
Parameterized Proof Complexity: a Complexity Gap for
Parameterized Tree-like Resolution

Stefan Dantchev∗, Barnaby Martin and Stefan Szeider

Department of Computer Science
Durham University, Durham, England, UK

[s.s.dantchev,b.d.martin,stefan.szeider]@durham.ac.uk

November 24, 2006

Abstract

We propose a proof-theoretic approach for gaining evidencethat certain parameterized problems
are not fixed-parameter tractable. We consider proofs that witness that a given propositional for-
mula cannot be satisfied by a truth assignment that sets at most k variables totrue, consideringk as
the parameter. One could separate the parameterized complexity classes FPT and W[2] by show-
ing that there is no proof system (for CNF formulas) that admits proofs of sizef(k)nO(1) wheref

is a computable function andn represents the size of the propositional formula. We provide a first
step and show that tree-like resolution does not admit such proofs. We obtain this result as a corol-
lary to a meta-theorem, the main result of this paper. The meta-theorem extends Riis’ Complexity
Gap Theorem for tree-like resolution. Riis’ result establishes a dichotomy between polynomial
and exponential size tree-like resolution proofs for propositional formulas that uniformly encode
a first-order principle over a universe of sizen: (1) either there are tree-like resolution proofs of
size polynomial inn, or (2) the proofs have size at least2εn for some constantε; the second case
prevails exactly when the first-order principle has no finitebut some infinite model.

We show that the parameterized setting allows a refined classification, splitting the second
case into two subcases: (2a) there are tree-like resolutionproofs of size at mostβknα for some
constantsα, β; or (2b) every tree-like resolution proof has size at leastnk

γ

for some constant
0 < γ ≤ 1; the latter case prevails exactly if for every infinite model, a certain associated
hypergraph has no finite dominating set. We provide examplesof first-order principles for all
three cases.

∗Most of the work was done while visiting the Isaac Newton Institute for Mathematical Sciences as a participant in the
Logic and Algorithms (LAA) Programme.

1 Introduction

In recent years parameterized complexity and fixed-parameter algorithms have become an important
branch of algorithm design and analysis; hundreds of research papers have been published in the area
[1, 4, 5, 8]. In parameterized complexity one considers computational problems in a two-dimensional
setting: the first dimension is the usualinput sizen, the second dimension is a positive integerk, the
parameter. A problem is fixed-parameter tractable if it can be solved intimeO(f(k)nO(1)) where
f denotes a computable, possibly exponential, function. Several NP-hard problems have natural
parameterizations that admit fixed-parameter tractability. For example, given a graph withn vertices,
one can check in timeO(1.273k + nk) (and polynomial space) whether the graph has a vertex cover
of size at mostk [2]. On the other hand, several parameterized problems suchasCLIQUE (has a given
graph a clique of size at leastk?) are believed to benot fixed-parameter tractable.BOUNDED CNF

SATISFIABILITY is a further problem that is believed to benot fixed-parameter tractable (and which
will play a special role in the sequel): given a propositional formula in conjunctive normal form, is
there a satisfying truth assignment that sets at mostk variables totrue?

Parameterized complexity offers also a completeness theory. Numerous parameterized problems
that appear to be not fixed-parameter tractable have been classified as being complete underfpt-
reductionsfor complexity classes of the so-calledweft hierarchyW[1] ⊆ W[2] ⊆ · · · . For example,
CLIQUE andBOUNDED CNF SATISFIABILITY are complete for the first two levels of the weft hierar-
chy, respectively. We will outline the basic notions of parameterized complexity in Section 2.1; for
an in-depth treatment of parameterized complexity classesand fpt-reduction we refer the reader to
Flum and Grohe’s monograph [5].

It is widely believed that problems that are hard for the wefthierarchy are not fixed-parameter
tractable. Up to now there are mainly three types of evidence:

1. Accumulative evidence: numerous problems are known which are hard or complete for classes
of the weft hierarchy, and for which no fixed-parameter algorithm has been found in spite of
considerable efforts [1].

2. k-step Halting Problemsfor non-deterministic Turing machines are complete for theclasses
W[1] (single-tape) and W[2] (multi-tape) [5]. A Turing machine is such an opaque and generic
object that it does not appear reasonable that we should be able to decide if a given Turing
machine on a given input has some accepting path without looking at the paths.

3. If a problem that is hard for a class of the weft hierarchy turns out to be fixed-parameter
tractable, then theExponential Time Hypothesis(ETH) fails, i.e., there is a2o(n) time algorithm
for then-variable 3-SAT problem [6]. ETH is closely related to the parameterized complexity
class M[1] which lies between FPT and W[1] (see [5]).

We propose a new approach for gaining further evidence that certain parameterized problems are
not fixed-parameter tractable. We generalize concepts of proof complexity to the two-dimensional
setting of parameterized complexity. This allows us to formulate a parameterized version of the
program of Cook and Reckhow [3]. Their program attempts to gain evidence for NP6= co-NP, and
in turn for P 6= NP, by showing that propositional proof systems are not polynomially bounded.
We introduce the concept of parameterized proof systems; inour program, lower bounds for the
length of proofs in these new systems yield evidence that certain parameterized problems are not
fixed-parameter tractable.

In propositional proof complexity one usually constructs asequence of tautologies (or contradic-
tions), and shows that the sequence requires proofs (or refutations) of super-polynomial size in the
proof system under consideration. In the scenario of contradictions and refutations, such sequences
of propositional formulas frequently encode a first-order (FO) sentence (such as the pigeon hole prin-
ciple) where then-th formula of the sequence states that the FO sentence has nomodel of sizen.
S. Riis [10] established a meta-theorem that exactly pinpoints under which circumstances a given FO
sentence gives rise to a sequence of propositional formulasthat have polynomial-sized refutations
in the system of tree-like resolution. Namely, if the sequence has not tree-like resolution refutations
of polynomial size, then shortest tree-like resolution refutations have size at least2εn for a positive
constantε that only depends on the FO sentence. Hence there is agapbetween two possible proof

2

complexities. The case of exponential size prevails exactly when the FO sentence has no finite but
some infinite model.

In this paper we show a meta-theorem regarding the complexity of parameterized tree-like res-
olution. To this aim we considerparameterized contradictionswhich are pairs(F , k) whereF is a
propositional formula in CNF andk is an integer, such thatF cannot be satisfied by a truth assign-
ment that sets at mostk variables totrue. Parameterized contradictions form a co-W[2]-complete
language. Hence FPT= W[2] would follow if there were a proof system that admits proofs of size
at mostf(k)nO(1) for parameterized contradictions(F , k) wheren represents the size ofF ; we call
such a (hypothetical) proof systemfpt-bounded.

In this paper we consider the relatively weak system of tree-like resolution. A tree-like resolution
refutation for a parameterized contradiction(F , k) uses clauses with more thank negated variables
as additional axioms. We show a meta-theorem that classifiesexactly the complexity of tree-like
resolution refutations for parameterized contradictions. Our theorem allows a refined view of the
exponential case of Riis’ Theorem: Consider the sequence〈Cψ,n〉n∈N of propositional formulas
generated from a FO sentenceψ that has no finite but some infinite model. For a positive integer k
we get a sequence of parameterized contradictions〈(Cψ,n, k)〉n∈N. We show that exactly one of the
following two cases holds (and provide a criterion that decides which one).

