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Abstract

An order is dense if A < B implies A < C < B for some C. The
homomorphism order of (nontrivial) graphs is known to be dense.
Homomorphisms of trigraphs extend homomorphisms of graphs, and
model many partitions of interest in the study of perfect graphs. We
address the question of density of the homomorphism order for tri-
graphs. It turns out that there are gaps in the order, and we exactly
characterize where they occur.

∗This work was carried out while the authors were guests of the Isaac Newton Institute
for Mathematical Sciences at Cambridge, UK; the support and hospitality of the Institute
is greatly appreciated.
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1 Introduction

A trigraph G consists of a finite set V (G) of vertices, and two (possibly in-
tersecting) edge sets E1(G) and E2(G) on V (G), such that E1(G) ∪ E2(G)
contains all pairs of (possibly equal) vertices. Thus a trigraph G can be
viewed as a superposition of two graphs on the vertex set V (G) - the graph
G1 with the edge set E1(G), and the graph G2 with the edge set E2(G),
both standard graphs (without multiple edges but) with loops allowed [7].
Alternately, we may view a trigraph as a relational structure consisting of a
set V (G) with two symmetric binary relations E1(G) and E2(G). The only
restriction we have is that each pair of (possibly equal) vertices is adjacent
in at least one of the graphs Ga, i.e., related in at least one of the relations
Ea(G), a = 1, 2. This ‘completeness’ restriction substantially affects the sit-
uation, and the questions we address here have been answered for relational
structures without this restriction [7, 9]. (The ‘completeness’ restriction is
in a sense similar to restricting digraphs to tournaments, cf. [8].)

A trigraph G is a subtrigraph of a trigraph H if V (G) ⊆ V (H) and
Ea(G) ⊆ Ea(H) for a = 1, 2. If every two vertices of G have the same rela-
tions in G as in H , we say that G is an induced subtrigraph of H . Let G and
H be any trigraphs. A homomorphism f of G to H is a mapping of V (G)
to V (H) which preserves both relations, i.e., such that uv ∈ Ea(G) implies
f(u)f(v) ∈ Ea(H), for a = 1, 2. A bijective homomorphism of G to H is an
isomorphism between G and H , and if G = H , it is an automorphism of G.
Two trigraphs are homomorphically equivalent if each admits a homomor-
phism to the other. A trigraph is a core if it is not homomorphically equiva-
lent to any proper subtrigraph. Each trigraph is homomorphically equivalent
to a unique (up to isomorphism) subtrigraph which is a core, called the core
of H . (The details of this, as well as of other statements asserted without
proof can be found in [7].)

As noted above, graphs are taken to have no multiple edges, but with
loops allowed [7]. A reflexive graph has a loop at each vertex, and an ir-
reflexive graph has no loop. A graph X can be viewed as a trigraph G by
taking X to be G1, and letting G2 be the reflexive complete graph on V (X).
(In other words, E2(G) contains all possible pairs of vertices, distinct or not,
of X.) If trigraphs G and H arise this way from graphs G1 and H1, i.e., if G2

and H2 are complete reflexive graphs, then the homomorphisms of trigraphs
G to H precisely coincide with the standard homomorphisms of graphs G1

to H1 [7]. In this sense the study of trigraph homomorphisms extends the
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study of graph homomorphisms. (In somewhat more technical terms [7, 10],
the category of trigraphs and trigraph homomorphisms contains the category
of graphs and graph homomorphisms as a full subcategory.)

An other way to view an irreflexive graph X, is as having two ‘edge-
sets’ - the edges E1(X) = E(X) and the nonedges E2(X) = E(X̄). A
homomorphism of an irreflexive graph X to a trigraph G is similarly defined
as a mapping f of V (X) to V (G) such that uv ∈ Ea(X) implies f(u)f(v) ∈
Ea(H), for a = 1, 2. Homomorphism of graphs to trigraphs are different
from the usual homomorphisms of graphs (even if G is a graph), since they
have restrictions not only on where the edges of X can map, but also where
the nonedges of X can map. They model many partitions arising in the
study of perfect graphs [1, 6]. Indeed, such a homomorphism f of X to
a trigraph G induces a partition of V (X) into parts f−1(w), w ∈ V (G),
each of which is a clique (if w ∈ V (G) has ww ∈ E1(G) − E2(G)), an
independent set (if w ∈ V (G) has ww ∈ E2(G)−E1(G)), or an arbitrary set
(if w ∈ V (G) has ww ∈ E1(G) ∩E2(G)), such that parts f−1(w) and f−1(z)
are joined by all possible edges (if wz ∈ E1(G) − E2(G)), or by no edges (if
wz ∈ E2(G)−E1(G)), or have arbitrary connection (if wz ∈ E1(G)∩E2(G)).

