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Abstract

We study methods for solving the Cauchy problem for systems of non-linear hyperbolic
balance laws with initial condition consisting of two smooth vectors, with a discontinuity at
the origin. We call this initial-value problem the Derivative Riemann Problem, or DRP. Two
new methods of solution are presented. The first one results from a re-interpretation of the
high-order numerical methods proposed by Harten et al. [10] and the second method is a
modification of the DRP solver in [35]. A systematic assessment of all available DRP solvers
is carried out and their relative merits are discussed. Finally, we also implement the DRP
solvers, locally, in the context of high-order finite volume numerical methods of the ADER
type, on unstructured meshes. Schemes of up to fifth order of accuracy in space and time
for the two-dimensional compressible Euler equations are constructed. Empirically obtained
convergence rates are studied systematically and, for the tests considered, these correspond
to the theoretically expected orders of accuracy.

1 Introduction

The classical Riemann problem is the Cauchy problem for a system of conservation laws, with
initial condition consisting of two constant states separated by a discontinuity. The solution of
this Riemann problem was first used by Godunov to construct his first-order upwind numerical
scheme [9]. Methods to solve the classical Riemann problem are studied, for example, in [32]. The
so-called generalized Riemann problem, in which the initial condition consists of two polynomials
of first degree (vectors) separated by a discontinuity at the interface, has been used to construct
Godunov-type schemes of second order of accuracy [20], [37], [1], [4], [3], [19], [30], [31], [32], [2].

The more general Cauchy problem with initial conditions consisting of two smooth functions
separated by a discontinuity at the origin has also been studied in recent years; this is the
theme of this paper. We call this Cauchy problem the Derivative Riemann Problem, or DRP,
to distinguish it from the terminology Generalized Riemann problem, mostly associated with
the simpler problem with piece-wise linear initial conditions. Theoretical aspects regarding the
DRP are found in [17], [18] and references therein.

A method to solve the Derivative Riemann Problem was presented in [35], which is a gener-
alization to arbitrary order of the MGRP approach communicated in [30], [31] for second-order
schemes, to solve non-linear hyperbolic systems. The method of [35] is applicable to non-linear
hyperbolic systems with source terms. The technique expresses the time-dependent solution at
the interface as a power series expansion of order K. The leading term of the expansion is the
solution of a classical, usually non-linear, Riemann problem. The determination of the higher
order terms involves the Cauchy-Kowalewski method to express time derivatives in terms of
functions whose arguments are spatial derivatives. In order to define the spatial derivatives one
first constructs new evolution equations for these and then solves additional classical Riemann
problems. The solutions of these classical Riemann problems define all spatial derivatives at
the interface. The complete solution is then built up by evaluating the functions of spatial
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derivatives and assembling the complete series. In this manner the method of solution of order
K boils down to solving 1 classical non-linear Riemann problem for the leading term and K
classical linear Riemann problems for spatial derivatives. An extended version of the method to
deal with more general hyperbolic systems is presented in [33].

Numerical methods of arbitrary order of accuracy can be constructed as a straight gener-
alization of Godunov’s first order method, by using the solution of the DRP at the interface.
This methods were called ADER methods in [34], where schemes of arbitrary accuracy were
formulated for linear problems in one and multiple space dimensions. Corresponding schemes
for non-linear systems based on the DRP solver in [35], were reported in [28], [36] and [29].
Further developments of ADER schemes are reported in [27], [23], [24], [22], [14], [15], [16], [7],
[5].

The present paper is motivated by number of issues. First, it appears necessary to examine
more closely the quality of the approximate solutions produced by the existing DRP solver of
Toro and Titarev [35], for the case of non-linear systems. In addition, we have recently identified
a class of problems for which this DRP solver may experience some difficulties. The problems in
question include, locally, a stationary discontinuity, a shock wave or a contact wave, for which
the DRP expansion of [35] may be non-unique, giving rise to a non-unique choice of intercell
numerical flux. At the level of the first-order scheme the choice is unique due to the Rankine-
Hugoniot conditions that ensure the continuity of the flux; that is, the flux is the same whether
it is taken from the left or from the right of the interface. For the high-order schemes the fluxes
are different. We also present new DRP solvers and discuss their relative performance, at the
local level, as well as a means to provide a numerical flux for high-order methods. The high-
order method first proposed by Harten, Engquist, Osher and Chakravarthy [10], after a minor
modification, may be interpreted in the frame of the ADER methods. That is, we could define
an associated derivative Riemann problem with a corresponding method to solve it. We call
the resulting method the HEOC solver. We also propose a new solver that is a modification of
the Toro-Titarev solver. The main feature of this DRP solver is that the high-order terms are
computed by solving linearized classical Riemann problems for the high-order time derivatives.
This is motivated by the fact that for a linear system, all-order time derivatives obey the original
system of PDEs. We note that for the case of a linear system with constant coefficients all three
methods studied here coincide and their solution is identical to the exact solution of the DRP
problem.

A systematic assessment of the methods to solve the DRP for non-linear systems is performed,
through a carefully selected suite of test problems. We also implement some of the schemes to
construct high order numerical methods to solve the general initial boundary value problem. The
methods are implemented and assessed for one dimensional problems and for two-dimensional
problems on unstructured meshes.

The rest of this paper is organized as follows. In Sect. 2 we define the mathematical problem
and review an existing DRP solver. In Sect. 3 we present new DRP solvers. Sect. 4 deals with
the DRP solvers in the context of high-order finite volume methods in one-space dimension. In
Sect. 5 we assess the performance of the local DRP solvers. In Sect. 6 we construct ADER high
order numerical methods for two-dimensional systems on unstructured meshes. Conclusions are
drawn in Sect. 7.

2 The Derivative Riemann Problem

Here we first state the mathematical problem and then briefly review an existing semi-analytical
method to compute the solution at the interface as a function of time.
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Figure 1: The classical Riemann problem for a typical 3 × 3 non-linear system. Top frame:
initial condition at t = 0 for a single component q of the vector of unknowns Q. Bottom frame:
structure of the solution on the x − t plane.

2.1 The Mathematical Problem

The Derivative Riemann Problem is the initial-value problem

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,∞) , t > 0 ,

IC: Q(x, 0) =







QL(x) if x < 0 ,

QR(x) if x > 0 .



















(1)

The partial differential equations (PDEs), with source terms, are assumed to be a general system
of hyperbolic balance laws. The initial condition (IC) consists of two vectors QL(x), QR(x), the
components of which are assumed to be smooth functions of x, with K continuous non-trivial
spatial derivatives away from zero. We denote by DRPK the Cauchy problem (1). In the DRP0

all first and higher-order spatial derivatives of the initial condition away from the origin vanish
identically; this case corresponds to the classical piece-wise constant data Riemann problem,
associated with the first-order Godunov scheme [9]. Similarly, in the DRP1 all second and
higher-order spatial derivatives of the initial condition for the DRP away from the origin vanish
identically; this case corresponds to the piece-wise linear data Riemann problem, or the so-called
generalized Riemann problem (GRP), associated with a second-order method of the Godunov
type [20], [37], [1], [4], [3], [19], [31], [2].