• (Cψ,n, k) has a tree-like resolution refutation of sizeβknα for some constantsα andβ which
depend onψ only.

• There exists a constantγ, 0 < γ ≤ 1, such that for everyn > k, every tree-like resolution
refutation of(Cψ,n, k) is of size at leastnk

γ

.

We establish the upper boundβknα via certain boolean decision trees. For the lower boundnk
γ

we
use a game theoretic argument.

We provide examples of FO sentences for each of the above categories. In particular, the ex-
amples for thenk

γ

case (Examples 6 and 7) show that parameterized tree-like resolution is not
fpt-bounded.

2 Preliminaries

2.1 Fixed-parameter Tractability

In the following letΣ denote an arbitrary but fixed finite alphabet. Aparameterized languageis a set
L ⊆ Σ∗ × N whereN denotes the set of positive integers. If(I, k) is in a parameterized language
L, then we callI the main partandk the parameter. We identify a parameterized language with
the decision problem “(I, k) ∈ L?” and will therefore synonymously use the termsparameterized
problemand parameterized language. A parameterized problemL is calledfixed-parameter tractable
if membership of(I, k) in L can be deterministically decided in time

O(f(k)|I|O(1)) (1)

wheref denotes a computable function. FPT denotes the class of all fixed-parameter tractable deci-
sion problems; algorithms that achieve the time complexity(1) are calledfixed-parameter algorithms.
The key point of this definition is that the exponential growth is confined to the parameter only, in
contrast to running times of the form

O(|I|O(f(k))). (2)

There is theoretical evidence that parameterized problemslike CLIQUE are not fixed-parameter
tractable. This evidence is provided via a completeness theory which is similar to the theory of
NP-completeness. This completeness theory is based on the following notion of reductions: Let
L1 ∈ Σ∗

1 × N andL2 ∈ Σ∗
2 × N be parameterized problems. Anfpt-reductionfrom L1 to L2 is a

mappingR : Σ∗
1 × N → Σ∗

2 × N such that

1. (I, k) ∈ L1 if and only ifR(I, k) ∈ L2.

2. R is computable by a fixed-parameter algorithm, i.e., there isa computable functionf such
thatR(I, k) can be computed in timeO(f(k)|I|O(1)).

3

3. There is a computable functiong such that wheneverR(I, k) = (I ′, k′), thenk′ ≤ g(k).

A parameterized complexity classC is the equivalence class of a parameterized problem under fpt-
reductions. It is easy to see that FPT is closed under fpt-reductions, thus FPT is a parameterized
complexity class. Parameterized problems appear to have several degrees of intractability, as mani-
fested by theweft hierarchy. The classes W[t] of this hierarchy form a chain

FPT⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

where all inclusions are assumed to be proper. Here XP denotes the class of problems solvable in
timeO(|I|f(k)); it is known that FPT6= XP [4]. Each class W[t] is defined as the equivalence class
of a certain canonical weighted satisfiability problem for decision circuits. For W[2] the canonical
problem is equivalent to the following satisfiability problem:

WEIGHTED CNF SATISFIABILITY

Instance:A propositional formulaF in conjunctive normal form (CNF), and a positive
integerk.

Parameter:k.

Question:CanF be satisfied by a truth assignmentτ that sets exactlyk variables to
true? (k is theweightof τ .)

Note that if the clauses of the CNF formula are required to contain at most three literals, we get the
W[1]-complete problemWEIGHTED 3-CNF SATISFIABILITY. Let BOUNDED CNF SATISFIABILITY

denote the problem obtained fromWEIGHTED CNF SATISFIABILITY by allowing truth assignments
of weightat mostk. It is easy to see that this relaxation does not change the parameterized complexity
of the problem:

Lemma 1. BOUNDED CNF SATISFIABILITY is complete for the classW[2] under fpt-reductions.

Proof. We provide an fpt-reduction from the languageWEIGHTED CNF SATISFIABILITY, which is
known to be W[2]-complete [4]. Let(F , k) be an instance ofWEIGHTED CNF SATISFIABILITY in
which the variablesv′1, . . . , v

′
k do not appear. We reduce it to the instance(F ′, k + 1) of BOUNDED

CNF SATISFIABILITY in whichF ′ := F ∧ (v′1 ∨ . . . ∨ v
′
k). It is transparent thatF has a satisfying

assignment of weightk if and only ifF ′ has a satisfying assignment of weight at mostk+1, and the
result follows.

As in classical complexity theory, we can define for a parameterized complexity classC the
complementary complexity class co-C = {L : L ∈ C } whereL = (Σ∗×N) \L for a parameterized
problemL ⊆ Σ∗×N. Clearly FPT= co-FPT. It is easy to see that ifC is closed under fpt-reductions,
then so is co-C. Thus, in particular, each class W[t] of the weft hierarchy gives rise to a parameterized
complexity class co-W[t].

2.2 Parameterized Proof Systems

Definition 1. Let L ⊆ Σ∗ × N be a parameterized language. Aparameterized proof system for
L is an onto mappingΓ : (Σ∗

1 × N) → L for some alphabetΣ1 whereΓ can be computed by a
fixed-parameter algorithm.

We say thatΓ is fpt-boundedif there exist computable functionsf and g such that for every
(I, k) ∈ L there is(I ′, k′) ∈ Σ∗

1 ×N with Γ(I ′, k′) = (I, k), |I ′| = O(f(k)|I|O(1)), andk′ ≤ g(k).

Note that the problems of the classes W[t] of the weft hierarchy have fpt-bounded proof sys-
tems since the yes-instances of these problems have small witnesses. Consider, for example, the
W[2]-complete problemL = BOUNDED CNF SATISFIABILITY. Let SF ,τ,k denote a string over
some alphabetΣ that encodes a CNF formulaF together with a satisfying truth assignmentτ of
weight≤ k for F . A proof systemΓ for L can now be defined by settingΓ(w, k) = (F , k) if w
encodesSF ,τ,k, and otherwiseΓ(w, k) = (F0, k0) for some fixed(F0, k0) ∈ L. Evidently,Γ is
fpt-bounded.

However, the situation is different for the classes co-W[t]; specifically, in this case, for co-W[2].
We can witness that a CNF formula withn variables has no satisfying assignment of weight≤ k by

4

listing allO(k · nk) assignments of weight≤ k, then checking that none is satisfying. However, this
listing requires too much space and apparently we cannot useit for the construction of an fpt-bounded
proof system.

This next result follows by a standard argument in which the computation of a Turing machine is
considered as a proof.

Lemma 2. Let C be a parameterized complexity class and letL be aco-C-complete parameterized
problem. If there is no fpt-bounded proof system forL, thenC 6= FPT.

