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Abstract

This paper deals with the construction of high-order ADER numerical schemes for

solving the one-dimensional shallow water equations with variable bed elevation.

The non-linear version of the schemes is based on ENO reconstructions. The gov-

erning equations are expressed in terms of total water height, instead of total water

depth, and discharge. The ENO polynomial interpolation procedure is also applied

to represent the variable bottom elevation. ADER schemes of up to fifth order of

accuracy in space and time for the advection and source terms are implemented

and systematically assessed, with particular attention to their convergence rates.

Non-oscillatory results are obtained for discontinuous solutions both for the steady

and unsteady cases. The resulting schemes can be applied to solve realistic problems

characterized by non-uniform bottom geometries.
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1 INTRODUCTION

There is a wide range of physical situations, such as flows in open channels and

rivers, that can be mathematically represented by first-order non-linear sys-

tems of partial differential equations, whose derivation involves an assumption

of the shallow water type. With rare exceptions, the governing equations are

hyperbolic. The loss of hyperbolicity may occur in models of the multi-layer

type, for which the equations are of mixed elliptic- hyperbolic type. Hyper-

bolicity and non-linearity mean that even for smooth initial conditions the

solution may exhibit shock waves, or bores. Godunov-type methods, first de-

veloped in the aerospace industry to solve the compressible Euler equations,

have steadily been exported to other application areas, including shallow wa-

ter type flows. Early works in this direction are, for example, [25], [26], [9],

[2], [7], [8]. An informative paper is [34], in which a large number of numeri-

cal methods for the one-dimensional shallow water equations are implemented

and assessed. Further information on Godunov schemes for the shallow water

equations is found in the textbook [27] and references therein.

Realistic shallow-water type models will include source terms, that is, non-

differential terms that are functions of the vector of unknowns. For sometime it
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has been accepted that the discretization of source terms can be as challenging

as for the non-linear advection terms. It must be said that for most cases, even

naive discretizations for source terms work reasonably well, but there are some

well documented situations in which only sophisticated schemes can perform

adequately. In the last decade there has been considerable progress on the

development of special schemes to deal with source terms, amongst which the

class of well-balanced schemes stands out, see for example [12,32,1].

When solving real problems one is likely to encounter all sorts of situations,

with a high probability that naive schemes will compromise the quality and

reliability of the solution.

Difficulties in discretizing source terms are present at the first order level. A

separate issue is that of constructing schemes of higher order of accuracy. In

view of Godunov’s theorem [11], this is difficult even for equations without

source terms, and schemes of second or higher order must necessarily be non-

linear to avoid the production of unphysical oscillations in the vicinity of

large spatial gradients. There are currently good second-order schemes for the

shallow water equations, although it is sometimes difficult to ascertain whether

the second-order of accuracy is valid for all the terms involved or not.

In this paper we study numerical methods that address these two difficulties,

namely (i) source terms and (ii) high order of accuracy. There have been some

works in this direction. For example, ENO and WENO methods have already
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been applied to the shallow water equations; see for instance [4].

Here we are concerned with ADER type schemes. These methods were intro-

duced in [29], where schemes of arbitrary accuracy were formulated for linear

problems in one and multiple space dimensions. Corresponding schemes for

non-linear systems are reported in [30], [22], [31], [24]. Further developments

of ADER schemes are reported in [21], [18], [19], [17], [14], [15], [16], [6], [5].

The ADER methodology is a Godunov-type approach in which the numerical

flux uses the solution of the so-called Derivative Riemann Problem (DRP)

[30], [28]. In this type of Riemann problems the initial conditions consist of

two variable vectors either side of the initial discontinuity, instead of two

constant vectors, as in the classical Godunov method. In the solution of the

intercell DRP to compute the numerical flux, the influence of the source term

is included, that is, the numerical flux knows of the source term. Then the

numerical source term is computed from a volume integral evaluated on high

order solutions in space and time, within the space-time volume. In this man-

ner ADER schemes of arbitrary order of accuracy for both the non-linear

advection and the source terms can be constructed. Preliminary results on

the ADER method for the shallow water equations are presented in [23], [31].

In this paper we report on ADER schemes based on ENO non-linear recon-

structions for the shallow water equations with source terms due to bot-

tom variation. The objective is to construct high-order, well-balanced non-
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oscillatory schemes. Well-balanced schemes are constructed using (i) a suit-

able formulation of the governing equations and (ii) a staggered grid for the

source terms. The free surface elevation and water discharge are defined at

the centre of the volume, while the bottom elevation is defined at the volume

interfaces. The source term and the numerical fluxes are then evaluated using

the solution of the Derivative Riemann problem [30], [28]. The resulting ADER

schemes are of arbitrary order of accuracy and are applicable to smooth and

discontinuous solutions, both steady and unsteady.

The rest of the paper is as follows. Sect. 2 is about the governing equations

and its reformulation. Section 3 describes the numerical methods of this paper.

Numerical results are presented in section 4. In section 5 we perform a detailed

convergence-rate study of the methods. Appendix A contains details of the

Cauchy-Kowalewski procedure for the equations of this paper and Appendix

B reports on convergence rates of the schemes for the model advection-reaction

equation.

2 FORMULATION OF THE PROBLEM

The shallow water equations can be written in conservative form for the simple

case of an horizontal bed channel and vanishing bottom friction in terms of
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Fig. 1. Formulation of the problem, data reconstruction (left), control volume and
Derivative Riemann problem (right).

the water depth D and water discharge Q in the following form [32,10]:















































∂D

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(

Q2

D
+

1

2
gD2

)

= −gD
∂b

∂x
,

(1)

where b is the bottom elevation, t and x are the temporal and spatial inde-

pendent variables respectively, and g is the acceleration due to gravity. See

Figure 1, where a longitudinal profile representing a couple of computational

cells is depicted.

It is known that when the equations include source terms standard numeri-

cal schemes applied to (1) do not perform satisfactorily, particularly for the

steady-state case. This is because only the relative position between the free

surface and the bed profile is known and the information regarding the abso-

lute position of the free surface (or of the bed) is lost. There are two physical

situation of interest here; one in which the particle velocity is zero, which we

call stationary flow, and one in which temporal partial derivatives in (1) are
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identically zero, steady flow. Standard explicit schemes for the shallow water

with source terms do not seem to converge to the exact solution in any of the

two cases above.