For example a graph X is a split graph if and only if it has a homomor-
phism f to the trigraph S with V (S) = {0, 1}, E1(S) = {00, 01}, E2(S) =
{01, 11}. Indeed, the vertices of f−1(1) form an independent set in X, and
the vertices of f−1(0) form a clique in X.

Similarly, a graph X has a clique cutset if and only if it has a surjec-
tive homomorphism to the trigraph C with V (C) = {0, 1, 2}, E1(C) =
{00, 11, 22, 01, 12}, E2(C) = {00, 22, 01, 12, 02}. The surjectivity ensures that
the set f−1(1), forming a clique in X, is nonempty, as are the sets f−1(0),f−1(2),
which are joined by no edges of X.

Vašek Chvátal [1] identified another kind of partition as potentially im-
portant for efficient recognition of perfect graphs, and for a possible proof
of the strong perfect graph conjecture. His hunch turned out to be correct
in both cases - cf. [2, 3]. A skew partition of a graph X is a partition of
the vertex set of X into four nonempty parts A, B, C, D, such that there
are no edges between A and B, and all edges between C and D. This can
again be viewed as a surjective homomorphism of X to a suitable trigraph T
with four vertices a, b, c, d (corresponding to A, B, C, D). Namely, E1(T ) =
{aa, bb, cc, dd, ac, bc, ad, bd, cd}, E2(T ) = {aa, bb, cc, dd, ac, bc, ad, bd, ab}. We
depicted this trigraph on the left of the enclosed figure. The light edges
(and loops) are pairs in both E1(T ) and E2(T ); the heavy edges are in
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E1(T ) − E2(T ); and the pairs in E2(T ) are absent from the figure. The
figure on the right represents another trigraph for which the corresponding
partition problem turned out to be useful for the recognition of perfect graphs
[2].
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Figure 1: Trigraphs for some partition problem relevant for perfect graphs.

Chvátal asked whether the existence of a skew partition can be decided in
polynomial time. In [5], the authors found a subexponential algorithm for the
list version of the problem. The introduction of lists (which allow recursion
to subproblems) turned out to be useful, and eventually a polynomial time
algorithm for the existence of skew partition was found [4].

Such examples are discussed in more detail in, for instance, [5, 7], where
other partitions of interest in the study of graph perfection can be found.

It is clear that composition of homomorphisms is also a homomorphism,
whether graphs or trigraphs are involved. In particular, we observe the fol-
lowing fact.

Proposition 1.1 Suppose the trigraph G admits a homomorphism to the
trigraph H. Then each irreflexive graph X which admits a (partition corre-
sponding to a) homomorphism to G also admits a (partition corresponding
to a) homomorphism to H.

We may define the partial order < on the set of trigraphs by writing
G < H just if there is a homomorphism of G to H but not of H to G.
As noted above, this partial order extends the partial order of graphs and
homomorphisms. One interesting aspect of that order is its density. Indeed,
it is known that for any core graphs X < Y (other than the complete graphs
K1 < K2) there exists a graph Z with X < Z < Y . The instance G < H for
which no K satisfies G < K < H is called a gap of the order. (Thus K1 < K2

is the only gap in the homomorphism order of graphs.) We address here the
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question of density of the homomorphism order for trigraphs. As in the case
of graphs, we may focus on trigraphs that are cores.

Another partial order which extends the homomorphism order of graphs
is the homomorphism order of digraphs [7]. Without going into much detail,
density is less prevalent for digraphs, and it is known that a connected di-
graph Y has a predecessor X (i.e., a digraph for which there is no Z with
X < Z < Y ) if and only if Y is an oriented tree, see [9], where the existence
of predecessors is also described for disconnected digraphs.

