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Abstract

We propose a proof-theoretic approach for gaining evidémaecertain parameterized problems
are not fixed-parameter tractable. We consider proofs titatgs that a given propositional for-
mula cannot be satisfied by a truth assignment that sets akmasables tdrue, considering: as
the parameter. One could separate the parameterized odtyjglasses FPT and W[2] by show-
ing that there is no proof system (for CNF formulas) that ddmioofs of sizq”(k)no(l) wheref

is a computable function andrepresents the size of the propositional formula. We peogidirst
step and show that tree-like resolution does not admit stambf@ \We obtain this result as a corol-
lary to a meta-theorem, the main result of this paper. Tha+tieorem extends Riis’ Complexity
Gap Theorem for tree-like resolution. Riis’ result estsiidis a dichotomy between polynomial
and exponential size tree-like resolution proofs for psiponal formulas that uniformly encode
a first-order principle over a universe of size (1) either there are tree-like resolution proofs of
size polynomial im, or (2) the proofs have size at le&st' for some constart; the second case
prevails exactly when the first-order principle has no fibiié some infinite model.

We show that the parameterized setting allows a refinedifitag®on, splitting the second
case into two subcases: (2a) there are tree-like resolptimofs of size at moss*n® for some
constantsy, 3; or (2b) every tree-like resolution proof has size at legst for some constant
0 < v < 1; the latter case prevails exactly if for every infinite mqdalcertain associated
hypergraph has no finite dominating set. We provide exampidgst-order principles for all
three cases.

*Most of the work was done while visiting the Isaac Newtonitng for Mathematical Sciences as a participant in the
Logic and Algorithms (LAA) Programme.



1 Introduction

In recent years parameterized complexity and fixed-pammaégorithms have become an important
branch of algorithm design and analysis; hundreds of rebgmpers have been published in the area
[1,4,5, 8]. In parameterized complexity one considers agtatjpnal problems in a two-dimensional
setting: the first dimension is the usimbut sizen, the second dimension is a positive integethe
parameter A problem is fixed-parameter tractable if it can be solvetrire O(f(k)n°1)) where

f denotes a computable, possibly exponential, function.e@&\WP-hard problems have natural
parameterizations that admit fixed-parameter tractgbitior example, given a graph withvertices,
one can check in tim@(1.273% 4 nk) (and polynomial space) whether the graph has a vertex cover
of size at mosk [2]. On the other hand, several parameterized problemsas@hQUE (has a given
graph a clique of size at leak?) are believed to beot fixed-parameter tractabl®@OUNDED CNF
SATISFIABILITY is a further problem that is believed to bet fixed-parameter tractable (and which
will play a special role in the sequel): given a propositidoamula in conjunctive normal form, is
there a satisfying truth assignment that sets at rhostriables tarue?

Parameterized complexity offers also a completenessyhBomerous parameterized problems
that appear to be not fixed-parameter tractable have bessifdd as being complete undit-
reductionsfor complexity classes of the so-callegft hierarchyw[1] C W[2] C - - -. For example,
CLIQUE andBOUNDED CNF SATISFIABILITY are complete for the first two levels of the weft hierar-
chy, respectively. We will outline the basic notions of paederized complexity in Section 2.1; for
an in-depth treatment of parameterized complexity claasésfpt-reduction we refer the reader to
Flum and Grohe’s monograph [5].

It is widely believed that problems that are hard for the viétrarchy are not fixed-parameter
tractable. Up to now there are mainly three types of evidence

1. Accumulative evidencaumerous problems are known which are hard or completddeses
of the weft hierarchy, and for which no fixed-parameter athar has been found in spite of
considerable efforts [1].

2. k-step Halting Problem$or non-deterministic Turing machines are complete fordlasses
WI[1] (single-tape) and W[2] (multi-tape) [5]. A Turing maicke is such an opaque and generic
object that it does not appear reasonable that we shouldlbaabecide if a given Turing
machine on a given input has some accepting path withoutrigait the paths.