Proof. Let L ⊆ Σ∗ × N be a co-C-complete parameterized problem. We show the contra-positive
of the statement. AssumeC = FPT. Since FPT= co-FPT, co-C = FPT follows. Consequently,
there is a fixed-parameter algorithm that decides membership in L; letM be a Turing machine that
implements this algorithm. For(I, k) ∈ L letM(I,k) be a string over some alphabetΣ1 that encodes
the computation steps ofM with input (I, k). By the fixed-parameter tractability ofL, there is a
computable functionf such that|M(I,k)| ≤ O(f(k)|I|O(1)). We may assume that(I, k) can be
read off fromM(I,k), say, by choosing an encoding where(I, k) is encoded as a prefix ofM(I,k)

wherek is presented in unary. We define a mappingΓ : Σ∗
1 × N → L as follows. Consider

(I ′, k′) ∈ Σ∗
1 × N. If I ′ encodes a computation ofM for the input(I, k), i.e. if I ′ = M(I′,k′),

then we letΓ(I ′, k′) = (I, k). Otherwise, if(I ′, k′) does not encode a computation ofM for some
input (I, k), we putΓ(I ′, k′) = (I0, k0) for some arbitrary fixed(I0, k0) ∈ L. ClearlyΓ is a proof
system forL asΓ(I ′, k′) can be computed in linear time. Furthermore,Γ is fpt-bounded, since
|M(I,k)| ≤ O(f(k)|I|O(1)) holds for(I, k) ∈ L.

In view of this lemma we suggest a program à la Cook-Reckhow for gaining evidence that the
complexity classes from the weft hierarchy are distinct from FPT. This program consists of showing
that particular parameterized proof systems are not fpt-bounded. For such an approach we would
start with a weak system such as a parameterized version of tree-like resolution. The consideration
of stronger systems is left for future research.

2.3 From First-Order to Propositional Logic

Next we describe a translation of a FO sentence to a sequence of propositional CNF formulas. We
use the language of FO logic with equality but with neither function nor constant symbols. We omit
functions and constants only for the sake of a clearer exposition; note that we may simulate constants
in a single FO sentence with addedoutermostexistential quantification on new variables replacing
those constants. We assume that the FO sentence is given as a conjunction of FO sentences, each of
which is in prenex normal form; thus, we need only explain thetranslation of a single FO sentence
in prenex normal form. The case of a purely universal sentence is easy – a sentenceψ of the form

∀x1, x2, . . . xk F(x1, x2, . . . xk),

whereF is quantifier-free, is translated into a sequence of propositional formulas in CNF〈Cψ,n〉n∈N,
of which then-th memberCψ,n is constructed as follows. Let[n] = {1, 2, . . . n}. For instantiations
x1, x2, . . . xk ∈ [n], we can considerF(x1, x2, . . . xk) to be a propositional formula over propo-
sitional variables of two different kinds:R(xi1 , xi2 , . . . xip), whereR is ap-ary predicate symbol,
and(xi = xj). We transformF into CNF and then take the union of all such CNF formulas for
(x1, x2, . . . xk) ranging over[n]k. The variables of the form(xi = xj) evaluate to either true or
false, thus we are left with variables of the formR(xi1 , xi2 , . . . xip) only.

The general case, a sentenceψ of the form

∀x1∃y1∀x2∃y2 . . .∀xk∃yk F(x1, x2, . . . xk, y1, y2, . . . yk),

can be reduced to the previous case by Skolemization. We introduce Skolem relations
Si(x1, x2, . . . xi, yi) for 1 ≤ i ≤ k. Si(x1, x2, . . . xi, yi) witnessesyi for any givenx1, x2, . . . xi, so
we need to addSkolem clausesstating that such a witness always exists, i.e.,

n
∨

yi=1

Si(x1, x2, . . . xi, yi) for all (x1, x2, . . . xi) ∈ [n]
i
.

5

The original sentence can be transformed into the followingpurely universal sentence

∀x1, x2, . . . xk, y1, y2, . . . yk

k
∧

i=1

¬Si(x1, x2, . . . xi, yi) ∨ F(x1, x2, . . . xk, y1, y2, . . . yk).

By construction it is clear that, for FO sentencesψ, the CNF formulaCψ,n is satisfiable if and only if
ψ has a model of sizen. Thus satisfiability questions on the sequence〈Cψ,n〉n∈N relate to questions
on the existence of non-empty finite models forψ.

Example1. We consider (the negation of) the pigeonhole principle to bedefined by the following
sentenceψPHP of FO.

∀x∃yR(x, y) ∧ ∃y∀x¬R(x, y) ∧ (∀x∀w∀y ¬R(x, y) ∨ ¬R(w, y) ∨ x = w).

We translate this to the conjunction of the following universal clauses

∀x∀y ¬S2(x, y) ∨R(x, y)
∀y∀x ¬S1(y) ∨ ¬R(x, y)
∀x∀y∀w ¬R(x, y) ∨ ¬R(w, y) ∨ x = w

together with the Skolem clauses
∀x∃yS2(x, y)
∃yS1(y).

For x, y ∈ [n] we now considerR(x, y), S2(x, y) andS1(y) to be propositional variables.Cψ,n is
therefore the system of clauses

¬S2(x, y) ∨R(x, y), ¬S1(y) ∨ ¬R(x, y) and
¬R(x, y) ∨ ¬R(w, y), for x, y, w ∈ [n], w 6= x,

together with the Skolem clauses

n
∨

i=1

S2(x, i), for x ∈ [n], and
n
∨

i=1

S1(i).

Note that the size ofCψ,n, with respect to a reasonable encoding, is polynomial inn. Let us
briefly explain this point. In our translation ofψ we generate a constant numberp of predicate CNF
clauses, each involving at mostp′ free FO variables (once the universal quantifiers are dropped). We
also generate a constant numberq of Skolem relations, each involving at mostq′ free FO variables
(once the universal quantifiers are dropped; we consider thefinal, witness variable to remain exis-
tentially quantified). After instantiating these free variables with the elements of[n], we deduce that
Cψ,n involves at mostp ·np

′

+ q ·nq
′

(propositional) clauses. Since these (propositional) clauses are
of length bound bymax{p′, q′ · n}, the result follows.

2.4 Parameterized Tree-like Resolution

A literal is either a propositional variable or the negation of a propositional variable. Aclauseis a
disjunction of literals (and a propositional variable can appear only once in a clause). A set of clauses
is a conjunction, i.e., it issatisfiableif there exists a truth assignment satisfying simultaneously all
the clauses.Resolutionis a proof system designed torefutea given set of clauses, i.e., to prove that
it is unsatisfiable. This is done by means of a single derivation rule

C ∨ v ¬v ∨D

C ∨D
,

which we use to obtain a new clause from two already existing ones. The goal is to derive the empty
clause – resolution is known to be sound and complete, i.e., we can derive the empty clause from the
initial clauses if and only if the initial set of clauses was unsatisfiable.

In this paper, we shall work with a restricted version of resolution, namelytree-like resolution. In
tree-like resolution we are not allowed to reuse any clause that has already been derived, i.e., we need

6

to derive a clause as many times as we use it (this, of course, does not apply to the initial clauses). In
other words, a tree-like resolution refutation can be viewed as a binary tree whose nodes are labeled
with clauses. Every leaf is labeled with one of the original clauses, every clause at an internal node
is obtained by a resolution step from the clauses at its two children nodes, and the root of the tree is
labeled with the empty clause. We measure thesizeof a tree-like resolution refutation by the number
of nodes.