2 Density

As noted above, in discussing density, we can focus on cores. Indeed, we have
A < B if and only if the cores A′, B′ of A, B respectively satisfy A′ < B′.

A digon of a trigraph G is a pair of distinct vertices u, v such that uv ∈
E1(G) ∩ E2(G). A diloop is a vertex u with uu ∈ E1(G) ∩ E2(G). Note that
a core trigraph with a diloop must have a single vertex.

Proposition 2.1 Let H be the trigraph with one vertex and a diloop. Then
for any core trigraph G with G < H there exists a trigraph K with G < K <
H.

Proof. Since G < H , the trigraph G must not have diloops. We now
construct G+ by taking two disjoint copies of G and joining them with all
possible edges (each vertex of the first copy has an edge in both E1 and E2

to each vertex of the second copy). It is now clear that G < G+ < H , so G
is not a predecessor of H .

Thus from now on we may focus on trigraphs without diloops. It turns
out that digons also play an important role. Let G be any trigraph; we
denote by G∗ the subtrigraph of G induced by all vertices incident to digons
of G. (Note that G∗ may contain edges which are not parts of a digon.) Note
that any homomorphism f of a trigraph G to a trigraph H maps digons to
digons, and hence maps G∗ to H∗. We denote by Gf the subtrigraph of G
induced by all vertices x with f(x) in H∗. We note that Gf contains G∗.

Proposition 2.2 Let f be a homomorphism of a core trigraph G to a core
trigraph H. If f is injective on Gf , then f is injective on G.
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Proof. Suppose f(x) = f(y); then by assumption, at least one of x, y is not
in Gf , and hence f(x) = f(y) is not in H∗. This implies that for any vertex
z in G we have xz ∈ Ea if and only if yz ∈ Ea, since this can happen only if
f(x)f(z) = f(y)f(z) ∈ Ea, for a = 1, 2. This contradicts the fact that G is
not a core, as x could be mapped to y.

Our main theorem in this section is the following.

Theorem 2.3 Suppose G and H are cores without diloops such that G < H.

If

1. G is subtrigraph of H with G∗ = H∗,

2. every homomorphism of G to H is injective, and

3. the core of each proper subtrigraph of H which contains G is equal to
G,

then G < H is a gap. Otherwise, there exists a trigraph K with G < K < H.

Proof. Note that condition 2 implies that every homomorphism of G to H
must take G∗ to H∗ isomorphically. If all the conditions are satisfied, then
consider a trigraph K with homomorphisms f : G → K, g : K → H . By
assumption 2, the composition gf is injective, taking G∗ to H∗ isomorphi-
cally. This means that f is also injective, and that g is injective on f(G),
taking f(G∗) isomorphically to H∗. Consider now the subtrigraph g(K) of
H . Taking f(G), and one vertex of K for each x in g(K)− g(f(G)), we form
a subtrigraph K ′ of K isomorphic to g(K). Note that K admits a homomor-
phism to K ′, thus as K is a core we have K = K ′. But by condition 3, g(K)
is either H or G, and K does not satisfy G < K < H , i.e., G < H is a gap.

It remains to show that if any of the three conditions is violated, we
can find a trigraph K with G < K < H . Surprisingly, such a K can be
canonically defined. We begin by replacing each vertex x of H by s vertices
xi: if xx ∈ Ea, then each xixj ∈ Ea for a = 1, 2 (including the case i = j).
(Recall that each vertex has either a loop in E1 or in E2.) If x, y are distinct
vertices of H , the relation (E1 or E2) of the edge xiyj is decided as follows.

