)(q) = 1.

To see (12), note first that Y g(X, X) = 0 everywhere in M, and in addi-
tion, certainly Xg(X, X) = 0. Similarly Xg(Y, Y ) = 0, Y g(Y, Y ) = 0. Thus
Kg(E1, E1) = 0 identically, in particular (11) holds, and E1E1g(K, K) = 0
identically, in particular (12).

For (13), just note

g(K,∇E2
E2) = E2g(K, E2) − g(∇E2

K, E2) = E2g(K, E2) = 0,

where we have used that g(K, E2) = 0 identically, as well as the Killing property
of K.

Note also that E2g(K, K)(q) = 0 since q is a local minimum of g(K, K)
restricted to H−. Now, by the regularity of Lemma 5.4, it follows in particular,
that the integral curves of E2 through points of H−

2,reg stay on H−

2,reg for short
time, and thus, since

g(K, K)g(E1, E1) − g(K, E1)
2 = 0

identically on H−, we may differentiate twice at q in the direction E2

E2E2g(K, K)g(E1, E1)(q) + 2E2g(K, K)E2g(E1, E1)(q)

+ g(K, K)E2E2g(E1, E1)(q)

− 2(E2g(K, E1))
2(q) − 2g(K, E1)E2E2g(K, E1) = 0

to obtain
E2E2g(K, K)(q) = 2(E2g(K, E1))

2. (15)
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On the other hand,

E2g(K, E1) = g(∇E2
K, E1) + g(K,∇E2

E1)

= g(∇E2
K, E1) − g(E2,∇KE1)

= g(∇E2
K, E1) − g(E2,∇E1

K)

= g(∇E2
K, E1) + g(E1,∇E2

K)

= 2g(∇E2
K, E1),

where we have used the Killing property of E1 and K, as well as [E1, K] = 0.
The above and (15) gives (14).

Lemma 5.6. Let q ∈ H−

1,reg, let K denote the Killing vector field X. Then K

can be completed to a C2 frame K, L, E1, E2 for the tangent bundle of M̃ near
q, such that at q, the vectors K(q), L(q), E1(q), E2(q) constitute a null frame,
and the relations (11), (12), (13) hold, as well as (14), where now both sides of
the equality vanish.

Proof. Choose unit vectors E1(q) and E2(q) tangent to H− at q and extend
these as C2 vector fields in M̃ tangent to H− in a neighborhood of q. This is
possible in view of Lemma 5.3. Define L to be an arbitary extension of a null
vector L(q) orthogonal to E1(q) and E2(q), such that g(L(q), K(q)) = −2.

Recall that g(K, K) = 0 identically on H−

1,reg. Since the integral curves of

the Ei remain on H−

1,reg for short time, we have (12) and E2E2g(K, K) = 0.

Again, since the Ei are tangent to H−

1,reg in a neighborhood of q, we have that
g(K, Ei) = 0 on this neighborhood, and thus in particular

g(K,∇Ei
Ei)(q) = Eig(K, Ei)(q) − g(∇Ei

K, Ei)(q) = Eig(K, Ei)(q) = 0

where we have also used the Killing property of K. This gives (11) and, in view
also of E2E2g(K, K) = 0 derived earlier, (14), with both sides equal to 0.

For the case of (H−

1,0 ∪ H−

2,0) ∩ S, it is not clear that one can obtain the

regularity necessary to consider adapted C2 (or even C1) frames as above. The
highly degenerate nature of this case, however, and the nature of the arguments
that follow mean that the following result will suffice for us:

Lemma 5.7. Let q ∈ (H−

1,0 ∪ H−

2,0) ∩ S, and let K denote a Killing vector

field such that K(p) is null, and consider any C2 frame K, L, E1, E2 for the
tangent bundle near q, extending K, where K(q), L(q), E1(q), E2(q) is a null
frame such that E1(q) and E2(q) are tangent to H− at q. Then

E1E1g(K, K)(q) ≥ 0,

E2E2g(K, K)(q) ≥ 0.
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Proof. Let K, L, E1, E2 be any frame as in the statement of the Lemma. (There
are no obstructions to the construction of such a frame. In the case of q ∈ H−

1,0,
we may take K = X .)

In the case of q ∈ H−

1,0∩S recall κ defined by ∇XX = κX . For q ∈ H−

2,0∩S,
consider the κ of Lemma 5.2 applied to K. Consider an arbitrary vector field W
transverse to H− at q. By the condition κ(q) = 0, we have that Wg(K, K)(q) =
0. On the other hand, we have that g(K, K) > 0 in the spacetime. Thus
W (Wg(K, K))(q) ≥ 0. Since any Ei is a limit of transversal vectors, it follows
that EiEig(K, K)(q) ≥ 0, as desired.