In order to design a numerical method capable of reproducing both steady

and unsteady solutions we follow the formulation of the equations reported in

[33], using the free surface elevation h = D + b as an unknown, with which (1)

becomes:















































∂h

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(

Q2

h − b
+

1

2
gh2 − gbh

)

= −gh
∂b

∂x
.

(2)

System (2) is hyperbolic with eigenvalues λ(i) and right eigenvectors R(i):

λ(1) = u − a, λ(2) = u + a, R(1) =





















1,

u − a





















, R(2) =





















1

u + a





















,

where u = Q/D is the flow velocity and a =
√

gD is the celerity.

The two main advantages of formulation (2) are that the model reproduces in

the correct manner the physics of the problem, and it allows us to use existing

Riemann solvers, such as the exact Riemann solver in [27], for the evaluation

of the numerical fluxes between neighbouring computational volumes.
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3 EQUATIONS AND NUMERICAL SCHEME

In this section we describe in detail our numerical methods for solving the

shallow water equations with source terms in one space dimension.

3.1 Finite Volume Schemes

System (2) can be written in the following conservative form:

∂U

∂t
+

∂F

∂x
= S (3)

where the unknown vector U, the flux vector F and the source term S are

given by

U =





















h

Q





















, F =





















Q

Q2

h−b
+ 1

2
gh2 − ghb





















, S =





















0

−gh ∂b
∂x





















.

Integration of (3) over the control volume Ii =
[

xi− 1

2

, xi+ 1

2

]

× [tn, tn+1] on the

x − t plane gives:

Un+1
i = Un

i − ∆t

∆x

(

Fi+ 1

2

− Fi− 1

2

)

+ ∆tSi . (4)
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Here Un
i is the cell average of the solution at time level tn, Fi+ 1

2

is the time

average of the flux at cell interface xi+ 1

2

and Si is the time-space average of

the source term over the control volume, namely

Un
i =

1

∆x

x
i+1

2
∫

x
i−

1
2

U (tn, x) dx, Fi+ 1

2

=
1

∆t

tn+∆t
∫

tn

F
(

xi+ 1

2

, t
)

dt,

Si =
1

∆t∆x

tn+∆t
∫

tn

x
i+1

2
∫

x
i−

1
2

S (x, t) dxdt.

(5)

3.2 The ADER Approach

In order to construct a numerical method for the solution of (3) we need

to define suitable approximations to Fi+ 1

2

and to Si, preserving the same

notation, which are then called the numerical flux and the numerical source,

respectively. We use the cell centred approach for the unknown vector U, while

for the bottom elevation, which appears in the formulation for the fluxes Fi+ 1

2

and for the source terms Si, we use an interface-centred approach; the averaged

values bi+ 1

2

are defined as

bi+ 1

2

=

xi+1
∫

xi

b (x) dx .

In order to develop high-order numerical schemes we use the ADER approach

for the evaluation of the numerical fluxes and of the numerical source. The

ADER approach consists of three steps: i) reconstruction of high-degree poly-

nomials starting from the cell average values of the solution; ii) solution of
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the derivative Riemann problem and evaluation of the intercell flux Fi+ 1

2

;

iii) evaluation of the numerical source Si by a high-order computation of the

space-time integral inside the control volume.

Point-wise values of the solution at time level tn are found from the recon-

structed high-degree polynomials. In this paper we use the ENO [13,20] re-

construction procedure in order to avoid spurious oscillations, leading to a

non-linear numerical scheme. We note that the reconstruction is performed

both for the unknown vector U and for the bottom elevation b (only once), as

depicted in Figure 1.

After the data reconstruction procedure we solve the following Derivative Rie-

mann Problem:

∂tU + ∂xF (U) = S (U) ,

U (x, 0) =







































pi (x) , x < xi+ 1

2

,

pi+1 (x) , x > xi+ 1

2

,

(6)

to find the solution at x = xi+ 1

2

, denoted by Ui+ 1

2

(τ), where pi (x) denotes

the reconstructed polynomial in the i-th cell. Note that the value bi+ 1

2

as well

as its spatial derivatives are known. Following [30,28] we find the approximate

flux at cell interface using an appropriate Gaussian rule:

Fi+ 1

2

=
N

∑

α=0

F
(

Ui+ 1

2

(γα∆t)
)

Kα, (7)
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where γα are suitable Gaussian coefficients. The solution Ui+ 1

2

(τ) of the DRP

problem (6) is found by first expressing it as a Taylor series expansion:

Ui+ 1

2

(τ) = U
(

xi+ 1

2

, 0+
)

+
r−1
∑

k=1

[

∂
(k)
t U

(

xi+ 1

2

, 0+
) τ k

k!

]

,

∂
(k)
t U

(

xi+ 1

2

, 0+
)

=
∂k

∂tk
U

(

xi+ 1

2

, 0+
)

,

(8)

where 0+ = limt→0+ t. The leading term U
(

xi+ 1

2

, 0+
)

is found by solving the

classical Riemann problem with piecewise constant data:

∂tU + ∂xF (U) = 0, U (x, 0) =







































pi

(

xi+ 1

2

)

, x < xi+ 1

2

,

pi+1

(

xi+ 1

2

)

, x > xi+ 1

2

,

(9)

and evaluating its solution at
(

x − xi+ 1

2

)

/t = 0. We call U
(

xi+ 1

2

, 0+
)

the

Godunov state, which in this paper is evaluated using the exact Riemann solver

[27]. The remaining terms in (8) are computed by replacing all time derivatives

∂
(k)
t U

(

xi+ 1

2

, 0+
)

by functions of spatial derivatives ∂(l)
x U

(

xi+ 1

2

, 0+
)

using the

Cauchy-Kowalesky procedure. The unknown spatial derivatives at t = 0+ are

found from the following linearized Riemann problems:

∂t

(

∂(k)
x U

)

+ A
(

U
(

xi+ 1

2

, 0+
))

∂x

(

∂(k)
x U

)

= 0, A (U) =
∂F

∂U
,

∂(k)
x U (x, 0) =







































d(k)pi

(

xi+ 1

2

)

, x < xi+ 1

2

,

d(k)pi+1

(

xi+ 1

2

)

, x > xi+ 1

2

,

(10)

11



where A (U) is the Jacobian of the system and the symbol d(k) denotes the

k− th derivative respect to the independent variable x. The boundary extrap-

olated values are found using the polynomials pi (x), pi+1 (x) obtained by the

ENO reconstruction procedure.