It is not hard to see that a tree-like resolution refutation of a given set of clauses is equivalent
to a boolean decision treesolving thesearch problemfor that set of clauses. The search problem
for an unsatisfiable set of clauses is defined as follows (see,e.g., Krajı́ček’s book [7]): given a truth
assignment, find a clause which is falsified under the assignment. A boolean decision tree solves
the search problem by querying values of propositional variables and then branching on the answer.
Without loss of generality, we may assume that no propositional variable is questioned twice on
the same branch and that a branch of the tree is closed as soon as a falsified clause is found, under
the partial assignment – conjunction of facts – obtained so far along that branch. When a branch
is thus closed we say that anelementary contradictionhas been obtained. Note that we consider a
node of the decision tree to be labeled by the conjunction of facts thus far obtained together with
the propositional variable there questioned. This is analogous to a node in a tree-like resolution
refutation being labeled with its clause together with the variable about to be resolved. Given the
equivalence between tree-like resolution refutations andboolean decision trees, we shall concentrate
on the latter. Whenever we need to show that there is a certaintree-like resolution refutation of some
unsatisfiable set of clauses, we shall construct a boolean decision tree for the corresponding search
problem. On the other hand, whenever we claim a tree-like resolution lower bound, we shall prove it
by an adversary argument against any boolean decision tree which solves the search problem.

We give working definitions of parameterized contradictionand parameterized tree-like resolution,
which we shall use to state and prove the complexity gap for parameterized tree-like resolution.

Definition 2. A parameterized contradictionis a pair(F , k) whereF is a propositional CNF formula
andk is a positive integer such thatF has no satisfying assignment of weight at mostk.

Example2. Let us consider an undirected graphG = (V,E) that does not have a vertex cover of
size≤ k. We introduce a propositional variablepv for every vertexv ∈ V . Then the pair

(

∧

{u,v}∈E(pu ∨ pv), k
)

is a parameterized contradiction.

Let PARAMETERIZED CONTRADICTIONSbe the language of parameterized contradictions. Note
that PARAMETERIZED CONTRADICTIONS is the complement ofBOUNDED CNF SATISFIABILITY

and, as such, is co-W[2]-complete under fpt-reductions.Parameterized tree-like resolutionis a proof
system designed to refute a parameterized contradiction(F , k). It should be viewed as a tree-like
resolution refutation onF ∧Gk, whereGk is the conjunction ofall clauses that contain at leastk+ 1
negated variables (where the variables occurring in the clauses ofGk range over those occurring
in F). The conjunctionGk should be seen neither as part of the given parameterized contradiction
nor as part of the refutation (except for those individual clauses ofGk that are actually used, which do
form part of the refutation). As we have explained, we preferthe equivalent formulation in terms of
boolean decision trees. It is straightforward to verify that a parameterized tree-like resolution refu-
tation is equivalent to a parameterized boolean decision tree (in which all the branches are closed),
defined as follows.

Definition 3. Given a parameterized contradictionP = (F , k), a parameterized boolean decision
treeis a decision tree that queries values of propositional variables and branches on the answers; a
branch of the tree is closed as soon as (1) or (2) happens:

(1) an elementary contradiction is reached, i.e. the partial assignment obtained along the branch
falsifiesF ;

(2) the partial assignment obtained along the branch has more thank propositional variables set
to true, i.e., has weight> k.

7

3 Complexity Gap for Parameterized Tree-like Resolution

We first recall the complexity gap theorem for tree-like resolution proven by Riis [10].

Theorem 1. Given aFO sentenceψ which fails in all finite models, consider its translation into a
sequence of propositional CNF contradictions〈Cψ,n〉n∈N. Then either 1 or 2 holds:

1. Cψ,n has polynomial-size inn tree-like resolution refutations.

2. There exists a positive constantε such that for everyn, every tree-like resolution refutation of
Cψ,n is of size at least2εn.

Furthermore, 2 holds if and only ifψ has an infinite model.

In the parameterized setting, one can hope that the second case above, the hard one, splits into
two subcases. This is indeed true as we shall prove the following complexity gap theorem forpa-
rameterizedtree-like resolution:

Theorem 2. Given aFO sentenceψ, which fails in all finite models but holds in some infinite
model, consider the sequence of parameterized contradictions〈Dψ,n,k〉n∈N = 〈(Cψ,n, k)〉n∈N where
〈Cψ,n〉n∈N is the translation ofψ already defined. Then either 2a or 2b holds:

2a. Dψ,n,k has a parameterized tree-like resolution refutation of sizeβknα for some constantsα
andβ which depend onψ only.

2b. There exists a constantγ, 0 < γ ≤ 1, such that for everyn > k, every parameterized tree-like
resolution refutation ofDψ,n,k is of size at leastnk

γ

.

Furthermore, 2b holds if and only ifψ has an infinite model whose induced hypergraph has no finite
dominating set.

By proving that Case 2b can be attained (see Examples 6 and 7),and bearing in mind the remark
from the end of Section 2.3, we derive the following as a corollary.

Corollary 1. Parameterized tree-like resolution is not fpt-bounded.

If we could prove that no parameterized proof system forPARAMETERIZED CONTRADICTIONSis
fpt-bounded, then we would have derived W[2]6= FPT.

Before we prove Theorem 2, we need to give some definitions. For a modelM , let |M | denote
the universe ofM . Given a modelM of a FO sentenceψ, either finite or infinite, thehypergraph
induced by the modelM has the elements of|M | as vertices and as hyperedges those sets{y1, . . . yl}
such that(y1, . . . , yl) appears as a tuple in some relation. (Recall that there are two kinds of relations
– the extensionalR relations which are present in the original FO sentence, andtheS relations that
we introduce when Skolemizing the sentence – both give rise to hyperedges.) A set of vertices is
independentif it contains no hyperedge as a subset. Given a setX of vertices, a vertexy /∈ X , and a
setA such thatX∪{y} ⊆ A ⊆ |M |, we say thaty isA-independent fromX if and only if (i) there is
no self-loop{y} aty, and (ii) there is no hyperedgeE ⊆ A which containsy and intersects withX .
We say thaty is independent fromX if y is |M |-independent fromX ; otherwise we say thatX
dominatesy. Finally, adominating setis a setX of vertices that dominates every other vertex of the
hypergraph.

3.1 Case 2a of Theorem 2

We now prove Case 2a of Theorem 2. We shall start by reproving Case 1 of Theorem 1. Note that
our proof is different from Riis’ proof [10] as our translation, though equivalent, is slightly different.

Proof of Case 1, Theorem 1.The idea is to take a (finite) resolution refutation of the FO formulaψ
(such a refutation exists as the formula has no model), and totransform it into a polynomial size in
n tree-like resolution refutation ofCψ,n.

As we have explained, we can consider a boolean decision treeinstead of a tree-like resolution
refutation. In the FO case, constructing a boolean decisiontree is very similar to producing a tableau
refutation. (Our method therefore differs slightly from simply inverting the classical FO resolution,
as we consider only instantiations of terms as opposed to terms themselves.) The decision tree tries to
build up a model ofψ, starting by witnessing some unary Skolem relationψ with the constant1 and

8

deriving further constants as Skolem witnesses of already derived constants as and when necessary1.
Note that, while we do not allow constants in our signatures,we refer to those elements that have
been mentioned in decision tree questions as constants.