Let B be a fixed bipartite graph with white vertices 1, 2, . . . , s and black
vertices 1′, 2′, . . . , s′ satisfying the following property: between any s/n white
and s/n black vertices of B, there exists both an edge and a nonedge of B.
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(It follows from the proof of the following lemma that if s is sufficiently large,
such a bipartite graph B exists.) If xy ∈ E1 − E2, we set xiyj ∈ E1, and
similarly, if xy ∈ E2−E1, we set xiyj ∈ E2. If xy ∈ E1∩E2, we set xiyj ∈ E1

if ij′ is an edge of B, and xiyj ∈ E2 if ij′ is not an edge of B. Call this trigraph
H−, and denote by F the natural homomorphism of H− to H , which takes
each xi to its corresponding x; finally, let f be any homomorphism of G to
H . We let K be obtained from a disjoint union of G and H− where the
edges between vertices of G and vertices of H− are decided as follows: if
x ∈ V (G) and y ∈ V (H−), then xy ∈ Ea, where Ea is one of E1, E2, such
that f(x)F (y) ∈ Ea. (Note that f(x)F (y) may be in both E1, E2, but we
still arbitrarily choose just one of a = 1, 2 for xy.)

We now observe that G admits a homomorphism to its copy in K, and
that the mapping φ equal to f on G and F on H− is a homomorphism of K
to H . If s is chosen large enough, the existence of a homomorphism of H−

to G would imply the existence of a homomorphism of H to G, contrary to
G < H . (See the Sparse Incomparability Lemma below.) Thus K has no
homomorphism to G either, i.e., G < K. It remains to ask whether we also
have K < H . Thus suppose there is a homomorphism g : H → K. In that
case, φg is a homomorphism of H to itself, and since H is a core, we may
assume that g was chosen so that φg is the identity on H , and, in particular,
the identity when restricted to H∗. This means that g is injective and φ
surjective. Note that g(H∗) is a subtrigraph of K, i.e., of G∗ (since all digons
are in G∗). Therefore φ (and so f) takes G∗ to H∗.

We now claim that f is injective on G∗ (in other words, φ is injective
on the copy of G∗ in K). In fact, consider the trigraph Gf defined above.
If Gf properly contains g(H∗), then we can define the following mapping of
G to a proper subtrigraph of itself: map each x of G − Gf to x, and map
each vertex y of Gf to g(f(y)). This is a homomorphism, as is easily checked
by considering an edge xy where x is in G − Gf and y is in Gf , and noting
that f(y) = f(g(f(y))). This contradicts the fact that G is a core. Thus
Gf = g(H∗) and hence Gf = G∗ = g(H∗), i.e., G∗ and H∗ are isomorphic.
Therefore f is injective on Gf , and by Proposition 2.2 also on G. Since f was
an arbitrary homomorphism of G to H , we obtain the conditions 1 and 2.
Of course, if condition 3 is not satisfied then any core K properly containing
G and properly contained in H satisfies G < K < H .

We now prove the existence of an integer s as required by the proof. In
fact, we extract the construction of H−, as we find it a useful tool of general
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interest. Thus we formulate our Sparse Incomparability Lemma as follows.

Lemma 2.4 For every trigraph H and for every positive integer n there
exists a trigraph H− with the following properties:

• H− → H,

• H− does not contain a digon, and

• for each trigraph G with at most n vertices, we have H− → G if and
only if H → G.

Proof. The construction of the trigraph H− is described in the previous
proof; in particular, it involves replacing each vertex of H by s new vertices.
The first two statements are obvious from the construction. Thus suppose
G is a trigraph with at most n vertices, and assume s/n is sufficiently large.
Note that H → G implies H− → G by the first statement. On the other
hand, if µ : H− → G is a homomorphism, we can define ν : H → G by
letting ν(x) be the majority value of µ(xi). If xy ∈ E1 ∩ E2, then since s/n
is large, it follows by the standard properties of random graphs that between
any s/n white and s/n black vertices of B there will be both an edge and a
nonedge. It follows that ν(x)ν(y) ∈ E1∩E2, and hence ν is a homomorphism
of H to G. Specifically, the probability that two sets of size s/n will miss an

edge or a nonedge is at most 2(1/2)(s/n)2, and the number of choices of such

subsets is
(

s
s/n

)2
. We now note that 2(1/2)(s/n)2( s

s/n

)2
converges to zero.

An interesting variation on the question of density would be to consider
trigraphs allowed to have vertices without loops.

We are grateful to two anonymous referees for their careful reading of the
mansucript.
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[8] V. Mueller, J. Nešetřil, and J. Pelant, Either tournaments or algebras?,
Discrete Math. 11 (1975) 37–66.
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