To evaluate the second component of the source term we first perform inte-

gration by parts:

S
(2)
i =

1

∆t∆x

∆t
∫

0

x
i+1

2
∫

x
i−

1
2

(

−gh
∂b

∂x

)

dxdt =

= − g

∆t

∆t
∫

0

(

hb|x
i+1

2

− hb|x
i−

1
2

)

dt +
g

∆t∆x

∆t
∫

0

x
i+1

2
∫

x
i−

1
2

b
∂h

∂x
dxdt

(11)

The first part is evaluated using suitable Gaussian points and a Taylor time

expansion for the evaluation of h
(

xi± 1

2

, t
)

. The second integral in (11) is ap-

proximated by a Gaussian integration rule:

g

∆x∆t

∆t
∫

0

x
i+1

2
∫

x
i−

1
2

b
∂h

∂x
dxdt = g

N
∑

α=1

[

N
∑

l=1

(

b(xα)
∂

∂x
h(xα, τl)

)

Kl

]

Kα. (12)

We note that the evaluation of (12) is not necessary for the first order version

of the scheme. The first component of the source term (i.e. the source for the

continuity equation) is equal to zero. The integral (12) must be evaluated by

splitting the space integral in two parts: xi− 1

2

− xi and xi − xi+ 1

2

, because

for the bed elevation b(x) we adopt the interface centred approach, and two
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different reconstructed polynomials for b(x) are given in the i-th cell.

3.3 Source Terms and the Conservative Property

It is obvious that the governing equations contain non-vanishing terms also

in the case of steady flow. Under stationary conditions in the momentum

equation, both the source term due to the bottom elevation −gh ∂b
∂x

and the

flux term due to hydrostatic pressure 1
2
gh2 − ghb are different from zero.

A numerical method capable of reproducing the exact solution under steady

conditions is said to satisfy the C−property; the method is said to satisfy the

approximate C−property if it is accurate up to the prescribed order when

applied to a steady problem [32]. The stationary solution, characterized by

vanishing velocities everywhere in the domain, is a subset of the steady so-

lutions. If the numerical scheme reproduces the exact solution in this case

(i.e. h = constant, Q = u = 0) it is said to satisfy the Z−property. The

scheme proposed in this paper satisfies the Z−property and the approximate

C−property.

We note that when h = h0 = constant, Q = 0 and u = 0 in the whole domain,

the reconstructed values pi (x) and pi+1 (x) are equal to h = h0, Q = 0 at all

the interfaces between numerical cells. Moreover, reconstructed values for all

the spatial derivatives of h and Q are equal to zero. We can now compute the
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numerical fluxes, following the situation defined in Figure (1):

Fi− 1

2

=





















0

1

2
gh2

i− 1

2

+ ghi− 1

2

bi− 1

2





















, Fi+ 1

2

=





















0

1

2
gh2

i+ 1

2

+ ghi+ 1

2

bi+ 1

2





















The source term is then evaluated using integration by parts, and recalling

that the spatial derivative of the reconstructed variable h is zero:

S
(2)
i = − g

∆x∆t

tn+∆t
∫

tn

x
i+1

2
∫

x
i−

1
2

h
∂b

∂x
dxdt =

=
g

∆t

tn+∆t
∫

tn

(

bh|x− 1

2

− bh|x+ 1

2

)

dt = g
(

bh|x− 1

2

− bh|x+ 1

2

)

(13)

0 2 4 6 8 10
x [m]

0

0.2

0.4

0.6

0.8

1

b,
 h

 [
m

]

Bottom profile
Free surface

Fig. 2. Computed stationary state solution for the flow over a non horizontal bed
with initial condition equal to h = 1m, Q = 0 and u = 0.

Applying scheme (4) it is easy to show that the numerical scheme reproduces
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the exact solution. The numerical results shown in Figure 2 verify the stated

property of the scheme.

4 NUMERICAL SOLUTIONS

The numerical method is tested in order to verify that both steady and un-

steady solutions are well reproduced. The latter case is traditionally associated

with dam-break problems, characterized by the propagation of sharp fronts. In

the former case both smooth and discontinuous solutions can be observed. Re-

sults reported in this paper are computed using Courant Number CFL = 0.9.

0 2 4 6 8 10
x [m]

0

0.2

0.4

0.6

0.8

1

h[
m

],
 b

[m
]

analytical solution
bottom profile
numerical solution

Fig. 3. Steady case: free surface elevation in the case of smooth solution and
parabolic bed profile. ADER5 numerical method used. (Q = 1m3/s, bmax = 0.3m,
h (x = L) = 1m, N = 50, L = 10m).
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0 2 4 6 8 10
x [m]

0.999

0.9995

1

1.0005

1.001

Q
 [

m
3/

s]

Analytical solution
Numerical solution

Fig. 4. Steady case: water discharge in the case of smooth solution and parabolic
bed profile. ADER5 numerical method used. (Q = 1m3/s, bmax = 0.3m,
h (x = L) = 1m, N = 50, L = 10m). Note the scale for Q.

4.1 STEADY SOLUTIONS

For the test under steady conditions there are several different configurations

characterized by smooth or discontinuous solutions, depending on the values

of the water discharge Q, the maximum height of the bed profile bmax and the

boundary conditions for the free surface elevation h (x = 0) and h (x = L),

where L is the channel length. Figures 3 and 4 show the numerical results

for free surface elevation and water discharge respectively, obtained with a

fifth-order ADER method, for the standard test case of subcritical flow over

a parabolic bump. This solution is computed using a maximum bed elevation

sufficiently small such that the water flow remains subcritical over the numer-

ical domain and the solution does not present discontinuities. This is the case
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of the flow field in large rivers, where the irregular geometry produces small

flow disturbances. The numerical method is able to reproduce the behaviour

of the solution, the local flow acceleration and the perturbation of the free

surface elevation.