Let C be the set of constants thus far witnessed, and letc be some tuple overC. At each point
two kinds of queries are allowed: (I) querying the boolean value of someRi(c) and (II) querying the
witnessy of someSj(c, y). In the latter case there are two possibilities fory: it could be a constant
that is already known or it could be a new one, thus extending the set of constants. For Case I, the
branching factor is2: corresponding toRi(c) being true (⊤) or false (⊥). For Case II, the branching
factor is|C| + 1: we label these branches with the elements ofC or a new constantc′ according to
the conceded witness forSj(c, y).

The order in which the boolean decision tree performs these queries is as follows. We start with
the single constant1, witnessing a unary Skolem relation ofψ, i.e. setC := {1}, and first query all
possibleRi relations on all possible tuples overC, closing any branch as soon as a contradiction is
reached. We then pick up a Skolem relationSj(c, y) and aj-tuplec of constants ofC and query the
witnessy. There are|C|+1 possible outcomes –y is either one of the already known constants from
C or a different constant, which we denote byc′. If y ∈ C, we pick anotherSj′(c′, y) and do the
same (we assume a reasonable order over the Skolem relationsSj and tuples inC). In the case where
y is a new constant which is not inC, we extend the set of constants, i.e. setC := C ∪ {c′} and
repeat the same procedure, i.e. query all possibleRi relations over all possible tuples in the expanded
C and so on.

It is easy to see that the boolean decision tree constructed in this way is finite. Indeed, suppose it
were infinite. Then, by König’s Lemma, there must be an infinite branch which constitutes an infinite
model ofψ – a contradiction. Let the depth of this tree beh and the maximum size ofC along any
of its branches bem. Let us now turn this finite refutation ofψ into polynomial size inn refutation
of Cψ,n. We note that a node, which queries anRi relation in the FO case, remains the same in the
propositional case, and, in particular, has a branching factor 2. A node, which witnesses a Skolem
relationSj(c, y), is of constant branching factor in the FO case (bounded bym). In the propositional
case, such a node can be translated into a sequence ofn nodes, thel-th node querying theSj(c, l)
only if all the nodesSj(c, 1), Sj(c, 2), . . . , Sj(c, l − 1) got negative answers. If the answers to all
queries were negative, we arrive at a contradiction with theclause

∨n
y=1 Sj(c, y), while a positive

answer gives us the desired witness. Thus a node querying anS relation in the FO case can be
thought as a single node of branching factorn in the propositional case. As the FO tree is of constant
heighth that depends on the formulaψ only, the boolean decision tree in the propositional case isof
size at most(max{m,n})h which isO(nh), i.e., polynomial inn as claimed.

We can now modify the proof above in order to prove Case 2a of Theorem 2.

Proof of Case 2a, Theorem 2.We shall construct a boolean decision tree for the parameterized FO
case in a similar manner, but with the following modification: whenever we witness a new constant
and extend the set of constants by adding it, we addanothernew constant that isindependentfrom
all the others. That is, we actually introduce new constantsto C in pairs,c′ andc′′, wherec′ is a
Skolem witness for some constant inC andc′′ is assumed independent fromC ∪ {c′} (we make no
assumption of the independence ofc′ fromC). Thereafter, we may also close branches whenever we
directly contradict the independence ofc′′ fromC ∪{c′}. Now, suppose for the sake of contradiction
that the boolean decision tree constructed in this way is infinite. Again, by König’s Lemma, there
must be an infinite branch which constitutes an infinite modelof ψ with the additional property that it
has no finite dominating set. Indeed, by the construction, for every finite set of constants, we always
add a new constant that is independent from the set. This gives us the desired contradiction, thus
showing that the decision tree we have constructed is finite.Let the depth of this tree beh and the
maximum size ofC along any of its branches bem.

What remains is to estimate the branching factor of the queries in the propositional case. TheR
andS queries have branching factors2 andn as before. The only problem is in finding a new constant
that is independent from all existing constants. The boolean decision tree in the propositional case
can “search” for such a constant in the following way. Denotethe set of elements of the finite
universe[n] that have not been queried at all so far byZ = {z1, z2, . . . zp} and the set of already

1As is customary in Proof Complexity, we discount the empty model. It is, therefore, possible to haveψ with no finite
models and no outermost existential quantifier. In this casewe may instantiate a single constant at the outset to get us going.

9

?S1(x)

1

��

R(1, 1)?

⊤

yyttttttttt

⊥

��

#(ii.) ?S2(1, y)

1

yyttttttttt

2

��

#(i.) R(1, 2)?

⊤

yyttttttttt

⊥

��

#(ii.) #(i.)

Figure 1: Decision tree for Example 3.

known constants byC. The decision tree first queries all possibleR andS relations with arguments
overC ∪ {z1} that could possibly makez1 dominated byC. If all answers are negative thenz1 is
independent fromC, so it is success –z1 is added toC and we proceed further according to the
decision tree in the FO case. Otherwise, on the first positiveanswer (i.e., having found out thatz1 is
dominated byC), we abandonz1 and proceed the same way withz2 and so on. For everyzi which
we query the branching factor is bounded bymab wherea is the maximum arity of any relation ofψ
andb is the number of relations ofψ (including Skolem relations in both cases). On the other hand,
we do not need to test more thank elements ofZ as we are now in the parameterized setting where
the boolean decision tree cannot take more thank positive answers and we need to move onto a new
element ofZ on a positive answer only. This gives us a subtree of heightk and branching factor
mab, which is equivalent to a single node of branching factormabk. To conclude, let us recall that
the parameterized FO tree was of constant heighth that depends on the formulaψ only, and thus, the
boolean decision tree in the parameterized propositional case is of size at most(max{mabk, n})h

which is not greater than(mabh)knh as claimed.

Example3. We give an example of a decision tree constructed as in Case 1,Theorem 1. We consider
the following sentenceψ which has no models:

∀x∃y R(x, y) ∧ ∃x∀y ¬R(x, y).

As per our translation to propositional clauses, this is equivalent to the conjunction of the universal
clauses

(i.) ∀x∀y ¬S2(x, y) ∨R(x, y) and
(ii.) ∀x∀y ¬S1(x) ∨ ¬R(x, y),

together with the Skolem clauses
∀x∃y S2(x, y) and

∃x S1(x).

Figure 1 shows a FO decision tree for this system of clauses. The number following each# specifies
the clause that has been contradicted. For example, the bottom right# comes from the knowledge
S2(1, 2) and¬R(1, 2) – which contradicts the first universal clause.

Example4. We give an example of a decision tree constructed as in Case 2a, Theorem 2. We consider

10

the sentenceψ which is the conjunction of the following.