Fig. 1 depicts the classical Riemann problem DRP0 for a typical 3× 3 non-linear system for
which it is assumed that the left wave is a rarefaction, the right wave is a shock and the middle
wave is a contact. The top frame shows the initial condition for a single component q of the
vector of unknowns Q. The bottom frame of Fig. 1 depicts the structure of the corresponding
solution on the x − t plane; characteristics curves are straight lines. Fig. 2 illustrates the
Derivative Riemann Problem DRPK ; the top frame depicts the initial condition for a single
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Figure 2: The Derivative Riemann Problem for a typical 3 × 3 non-linear system. Top frame:
initial condition at t = 0 for a single component q of the vector of unknowns Q. Bottom frame:
structure of the solution on the x − t plane.

component q and consists of two smooth functions separated by a discontinuity at the origin.
The bottom frame of Fig. 2 depicts the corresponding structure of the solution on the x − t
plane. Now characteristics are no longer straight lines. Compare Figs. 1 and 2. The aim of this
paper is to present methods to find the solution of (1) at the origin x = 0 and for t > 0, as a
function of time and represented by QLR(τ) in Fig. 2. Recall that for the classical Riemann
problem the solution is self-similar, it depends on the ratio x/t and is constant at x = 0 (the
interface) for t > 0. In many situations of interest one can find the solution everywhere in the
half plane x ∈ (−∞,∞), t > 0, although for the purpose of computing a numerical flux, knowing
the solution along the interface is sufficient. For the derivative Riemann problem DRPK , with
K > 0, finding the solution in the half plane x ∈ (−∞,∞), t > 0, is a formidable task that
is possible only in special cases. See [19] for the complete solution of the DRP1 for the Euler
equations for ideal gases.

To construct high-order numerical methods of the ADER type [34] it is sufficient to find the
solution QLR(τ) at the interface position x = 0, as a function of time τ alone. QLR(τ) will
provide sufficient information to compute a numerical flux to construct a numerical scheme of
(K + 1)-th order of accuracy in both space and time. The corresponding intercell numerical
flux, denoted by FLR, is the time-integral average

FLR =
1

∆t

∫ ∆t

0
F(QLR(τ))dτ , (2)

where ∆t is the time step of the scheme. Numerical methods based on this framework were
called ADER methods in [34]. Early versions of the approach were communicated in [30], [31].

Note that the conventional case of piece-wise constant data reproduces the classical first-
order upwind method of Godunov [9].
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2.2 A Known Method of Solution

Here we briefly review the method proposed by Toro and Titarev [35], [33], whereby a semi-
analytical solution of the Derivative Riemann Problem (1) is obtained. Their method, as in [1]
for second order and in [17] for the general case, first expresses the sought solution QLR(τ) at
the interface x = 0 as the power series expansion in time

QLR(τ) = Q(0, 0+) +
K

∑

k=1

[

∂
(k)
t Q(0, 0+)

] τk

k!
, (3)

where

Q(0, 0+) = lim
t→0+

Q(0, t) .

The solution contains the leading term Q(0, 0+) and higher-order terms, with coefficients de-

termined by the time derivatives ∂
(k)
t Q(0, 0+). The determination of all terms in the expansion

includes the following steps:

Step (I): The leading term. To compute the leading term one solves exactly or approxi-
mately the conventional Riemann problem

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =















QL(0−) if x < 0 ,

QR(0+) if x > 0 ,



























(4)

with

QL(0−) = lim
x→0−

QL(x) , QR(0+) = lim
x→0+

QR(x) . (5)

The similarity solution of (4) is denoted by D(0)(x/t) and the leading term in (3) is

Q(0, 0+) = D(0)(0) . (6)

Step (II): Higher order terms. There are three sub-steps here.

1. Time derivatives in terms of spatial derivatives: Use the Cauchy-Kowalewski
method to express time derivatives in (3) in terms of functions of space derivatives

∂
(k)
t Q(x, t) = G(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (7)

The source terms S(Q) in (1) are all included in the arguments of the functions G(k).
The problem now is that of determining the arguments of G(k), namely the spatial
derivatives at the interface.

2. Evolution equations for derivatives: Construct evolution equations for spatial
derivatives

∂t(∂
(k)
x Q(x, t)) + A(Q)∂x(∂(k)

x Q(x, t)) = H(k) , (8)

where A(Q) is the Jacobian matrix of the PDEs in (1).
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3. Riemann problems for spatial derivatives: Simplify (8) by neglecting the right-
hand side terms H(k) and linearizing the evolution equations. Then pose classical,
homogeneous linearized Riemann problems for spatial derivatives

PDEs: ∂t(∂
(k)
x Q(x, t)) + A

(0)
LR∂x(∂

(k)
x Q(x, t)) = 0 ,

ICs: ∂
(k)
x Q(x, 0) =















∂
(k)
x QL(0−) if x < 0 ,

∂
(k)
x QR(0+) if x > 0 ,































(9)

with A
(0)
LR = A(Q(0, 0+)). Solve these Riemann problems to obtain similarity solu-

tions D(k)(x/t) and set

∂(k)
x Q(0, 0+) = D(k)(0) . (10)

Step (III): The solution. Form the solution as the power series expansion:

QLR(τ) = C0 + C1τ + C2τ2 + . . . + CKτK , (11)

with C0 as in (6) and

Ck ≡
∂

(k)
t Q(0, 0+)

k!
=

G(k)(D(0)(0),D(1)(0), . . . ,D(k)(0))

k!
, (12)

for k = 1, . . . , K.

This solution technique for the Derivative Riemann Problem DRPK reduces the problem
to that of solving K + 1 classical homogeneous Riemann problems, one (generally non-linear)
Riemann problem to compute the leading term and K linearized Riemann problems to determine
the higher order terms.

The leading term requires the availability of a Riemann solver, exact or approximate. The K
linearized Riemann problems (9) for most well-known systems associated with the higher order
terms can be solved analytically and no choice of a Riemann solver is necessary. Moreover, all
of these linearized problems have the same eigenstructure, as the coefficient matrix is the same
for all Riemann problems for derivatives.

In principle, the technique can be applied to calculate the early-time solution of advection-
reaction equations with piece-wise smooth initial conditions. One can set up a derivative Rie-
mann problem at any desired position, taking care that at each point x = xd of discontinuity in
the initial condition one sets a corresponding derivative Riemann problem centred at xd. The
solution at each point xd, for a small time τ , can be used to check the results of numerical
schemes.