Note that in Figure 4 the maximum error for the water discharge is very small.

For larger values of the elevation of the bump the free surface profile becomes

steeper and steeper until it becomes discontinuous. This is the case reported in

Figures 5 and 6, where the maximum bottom elevation is 0.5m. The numerical

solution of Figures 5 and 6 agrees with the exact solution both for the free

surface elevation and the water discharge.

We can notice that for the case of steady and discontinuous solutions, the

position of the shock is stationary and depends on the water discharge, the

maximum bottom elevation and on the boundary conditions. We remark that

it is possible to obtain a better numerical solution (as plotted in the upper

part of Figure 5) if we choose the spatial mesh in such a way that the shock

is positioned exactly between two cells, in this case N = 280. Note that this

procedure is not general because the position of the shock is not known a

priori. In other words, for the steady shock solution the refinement of the

computational grid does not always give more accurate results, as can be seen

from Figures 5 and 6.
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0 5 10
x[m]

0

0.5

1

h[
m

],
 b

[m
]

numerical solution
analytical solution
bottom profile

0 5 10
x[m]

0

0.5

1

h[
m

],
 b

[m
]

analytical solution
bottom profile
numerical solution

Fig. 5. Steady case: free surface elevation in the case of discontinuous solution and
parabolic bed profile. ADER5 numerical method used. (Q = 1m3/s, bmax = 0.5m,
h (x = L) = 1m, top N = 280, bottom N = 285, L = 10m).

4.2 UNSTEADY SOLUTIONS

Unsteady solutions are the typical case for which in the past shock capturing

numerical method have been constructed. In natural rivers and channels un-

steady solutions with a low degree of temporal variability, like the flood wave,
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0 5 10
x[m]

1

1.05

1.1

1.15
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Fig. 6. Steady case: water discharge in the case of discontinuous solution and
parabolic bed profile with two meshes N = 280 and N = 285. ADER5 numeri-
cal method used. (Q = 1m3/s, bmax = 0.5m, h (x = L) = 1m, L = 10m).

are due to rainfall events. Rapid phenomena characterized by the formation

of sharp fronts and bores are typically related to the presence of artificial

structures. Finally sharp fronts and bores may occur in natural convergent

estuaries during the propagation of tidal waves.

4.2.1 COMPARISON WITH THE EXACT UNSTEADY RIEMANN PROB-

LEM SOLUTION

Test cases under unsteady conditions are typically dam break problems. For

this kind of problem the analytical solutions is available both for the case of

horizontal bed profile and for the case of a step-like bottom. The first case has

not been considered because in the case of an horizontal bottom profile our

formulation reduces to the standard shallow water formulation. Instead we
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consider a dam break problem over a step-like bottom profile, for which the

exact solution is available [3]. The test considered has solution characterized

by a right shock, by a stationary shock positioned in the central uniform

zone of the flow field, between the rarefaction and the right moving shock.

Figure 7 shows a comparison between the numerical solution obtained using an

ADER3 scheme and the exact solution. Note that in the staggered grid setup

of Figure 1, in the initial condition for the numerical solution the discontinuity

for the free surface elevation and for the bottom profile are staggered by half a

computational cell. In order to perform the comparison between numerical and

analytical solutions we have used 500 computational cells, such that the space

interval between the two discontinuities in the initial condition is sufficiently

small. Good agreement is observed, results are essentially non-oscillatory for

both shocks. The stationary shock in x = 0 m is reproduced with a small error

for the water discharge. As for the stationary test case, this error is due to the

position of the numerical cell interface.

4.2.2 INITIAL DATA WITH A SMOOTH BED

As final example we report the numerical solution obtained for a dam break

problem over a smooth bed profile. For this case the analytical solution is not

available.

Results are reported in Figures 8 and 9 for the case of a Gaussian bed profile;

under these conditions the solution displays two different shocks. The fist one
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Fig. 7. Comparison between numerical and analytical solution for the dam-break
problem with a bottom step. ADER 3 numerical method used. The initial conditions
are DL = 1.461837m, DR = 0.308732 and QL = QR = 0, the step in the bottom
profile is 0.2m high.
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Fig. 8. Solution for dam break over a non horizontal profile. ADER3 numerical
method used. The solution at time t = 40s displays two shocks, N = 500 cells.
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Fig. 9. Solution for dam break over a non horizontal profile. ADER3 numerical
method used. The solution at time t = 40s displays two shocks, N = 500 cells.

is due to the initial condition, the second appears in the middle region of the

flow due to the bottom slope. The right shock propagates downstream and

the second one is quasi stationary.
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5 CONVERGENCE RATES STUDY

In the previous section we have shown that the proposed numerical methods

reproduce both steady and unsteady solutions and the results are essentially

non oscillatory. Here we measure the experimental order of accuracy of the

schemes in order to verify that the theoretical order of accuracy is achieved.

The accuracy of the schemes is measured both for the steady and the unsteady

cases.

We have performed several tests using schemes up to 5-th order of accuracy

both in space and in time; for all tests we use a Courant Number CFL = 0.9,

the length of the numerical domain is 10m and we use two different func-

tions describing the bottom topography, namely a Gaussian function and a

sinusoidal profile. Results with the sinusoidal bed profile are expected to be

better than those obtained using a Gaussian bed profile. It is well known

that in order to study the convergence rate of a scheme sinusoidal-type func-

tions are preferable. In particular considering the simplest case of the model

advection-reaction equation the theoretical orders of accuracy are reached by

the numerical methods using a sinusoidal function, as shown in Appendix B.

In the non-linear shallow water case, considering the flow over a sinusoidal

bed profile the free surface elevation h (x, t) is a sinusoidal function only if

the amplitude of the bottom elevation is small enough. For higher values of

the maximum bottom elevation non-linearities in the governing equations give
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rise to a more complex solution, characterized by larger values of the spatial

derivatives of the solution h (x, t). For larger values of the bottom elevation

we obtain the limit case of discontinuous free surface profiles. Moreover, we

notice that also for a sinusoidal free surface elevation the second component

of the flux is not sinusoidal. All these considerations suggest that we should

test the accuracy of the scheme, both for the steady and the unsteady cases,

using small values for the sinusoidal amplitude of the bottom profile.