3. If a problem that is hard for a class of the weft hierarchyisuout to be fixed-parameter
tractable, then thExponential Time HypothegiETH) fails, i.e., there is 8°("™) time algorithm
for then-variable 3-SAT problem [6]. ETH is closely related to thegraeterized complexity
class M[1] which lies between FPT and W[1] (see [5]).

We propose a new approach for gaining further evidence #vdaia parameterized problems are
not fixed-parameter tractable. We generalize conceptsauff pomplexity to the two-dimensional
setting of parameterized complexity. This allows us to folate a parameterized version of the
program of Cook and Reckhow [3]. Their program attempts fo gaidence for NP£ co-NP, and

in turn for P ## NP, by showing that propositional proof systems are not paiyially bounded.
We introduce the concept of parameterized proof systemeuirprogram, lower bounds for the
length of proofs in these new systems yield evidence thahiceparameterized problems are not
fixed-parameter tractable.

In propositional proof complexity one usually construcgeguence of tautologies (or contradic-
tions), and shows that the sequence requires proofs (datifus) of super-polynomial size in the
proof system under consideration. In the scenario of cditttians and refutations, such sequences
of propositional formulas frequently encode a first-ordd) sentence (such as the pigeon hole prin-
ciple) where then-th formula of the sequence states that the FO sentence hasdel of sizen.

S. Riis [10] established a meta-theorem that exactly pmgainder which circumstances a given FO
sentence gives rise to a sequence of propositional forntinéhave polynomial-sized refutations
in the system of tree-like resolution. Namely, if the sequeehas not tree-like resolution refutations
of polynomial size, then shortest tree-like resolutiorutafions have size at lea&t” for a positive
constant that only depends on the FO sentence. Hence thergaphetween two possible proof



complexities. The case of exponential size prevails exadten the FO sentence has no finite but
some infinite model.

In this paper we show a meta-theorem regarding the complekiparameterized tree-like res-
olution. To this aim we considgrarameterized contradictionshich are pair§F, k) whereF is a
propositional formula in CNF and is an integer, such thaf cannot be satisfied by a truth assign-
ment that sets at mos&tvariables tatrue. Parameterized contradictions form a co-W[2]-complete
language. Hence FPE W[2] would follow if there were a proof system that admits pi®of size
at mostf (k)n©(V) for parameterized contradiction®, k) wheren represents the size gf; we call
such a (hypothetical) proof systept-bounded

In this paper we consider the relatively weak system of likeeresolution. A tree-like resolution
refutation for a parameterized contradictigh, k) uses clauses with more thamegated variables
as additional axioms. We show a meta-theorem that classifiastly the complexity of tree-like
resolution refutations for parameterized contradictio@sir theorem allows a refined view of the
exponential case of Riis’ Theorem: Consider the sequé6ge,).cn of propositional formulas
generated from a FO sentengahat has no finite but some infinite model. For a positive iatég
we get a sequence of parameterized contradicti@s,,, k))»en. We show that exactly one of the
following two cases holds (and provide a criterion that desiwhich one).

e (Cy.n, k) has a tree-like resolution refutation of sizén® for some constants and3 which
depend on) only.

e There exists a constant 0 < v < 1, such that for every. > k, every tree-like resolution
refutation of(Cy ,,, k) is of size at least”" .

We establish the upper bourdin® via certain boolean decision trees. For the lower boufidwe
use a game theoretic argument.

We provide examples of FO sentences for each of the abovgaras. In particular, the ex-
amples for then*” case (Examples 6 and 7) show that parameterized tree-l#adut®n is not
fpt-bounded.