We may now complete the proof of Proposition 5.1. Let

q ∈ H−

1,reg ∪H−

2,reg ∪ (H−

1,0 ∪H−

2,0 ∩ S),

and let K, L, E1, E2 be a frame as in Lemma 5.5, Lemma 5.6, or Lemma 5.7.
Recall now the identity

2g(K, K) = −2Ric(K, K) + 2g(∇K,∇K). (16)

We evaluate (16) at q. In view of the properties of the frame we obtain

2g(K, K)(q) = −2∇2
L,Kg(K, K) + ∇2

E1,E1
g(K, K) + ∇2

E2,E2
g(K, K)

= −2L(K(g(K, K)) + 2∇∇LKg(K, K) + E1(E1(g(K, K)))

+ E2(E2(g(K, K))) −∇∇E1
E1

g(K, K) −∇∇E2
E2

g(K, K)

= E1(E1(g(K, K))) + E2(E2(g(K, K))) + 4g(∇∇LKK, K)

− 2g(∇∇E1
E1

K, K) − 2g(∇∇E2
E2

K, K)

= E1(E1(g(K, K))) + E2(E2(g(K, K))) − 4g(∇KK,∇LK)

+ 2g(∇KK,∇E1
E1) + 2g(∇KK,∇E2

E2)

= E1(E1(g(K, K))) + E2(E2(g(K, K))) − 8κ2

+ 2g(∇KK,∇E1
E1) + 2g(∇KK,∇E2

E2)

= E1(E1(g(K, K))) + E2(E2(g(K, K))) − 8κ2

+ 2κg(K,∇E1
E1) + 2κg(K,∇E2

E2).

In the case of q ∈ H−

2,reg, from Lemma 5.5 we obtain

2g(K, K)(q) = −8κ2 + 8(g(∇E2
K, E1))

2(q). (17)

In the case of q ∈ H−

1,reg, from Lemma 5.6 we obtain

2g(K, K)(q) = −8κ2. (18)

Finally, in the case of q ∈ (H−

1,0 ∪H−

2,0) ∩ S, from Lemma 5.7 we obtain

2g(K, K)(q) ≥ 0. (19)
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On the other hand,

2g(∇K,∇K)(q) = −4g(∇LK,∇KK) + 2g(∇E1
K,∇E1

K) + 2g(∇E2
K,∇E2

K)

= −8κ2 + 2(g(∇E1
K, E1))

2 + 2(g(∇E1
K, E2))

2

− 4g(∇E1
K, K)g(∇E1

K, L) + 2(g(∇E2
K, E2))

2

+ 2(g(∇E2
K, E1))

2 − 4g(∇E2
K, K)g(∇E2

K, L)

= −8κ2 + 4(g(∇E2
K, E1))

2.

We thus have
Ric(K, K) = −2(g(∇E2

K, E1))
2 (20)

in H−

2,reg,
Ric(K, K) = 0 (21)

in H−

1,reg, and
Ric(K, K) ≤ 0

in (H−

1,0 ∪H−

2,0) ∩ S. In all cases,

Ric(K, K) ≤ 0.

for any q ∈ S̃
.
= ((H−

1,0 ∪ H−

2,0) ∩ S) ∪ H−

1,reg ∪ H−

2,reg. By (9), this suffices to
obtain the Proposition.

In the Gowdy case, the right hand side of (20) vanishes in view of the twist-
free condition for the Killing fields. More on this in Section 6.

Proposition 5.2. Let (M, g) be as in the statement of Proposition 5.1, and
assume that it satisfies in addition the null convergence condition (4). Then

Ric(K, K)(q) = 0, (22)

on S̃.

Proof. This follows from Proposition 5.1 by a simple continuity argument. Ex-
tend K in a neighborhood of q to be a C2 null vector. Were Ric(K, K)(q) < 0,
this would have to hold for a point p ∈ M, and this contradicts (4).

The above Proposition clearly applies to (M, g) satisfying Assumptions 1
and 2 of Theorem 4.1, since collisionless matter spacetimes satisfy (4).

6 Aside: Killing horizons

Recall that we call a C1 hypersurface H a Killing horizon if its normal bundle
is spanned by a null vector field which is Killing on H.

For a C2 Killing horizon with K a null Killing vector field spanning the
normal bundle, Proposition 6.15 of Heusler [15] implies Ric(K, K) = 0.3 Thus,

3The regularity assumptions are not made precise in this proposition, but C2 is certainly
sufficient.
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since H−

1,reg is a C3 Killing horizon, the result (21) could alternatively have
been deduced from this proposition, whose proof in any case is essentially the
computation we have done above.