5.1 STEADY CASE

The numerical scheme is first tested under steady conditions, in order to verify

that it satisfies the approximate C-property.

The empirical rate of convergence of the schemes is tested for a Gaussian

and for a sinusoidal bed profile. For the sinusoidal bed profile results are

in agreement with the designed order of accuracy of the numerical scheme

(see Tables 1 and 2) where we report the result obtained using two different

amplitudes for the bed sinusoidal profile, 0.001 and 0.01 respectively. The

prescribed orders of accuracy are well reproduced up to the forth order scheme,

whilst the fifth order scheme does not perform as expected, particularly, for

the largest value of the bottom perturbation. As expected, for the Gaussian

bed profile the achieved order of accuracy does not match the designed one,

in particular for the ADER4 and ADER5 schemes (see Table 3). As expected,
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Table 1
Convergence rates study for the steady and smooth case, sinusoidal bed profile
(bmax = 0.001m, Q = 1m3s−1, h (x = L) = 1m)

Method N L1 error L1 order L∞ error L∞ order

ADER 2 5 0.119E-03 0.252E-03

10 0.279E-04 2.09 0.610E-04 2.04

20 0.616E-05 2.18 0.131E-04 2.21

40 0.146E-06 2.07 0.297E-05 2.14

80 0.357E-06 2.03 0.697E-06 2.09

ADER 3 5 0.501E-04 0.111E-03

10 0.783E-05 2.67 0.150E-04 2.89

20 0.998E-06 2.97 0.201E-05 2.89

40 0.128E-06 2.96 0.257E-06 2.97

80 0.161E-07 2.98 0.323E-07 2.99

ADER 4 5 0.313E-04 0.703E-04

10 0.193E-05 4.02 0.451E-05 3.96

20 0.114E-05 4.08 0.261E-06 4.10

40 0.672E-08 4.08 0.150E-07 4.11

80 0.414E-09 4.02 0.101E-08 3.88

ADER 5 5 0.138E-04 0.322E-04

10 0.603E-06 4.51 0.118E-05 4.76

20 0.206E-07 4.87 0.408E-07 4.86

40 0.903E-09 4.51 0.142E-08 4.84

80 0.101E-09 3.15 0.185E-09 2.93

the fifth-order scheme is nevertheless the most accurate, errors are smaller.

5.2 UNSTEADY CASE

An exact solution to study the convergence rates is derived by prescribing two

functions for h (t, x) and Q (t, x). Inserting these into system (2) produces a
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Table 2
Convergence rates study for the steady and smooth case, sinusoidal bed profile
(bmax = 0.01m, Q = 1m3s−1, h (x = L) = 1m)

Method N L1 error L1 order L∞ error L∞ order

ADER 2 5 0.117E-02 0.248E-02

10 0.280E-03 2.06 0.606E-03 2.03

20 0.617E-04 2.18 0.136E-03 2.15

40 0.146E-04 2.07 0.309E-04 2.13

80 0.358E-05 2.03 0.729E-05 2.08

ADER 3 5 0.489E-03 0.111E-02

10 0.769E-04 2.66 0.148E-03 2.90

20 0.991E-05 2.95 0.200E-04 2.89

40 0.128E-05 2.94 0.256E-05 2.96

80 0.164E-06 2.96 0.323E-06 2.98

ADER 4 5 0.302E-03 0.685E-03

10 0.191E-04 3.98 0.440E-04 3.95

20 0.119E-05 4.00 0.292E-05 3.91

40 0.720E-07 4.05 0.223E-06 3.71

80 0.916E-08 2.97 0.262E-07 3.08

ADER 5 5 0.131E-03 0.307E-03

10 0.602E-05 4.44 0.114E-04 4.74

20 0.300E-06 4.32 0.510E-06 4.48

40 0.386E-07 2.95 0.725E-07 2.81

80 0.853E-08 2.18 0.169E-07 2.09

modified system with two source terms, the original one and a second term

due to the fact that h(x, t) and Q(x, t) do not satisfy (2) but (14).
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Table 3
Convergence rates study for the steady and smooth case, Gaussian bed profile
(bmax = 0.001m, Q = 1m3s−1, h (x = L) = 1m)

Method N L1 error L1 order L∞ error L∞ order

ADER 2 5 0.357E-04 0.971E-04

10 0.117E-04 1.60 0.286E-04 1.76

20 0.304E-05 1.94 0.818E-05 1.80

40 0.760E-06 2.00 0.212E-05 1.94

80 0.189E-06 2.00 0.542E-06 1.96

ADER 3 5 0.249E-04 0.759E-04

10 0.386E-05 2.69 0.852E-05 3.15

20 0.550E-06 2.80 0.114E-05 2.89

40 0.764E-07 2.84 0.171E-06 2.74

80 0.104E-07 2.86 0.337E-07 2.34

ADER 4 5 0.160E-04 0.454E-04

10 0.196E-05 3.02 0.468E-05 3.27

20 0.307E-06 2.67 0.190E-05 1.30

40 0.447E-07 2.78 0.268E-06 2.82

80 0.512E-08 3.12 0.487E-07 2.46

ADER 5 5 0.131E-04 0.375E-04

10 0.894E-06 3.87 0.208E-05 4.16

20 0.423E-06 1.07 0.347E-05 -0.78

40 0.550E-07 2.94 0.687E-06 2.33

80 0.533E-08 3.36 0.108E-06 2.66

The prescribed exact solution is:

h = h0 + a0 sin
(

2π
x

L

)

cos
(

2π
t

T0

)

,

Q = Q0 −
a0L

T0

cos
(

2π
x

L

)

sin
(

2π
t

T0

)

,
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and the bottom elevation is:

b = b0 sin
(

2π
x

L

)

,

where L is the length of the computational domain and T0 a suitable time

period. The resulting artificial source term is evaluated numerically in the

same way as the physical source term.

The ”modified” equations read:











































∂h

∂t
+

∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(

Q2

h − b
+

1

2
gh2 − gbh

)

=−gh
∂b

∂x
+ S (x, t) .