3 Other Methods of Solution

Here we study two alternative methods for solving the DRP (1). The first results from a re-
interpretation of the high-order numerical method first proposed by Harten, Engquist, Osher
and Chakravarthy [10]. Consequently we call this derivative Riemann solver, the HEOC solver.
The second method we study results from a modification of both the Toro-Titarev solver [35] of
section 2.2 and the HEOC solver. We denote this method of solution as the CT solver.
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3.1 Interaction of Power-Series Expansions

Here we re-interpret the method proposed by Harten, Engquist, Osher and Chakravarthy [10] to
compute numerical fluxes for their high-order methods, as a technique to provide an approximate
solution to the derivative Riemann problem (1) at the interface x = 0, as a function of time.
They proposed power series expansions in space and time for the solution in each control volume,
or cell. There followed the application of the Cauchy-Kowalewski method to convert all time
derivatives in the expansions to space derivatives, which in turn could be computed on the initial
data.

In our re-interpretation we include source terms in the equations and consider power series
expansions in time on each side of the interface

Q̃L(τ) = QL(0−) +
K

∑

k=1

[

∂
(k)
t Q(0−, 0)

] τk

k!
(13)

and

Q̃R(τ) = QR(0+) +
K

∑

k=1

[

∂
(k)
t Q(0+, 0)

] τk

k!
, (14)

with

Q(0−, 0) = lim
x→0−

Q(x, 0) ≡ QL(0−) (15)

and

Q(0+, 0) = lim
x→0+

Q(x, 0) ≡ QL(0+) . (16)

The Cauchy-Kowalewski method allows us to use the PDEs in (1) to express all time deriva-
tives in (13), (14) as functions of space derivatives and of the source terms S(Q), namely

∂
(k)
t Q(x, t) = G(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (17)

These expressions are well defined to the left and right of the interface, given that the initial
conditions in (1) are assumed to be smooth away from 0. We can also define the limiting values
from left and right, at t = 0, of the spatial derivatives of the initial conditions

Q
(k)
L (0−) ≡ lim

x→0−

dk

dxk
QL(x) , (18)

Q
(k)
R (0+) ≡ lim

x→0+

dk

dxk
QR(x) . (19)

Thus we have

∂
(k)
t Q(0−, 0) = G(k)(Q

(0)
L (0−),Q

(1)
L (0−), . . . ,Q

(k)
L (0−)) , (20)

and

∂
(k)
t Q(0+, 0) = G(k)(Q

(0)
R (0+),Q

(1)
R (0+), . . . ,Q

(k)
R (0+)) . (21)

We define the solution of the DRP (1) at the interface x = 0, at time t = τ as

QLR(τ) = D(τ, 0) , (22)
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Figure 3: Illustration of the HEOC Derivative Riemann Problem solver. The limiting values of
the initial data from left and right (circles) are time evolved separately to any time τ (rhombuses).
The desired solution results from solving the classical Riemann problem with these evolved states
as data.

where now D(τ, x/(t − τ)) is the similarity solution of the classical, homogeneous Riemann
problem

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =















Q̃L(τ) if x < 0 ,

Q̃R(τ) if x > 0 .



























(23)

Note that here D(τ, x/(t − τ)) depends on the parameter τ . We call this re-interpretation
of the method proposed by Harten et al. [10] as a derivative Riemann solver, the HEOC solver.

Fig. 3 gives an interpretation of the HEOC solution method for the DRP (1). At time t = 0
one performs a Taylor series expansion in time on the limiting values of the data left and right
of the interface (circles). Upon the application of the Cauchy-Kowalewski method one evolves
the data in time on each side of the interface to yield time-evolved states Q̃L(τ) and Q̃R(τ),
at any chosen time t = τ (rhombuses in Fig. 3). These (constant) states at t = τ form the
initial conditions for a classical Riemann problem, as depicted on the top part of Fig. 3 by the
self-similar wave pattern. The sought solution is that given by (22), which is constant along the
t-axis associated with the self-similar wave pattern. As the method applies to any time τ one
has a time-dependent solution at the interface.

We remark that, just as in the Toro-Titarev solver [35] reviewed in Sect. 2.2, the HEOC
solution method as presented here applies to in-homogeneous non-linear conservation balance
laws. The influence of the source term enters via the Cauchy-Kowalewski method, but note that
at no point in the method it becomes necessary to solve Riemann problems, explicitly accounting
for the influence of the source terms.

3.2 Interaction of Time Derivatives

Another method of solution for the DRP (1) results from a modification of both the Harten et
al. (HEOC) and the Toro-Titarev (TT) solvers. The sought solution at the interface is again

8



expressed as in (3), with the leading term computed as in (6). This part is identical to the TT
solver. To compute the higher order terms we solve time-derivative Riemann problems, that

is, for any index k > 0 we compute ∂
(k)
t Q(0−, 0) and ∂

(k)
t Q(0+, 0) as in (20) (left) and (21)

(right). To find ∂
(k)
t Q(0, 0+) right at the interface we solve the classical linearized homogeneous

Riemann problem

PDEs: ∂t(∂
(k)
t Q(x, t)) + A

(0)
LR∂x(∂

(k)
t Q(x, t)) = 0 ,

ICs: ∂
(k)
t Q(x, 0) =















∂
(k)
t Q(0−, 0) if x < 0 ,

∂
(k)
t Q(0+, 0) if x > 0 .































(24)

The similarity solution is denoted by T(k)(x/t) and the sought value is

∂
(k)
t Q(0, 0+) = T(k)(0) . (25)

The final solution has the form (11) with C0 as in (6) and

Ck ≡
∂

(k)
t Q(0, 0+)

k!
= T(k)(0) , (26)

for k = 1, . . . , K.
Note the analogy between (9) and (24). Both are motivated by the fact that for a linear ho-

mogeneous system with constant coefficient matrix Â all temporal and spatial partial derivatives
of the vector of unknowns, if defined, obey the original system, namely

∂t(∂
(k)
t Q(x, t)) + Â∂x(∂

(k)
t Q(x, t)) = 0 ,

∂t(∂
(k)
x Q(x, t)) + Â∂x(∂

(k)
x Q(x, t)) = 0 .