In fact we have

Proposition 6.1. Let (M, g) be as in the statement of Proposition 5.1, and
assume that it is in fact Gowdy symmetric. Then H−

1,reg ∪ H−

2 is a C3 Killing
horizon.

Proof. For H−

1,reg, there is nothing to say, in view of the previous. It suffices

thus to show that H−

2 is a C3 Killing horizon.
The arguments below are also inspired by a computation in [15]. The result

for H−

2,reg could alternatively be deduced from the results of [4]. Because H−

2 is
a priori only Lipschitz, it is not clear that the results of [15, 4] can be applied
directly, and we thus give here a self-contained argument.

Without loss of generality, assume X(p) = K(p) is null for some p ∈ H−

2 ,

and consider the vector field K̂ defined by

K̂ = X − g(X, Y )(g(Y, Y ))−1Y. (23)

This is clearly null in a neighborhood of p on H−

2 , and is orthogonal to Y in
a neighborhood in M of p. Let E2 be a C2 section of the C2 distribution
orthogonal to that spanned by X and Y near p. We will show that

E2(g(X, Y )(g(Y, Y ))−1) = 0. (24)

We compute

E2(g(X, Y )(g(Y, Y ))−1) = g(Y, Y )−2
(

2g(Y, Y )g(∇E2
X, Y )

− 2g(∇E2
Y, Y )g(X, Y )

)

= g(Y, Y )−2
(

− 2g(Y, Y )g(∇Y X, E2)

+ 2g(∇Y Y, E2)g(X, Y )
)

= g(Y, Y )−2
(

− 2g(Y, Y )g(∇XY, E2)

+ 2g(∇Y Y, E2)g(X, Y )
)

= −2g(Y, Y )−1
(

g(∇XY, E2)

− g(X, Y )g(Y, Y )−1g(∇Y Y, E2)
)

= −2g(Y, Y )−1g(∇X−g(X,Y )g(Y,Y )−1Y Y, E2)

= 0.

In the above, we have used [X, Y ] = 0, the Killing property and the twist free
property of the Killing fields.

Clearly, an identity analogous to (24) holds when E2 is replaced by X or Y .
Thus, let W be any vector field in the span of E2, X and Y . Let pi → p be

a sequence where pi ∈ M, the original spacetime. It is clear that the integral
curves of W through pi cannot meet H−

2 in a small neighborhood of p for small

13



time. For suppose γi was such a curve. There would be a first point of γi meeting
H−

2 , i.e., there would be a segment γi([t0, t1]) with γi([t0, t1)) ⊂ M, γi(t0) = pi,
and γi(t1) ∈ H−

2 . The above computation shows that W (g(X, Y )/g(Y, Y )) = 0,
identically on γ([t0, t1]). Moreover, this remains true if X , and Y are replaced
by any other Killing vector fields Ỹ 6= X̃, g(Ỹ , Ỹ ) > 0. Choose X̃ such that
X̃ is null at the point γ(t1) ∈ H−

2 . We have g(X̃, Ỹ )(γ(t1)) = 0, and thus
g(X̃, Ỹ ) = 0 identically along γ([t0, t1]). But at pi, X̃ and Ỹ span a spacelike
two-plane, thus there is a unique direction on this plane orthogonal to X̃ at
pi. Applying the above with a Killing field Ỹ 6= X̃ such that X̃ and Ỹ are not
orthogonal at pi, we obtain a contradiction.

Since integral curves of W through p are limits of integral curves of W
through pi, it follows that these curves must remain on the boundary of M,
i.e. on H−

2 . One thus easily sees that H−

2 is locally an integral manifold of the
C2 distribution spanned by X , Y , and E2, and thus C3.

The above now shows that g(X, Y ) = 0 along H−

2 for any choice of Y , and
thus X is null in the connected component of p. We have thus obtained that
H−

2 is a C3 Killing horizon, as desired.

It would be nice to obtain that H−

1 is C3. This would show that there is a
dense open subset of H− which is a C3 Killing horizon. See also [10].

Finally, we also note the following

Proposition 6.2. Let (M, g) be as in the statement of Proposition 5.1, and
suppose that M is vacuum, i.e. Ric = 0 identically. Then H−

1,reg ∪ H−

2,reg is a

C3 Killing horizon.

Proof. For H−

1,reg there is nothing to show. For H−

2,reg in the Gowdy case, there
is nothing to show in view of the previous proposition.