(14)

The exact expression of the source term S (x, t) is given by:

S (x, t) = 4π
a0 sin (λx) sin (ωt)

(

Q0 − a0L
T0

sin (ωt) cos (λx)
)

T0 (h0 + a0 cos (ωt) sin (λx) − b0 sin (λx))
−

−
2π

(

a0

L
cos (ωt) cos (λx) − b0

L
cos (λx)

) (

Q0 − a0L
T0

sin (ωt) cos (λx)
)2

(h0 + a0 cos (ωt) sin (λx) − b0 sin (λx))2 +

+2πg
a0

L
cos (ωt) cos (λx) (h0 + a0 cos (ωt) sin (λx))−

−2πg
a0b0

L
cos (ωt) cos (λx) sin (λx) − 2π

a0L

T 2
0

cos (ωt) cos (λx)

(15)

where λ = 2π
L

and ω = 2π
T0

.

As for the steady case we have performed numerical tests using sufficiently
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Table 4
Convergence rates study for the unsteady and smoth case, b0 = 0.001m, a0 =
0.001m, Q0 = 1m3/s, T0 = 10000s

Method N L1 error L1 order L∞ error L∞ order

ADER 2 5 0.152E-03 0.335E-03

10 0.391E-04 1.96 0.803E-04 2.06

20 0.804E-05 2.28 0.180E-04 2.16

40 0.182E-05 2.15 0.403E-05 2.16

80 0.433E-06 2.07 0.951E-06 2.08

ADER 3 5 0.654E-04 0.126E-03

10 0.652E-05 3.33 0.150E-04 3.07

20 0.103E-05 2.66 0.210E-05 2.83

40 0.132E-06 2.96 0.269E-06 2.97

80 0.163E-07 3.02 0.333E-07 3.01

ADER 4 5 0.381E-04 0.842E-04

10 0.267E-05 3.84 0.561E-05 3.91

20 0.138E-06 4.27 0.306E-06 4.19

40 0.718E-08 4.27 0.203E-07 3.91

80 0.846E-09 3.09 0.207E-08 3.30

ADER 5 5 0.163E-04 0.377E-04

10 0.521E-06 4.97 0.118E-05 5.01

20 0.159E-07 5.04 0.333E-07 5.16

40 0.328E-08 2.28 0.463E-08 2.86

80 0.909E-09 1.85 0.113E-08 2.03

small values for the amplitudes a0 and b0, such that the non linearities ap-

pearing in the equations (in particular in the expression for the momentum

flux) do not display a significant role. In Tables 5.2 and 5 we report the test

case for a0 = 0.001m, b0 = 0.001m and a0 = 0.01m, b0 = 0.01m respectively.

The prescribed order of accuracy is reached for the schemes up to forth order,

as for the steady test case. Difficulties are observed for the fifth order scheme
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Table 5
Convergence rates study for the unsteady and smooth case, b0 = 0.01m, a0 = 0.01m,
Q0 = 1m3/s, T0 = 10000s

Method N L1 error L1 order L∞ error L∞ order

ADER 2 5 0.152E-02 0.333E-02

10 0.389E-03 1.96 0.795E-03 2.06

20 0.802E-04 2.27 0.180E-03 2.13

40 0.181E-04 2.14 0.405E-04 2.15

80 0.433E-05 2.06 0.946E-05 2.09

ADER 3 5 0.663E-03 0.125E-02

10 0.648E-04 3.35 0.149E-03 3.07

20 0.102E-04 2.66 0.210E-04 2.82

40 0.132E-05 2.95 0.271E-05 2.95

80 0.164E-06 3.00 0.341E-06 2.98

ADER 4 5 0.372E-03 0.825E-03

10 0.277E-04 3.74 0.586E-04 3.81

20 0.143E-05 4.27 0.311E-05 4.23

40 0.841E-07 4.09 0.215E-06 3.85

80 0.108E-07 2.95 0.223E-07 3.26

ADER 5 5 0.163E-03 0.374E-03

10 0.542E-05 4.91 0.125E-04 4.89

20 0.203E-06 4.73 0.463E-06 4.76

40 0.391E-07 2.37 0.630E-07 2.87

80 0.103E-07 1.91 0.153E-07 2.03

even if it gives the smallest errors. This behaviour might be due to the non-

linearities in the equations; it does not seem to be related to the precision of

the machine: tests using a quad-precision version of the code has been per-

formed. In appendix B we report a test case for numerical schemes up to fifth

order applied to the model advection-reaction equation. These tests are per-

formed using the same numerical procedure and the same ENO reconstruction
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as those adopted for the shallow water system. For the model equation the

theoretical orders of accuracy are reached up to fifth order without difficulties

(See Appendix B).

6 CONCLUSIONS

We have proposed a framework for constructing arbitrary high order numerical

schemes for the solution of the shallow water equations with source terms. An

important ingredient of the method is the high order reconstruction procedure.

In this paper we have use the ENO method [13] instead of the more popular

WENO approach [20]. The ENO technique has an important advantage in

that the high order polynomial is known in the entire cell and its evaluation at

all the Gaussian integration points is straightforward. The WENO technique

on the other hand has some disadvantages in the presence of source terms.

The evaluation of the source term and of the numerical fluxes requires the

reconstructed values at a large number of points. In our approach the source

term results from the evaluation of two integrals one to the left and one to the

right. This means that one requires twice the number of WENO evaluation

points, respect to approaches in which the source term is entirely defined

within the cell. Moreover at one of these points, b(xi± 1

2

), the WENO weights

are negative. The second main ingredient of the technique is the solution of

the Derivative Riemann Problem including source term.
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We have systematically assessed the methods presented. The methods satisfy

the Z−property, that is, they produce the exact stationary solution for an

horizontal free surface elevation and vanishing velocities. For the steady case

the schemes are accurate up to the prescribed theoretical order and therefore

they satisfy the approximate C−property.

Steady solutions are well reproduced both in the smooth and in the discontin-

uous case. We note, however, that in the case of steady discontinuous solutions

a refinement of the grid does not always give better results around discontinu-

ities, except for the case when the discontinuity is aligned with a cell interface.