(27)

Note also that for the DRP for the linear advection equation

PDE: ∂tq + λ∂xq = 0 , x ∈ (−∞,∞) , t > 0 ,

IC: q(x, 0) =



















qL(x) if x < 0 ,

qR(x) if x > 0 ,































(28)

with λ a constant wave propagation speed, all the proposed solutions (TT, HEOC, CT) coincide
with the exact solution and is given by

qLR(τ) =



























qL(0−) +
∑K

k=1

[

(−1)kλkq
(k)
L (0−)

] τk

k!
if λ > 0 ,

qR(0+) +
∑K

k=1

[

(−1)kλkq
(k)
R (0+)

] τk

k!
if λ < 0 ,

(29)

with

q
(k)
L (0−) ≡

dk

dxk
qL(0−) , q

(k)
R (0+) ≡

dk

dxk
qR(0+) . (30)
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One can show that this is also true for a linear system with constant coefficients. For non-
linear systems the theoretical justification of the proposed solution method remains an issue, as
we shall point out in section 5. Obviously, for the special case of piece-wise constant data, the
classical Riemann problem for non-linear systems is reproduced by all the methods studied.

In the next section we formulate high-order finite volume methods that are based on the
solution of the DRP as the building block.

4 High-Order Numerical Schemes

The DRP solvers studied in this paper can be used to construct Godunov-type schemes of
arbitrary order of accuracy. Here we consider these schemes in the framework of the finite
volume method.

4.1 Finite Volume Schemes

The finite volume approach for a non-linear system of m × m hyperbolic equations with source
terms

∂tQ + ∂xF(Q) = S(Q) (31)

reads

Qn+1
i = Qn

i −
∆t

∆x
[Fi+ 1

2

− Fi− 1

2

] + ∆tSi , (32)

where Qn
i is an approximation to the spatial-integral average

Qn
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Q(x, tn)dx (33)

in the volume [xi− 1

2

, xi+ 1

2

] × [tn, tn+1]. Fi+ 1

2

is the numerical flux, which is an approximation

to the time-integral average (2), and Si is the numerical source, which is an approximation to a
volume integral. The numerical scheme is completely defined once expressions for Fi+ 1

2

and Si

are provided.

In the ADER method the numerical flux Fi+ 1

2

is computed by solving the Derivative Riemann

Problem
PDEs: ∂tQ + ∂xF(Q) = S(Q) ,

IC: Q(x, 0) =







Pi(x) if x < 0 ,

Pi+1(x) if x > 0 ,



















(34)

and then computing the time average as in (2). Here Pi(x) is a vector defined in cell [xi− 1

2

, xi+ 1

2

]

whose components are reconstructed polynomials of an appropriate degree; likewise Pi+1(x). In
principle, any reconstruction procedure can be used but in practice the non-linear ENO and
WENO reconstruction procedures are recommended [11], [26], [25]. The DRP (34) can be
solved using any of the methods studied in this paper.

In the ADER approach the numerical source Si results from a high-order approximation to
the volume-integral average

Si =
1

∆t

1

∆x

∫ ∆t

0

∫ x
i+1

2

x
i− 1

2

S(Qi(x, t))dxdt , (35)
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still denoted by Si, where Qi(x, t) is a high-order approximation to the solution of (31) inside
the control volume, obtained as follows. At any point xd ∈ [xi− 1

2

, xi+ 1

2

] the solution Q(xd, τ),

as a function of time, is computed using the Cauchy-Kowalewski method,

Q(xd, τ) = Q(xd, 0) +
K

∑

k=1

[

∂
(k)
t Q(xd, 0)

] τk

k!
. (36)

The functions G(k) in (7) are now functions of space derivatives of the reconstruction polynomial
Pi(x) and thus

Qi(xd, τ) = Pi(xd) +
K

∑

k=1

[

G(k)(P
(0)
i (xd),P

(1)
i (xd), . . . ,P

(k)
i (xd))

] τk

k!
. (37)

With this information available the space-time integral average can be computed to any desired
order of accuracy.

4.2 Analogy with Second-Order Schemes

The second order version of the ADER schemes reported in [31] is analogous to the GRP scheme
of Ben-Artzi and Falcovitz [1]. In fact the scheme of [31] is a modification of the GRP scheme,
whereby the computation of the time derivative in the power series expansion (to second order)
for the solution of the DRP is reduced to computing the solution of a linearized Riemann
problem for spatial gradients. The higher order ADER schemes are a straight generalization of
this modified GRP scheme. As seen in previous sections, the numerical flux is computed at the
solution of the Derivative Riemann Problem at the interface, which is found as a power series
expansion right at the interface x = 0, as a function of time.

Similarly, the method of Harten et al. [10] in its second-order mode may be seen as a way
of interpreting the second order MUSCL-Hancock scheme [38], the numerical flux of which is

FMH
i+ 1

2

= FMH
i+ 1

2

(Q̃R
i , Q̃L

i+1) = F(Q̃i+ 1

2

(0)) , (38)

where Q̃i+ 1

2

(x/t) is the similarity solution of the classical Riemann problem

PDEs: ∂tQ + ∂xF(Q) = 0 , x ∈ (−∞,∞) , t > 0 ,

IC: Q(x, 0) =







Q̃R
i if x < 0 ,

Q̃L
i+1 if x > 0 ,



















(39)

with
Q̃R

i = QR
i − 1

2
∆t
∆x

[F(QR
i ) − F(QL

i )] ,

Q̃L
i+1 = QL

i+1 −
1
2

∆t
∆x

[F(QR
i+1) − F(QL

i+1)]















(40)

and

QR
i = Qn

i +
1

2
∆x∆i , QL

i+1 = Qn
i+1 −

1

2
∆x∆i+1 . (41)

Here ∆i and ∆i+1 are the slopes in the MUSCL reconstruction in cells i and i + 1 respectively.
Note the relation

∆i =
QR

i − QL
i

∆x
= P

′

i , ∆i+1 =
QR

i+1 − QL
i+1

∆x
= P

′

i+1 . (42)
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On the other hand, a second-order method with the HEOC solver, see (13)-(14), has flux

Fi+ 1

2

= Fi+ 1

2

(

Q̃L(
1

2
∆t), Q̃R(

1

2
∆t)

)

= F

(

D(
1

2
∆t, 0)

)

. (43)

See (22). From (13) and (14) we have

Q̃L(1
2∆t) = Pi(0−) − 1

2∆tALP
′

i(0−) ,

Q̃R(1
2∆t) = Pi+1(0+) − 1

2∆tARP
′

i+1(0+) ,















(44)

with
AL = A(QL(0−)) , AR = A(QR(0+)) . (45)

For a linear system with constant coefficient matrix Â we have F(Q) = ÂQ and one sees that
the left and right states in (39) are identical to those in (44) and thus the second order ADER
scheme based on the HEOC solver is identical to the MUSCL-Hancock scheme.

The schemes are not identical for non-linear systems but the analogy just discussed provides
an interpretation to the rather enigmatic evolution step (40) of the boundary extrapolated values
by half a time step, in the MUSCL-Hancock method.