Let us assume thus that the spacetime is not Gowdy, and let p ∈ H−

2,reg.
Let K be a Killing vector field such that K(p) is null. Formulas (22) and (20)
together imply that g(∇E2

K, E1) = 0. This implies that the twist quantity of
K vanishes. In the vacuum case, this implies that this quantity vanishes on all
of M. Since there is a unique Killing vector field whose twist constant vanishes
(in view of the assumption that the spacetime M is not Gowdy) it follows that
the null Killing vector field at any other q ∈ H−

2,reg must be K(q). Thus, H−

2,reg

is a Killing horizon.

7 The contradiction

For the following proposition, the reader should again compare with [14]. The
considerations in the present paper are again easier, in view of the fact that the
Killing fields are globally defined and do not vanish in the original spacetime.

Proposition 7.1. Let (M, g) be as in the statement of Theorem 4.1. Then for
a dense subset of the dense subset S̃ of Proposition 5.1,

Ric(K, K) > 0. (25)
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Proof. We will show that given any p ∈ S, where S is as in the proof of Proposi-
tion 5.1, and any open neighborhood V ⊂ H− of p in H−, there exists a q ∈ V∩S̃
satisfying Ric(K, K) > 0.

Let K(p), L(p), E1(p), E2(p) be null frame at p such that X and Y lie in
the plane spanned by K(p) and E1(p). Let X(p) = aK(p) + bE1(p), Y (p) =
cK(p)+ dE1(p). We have that max(|a|, |c|) > 0. Consider the geodesic through
p with

γ̇(p) =
1

4
δ(max(|a|, |c|))−1L + 2δ−1(max(|a|, |c|)K.

We clearly have g(γ̇, γ̇) = −1, while

|g(γ̇, X)(p)| =

∣

∣

∣

∣

1

4
δg(L, K)a(max(|a|, |c|))−1

∣

∣

∣

∣

≤ δ/2, (26)

|g(γ̇, Y )(p)| =

∣

∣

∣

∣

1

4
δg(L, K)c(max(|a|, |c|))−1

∣

∣

∣

∣

≤ δ/2. (27)

Since γ is a geodesic and X , and Y are Killing we have γ̇g(γ̇, X) = 0, γ̇g(γ̇, Y ) =
0 and thus the inequalities (26), (27) hold throughout γ in M.

Now, γ must intersect the Cauchy hypersurface at some time T . By con-
tinuity of geodesic flow, for every neighborhood V in H− of p there exists a
neighborhood U0 of γ′(T ) ∈ P in the topology of P ∩π−1(Σ) such that geodesics
with initial condition on U intersect H− transversally in V . So select U0 so that
this is the case for our chosen V , and then, in view of Assumption 2 and the
continuity of f , select U1 such that f > ǫ > 0 on an open U1 ⊂ U0. By the
properties of the geodesic flow, the projection on H− of the set of all geodesics
with initial condition in U1 contains a nonempty open set V1.

Let q ∈ S̃ ∩ V1 6= ∅ and let V be a null generator for H− at q. By Proposi-
tion 5.1, Ric(V, V ) = 0. On the other hand, since f can easily be seen to extend
continuously to P ∩ π−1(H−), we have that f > 0 at some point of P ∩ π−1(q),
and thus in an open set. In particular, the integral defined by (3) is strictly
positive at q when contracted twice with the null vector V .

Extend V arbitrarily as a C2 null vector field in a neighborhood of q. In the
original spacetime M, the right hand side of (3) is equal to Ric(V, V ) in view
of (1). Taking a sequence of points qi → q, with qi ∈ M, then Ric(V, V )(qi) →
Ric(V, V )(q) by the fact that M̃ is assumed C2. By Fatou’s lemma, the right
hand side of (3) contracted twice with V at q is less than or equal to the limit of
its value at qi when contracted twice with V . The former we have just shown to
be strictly positive, while the latter equals Ric(V, V )(q). Thus Ric(V, V )(q) > 0,
as desired.

The proof of Theorem 4.1 follows immediately from Propositions 5.2 and 7.1.

8 Comments

The techniques of this paper are tied heavily to continuity of the curvature
tensor. The paper thus does not address weaker conditions of inextendibility,
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for instance, inextendibility as a C0 metric, which may be more correct from a
physical point of view. See [7, 11, 12].

It is clear that Assumption 2 of Theorem 4.1 can be weakened to the as-
sumption that the equations (1)–(3) are satisfied with (3) replaced by

Tαβ(x) = T̃αβ(x) +

∫

π−1(x)

pαpβf

where T̃αβ(x) satisfies T̃αβV αV β ≥ 0 for all null V α. Thus strong cosmic censor-
ship can be shown in T 2 symmetry when the Einstein-Vlasov system is extended
to include other matter fields, provided that Assumption 1 can also be shown for
the maximal development of suitable data.
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