An important aspect of this paper is the high accuracy in space and time for

hyperbolic systems with source terms. We have therefore paid a great deal

of attention to the verification of the theoretical orders of accuracy of the

schemes by empirical means. We have performed a study of the convergence

rates of the schemes for which we have designed tests with small amplitude

sinusoidal flows, both for the steady and for the unsteady cases. For different

flows the empirical convergence rates do not necessarily match the expected

orders of accuracy. In this paper we have implemented and tested schemes up

to fifth order of accuracy in space and time.

We note however, that we have observed difficulties in achieving the fifth order

of accuracy for the shallow water equation with source terms. The reasons for

this are unclear to us. It could be due to a limitation of the ENO interpolation

32



procedure. On the other hand the results reported in Appendix B for the

model advection-reaction equation suggest that there are not difficulties for

the methods proposed in this paper to achieve the desired very high orders of

accuracy.

Finally we note that for discontinuous solutions the numerical methods pro-

duce essentially non-oscillatory numerical results.

7 APPENDIX A: CAUCHY-KOWALEWSKY PROCEDURE AND

ARTIFICIAL SOURCE TERM

System (2) can be rewritten in non conservative form as follows







































∂h

∂t
+

∂Q

∂x
= 0

∂Q

∂t
+

(

gD − u2
) ∂h

∂x
+ 2u

∂Q

∂x
= −u2 ∂b

∂x

(16)

which can be written in vectorial form as follows:

∂tU + A∂xU = 0 (17)

where A is the matrix:

A =





















0 1

gD − u2 2u





















. (18)
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In order to solve the derivative Riemann problem we need to express time

derivatives in terms of functions of space derivatives using Cauchy-Kowalewsky

procedure. To illustrate the method we give time derivatives up to third order:















































∂h

∂t
=−∂Q

∂x

∂Q

∂t
=−

(

gD − u2
) ∂h

∂x
− 2u

∂Q

∂x
− u2 ∂b

∂x

(19)


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



























∂2h

∂t2
=u2 ∂2b

∂x2
+

(

gD − u2
) ∂2h

∂x2
+ 2u

∂2Q

∂x2

∂2Q

∂t2
=

(

gD + 3u2
) ∂2Q

∂x2
+ 2u3 ∂2b

∂x2
+ 2u

(

gD − u2
) ∂2h

∂x2

(20)


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∂3h

∂t3
=−2u3 ∂3b

∂x3
− 2u

(

gD − u2
) ∂3h

∂x3
−

(

gD + 3u2
) ∂3Q

∂x3

∂3Q

∂t3
=−4u

(

gD + u2
) ∂3Q

∂x3
− u2

(

gD + 3u2
) ∂3b

∂x3
−

−
(

gD + 3u2
) (

gD − u2
) ∂3h

∂x3

(21)

8 APPENDIX B: CONVERGENCE RATES FOR LINEAR

ADVECTION-REACTION EQUATION

In order to test the accuracy of the ADER numerical method with the ENO

reconstruction procedure we have also performed numerical convergence tests
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by solving the linear advection reaction equation:

∂q

∂t
+ λ

∂q

∂x
= αq (22)

where λ is the constant wave propagation speed, α is constant reaction coef-

ficient, x is the spatial coordinate and t is time.

Equation (22) have been solved starting from a sinusoidal and a Gaussian

initial condition, applying ADER schemes of up fifth order of accuracy in

space and time.

Table 6 shows the results. Schemes of order 2 and 4 do not reproduce the ex-

pected orders of accuracy, in particular for the L∞ norm. Odd-order schemes,

on the other hand, e.g. orders 3 and 5, reproduce the expected orders of accu-

racy. We note that for the shallow water equations the second and third order

schemes work well even if a Gaussian bed profile is adopted (see Table 3). For

the linear advection-reaction equation the odd-order schemes work better.

Table 7 shows the convergence rates for schemes up to fifth order of accuracy,

for a test with a Gaussian wave profile as the initial condition. The measured

convergence rates do not match the expected ones, for every scheme. The fifth

order scheme reproduces the best results.
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Table 6
Convergence rates study test for the linear advection reaction equation (22), λ =
1m/s, α = −1s−1 Courant number=0.9, length of the computational domain=1m,
results after 2s, initial condition is a sinusoidal wave

Method N L1 error L1 order L∞ error L∞ order

ADER 2 10 0.564E-01 0.906E-01

20 0.213E-01 1.40 0.448E-01 1.01

40 0.823E-02 1.37 0.191E-01 1.23

80 0.273E-02 1.59 0.814E-02 1.23

160 0.774E-03 1.81 0.335E-02 1.27

ADER 3 10 0.162E-01 0.2504E-01

20 0.230E-02 2.81 0.3789E-02 2.72

40 0.294E-03 2.96 0.4886E-03 2.95

80 0.370E-04 2.99 0.6132E-04 2.99

160 0.463E-05 2.99 0.7623E-05 3.00

ADER 4 10 0.600E-02 0.1063E-01

20 0.617E-03 3.28 0.1412E-02 2.91

40 0.482E-04 3.67 0.1641E-03 3.10

80 0.355E-05 3.76 0.1846E-04 3.15

160 0.250E-06 3.82 0.2044E-05 3.16

ADER 5 10 0.142E-02 0.2206E-02

20 0.471E-04 4.91 0.7664E-04 4.84

40 0.149E-05 4.97 0.2412E-05 4.98

80 0.470E-07 4.99 0.7635E-07 4.98

160 0.147E-08 4.99 0.2392E-08 4.99

bridge, UK, as joint organizer (with P. G. LeFloch and C. M. Dafermos)

of the research programme Non-linear Hyperbolic Waves in Phase Dynamics

and Astrophysics, Cambridge, January to July 2003. The support provided is

gratefully acknowledged. The first and second authors acknowledge the sup-

port provided by the research project PRIN 2004 Sviluppo di metodi numerici

per applicazioni a problemi di fluidodinamica ambientale, funded by the Italian
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Table 7
Convergence rates study for the linear advection reaction equation (22), λ = 1m/s,
α = −1s−1 Courant number=0.9, length of the computational domain=1m, results
after 2s, initial condition is gaussian wave with standard deviation σ = 0.2m