Thus, from the numerical point of view, we can interpret the numerical method of Harten
et al. [10] as being a high-order generalization of the MUSCL-Hancock second order method.
Similarly, the ADER method, with any of the DRP solvers studied here, may be interpreted as
a high-order generalization of the second order method of Ben-Artzi and Falcovitz [1], following
its modification reported in [31].

Corresponding finite volume schemes in two space dimensions using unstructured meshes are
described in Sect. 6.

5 Tests for the Derivative Riemann Problem Solvers

In this section we assess the performance of the Derivative Riemann Problem solvers studied in
the paper via a series of test problems for the Euler equations of gas dynamics. As no exact
solutions are known for the class of test problems of interest here, we obtain reference solutions
by computing solutions numerically. To this end we use three numerical methods, the first-order
Godunov method, the second-order MUSCL-Hancock method and the Random Choice Method
(RCM) [8], all of them applied on a very fine mesh.

We note that RCM has the unique property of being able to resolve the very-early time
evolution of the solution in a way that no other method known to us can do. This is important,
as the proposed DRP solvers are assessed in their domain of validity, namely for short times. For
test problems involving an initial discontinuity, most methods will require a fairly large number
of time steps to begin to gradually establish the structure of the true solution. Moreover, the
early-time numerical results may exhibit large unphysical oscillations, even when monotone (for
the scalar case) schemes are used. To illustrate this point we solve a simple shock-tube problem
in the domain [−1, 1], with initial data ρL = 1, uL = 3/4, pL = 1 for x < 0 and ρR = 1/8,
uR = 0, pR = 1/10 for x > 0.

Fig. 4 shows the exact (full line) and numerical solutions (symbols) at time t = 0.015 using
the the Godunov first-order method (circles), the MUSCL-Hancock method (squares) and the
RCM method (triangles). For all three numerical methods we use the exact Riemann solver.
For the first two methods we use Ccfl = 0.9 and for RCM we use Ccfl = 0.45. Fig. 4 shows
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Figure 4: Shock-tube test problem. Exact (full line) and numerical solutions (symbols) at
time t = 0.015 using the Godunov first-order method (circles), the MUSCL-Hancock method
(squares) and the random choice method (triangles).
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only the region close to the position of the discontinuities at time t = 0. For the output time
considered the Godunov and MUSCL-Hancock methods do only four time steps and RCM nine
time steps. The first two methods are unable to resolve the wave structure correctly. RCM finds
all intermediate states correctly. This property of RCM is useful to our purpose.

Recall that the DRP solution is valid precisely at the interface x = 0, as a function of
time. The numerical methods give the approximate solution in every cell of the mesh that
discretizes the domain [−1, 1]. For any mesh used one always has, at any time, one value
(vector) immediately to the left of x = 0 and one immediately to the right of x = 0. To extract
the sought reference solution at a given time we solve the classical Riemann problem for these
two neighbouring states and pick up the solution right at the interface x = 0. This is the
numerical solution that we compare with the DRP solutions.

The series of test problems includes a simple test (Test 1) with smooth initial condition
throughout, no discontinuities in the data are present. A second test (Test 2) has no jump
discontinuities in the state variables but admits discontinuities in derivatives at the interface.
Other more demanding test problems are constructed from Test 2, by adding a discontinuity in
pressure. Four new cases are thus generated by varying the strength of the initial pressure jump
∆p = (pL − pR)/pR at the interface, namely ∆p = 0.01, ∆p = 0.1, ∆p = 1.0 and ∆p = 10.0.
For these four cases with an initial jump discontinuity the reference numerical solution used is
that obtained by the Random Choice Method, on a very fine mesh.

5.1 Test 1: smooth initial conditions

The initial conditions, given in (46), are smooth throughout, there are no jumps in state or
derivatives at x = 0. In this particular case all three DRP solvers give, algebraically, the same
solution.

ρ(x, 0) = 1 + 4
5sin(πx

2 ) + 1
10sin(5πx

2 )

u(x, 0) = 1
2(x − 1

2)4

p(x, 0) = 10 + 2x4















(46)

In Fig. 5 we present the solution of the DRP problem up to fifth order (DRP 4) for all
three components of the vector Q = [ρ, ρu, E] ≡ [Q(1),Q(2),Q(3)], where ρ is density, u is
particle velocity and E is total energy. As expected, by increasing the order, the DRP solution
approximates the reference solution very well. The DRP0 solution is constant in time and the
DRP1 solution is linear in time. We note that the approximation improves with the order,
which is verified for all three components Q(1), Q(2) and Q(3). For Q(2) the DRP 1 solution is
practically identical to the DRP0 solution. This is correct in the sense that at the time τ = 0+

the slope of the reference solution is close to zero and the linear characteristic of the DRP 1
solution will not modify this slope. Table 1 shows the error in the L2 norm at different times.
The main feature of these errors is that as time decreases the error decreases and as the order
of accuracy increases the error decreases, as expected.

5.2 Test 2: Initial data with discontinuous derivatives

Test 2 has piece-wise smooth initial conditions that are continuous at x = 0 but with discon-
tinuous derivatives at x = 0, see (47). For this test problem all three DRP solvers (TT, CT
and HEOC) agree quite well for the very early times but differ quite visibly for larger times.
Figure 6 shows the fifth-order (DRP4) solution for the three solvers, for each component of the
vector Q. For the first and third components the solver CT is the most accurate, followed by
HEOC. For the second component of Q, the TT solver gives better results. More comprehensive
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Figure 5: Test 1: DRP solution for Q(1) = ρ, Q(2) = ρu and Q(3) = E. Thick line is the
reference solution.
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Order t = 0.0125 t = 0.0250 t = 0.0500 t = 0.1000

DRP0 1.11656 × 10−1 2.34541 × 10−1 5.67043 × 10−1 2.39794 × 10+0

DRP1 2.79222 × 10−3 1.70783 × 10−2 1.32228 × 10−1 1.52756 × 10+0

DRP2 1.51932 × 10−3 1.27545 × 10−2 1.17151 × 10−1 1.47129 × 10+0

DRP3 6.89536 × 10−5 1.15772 × 10−3 2.44542 × 10−2 7.30551 × 10−1

DRP4 1.32762 × 10−5 2.66533 × 10−4 1.02054 × 10−2 5.02807 × 10−1

Table 1: Errors in L2 norm for the vector Q for Test 1.

information about the relative merits of the three solvers is given in Tables 2 to 4, where errors
measured in the L2 norm are displayed. For time t = 0.0250, the error of the DRP4 solution
for the TT solver is 1.3295584× 10−2, for the HEOC solver is 7.3686016× 10−3 and for the CT
solver is 5.1386851× 10−3. A general conclusion is that for all three solvers the error diminishes
as the order increases, while the solution is more accurate for small times, and for which they
all tend to agree.