2 Preliminaries

2.1 Fixed-parameter Tractability

In the following letY denote an arbitrary but fixed finite alphabetparameterized languags a set

L C ¥* x N whereN denotes the set of positive integers.(If k) is in a parameterized language
L, then we calll the main partandk the parameter We identify a parameterized language with
the decision problem(7, k) € L?” and will therefore synonymously use the terpgsameterized
problemand parameterized language. A parameterized problencalledfixed-parameter tractable
if membership of I, k) in L can be deterministically decided in time

O(f(k)11°%) 1)

wheref denotes a computable function. FPT denotes the class ofedl-flarameter tractable deci-
sion problems; algorithms that achieve the time compldditare calledixed-parameter algorithms
The key point of this definition is that the exponential griowg confined to the parameter only, in
contrast to running times of the form

O(| 119V ™)), 2)

There is theoretical evidence that parameterized problémscLIQUE are not fixed-parameter
tractable. This evidence is provided via a completenessryhwhich is similar to the theory of
NP-completeness. This completeness theory is based omltbwifhg notion of reductions: Let
L, € ¥1 x NandLs € ¥} x N be parameterized problems. Apt-reductionfrom L, to Lo is a
mappingR : 37 x N — 3 x N such that

1. (I,k) € Lyifand only if R(I, k) € Lo.

2. R is computable by a fixed-parameter algorithm, i.e., there é@mputable functiorf such
that R(I, k) can be computed in tim@( f(k)|I|°M).



3. There is a computable functigrsuch that wheneveR (I, k) = (I', k'), thenk’ < g(k).

A parameterized complexity clagsis the equivalence class of a parameterized problem untler fp
reductions. It is easy to see that FPT is closed under fptetézhs, thus FPT is a parameterized
complexity class. Parameterized problems appear to haeeadelegrees of intractability, as mani-
fested by thaveft hierarchy The classes WI[t] of this hierarchy form a chain

FPTCW[1] CW[2] C --- C XP

where all inclusions are assumed to be proper. Here XP detindeclass of problems solvable in
time O(|I]/(®); it is known that FPT# XP [4]. Each class W(t] is defined as the equivalence class
of a certain canonical weighted satisfiability problem feciion circuits. For W[2] the canonical
problem is equivalent to the following satisfiability prebi:

WEIGHTED CNF SATISFIABILITY

Instance:A propositional formulaF in conjunctive normal form (CNF), and a positive
integerk.

Parameter:k.

Question: Can F be satisfied by a truth assignmenthat sets exactly: variables to
true? (k is theweightof 7.)

Note that if the clauses of the CNF formula are required tdaarat most three literals, we get the
WI[1]-complete problenWEIGHTED 3-CNF SATISFIABILITY. Let BOUNDED CNF SATISFIABILITY
denote the problem obtained fronNEIGHTED CNF SATISFIABILITY by allowing truth assignments
of weightat mostk. Itis easy to see that this relaxation does not change tlensierized complexity
of the problem:

Lemma 1. BOUNDED CNF SATISFIABILITY is complete for the clas&/[2] under fpt-reductions.

Proof. We provide an fpt-reduction from the languag€IGHTED CNF SATISFIABILITY, which is
known to be W[2]-complete [4]. LetF, k) be an instance OVEIGHTED CNF SATISFIABILITY in
which the variablesq, .. ., v}, do not appear. We reduce it to the insta#é, k + 1) of BOUNDED
CNF SATISFIABILITY inwhichF' := F A (v} V...V v)). Itis transparent thal' has a satisfying
assignment of weighit if and only if F/ has a satisfying assignment of weight at most1, and the
result follows. O

As in classical complexity theory, we can define for a paramiztd complexity clasg€ the
complementary complexity class €= { L : L € C } whereL = (X* x N) \ L for a parameterized
problemL C ¥* xN. Clearly FPT= co-FPT. Itis easy to see thatifis closed under fpt-reductions,
then sois cas. Thus, in particular, each class WIt] of the weft hierarclvweg rise to a parameterized
complexity class co-WI[t].

2.2 Parameterized Proof Systems

Definition 1. Let L C ¥* x N be a parameterized language. parameterized proof system for
L is an onto mapping’ : (X7 x N) — L for some alphabeE; whereI' can be computed by a
fixed-parameter algorithm.

We say thafl" is fpt-boundedif there exist computable functiorfsand g such that for every
(I,k) € Lthereis(I', k") € £ x Nwith (I’ k') = (I, k), |[I'| = O(f(k)|I|°M)), andk’ < g(k).