∃x U(x) U -existence
∀x ¬U(x) ∨ ¬R(x, x) U -antireflexivity

∀x∀y ¬U(x) ∨ ¬U(y) ∨ ¬R(x, y) ∨ ¬R(y, x) U -antisymmetry
∀x∀y∀z ¬U(x) ∨ ¬U(y) ∨ ¬U(z) ∨ ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z) U -transitivity

∀x∀y ¬U(x) ∨ ¬U(y) ∨R(x, y) ∨R(y, x) U -totality
∀y∃x U(y) → (U(x) ∧R(x, y)) U -non-minimality

∃x∀y U(y) ∨R(x, y) ¬U -dominator

The sentenceψ asserts the existence of a bipartition, in which theU -part is a non-empty strict total
R-order without minimal element, and such that there is a single element with anR-edge to all the
elements of the¬U -part. Depending on which part this single element is in, a model ofψ will have
a dominating set of size1 or 2. As per our translation, this is equivalent to the universalclauses

(i.) ∀x ¬S1(x) ∨ U(x)
(ii.) ∀x ¬U(x) ∨ ¬R(x, x)
(iii.) ∀x∀y ¬U(x) ∨ ¬U(y) ∨ ¬R(x, y) ∨ ¬R(y, x)
(iv.) ∀x∀y∀z ¬U(x) ∨ ¬U(y) ∨ ¬U(z) ∨ ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z)
(v.) ∀x∀y ¬U(x) ∨ ¬U(y) ∨R(x, y) ∨R(y, x)
(vi.) ∀y∀x ¬S2(x, y) ∨ ¬U(y) ∨ U(x)
(vi′.) ∀y∀x ¬S2(x, y) ∨ ¬U(y) ∨R(x, y)
(vii.) ∀x∀y ¬S3(x) ∨ U(y) ∨R(x, y),

together with the Skolem clauses
∃x S1(x)

∀y∃x S2(x, y)
∃xS3(x).

Note that the Skolem relationS1 is somewhat redundant and is included for the sake of formality
(it would preserve meaning if we were to remove clause(i.) and substitute∃x U(x) for the Skolem
clause∃x S1(x)). Figure 2 shows a FO decision tree for this system in the parameterized case. (Note
that we have questioned constants and relations in an intelligent, rather than natural, order. This is so
that we might keep the size of the tree to a minimum; the tree would still close if we chose a natural
order.) The bullet points (•) indicate where, having just witnessed a new constant, we introduce
another new, independent constant. In the decision tree, weknow that2 must be independent from
1, and that4 must be independent from1, 2 and3; we do not know that3 is independent from
either2 or 1. The contradictions labeled with square brackets arise from violating the independence
condition. For example, at#[1, 4] we have just learned the truth ofR(1, 4), which violates the
assumed independence of1 and4.

The height of our tree ish = 9 and we never involve more thanm = 4 constants; the max-
imum arity isa = 2 and there areb = 5 involved relations. As in the previous proof, using the
bound(mabh)knh, we can state thatDψ,n,k has a parameterized tree-like resolution refutation of
size bounded by2180kn9.

Owing to the rules that allow us to introduce independent constants, the character of the FO
decision tree in the parameterized case is different from the ordinary FO decision tree. Notice that
we have closed our tree without witnessing the Skolem relationS1(x). It would not be possible to
close an ordinary FO decision tree without this, since, without theU -existence clause(i.), ψ has
finite models.

We conclude this section with a further example of Case 2a of Theorem 2. This specimen provides
a somewhat trivial instance, having, as it does, parameterized tree-like resolution refutations not just
polynomial inn, but actually independent ofn (in contrast to Example 4 where the size of a smallest
tree-like refutation depends onn).

Example5. We consider the (negation of the) least number principle fortotal orders. LetψLNP1 be

11

?S3(x)

1

��

•

2
��

R(1, 2)?

⊤

yysssssssss
⊥

%%LLLLLLLLLL

#[1, 2] U(2)?

⊤

yyrrrrrrrrrr
⊥

%%
KKKKKKKKK

?S2(x, 2)

1

yysssssssss

2

��

3

%%LLLLLLLLLLLL
#(vii.)

#[1, 2] R(2, 2)?

⊤

yysssssssss

⊥

��

•

4

��

#(ii.) #(vi′.) U(4)?

⊤

yyrrrrrrrrrr

⊥

��

R(2, 4)?

⊤

yysssssssss

⊥

��

R(1, 4)?

⊤

��

⊥

%%KKKKKKKKK

#[2, 4] R(4, 2)?

⊤

yysssssssss

⊥

��

#[1, 4] #(vii.)

#[2, 4] #(v.)

Figure 2: Decision tree for Example 4
.

the conjunction of the following.

∀x ¬R(x, x) antireflexivity
∀x∀y ¬R(x, y) ∨ ¬R(y, x) antisymmetry

∀x∀y∀z ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z) transitivity
∀x∀yR(x, y) ∨R(y, x) totality

∀y∃x R(x, y) no least element

All models ofψLNP1 have a dominating set of size1; moreover, every element of the model consti-
tutes such a dominating set. It is straightforward to verifythat〈DψLNP1 ,n,k〉n∈N has tree-like resolu-
tion refutations of size2k, independent fromn.

3.2 Case 2b of Theorem 2

We now turn our attention to proving Case 2b of Theorem 2. Our argument will be facilitated by a
game based on those described by Pudlák [9] and Riis [10] in which Prover (female) plays against
Adversary(male). In this game, a strategy for Prover gives rise to a boolean decision tree on a set of
clauses. Prover questions the propositional variables that label the nodes of the tree and Adversary
attempts to answer these so as neither to violate any specificclause nor to have conceded that more
thank variables are true (⊤), for in either of these situations Prover is deemed the winner. Of course,

12

assuming the set of clauses was unsatisfiable, Adversary is destined to lose: the question is how large
he can make the tree in the process of losing. Note that each branch of the tree corresponds to a play
of this game, hence each decision tree corresponds to a Prover strategy. We will be concerned with
Adversary strategies that perform well over all Prover strategies, and hence induce a lower bound on
all decision trees and, consequently, all parameterized tree-like resolution refutations.

When considering a certain Prover strategy – a decision tree– we will actually consider only
a certain subtree in which the missing branches correspond to places where Adversary has simply
given up, already conceding the imminent violation of a clause. In this way, there are two types
of non-leaf nodes in this subtree, those of out-degree1 in which Adversary’s decision wasforced
(because he conceded defeat on the alternative valuation) and those of out-degree2 in which he is
happy to continue on either outcome. In the latter case, we may consider that he has given Prover a
free choiceas to the value of the relevant variable. The free choice nodes play a vital role in ensuring
the large size of this subtree, which in turn places a lower bound on the size of the decision tree of
which it is a subset.

Let Cψ,n be the propositional translation of some FO sentenceψ which has no finite models,
but holds in some infinite model. We formally define the gameG(Cψ,n, k) as follows. At each turn
Prover selects a propositional variable ofCψ,n that she has not questioned before, and Adversary
responds either by answering that the variable is true (⊤) or that it is false (⊥), or by allowing Prover
a free choice over those two. The Prover wins if at any point she holds information that contradicts
a clause ofCψ,n or she holds more thank variables evaluated true. In this formalism, given a Prover
strategy on her moves, and considering both possibilities on the free choice nodes, we generate a
game tree, the subtree of the decision tree alluded to in the previous paragraph.

Henceforth, we consider only the case in which some model ofψ has no finite dominating set.
We will give a strategy for Adversary in the gameG(Cψ,n, k) that guarantees a large game tree for
all opposing Prover strategies.