ρL(x, 0) = 1.433903078 + 4
5sin(π(x−0.3)

2 ) + 1
10sin(5π(x−0.3)

2 )

uL(x, 0) = 1
2(x − 4

5)4 − 0.17355

pL(x, 0) = 9.9838 + 2(x − 0.3)4

ρR(x, 0) = 1 + 4
5sin(πx

2 ) + 1
10sin(5πx

2 )

uR(x, 0) = 1
2(x − 1

2)4

pR(x, 0) = 10 + 2x4















































(47)

Order t = 0.0125 t = 0.0250 t = 0.0500 t = 0.1000

DRP0 3.18474 × 10−1 6.99227 × 10−1 1.76165 × 10+0 7.85676 × 100

DRP1 2.43169 × 10−2 1.11019 × 10−1 5.85425 × 10−1 5.50450 × 100

DRP2 3.57148 × 10−3 2.80474 × 10−2 2.53714 × 10−1 4.17824 × 100

DRP3 1.98152 × 10−3 1.53861 × 10−2 1.52705 × 10−1 3.36836 × 100

DRP4 1.85090 × 10−3 1.32955 × 10−2 1.19316 × 10−1 2.83279 × 100

Table 2: Toro-Titarev solver. Errors for Test 2.

Order t = 0.0125 t = 0.0250 t = 0.0500 t = 0.1000

DRP0 3.18474 × 10−1 6.99227 × 10−1 1.76165 × 10+0 7.85676 × 100

DRP1 2.46867 × 10−2 1.12490 × 10−1 5.91241 × 10−1 5.52721 × 100

DRP2 4.70401 × 10−3 3.29470 × 10−2 2.76097 × 10−1 4.29057 × 100

DRP3 1.78129 × 10−3 9.56147 × 10−3 8.91781 × 10−2 2.79727 × 100

DRP4 1.64408 × 10−3 7.36860 × 10−3 5.42299 × 10−2 2.25443 × 100

Table 3: HEOC solver: Errors for Test 2.
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Figure 6: Fifth order DRP solutions for Test 2, using TT, CT and HEOC for the three compo-
nents of Q.
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5.3 Tests with discontinuous initial conditions

The tests of this section are generated from the initial conditions of Test 2 by adding a term in
pL(x, 0) and thus generating a jump ∆p = (pL(0, 0) − pR(0, 0))/pR(0, 0) in pressure at x = 0.
We consider the four cases: ∆p = 0.01, 0.1, 1.0, 10.0.

Results are shown in Figures 7 to Figure 10. Figure 7 displays results for ∆p = 0.01, with
a small pressure jump; the DRP solution improves as the order increases, for all three solvers.
In Fig. 8, for ∆p = 0.10, the solution from the TT solver improves as the order increases. The
situation is different for the CT and HEOC solvers, whose solutions cross the reference solution.

Results for ∆p = 1.00 are shown in Fig. 9. Here the Toro-Titarev solver seems to perform
better but note that when the order increases to DRP4, it misrepresents the curvature and thus
crosses the reference solution. The solutions of the present solvers CT and HEOC show wrong
initial slopes. As the order increases the curvature seems to approximate the curvature of the
reference solution better, with the HEOC solution being closer to the reference solution than
that of CT. For both the CT and HEOC solvers the second order solution crosses the reference
solution.

Figure 10 shows the DRP solutions for ∆p = 10.0. All three solvers give the wrong initial
slope. Their failure to agree with the reference solution increases dramatically as the initial
pressure jump becomes larger. Moreover, they fail to capture the initial slope and the behaviour
of the reference solution.

5.4 Discussion of results

Recall that the main purpose of solving the Derivative Riemann Problem (DRP) is to provide
a time-dependent solution at each cell interface, from which a corresponding numerical flux
can be found and used in the context of finite volume methods or discontinuous Galerkin finite
element methods. However, before considering numerical methods we focus the discussion on
the solution of the particular Cauchy problem, the DRP. There are a number of aspects of the
solution procedure of the DRP that warrant a detailed discussion.

One issue concerns the time evolution of the initial data, as done in the HEOC solver, and
of the solution, as done in the TT and CT solvers. We have observed that even when the initial
condition consists of physically admissible data, it is possible that the time evolution yields
unphysical values, such as negative densities. This appears to be more crucial for the HEOC
solver, because it could happen that, at a given time, the time evolved data contains unphysical
values, which then the appropriate (classical) Riemann solver rejects, leading to a failure of the
scheme. The TT and CT solvers appear to be less sensitive to this problem. These two solvers
evolved in time the sought solution right at the interface. The corresponding time-dependent
solution may still include unphysical values. However, since these are then only used in the

Order t = 0.0125 t = 0.0250 t = 0.0500 t = 0.1000

DRP0 3.18474 × 10−1 6.99227 × 10−1 1.76165 × 10+0 7.85676 × 100

DRP1 2.43169 × 10−2 1.11019 × 10−1 5.85425 × 10−1 5.50450 × 100

DRP2 4.24609 × 10−3 3.07728 × 10−2 2.64623 × 10−1 4.22135 × 100

DRP3 1.32223 × 10−3 7.34350 × 10−3 7.70900 × 10−2 2.72215 × 100

DRP4 1.18530 × 10−3 5.13868 × 10−3 4.14296 × 10−2 2.14972 × 100

Table 4: CT (present) solver. Errors for Test 2.
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Figure 7: DRP solution for TT, CT and HEOC solvers for ∆p = 0.01. Thick full line is the
reference solution obtained with RCM method.

numerical integration to obtain the flux it is possible that the scheme may continue to function.

Stationary discontinuities in the solution of the DRP represent another situation where
differences between the various solvers exist. The TT and CT solvers expand the solution at the
interface starting from a leading term computed a time t = 0+ that dominates the evolution. In
the presence of a stationary discontinuity at t = 0+ there are two possible choices for the leading
term. For the first-order mode of the methods, it does not matter which of the two states is
taken, as these satisfy the Rankine-Hugoniot conditions and therefore the respective fluxes are
identical. For the higher-order version of the methods the situation is not clear. There will
be two different time expansions, depending on which side is taken as the leading term. This
non-uniqueness remains so even if the discontinuity moves for times t > 0. We have performed
some numerical tests on the effect of choosing from the two available expansions. There is an
observable numerical difference but, at least for the tests performed, it is very small and as time
evolves it virtually vanishes. Still, this is an aspect of the TT and CT methods that would
benefit from further investigations. On the other hand, the HEOC method is less sensitive to
this problem. In particular, if the discontinuity positioned at the origin, at the early times, then
moves as time increases. The the HEOC has the mechanism to capture this behaviour.
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Figure 8: DRP solution for TT, CT and HEOC solvers for ∆p = 0.10. Thick full line is the
reference solution obtained with RCM method.