Note that the problems of the classes WI[t] of the weft hidradecave fpt-bounded proof sys-
tems since the yes-instances of these problems have sntaisses. Consider, for example, the
WI[2]-complete probleml. = BOUNDED CNF SATISFIABILITY. Let Sr ., denote a string over
some alphabeX that encodes a CNF formul& together with a satisfying truth assignmenof
weight < k for F. A proof systent for L can now be defined by settif(w, k) = (F, k) if w
encodesSr ., and otherwis& (w, k) = (Fo, ko) for some fixed(Fy, ko) € L. Evidently,T" is
fpt-bounded.

However, the situation is different for the classes co-Ylecifically, in this case, for co-W[2].
We can witness that a CNF formula withvariables has no satisfying assignment of weighi by



listing all O(k - n*) assignments of weight &, then checking that none is satisfying. However, this
listing requires too much space and apparently we cannatfas¢he construction of an fpt-bounded
proof system.

This next result follows by a standard argument in which th@putation of a Turing machine is
considered as a proof.

Lemma 2. LetC be a parameterized complexity class andlldte aco-C-complete parameterized
problem. If there is no fpt-bounded proof systemifothenC # FPT.

Proof. Let L C ¥* x N be a co€-complete parameterized problem. We show the contraipesit
of the statement. Assunte = FPT. Since FPT= co-FPT, co€ = FPT follows. Consequently,
there is a fixed-parameter algorithm that decides memlgenstii; let A/ be a Turing machine that
implements this algorithm. Fdt, k) € L let M ; ;) be a string over some alphalit that encodes
the computation steps @/ with input (I, k). By the fixed-parameter tractability df, there is a
computable functiorf such thatiM; ;)| < O(f(k)[I|°)). We may assume thdf, k) can be
read off fromM(; 1), say, by choosing an encoding whéie k) is encoded as a prefix off(; i
wherefk is presented in unary. We define a mapplng ¥j x N — L as follows. Consider
(I',k") € ¥ x N. If I’ encodes a computation @f for the input(Z, k), i.e. if I' = M i1,
then we letl'(I’, k") = (I, k). Otherwise, if(I’, k") does not encode a computation/df for some
input (I, k), we putl’(I', k') = (I, ko) for some arbitrary fixed!y, ko) € L. ClearlyT is a proof
system forL asT'(I’, k") can be computed in linear time. FurthermaFeis fpt-bounded, since
|M 11| < O(f(k)|11°W) holds for(1, k) € L. O

In view of this lemma we suggest a program a la Cook-Recklavgéining evidence that the
complexity classes from the weft hierarchy are distinctrfd®PT. This program consists of showing
that particular parameterized proof systems are not fpaded. For such an approach we would
start with a weak system such as a parameterized versioaesfike resolution. The consideration
of stronger systems is left for future research.

2.3 From First-Order to Propositional Logic

Next we describe a translation of a FO sentence to a sequépcepwmsitional CNF formulas. We
use the language of FO logic with equality but with neitherdtion nor constant symbols. We omit
functions and constants only for the sake of a clearer efipnsnote that we may simulate constants
in a single FO sentence with addedtermostexistential quantification on new variables replacing
those constants. We assume that the FO sentence is givemamadtion of FO sentences, each of
which is in prenex normal form; thus, we need only explaintth@slation of a single FO sentence
in prenex normal form. The case of a purely universal semténeasy — a sentengeof the form

Yy, za, ... F(r1, 22, ... 2),

whereF is quantifier-free, is translated into a sequence of prajosil formulas in CNRCy, ,,)nen,
of which then-th membelC,, ,, is constructed as follows. Lét] = {1,2,...n}. For instantiations
x1,Ta,...2, € [n], we can considef (z1, z2,...2x) to be a propositional formula over propo-
sitional variables of two different kinds®(x;, , zs,, ... z;,), whereR is ap-ary predicate symbol,
and(z; = z;). We transformF into CNF and then take the union of all such CNF formulas for
(z1,72,...x)) ranging overn]*. The variables of the forniw; = x;) evaluate to either true or
false, thus we are left with variables of the fofz;, , z;,, ... x;,) only.