Adversary’s Strategy At any point in the game – node in the game tree – Adversary willhave
conceded certain information to Prover. He always has in mind two disjoint sets of already mentioned
constantsP andQ on which he has conceded certain information: initially these sets are both empty.
The setQ is to be a (P ∪ Q)-independent set whose members are also (P ∪ Q)-independent from
P . In some senseP is the only set of constants for which Adversary has actuallyconceded an
interpretation; all he concedes ofQ is that it is a floating set with certain independence properties. If
X is a set of constants, letMX be the class of models ofψ that are consistent with the information
Adversary has conceded onX . At each point Prover will ask Adversary a question of the formRi(c)
orSj(c). The Adversary answers as follows:

I. If all constants ofc are inP , then Adversary should choose some model inMP and answer
according to that.

II. If all constants ofc are inP ∪ Q, and there is at least one fromQ, then Adversary should
answer false (⊥).

III. If some constant inc is not inP ∪Q then

– if no model inMP satisfies the question, then Adversary should answer false (⊥), oth-
erwise

– he should give Prover a free choice on the question.

In all cases the setsP andQ remain the same, except in Case III Part 2. If the Prover chooses
true (⊤), then Adversary places all the constants ofc in P , possibly removing some fromQ in the
process. If the Prover chooses false (⊥), then Adversary places any constants inc that are not already
in P ∪Q intoQ. It turns out that, in Cases II and III, the situation never arises in which Adversary
is forced to answer true. In particular, in Case III, it will never be the case that all models inMP

satisfy the question. This is vital to the success of Adversary’s strategy, and we will return to it later.
We must now prove that this strategy leads to a large decisiontree; we will need the following two
lemmas.

13

Lemma 3. Letψ be a sentence ofFO in which no model has a finite dominating set. LetM be a
model ofψ and letP be a finite subset of|M |. For any positive integerq, there exists an independent
setQ of sizeq such that all elements ofQ are independent fromP .

Proof. Suppose for contradiction someM fails to have this property. Consider any finiteP , of sizep,
in |M |. If there is aq such that all setsQ ⊆ |M | \P are either not independent or some element inQ
is not independent fromP , then there is a maximalq0, the cardinality of a setQ0, that is independent
and whose elements are independent fromP . But,P ∪ Q0 is now a finite dominating set ofM by
the maximality ofq0.

Lemma 4. Consider any path in the game tree ofG(Cψ,n, k) from the root to a leaf. If there arek
or fewer propositional variables evaluated to true by the leaf, then every one of then constants must
have appeared in a free choice node along that path.

Proof. We give a sketch proof of the lemma; for a fuller explanation,see Riis’ paper [10]. It is
important to see that Adversary plays faithfully accordingto some (infinite) models ofψ, because
this means that an elementary contradiction can only be reached by the violation of a Skolem clause.
In order to see that Adversary plays so, it becomes necessaryto explain why in Case II of his strategy
he never loses any of his putative modelsMP and why in Case III he is never forced to answer true
(⊤).

In Case II, Adversary never loses a modelM in MP becauseQ can always be chosen to be
independent, and independent fromP , by Lemma 3. Indeed, if such an interpretation is put onQ in
M , then Adversary’s answer is forced to be false (⊥).

Suppose, in Case III, that Adversary were forced to answer true (⊤), i.e., all modelsM in MP

satisfy the questionRi(c) orSj(c). By the floating nature of all elements that are not inP this would
generate a finite dominating set ofP ∪ Q onM . Let us dwell on this point further. Letc′ be the
subtuple ofc consisting of those constants of the latter that are not inP ∪Q. Some of the constants of
c′ could have been mentioned in questions before, but only in ones for which Adversary’s response
had been forced false. Suppose thatP ∪ Q were not a dominating set forM , then there exists an
elementx ∈ M , independent fromP ∪ Q. But this element is such that it can fill the tuplec′ and
falsify Ri(c) orSj(c) in M (and falsify any questions that previously involved it, which had already
been answered false). This contradicts the question havingbeen forced true in the first place.

Recalling that we can only reach an elementary contradiction by the violation of a Skolem clause,
we can now complete the proof. Letc′ be a constant that never appears in a free choice node in our
game tree. In order to violate a Skolem clause, Adversary must have denied someS(c, x), for each
of then constants substituted forx. But that his denial ofS(c, c′) was forced implies a contradiction.
Sincec′ is uninterpreted in any of the models inMP , it follows thatS(c, c′′) is false for allc′′ in any
model inMP . This tells us thatMP is empty and, consequently, thatψ had no infinite model.

We are now in a position to argue the key lemma in this section.

Lemma 5. Leta be the maximum arity of any relation inψ and suppose that there are no more than
b different relations in the propositional translation ofψ (including Skolem relations in both cases).
Following the strategy that we have detailed for the gameG(Cψ,n, k), and withp andq the cardinality
of the setsP andQ, respectively, Adversary cannot lose while bothp < k1/ab andp+ q < n.

Proof. Consider the game tree ofG(Cψ,n, k). Note that Adversary only answers true in the case that
all involved constants are then added to his setP , or, of course, were already there. Thus, at a certain
node in the game tree, the number of true answers given is trivially bounded by the size of the set
of all possible questions onP , which is certainly bound bypab. Hence, whilstpab < k, there must
be fewer thank propositional variables evaluated to true. Furthermore, if p + q < n at this node,
then not all of then constants can have appeared in a free choice (since constants that have appeared
in a free choice are necessarily added to eitherP or Q). It follows from the previous lemma that
Adversary has not yet lost.

We are now in a position to settle Case 2b.

Proof of Case 2b, Theorem 2.We aim to provide a lower bound on the size of any game tree for
G(Cψ,n, k). Since a lower bound on the size of a game tree induces a lower bound on the size of a
boolean decision tree, the result follows.

14

Consider a game tree forG(Cψ,n, k). Recall that, at any node in this tree, Adversary has in mind
two setsP andQ, of sizep andq, respectively, and, by the previous lemma, whilstp < k1/ab and
p + q < n, he has not lost. Consider, therefore any node in this game tree and the setsP andQ
that Adversary there has in mind. LetS(p, q) be some monotonic decreasing function that provides
a lower bound on the size of the subtree of the game tree rootedat the chosen node; whenceS(0, 0)
is a lower bound on the size of the game tree itself. In showingthatS(p, q) satisfies the recurrence
relation

• S(p, q) ≥ S(p+ a, q) + S(p, q + a) + 1, with

• S(p, q) ≥ 0, whenp ≥ k1/ab or p+ q ≥ n,

we are able to derive the following statement whose full proof appears in the appendix.
Let n, k, a andb be positive integers such that

(i.) a ≥ 2 (ii.) n > k (iii.) n ≥ 7 a+ 1 (iv.) k1/ab ≥ (16a2)2,

then
S(0, 0) ≥ nk

γ

whereγ := 1/16a3b.

The result follows immediately from this statement for sufficiently largek (≥ (16a2)2ab) andn
(≥ 7a+ 1). By noting that all boolean decision trees of Case 2b are of size≥ 2, we can modify the
givenγ to one that works for alln, k ≥ 1. Note that the assumption that (maximum arity)a ≥ 2 is
innocuous – there are no unary FO sentencesϕ which have no finite models but possess an infinite
one, therefore we would be in neither Case 2a nor Case 2b.

Example6. We consider the (negation of the) least number principle forpartial orders. LetψLNP∞

be the conjunction of the FO clauses given in Example 5 without the forth clause (totality).ψLNP∞

has models without a finite dominating set. For example, ifZ is the set of integers, thenN×Z under
the strict partial ordering

(n, z) ≺ (n′, z′) if and only if n = n′ andz < z′

provides such a model.