In general, boundary conditions are a challenging problem in the context of high order
numerical methods. For example, for reflecting boundary conditions we solve an inverse Riemann
problem, in the sense that we need to identify appropriate initial conditions such that the
Riemann problem solution at the boundary reproduces what is physically sought, for example,
zero velocity. To this purpose the HEOC solver appears more attractive than the TT and CT
solvers, as it is very simple to create, at each time, in the time evolution process, the appropriate
data states to match the desired condition.

Some comments regarding computational cost are in order. The HEOC solver needs a robust
Riemann solver for each time-integration point τ , within the time step 0 ≤ τ ≤ ∆t. This can
be time-consuming as a robust Riemann solver will in general be a non-linear Riemann solver.
In addition, the HEOC solver requires the development of two series expansions, one on each
side of the interface. The TT solver, on the other hand, requires a single expansion right at the
interface. Moreover, in the TT and CT solvers, one uses a non-linear Riemann solver only once,
in order to compute the leading term reliably.

A rather surprising observation resulting from the present work is that, from the evidence
available, all three DRP solvers are unable to resolve correctly the DRP problem for the case
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Figure 9: DRP solution for TT, CT and HEOC solvers for ∆p = 1.00. Thick full line is the
reference solution obtained with RCM method.

of non-linear systems with large jumps. This is different from the case of scalar non-linear
problems. In fact, it has been demonstrated that the TT solver [33] gives the correct solution
for the non-linear Burgers equation, even with a non-linear source term, for initial jumps of
any size. This property does not seem to carry to systems (non-linear). Recall that for linear
systems all methods are equivalent and all give the correct solution.

On the other hand, the available experience shows that the high order ADER schemes based
on the solution of the Derivative Riemann Problem are capable of producing the theoretically
expected orders of accuracy. Obviously, the corresponding convergence rate tests are performed
for smooth solutions. However, even for smooth solutions the local reconstruction procedure
will necessarily produce jumps at the interfaces. Obviously these jumps are small, and possibly
within the range that allows the existing DRP solvers to resolve correctly.
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Figure 10: DRP solution for TT, CT and HEOC solvers for ∆p = 10.0. Thick full line is the
reference solution obtained with RCM method.

6 ADER Methods on Triangular Meshes

The purpose of this section is to briefly outline the procedure to construct high-order finite
volume methods on unstructured meshes and to illustrate the way the solution of the Derivative
Riemann Problem can be used as the building block for such numerical schemes. We restrict
ourselves to two space dimensions and study two problems. The first one is used to carry out
a convergence rate study and to show that the theoretically expected high order accuracy is
actually verified in practice, at least for the chosen test problem. The second test is used to
illustrate the fact that the proposed schemes can be used to solve realistic problems involving
shock waves on complicated, non-cartesian geometries.

6.1 Equations and Finite Volume Schemes

We solve the two-dimensional compressible Euler equations

∂

∂t
Q +

∂

∂x
F(Q) +

∂

∂y
G(Q) = 0, (48)
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, (49)

and the ideal equation of state, with the specific internal energy given as e(ρ, p) = p
ρ(γ−1) . Here

ρ is density, u, v are x and y components of velocity, p is pressure and E is the total energy,
defined as E = ρ(1

2(u2 + v2) + e(ρ, p)). For the calculations of this paper we take γ = 1.4, as for
air.

The schemes are constructed by considering a control volume Tm in a two-dimensional do-
main, where Tm is an element of a conformal triangulation of the full spatial domain Ω. Writing
equations (48) in divergence form

Qt + ∇H(Q) = 0 , H(Q) = [F(Q),G(Q)]T (50)

and integrating over the triangle in space and time we obtain

Qn+1
m = Qn

m −
∆t

|Tm|

3
∑

j=1

Hn
m,j . (51)

Here Hn
m,j is the numerical flux across the edge j of the triangle Tm, |Tm| is the area of triangle

Tm and Qn
m is the cell average

Qn
m =

1

|Tm|

∫

Tm

Q(x, tn)dx . (52)

Once the numerical flux across the edges of the triangle are defined we obtain an explicit one
step numerical method. The numerical flux Hn

m,j for edge j is obtained by integrating along the
edge ∂Tm,j in the time interval [tn, tn+1],

Hn
m,j =

1

∆t

tn+1
∫

tn

∫

∂Tm,j

F(Q(x, τ)) · n dx dτ , (53)

which is approximated as

Hn
m,j =

Nt
∑

k=1

ωt
k |∂Tm,j |

Nx
∑

h=1

ωx
h F(Q(xh, tk)) · n . (54)

The integration (53) is obtained by a Gaussian quadrature of the desire order defining the
quadrature points xh and tk and the weights ωx

h and ωt
k, with xh ∈ ∂Tm,j and tk ∈ [tn, tn+1].

At each spatial integration point xh we set locally a Derivative Riemann Problem (1) to obtain
the vector Q(xh, tk) = QLR(tk) as in (3), see Fig. 11. QLR(τ) can be obtained by using any
of the three DRP solvers studied in this paper. Recall that the basic information available in
finite volume schemes is a set of cell averages and therefore in order to produce a high order
representation of the data in each cell we need to perform a reconstruction procedure to obtain
the data for (1). Here we apply the reconstruction procedure reported in [6], which extends the
ideas of the ENO/WENO techniques [13] combined with the sectorial stencil of [16] and the use
of orthogonal basis functions from the discontinuous Galerkin methodology.
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Figure 11: Numerical flux computed at the Gaussian point x = xh and t = tk.

6.2 Convergence rate studies

For the purpose of studying the convergence rates of the schemes we adopt the test problem pro-
posed in [12], which consists of a convected isentropic vortex computed in a square domain, with
periodic boundary conditions. The initial condition consists of a mean constant flow modified
by an isentropic perturbation. The initial mean flow is given by ρ = 1, p = 1 and (u, v) = (1, 1)
and the perturbation is given by

δu = −
ǫ

2π
e

1

2
(1−r2)y ,

δv =
ǫ

2π
e

1

2
(1−r2)x ,

δρ = (1 + δT )
1

γ−1 − 1 ,

δp = (1 + δT )
γ

γ−1 − 1 ,

δT = −
(γ − 1)ǫ2

8γπ2
e1−r2

,















































(55)

where r2 = x2 + y2, ǫ = 5 (the vortex strength) and γ is taken as γ = 1.4. The computational
domain is [−5, 5] × [−5, 5] discretized by an unstructured mesh of triangles.

Tables 5 to 8 give errors and convergence rates for the finite volume ADER schemes using
the CT (present) derivative Riemann problem solver. Schemes up to fifth order of accuracy are
considered, on four levels of mesh refinement. Errors are measured in three norms L1, L2, L∞

and the corresponding empirical orders of accuracy are O1, O2 and O∞. The expected orders
of accuracy are reached in all cases.