The general case, a sentencef the form

Va1 3y Ve Iye .. Vor3yr F (21, 02, - Tk, Y1, Y2, - - - Yk,

can be reduced to the previous case by Skolemization. Wedute Skolem relations
Si(x1, 22, ... x;,y;) forl < i < k. S;(x1,x2,...2y;) Withesseg; for any givenzy, xo, . .. 2;, SO
we need to ad&kolem clausestating that such a witness always exists, i.e.,

n
\/ Si(Il, xro,. .. Iz,yz) for all (xl,SCQ, Ce IZ) S [TL]Z .
yi=1



The original sentence can be transformed into the folloyaimgely universal sentence

k

Vo1, X5 Ty Y1, Y25 - - - Yk /\ 28i(@1, @2, @iy yi) V F (@1, B2, Tk, Y1, Y2, - - - Yk)-
i=1

By construction it is clear that, for FO sentenggshe CNF formule’y, ,, is satisfiable if and only if
1 has a model of size. Thus satisfiability questions on the seque(&g,,)»cn relate to questions
on the existence of non-empty finite models for

Examplel. We consider (the negation of) the pigeonhole principle taléfned by the following
sentence)"HP of FO.

VaIyR(z,y) A yVe-R(z,y) N (VaVwVy —R(z,y) V "R(w,y) V . = w).
We translate this to the conjunction of the following unaarclauses

VaVy =53 (. y) V R(z,y)
Vyva =Si(y) V —R(z,y)
VaVyVw —R(z,y) V " R(w,y) V& = w

together with the Skolem clauses
Va3ySs(z,y)
JyS1(y).

Forz,y € [n] we now consideR(x,y), Sz(z,y) andS;(y) to be propositional variableg.,; ,, is
therefore the system of clauses

—Sa(,y) V R(z,y), =S1(y) vV ~R(z,y) and
—R(z,y) V- R(w,y), forz,y,w € [n], w # z,

together with the Skolem clauses

n

\/ Sa(z,i), for z € [n], and \n/ S1(i).

=1

Note that the size of’y, ,,, with respect to a reasonable encoding, is polynomial.ir_et us
briefly explain this point. In our translation gf we generate a constant numbesf predicate CNF
clauses, each involving at mqstfree FO variables (once the universal quantifiers are drdppe
also generate a constant numbeaf Skolem relations, each involving at magtfree FO variables
(once the universal quantifiers are dropped; we considéfirthg witness variable to remain exis-
tentially quantified). After instantiating these free \dafies with the elements @], we deduce that
Cy,n involves at mosp - n? +q-n? (propositional) clauses. Since these (propositional)sga are
of length bound bynax{p’, ¢’ - n}, the result follows.

2.4 Parameterized Tree-like Resolution

A literal is either a propositional variable or the negation of a psitpgnal variable. Aclauseis a
disjunction of literals (and a propositional variable capear only once in a clause). A set of clauses
is a conjunction, i.e., it isatisfiableif there exists a truth assignment satisfying simultangoais

the clausesResolutioris a proof system designed tefutea given set of clauses, i.e., to prove that
it is unsatisfiable. This is done by means of a single dedwatile

CVvVv —-wVvD
CcvD ’

which we use to obtain a new clause from two already existiresoThe goal is to derive the empty
clause — resolution is known to be sound and complete, ieecam derive the empty clause from the
initial clauses if and only if the initial set of clauses wassatisfiable.

In this paper, we shall work with a restricted version of fe§on, namelytree-like resolutionIn
tree-like resolution we are not allowed to reuse any claugettas already been derived, i.e., we need



to derive a clause as many times as we use it (this, of counss, bt apply to the initial clauses). In
other words, a tree-like resolution refutation can be viag a binary tree whose nodes are labeled
with clauses. Every leaf is labeled with one of the origifalses, every clause at an internal node
is obtained by a resolution step from the clauses at its tildrelm nodes, and the root of the tree is
labeled with the empty clause. We measuresilaeof a tree-like resolution refutation by the number
of nodes.