Method N L1 error L1 order L∞ error L∞ order

ADER 2 10 0.296E-01 0.672E-01

20 0.144E-01 1.034 0.416E-01 0.689

40 0.534E-02 1.437 0.209E-01 0.992

80 0.171E-02 1.639 0.941E-02 1.15

160 0.587E-03 1.544 0.406E-02 1.21

ADER 3 10 0.139E-01 0.356E-01

20 0.365E-02 1.929 0.108E-01 1.72

40 0.607E-03 2.590 0.208E-02 2.37

80 0.102E-03 2.570 0.283E-03 2.87

160 0.229E-04 2.154 0.755E-04 1.90

ADER 4 10 0.103E-01 0.273E-01

20 0.133E-02 2.949 0.483E-02 2.49

40 0.180E-03 2.887 0.687E-03 2.81

80 0.520E-04 1.792 0.177E-03 1.94

160 0.113E-04 2.193 0.415E-04 2.10

ADER 5 10 0.678E-02 0.179E-01

20 0.402E-03 4.076 0.136E-02 3.71

40 0.103E-03 1.956 0.371E-03 1.87

80 0.292E-04 1.823 0.175E-03 1.08

160 0.580E-05 2.333 0.410E-04 2.09

Ministry of Higher Education and Research.
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[2] L. Bermúdez and M. E. Vázquez. Upwind Methods for Hyperbolic Conservation

Laws with Source Terms. Computers and Fluids, 23:1049–1071, 1994.

[3] R. Bernetti, V.A. Titarev, and E. F. Toro. Exact solution of the Riemann

problem for the shallow water equations with discontinuous bottom geometry.

Technical Report NI06020-NPA, Isaac Newton Institute for Mathematical

Sciences, University of Cambridge, UK, 17 May, 2004.

[4] N Crnjaric-Zic, S. Vukovic, and L. Sopta. Balanced finite volume weno and

central weno schemes for the shallow water and the open-channel flow equations.

J. Comput. Phys., 200, 2004.

[5] M. Dumbser. Arbitrary High Order Schemes for the Solution of Hyperbolic

Conservation Laws in Complex Domains. PhD thesis, Institut für Aero- un

Gasdynamik, Universität Stuttgart, Germany, 2005.

[6] M. Dumbser and C. D. Munz. ADER Discontinuous Galerkin Schemes for

Aeroacoustics. Comptes Rendus Mécanique, –:to appear, 2005.
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Gebietszerlegung ü die numerische Aeroakustik. PhD thesis, Institut für Aero-

39



un Gasdynamik, Universität Stuttgart, Germany, 2005.

[18] T. Schwartzkopff, Munz C.D, and E. F. Toro. ADER: High-Order Approach for

Linear Hyperbolic Systems in 2D. J. Scientific Computing, 17:231–240, 2002.

[19] T. Schwartzkopff, M. Dumbser, and Munz C.D. Fast High-Order ADER

Schemes or Linear Hyperbolic Equations. J. Comput. Phys., 197:532–539, 2004.

[20] C. W. Shu. Essentially Non–oscillatory and Weighted Non–oscillatory Schemes

for Hyperbolic Conservation Laws. Technical Report ICASE Report No. 97–65,

NASA, 1997.

[21] Y. Takakura and E. F. Toro. Arbitrarily Accurate Non-Oscillatory Schemes for

a Non-Linear Conservation Law. J. Computational Fluid Dynamics, 11(1):7–18,

2002.

[22] V. A. Titarev and E. F. Toro. ADER: Arbitrary High Order Godunov Approach.

J. Scientific Computing, 17:609–618, 2002.

[23] V. A. Titarev and E. F. Toro. ADER schemes for shallow water equations with

pollutant transport. In XXIX Convegno di Idraulica e Costruzioni Idrauliche.

Trento, Italia, 7-10, Settembre 2004, pages 909–914. Editorial Bios, 2004.

[24] V. A. Titarev and E. F. Toro. ADER Schemes for Three-Dimensional

Hyperbolic Systems. J. Comput. Phys., 204:715–736, 2005.

[25] E. F. Toro. Application of the Weighted Average Flux Method to the Shallow

Water Equations. In B. Engquist and B. Gustafsson, editors, Proceedings of the

3rd International Conference on Hyperbolic Problems., volume 2, pages 874–

887. Chartwell-Bratt, 1991.

40



[26] E. F. Toro. Riemann Problems and the WAF Method for Solving Two–

Dimensional Shallow Water Equations. Phil. Trans. Roy. Soc. London,

A338:43–68, 1992.

[27] E. F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. Wiley

and Sons Ltd, 2001.

[28] E. F Toro and Titarev V. A. Derivative Riemann Solvers for Systems of

Conservation Laws and ADER Methods. J. Comput Phys., 212(1):150–165,

2006.

[29] E. F. Toro, R. C. Millington, and L. A. M. Nejad. Towards Very High–

Order Godunov Schemes. In Godunov Methods: Theory and Applications.

Edited Review, E. F. Toro (Editor), pages 905–937. Kluwer Academic/Plenum

Publishers, 2001.

[30] E. F. Toro and V. A. Titarev. Solution of the Generalised Riemann Problem for

Advection-Reaction Equations. Proc. Roy. Soc. London A, 458:271–281, 2002.

[31] E. F. Toro and V. A. Titarev. ADER Schemes for Scalar Hyperbolic

Conservation Laws with Source Terms in Three Space Dimensions. J. Comput.

Phys., 202(1):196–215, 2005.

[32] M. E. Vázquez-Cendón. Improved Treatment of Source Terms in Upwind

Schemes for the Shallow Water equations in Channels with Irregular Geometry.

J. Comput. Phys., 148:497–526, 1999.

[33] J.G. Zhou, D.M. Causon, C.G. Mingham, and D.M. Ingram. The surface

gradient method for the treatment of source terms in the shallow-water

41



equations. J. Comput. Phys., 168:1, 2001.

[34] C. Zoppou and S. Roberts. Explicit Schemes for Dam-Break Simulationss.

ASCE, J. Hydraulic Engineering, 129 (1):11–34, 2003.

42