Mesh L1 error O1 L2 error O2 L∞ error O∞

224 2.47 × 1000 5.67 × 10−1 4.43 × 10−1

898 1.42 × 1000 0.85 3.42 × 10−1 0.78 2.82 × 10−1 0.69

3618 3.43 × 10−1 2.03 8.19 × 10−2 2.04 8.71 × 10−2 1.67

14402 5.84 × 10−2 2.56 1.37 × 10−2 2.58 1.51 × 10−2 2.53

57694 7.65 × 10−3 2.99 1.37 × 10−3 3.11 4.22 × 10−3 1.88

Table 5: Convergence rates test: second order method.
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Mesh L1 error O1 L2 error O2 L∞ error O∞

224 2.29 × 1000 5.23 × 10−1 4.11 × 10−1

898 7.35 × 10−1 1.75 1.65 × 10−1 1.77 1.30 × 10−1 1.77

3618 1.02 × 10−1 2.82 2.49 × 10−2 2.70 1.94 × 10−2 2.71

14402 1.60 × 10−2 2.67 4.03 × 10−3 2.63 2.84 × 10−3 2.78

57694 2.06 × 10−3 3.02 5.21 × 10−4 3.01 3.64 × 10−4 3.03

Table 6: Convergence rates test: third order method.

Mesh L1 error O1 L2 error O2 L∞ error O∞

224 2.14 × 1000 4.87 × 10−1 3.88 × 10−1

898 3.76 × 10−1 2.68 6.23 × 10−2 3.17 5.03 × 10−2 3.14

3618 1.67 × 10−2 4.43 3.50 × 10−3 4.10 3.87 × 10−3 3.65

14402 1.12 × 10−3 3.91 2.25 × 10−4 3.97 2.48 × 10−4 3.97

57694 6.84 × 10−5 4.12 1.37 × 10−5 4.12 1.61 × 10−5 4.03

Table 7: Convergence rates test: fourth order method.

6.3 Shock wave reflection problem

The purpose of this test is simply to illustrate the potential of the methods presented to solve re-
alistic problems to high accuracy on complicated domains discretized with unstructured meshes.
To this end we consider the reflection of a shock wave from a solid body of triangular shape.
The two-dimensional computational domain is the region [−0.65, 0.5] × [−0.5, 0.5], with a tri-
angular solid body defined by the positions of its vertexes v1 = (−0.2, 0), v2 = (0.1,−1/6) and
v3 = (0.1, 1/6). The incident shock wave has shock Mach number Ms = 1.3 and at time t = 0
is placed at x = −0.55, with initial conditions ahead of the shock given by ρ = 1.225(Kg/m3),
p = 1.01325 × 105(Pa) and zero velocity. Conditions behind are calculated from the Rankine-
Hugoniot conditions.

The mesh consist on 256580 triangles. Boundary conditions are as follows: left boundary at
x = −0.65 is defined as inflow condition with the corresponding state defined by the Rankine-
Hugoniot conditions; at the right boundary at x = 0.5 we set an outflow condition. The
remaining boundaries are solid reflecting boundaries.

For the results shown we used the third order ADER scheme along with the CT solver for
the Derivative Riemann Problem and Courant number Ccfl = 0.45. Figures 12 to 15 display

Mesh L1 error O1 L2 error O2 L∞ error O∞

224 1.95 × 1000 4.60 × 10−1 3.71 × 10−1

898 3.86 × 10−1 2.49 7.19 × 10−2 2.85 6.99 × 10−2 2.57

3618 2.90 × 10−2 3.69 7.23 × 10−3 3.27 8.40 × 10−3 3.02

14402 1.31 × 10−3 4.48 3.44 × 10−4 4.40 2.12 × 10−4 5.32

57694 1.48 × 10−5 6.60 3.85 × 10−6 6.62 2.54 × 10−6 6.52

Table 8: Convergence rates test: fifth order method.

25



Schlieren images for the density at times t = 7.93 × 10−4, t = 1.41 × 10−3, t = 1.85 × 10−3

and t = 2.20 × 10−3 respectively. The shock wave propagates to the right, reflects from the
solid triangle and generates a circular reflection shock. The two expansion waves created by
the vertexes v2 and v3 produce regions of low density and pressure. See Fig. 16 for a three
dimensional image of the density at time t = 2.20 × 10−3.

The main physical features of the flow look reasonable, as compared with analogous problems
for which there are experimental results, see [21].

Figure 12: Shock wave reflection problem. Schlieren image for density at time t = 7.93 × 10−4.
The shock wave begins the interaction with the triangle.

Figure 13: Shock wave reflection problem. Schlieren image for density at time t = 1.41 × 10−3.
The shock wave reflects from the edges of the triangle and generates a single Mach reflection
pattern.
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Figure 14: Shock wave reflection problem. Schlieren image for density at time t = 1.85 × 10−3.
The shock wave generates two expansive waves over the corners of the triangle. A slip surface
is produced from the interaction of the original shock wave and the reflected one.

7 Summary and concluding remarks

In this paper we have studied three methods for solving the Derivative Riemann Problem for
non-linear systems of hyperbolic balance laws. The techniques have been illustrated for the com-
pressible Euler equations of gas dynamics. One of the methods results from a re-interpretation
of the scheme proposed by Harten et al. [10]. Another method results from a modification of
the DRP solver of Titarev and Toro [35]. All three DRP solvers are assessed systematically on a
range of local derivative Riemann problems. It is found that for linear problems all three solvers
are algebraically equivalent, as they are for non-linear systems with smooth initial conditions
throughout. For non-linear systems with discontinous initial conditions the solvers tend to differ
amongst themselves, and from the reference solution, as the jump in the initial conditions at the
origin increases. For small jumps all solvers tend to give an accurate solution for short times,
as one would expect.

We have also implemented the DRP solvers, locally, in the context of high-order finite vol-
ume numerical methods of the ADER type, on unstructured meshes. Schemes of up to fifth
order of accuracy in space and time for the two-dimensional compressible Euler equations have
been constructed. The empirically obtained convergence rates correspond to the theoretically
expected orders of accuracy. An illustration of the potential capabilities of our high order meth-
ods to solve realistic problems on complex domains, using unstructured meshes, has also been
given.
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Figure 15: Shock wave reflection problem. Schlieren image for density at time t = 2.20 × 10−3.
Two vortexes evolve behind the triangle. The expansion waves interact with the shock and with
the boundaries.

Figure 16: Shock wave reflection problem. Schlieren image for density at time t = 2.20 × 10−3.
Three dimensional image for the density.
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