It is not hard to see that a tree-like resolution refutatiba given set of clauses is equivalent
to aboolean decision tresolving thesearch problenfor that set of clauses. The search problem
for an unsatisfiable set of clauses is defined as follows €sge,Krajicek’s book [7]): given a truth
assignment, find a clause which is falsified under the assghmA boolean decision tree solves
the search problem by querying values of propositionakaeis and then branching on the answer.
Without loss of generality, we may assume that no propostioariable is questioned twice on
the same branch and that a branch of the tree is closed as s@ofalgified clause is found, under
the partial assignment — conjunction of facts — obtainedas@along that branch. When a branch
is thus closed we say that atementary contradictiohas been obtained. Note that we consider a
node of the decision tree to be labeled by the conjunctioractsfthus far obtained together with
the propositional variable there questioned. This is agmls to a node in a tree-like resolution
refutation being labeled with its clause together with theiable about to be resolved. Given the
equivalence between tree-like resolution refutationstaalean decision trees, we shall concentrate
on the latter. Whenever we need to show that there is a ceréafike resolution refutation of some
unsatisfiable set of clauses, we shall construct a boolecigide tree for the corresponding search
problem. On the other hand, whenever we claim a tree-likddwéen lower bound, we shall prove it
by an adversary argument against any boolean decision trigh wolves the search problem.

We give working definitions of parameterized contradictéomd parameterized tree-like resolution,
which we shall use to state and prove the complexity gap faarpaterized tree-like resolution.

Definition 2. A parameterized contradictigma pair (F, k) whereF is a propositional CNF formula
andf is a positive integer such th& has no satisfying assignment of weight at niost

Example2. Let us consider an undirected gragh= (V, E) that does not have a vertex cover of
size< k. We introduce a propositional variakig for every vertexo € V. Then the pair

(/\{u,v}EE(pu V py), k)

is a parameterized contradiction.

Let PARAMETERIZED CONTRADICTIONSbe the language of parameterized contradictions. Note
that PARAMETERIZED CONTRADICTIONSIS the complement 0BOUNDED CNF SATISFIABILITY
and, as such, is co-W[2]-complete under fpt-reducti®lasameterized tree-like resolutiama proof
system designed to refute a parameterized contradi¢ffor). It should be viewed as a tree-like
resolution refutation otF A Gy, whereg,, is the conjunction oéll clauses that contain at ledst- 1
negated variables (where the variables occurring in thesela ofG;, range over those occurring
in F). The conjunctiorg, should be seen neither as part of the given parameterizechdaztion
nor as part of the refutation (except for those individuatskes ofj;, that are actually used, which do
form part of the refutation). As we have explained, we préferequivalent formulation in terms of
boolean decision trees. It is straightforward to verifytthgarameterized tree-like resolution refu-
tation is equivalent to a parameterized boolean decis&m (in which all the branches are closed),
defined as follows.

Definition 3. Given a parameterized contradictioh = (F, k), a parameterized boolean decision
treeis a decision tree that queries values of propositional @akés and branches on the answers; a
branch of the tree is closed as soon as (1) or (2) happens:

(1) an elementary contradiction is reached, i.e. the padssignment obtained along the branch
falsifiesF;

(2) the partial assignment obtained along the branch hasatloank propositional variables set
to true, i.e., has weight k.



3 Complexity Gap for Parameterized Tree-like Resolution

We first recall the complexity gap theorem for tree-like fason proven by Riis [10].

Theorem 1. Given aF'O sentence) which fails in all finite models, consider its translatiortora
sequence of propositional CNF contradictio{@$, ., )»en. Then either 1 or 2 holds:

1. Cy » has polynomial-size in tree-like resolution refutations.

2. There exists a positive constarguch that for every., every tree-like resolution refutation of
Cy n is Of size at least*".

Furthermore, 2 holds if and only if has an infinite model.

In the parameterized setting, one can hope that the seceedt@ve, the hard one, splits into
two subcases. This is indeed true as we shall prove the foltpaomplexity gap theorem fqra-
rameterizedree-like resolution:

Theorem 2. Given aF'O sentence), which fails in all finite models but holds in some infinite
model, consider the sequence of parameterized contrad®{D.; » 1) nen = ((Cy n, k))neny Where
(Cy.n)nen is the translation of) already defined. Then either 2a or 2b holds:

2a. Dy .1 has a parameterized tree-like resolution refutation oégi%n“ for some constants
and 3 which depend oy only.