Example7. We return to the sentenceψPHP defined in Example 1. This has models without a finite
dominating set: for example the positive integersN, with R(x, y) ⇔ y = x + 1, provides such a
model.

References

[1] Cesati, M.: Compendium of parameterized problems.http://bravo.ce.uniroma2.
it/home/cesati/research/compendium.pdf (September 2006)

[2] Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover.
Technical Report TR05-008, DePaul University, Chicago IL (2005)

[3] Cook, S., Reckhow, R.: On the lengths of proofs in the propositional calculus: preliminary
version. In:Sixth Annual ACM Symposium on Theory of Computing(Seattle, Wash., 1974).
Assoc. Comput. Mach., New York (1974) 135–148

[4] Downey, R.G., Fellows, M.R.:Parameterized Complexity.Monographs in Computer Science.
Springer Verlag (1999)

[5] Flum, J., Grohe, M.:Parameterized Complexity Theory.Volume XIV of Texts in Theoretical
Computer Science. An EATCS Series. Springer Verlag (2006)

[6] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. of Computer and System Sciences63(4) (2001) 512–530

[7] Krajı́ček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge
University Press, New York, NY, USA (1995)

15

[8] Niedermeier, R.:Invitation to Fixed-Parameter Algorithms.Oxford Lecture Series in Mathe-
matics and Its Applications. Oxford University Press (2006)

[9] Pudlák, P.: Proofs as Games.American Mathematical Monthly, 107(6) (2000) 541–550

[10] Riis, S.: A complexity gap for tree-resolution.Computational Complexity10(3) (2001) 179–
209

16

Appendix

Lemma 6. Letn, k, a andb be positive integers such that

(i.) a ≥ 2 (ii.) n > k (iii.) n ≥ 7a+ 1 (iv.) k1/ab ≥ (16a2)2,

then
S(0, 0) ≥ nk

γ

whereγ := 1/16a3b.

The reminder of the appendix is devoted to proving this lemma.
We consider the combinatorial choose function

(

m
r

)

to be defined on the integers and to be
m!/(r!(m − r!)), whenm ≥ r andm andr are non-negative, and to be0 otherwise. The proof
of Lemma 6 requires several technical lemmas.

Lemma 7. Consider a game tree forG(Cψ,n, k). Leta be the maximum arity of any relation ofψ and
let b be the number of relations ofψ (including Skolem relations in both cases). Then a monotonic
decreasing subtree size-bounding functionS(p, q) satisfies the following properties:

• S(p, q) ≥ S(p+ a, q) + S(p, q + a) + 1, with

• S(p, q) ≥ 0, whenp ≥ k1/ab or p+ q ≥ n.

Proof. The second part follows from Lemma 5. For the first part, we consider only the free choice
branching points in the game tree – that is we consider the binary tree that is a minor of the game
tree in the natural way. At these points, on answering true, some constants – at mosta – may be
added toP . Some may have been taken fromQ, but since the functionS is monotonic decreasing
the bound still holds. If the answer is false then at mosta constants may be added toQ and the bound
holds for similar reasons.

Lemma 8. The recurrence relation of the previous lemma satisfies:

S(p, q) ≥

(

⌊n−p−qa ⌋

⌊k
1/ab−p
a ⌋

)

− 1

Proof. By induction on the (binary tree minor of the) game tree forG(Cψ,n, k), starting from the the
leaves.

(Base case.) The choose function evaluates to1 or 0 whenp+ q ≥ n or p ≥ k1/ab. SinceS(p, q)
is defined and is always≥ 0, the bound holds.

(Inductive step.) Assume the solution holds form steps, or less, in from a leaf. We will prove
that it holds form+ 1 steps in. Consider such a (free choice) node. ThenS(p, q) := S(p+ a, q) +
S(p, q+ a) + 1 where the two child nodes arem or fewer steps from the leaves. So, by the inductive
hypothesis, we have

S(p, q) ≥

(

⌊n−p−q−aa ⌋

⌊k
1/ab−p−a

a ⌋

)

+

(

⌊n−p−q−aa ⌋

⌊k
1/ab−p
a ⌋

)

− 2 + 1

=

(

⌊n−p−qa ⌋ − 1

⌊k
1/ab−p
a ⌋ − 1

)

+

(

⌊n−p−qa ⌋ − 1

⌊k
1/ab−p
a ⌋

)

− 2 + 1

≥

(

⌊n−p−qa ⌋

⌊k
1/ab−p
a ⌋

)

− 1.

Lemma 9. Letm andr be positive integers such thatm ≥ r2; m ≥ 7. Then
(

m

r

)

≥ mr/4.

17

Proof. Fromm ≥ r2; m ≥ 7, we may derive(m− r) ≥ (m−m1/2) ≥ m3/4. Thence

(

m

r

)

≥
(m− r)r

rr
≥

(m−m1/2)r

mr/2
≥
m3r/4

mr/2
= mr/4.

Lemma 10. Letm, r andc be non-negative reals such thatc ≥ 1.

A. Ifm ≥ cc/(c−1) then
(

m
c

)r
≥ mr/c.

B. If r ≥ 2 andm ≥ 3 then(m− 1)r − 1 ≥ mr/2.

C. Ifmr ≥ cc/(c−1) thenm
r

c ≥ mr/c.

Proof. May be easily verified.

We are now in a position to proceed with the proof of Lemma 6.

Proof of Lemma 6.By Lemma 9, and the knowledge that the preconditions yield both ⌊na ⌋ ≥ 7 and

⌊na ⌋ ≥ ⌊k
1/ab

a ⌋2 we have that

(

⌊na ⌋

⌊k
(1/ab)

a ⌋

)

− 1 ≥
⌊n

a

⌋
1
4
⌊ k1/ab

a
⌋

− 1.

Noting that the preconditions yieldn ≥ 1 andk1/ab ≥ 1, we derive

⌊n

a

⌋
1
4 ⌊

k1/ab

a ⌋

− 1 ≥
(n− 1)

a

k1/ab
−a

4a

− 1.

Now, by Part A of the previous lemma, together with the knowledge that the preconditions yield
n− 1 ≥ aa/(a−1), we have that

(n− 1)

a

k1/ab
−a

4a

− 1 ≥ (n− 1)
k1/ab

−a

4a2 − 1.

By Part B of the previous lemma, together with the fact that the preconditions yieldk
1/ab−a

4a ≥ 2 and
n− 1 ≥ 3, we have

(n− 1)
k1/ab

−a

4a2 − 1 ≥ n
k1/ab

−a

8a2 .

Noting that the preconditions yieldk
1/ab

8a2 − a
8a2 ≥ k1/ab

16a2 we derive

n
k1/ab

−a

8a2 ≥ n
k1/ab

16a2 .

Finally, we deploy Part C of the previous lemma, together with the knowledge that precondition(iv.)
yieldsk1/ab ≥ (16a2)16a

2/(16a2−1), to demonstrate that

n
k1/ab

16a2 ≥ nk
1/16a3b

.

Hence we have shown that
(

⌊na ⌋

⌊k
(1/ab)

a ⌋

)

− 1 ≥ nk
γ

whereγ := 1/16a3b.

However, it follows from Lemma 8 that

S(0, 0) ≥

(

⌊na ⌋

⌊k
1/ab

a ⌋

)

− 1,

so our proof of Lemma 6 is concluded.

18