2b. There exists a constant0 < v < 1, such that for every, > k, every parameterized tree-like
resolution refutation oD, ,, . is of size at least”” .

Furthermore, 2b holds if and onlyif has an infinite model whose induced hypergraph has no finite
dominating set.

By proving that Case 2b can be attained (see Examples 6 aadd@hearing in mind the remark
from the end of Section 2.3, we derive the following as a dargl

Corollary 1. Parameterized tree-like resolution is not fpt-bounded.

If we could prove that no parameterized proof systemPlSRAMETERIZED CONTRADICTIONSIS
fpt-bounded, then we would have derived WR2]JFPT.

Before we prove Theorem 2, we need to give some definitionsafaodel)M, let | M| denote
the universe of\/. Given a modelM of a FO sentence, either finite or infinite, thenypergraph
induced by the modéll has the elements ¢#/| as vertices and as hyperedges those{sgts . . y;}
suchthaty, ..., y;) appears as a tuple in some relation. (Recall that there arkitwls of relations
— the extensionaR relations which are present in the original FO sentencetlad relations that
we introduce when Skolemizing the sentence — both give odg/peredges.) A set of vertices is
independenif it contains no hyperedge as a subset. Given &&ef vertices, a vertey ¢ X, and a
setA suchthatX U{y} C A C |M|, we say thay is A-independent fronX if and only if (i) there is
no self-loop{y} aty, and (ii) there is no hyperedde C A which containg; and intersects witkx .
We say thaty is independent fronX if y is |M|-independent fromX; otherwise we say thaXt
dominateg,. Finally, adominating sets a setX of vertices that dominates every other vertex of the
hypergraph.

3.1 Case 2a of Theorem 2

We now prove Case 2a of Theorem 2. We shall start by reprovasg@ of Theorem 1. Note that
our proof is different from Riis’ proof [10] as our translatti, though equivalent, is slightly different.

Proof of Case 1, Theorem The idea is to take a (finite) resolution refutation of the E@rfulay
(such a refutation exists as the formula has no model), atrdnaform it into a polynomial size in
n tree-like resolution refutation af,, .

As we have explained, we can consider a boolean decisionnsteEad of a tree-like resolution
refutation. In the FO case, constructing a boolean dectsénis very similar to producing a tableau
refutation. (Our method therefore differs slightly frormgily inverting the classical FO resolution,
as we consider only instantiations of terms as opposednwstdremselves.) The decision tree tries to
build up a model of), starting by witnessing some unary Skolem relatjowith the constant and



deriving further constants as Skolem witnesses of alreadyet] constants as and when necessary
Note that, while we do not allow constants in our signatuves refer to those elements that have
been mentioned in decision tree questions as constants.

Let C be the set of constants thus far witnessed, and et some tuple ovef’. At each point
two kinds of queries are allowed: (I) querying the booledneaf someR;(¢) and (I) querying the
witnessy of someS; (¢, y). In the latter case there are two possibilitiesgoit could be a constant
that is already known or it could be a new one, thus extendiagsét of constants. For Case |, the
branching factor i&: corresponding tdz;(¢) being true () or false (L). For Case Il, the branching
factoris|C| + 1: we label these branches with the element§'afr a new constant according to
the conceded witness 6 (¢, v).

The order in which the boolean decision tree performs thaseieg is as follows. We start with
the single constarit, witnessing a unary Skolem relationof i.e. setC := {1}, and first query all
possibleR; relations on all possible tuples ovér, closing any branch as soon as a contradiction is
reached. We then pick up a Skolem relatiytc, y) and aj-tuple€ of constants o€ and query the
witnessy. There aréC'| + 1 possible outcomesg-is either one of the already known constants from
C or a different constant, which we denote 8y If y € C, we pick anotheS; (¢, y) and do the
same (we assume a reasonable order over the Skolem reldfians tuples irC). In the case where
y is a new constant which is not iff, we extend the set of constants, i.e. €et= C' U {¢'} and
repeat the same procedure, i.e. query all posgtblielations over all possible tuples in the expanded
C and so on.

It is easy to see that the boolean decision tree construttibdsiway is finite. Indeed, suppose it
were infinite. Then, by Konig’s Lemma, there must be an itdibranch which constitutes an infinite
model ofy — a contradiction. Let the depth of this tree/band the maximum size @ along any
of its branches be:. Let us now turn this finite refutation af into polynomial size im refutation
of Cy ». We note that a node, which queries Anrelation in the FO case, remains the same in the
propositional case, and, in particular, has a branchingfac A node, which witnesses a Skolem
relationsS; (¢, y), is of constant branching factor in the FO case (bounded}yn the propositional
case, such a node can be translated into a sequenceades, thé-th node querying thé; (¢, 1)
only if all the nodesS;(z, 1), S;(¢,2),...,S;(¢,l — 1) got negative answers. If the answers to all
gueries were negative, we arrive at a contradiction Withc:lh(aseVZ:1 S;(¢,y), while a positive
answer gives us the desired witness. Thus a node queryirfgrafation in the FO case can be
thought as a single node of branching facetan the propositional case. As the FO tree is of constant
heighth that depends on the formujaonly, the boolean decision tree in the propositional casé is
size at mostmax{m, n})" which isO(n"), i.e., polynomial inn as claimed. O

We can now modify the proof above in order to prove Case 2a ebiidm 2.

Proof of Case 2a, Theorem 3Ve shall construct a boolean decision tree for the parameteFO
case in a similar manner, but with the following modificatieshenever we witness a new constant
and extend the set of constants by adding it, weaaathernew constant that imdependentrom

all the others. That is, we actually introduce new constamts in pairs,c’ andc”’, wherec' is a
Skolem witness for some constantGhand¢” is assumed independent frathU {¢'} (we make no
assumption of the independencebfrom C). Thereafter, we may also close branches whenever we
directly contradict the independencedffrom C' U {¢’'}. Now, suppose for the sake of contradiction
that the boolean decision tree constructed in this way isitefi Again, by Konig's Lemma, there
must be an infinite branch which constitutes an infinite modflél with the additional property that it
has no finite dominating set. Indeed, by the constructiargvery finite set of constants, we always
add a new constant that is independent from the set. This gise¢he desired contradiction, thus
showing that the decision tree we have constructed is fih#éthe depth of this tree ble and the
maximum size of”' along any of its branches be.

What remains is to estimate the branching factor of the gaéni the propositional case. Tl
andS queries have branching fact@andn as before. The only problemis in finding a new constant
that is independent from all existing constants. The baobiecision tree in the propositional case
can “search” for such a constant in the following way. Dentbie set of elements of the finite
universelr] that have not been queried at all so farBy= {z1, 22, ... 2,} and the set of already

1As is customary in Proof Complexity, we discount the emptydeio It is, therefore, possible to havewith no finite
models and no outermost existential quantifier. In this @asenay instantiate a single constant at the outset to geting.go



Figure 1: Decision tree for Example 3.

known constants bg’. The decision tree first queries all possililend.S relations with arguments
overC U {2z} that could possibly make; dominated byC' If all answers are negative then is
independent fronT, so it is success =, is added toC' and we proceed further according to the
decision tree in the FO case. Otherwise, on the first positissver (i.e., having found out that is
dominated byC), we abandon; and proceed the same way withand so on. For every; which

we query the branching factor is boundedh§’ wherea is the maximum arity of any relation of
andb is the number of relations af (including Skolem relations in both cases). On the othedhan
we do not need to test more tharelements ofZ as we are now in the parameterized setting where
the boolean decision tree cannot take more thaositive answers and we need to move onto a new
element ofZ on a positive answer only. This gives us a subtree of héigimid branching factor
m®, which is equivalent to a single node of branching faetd?*. To conclude, let us recall that
the parameterized FO tree was of constant héighat depends on the formujaonly, and thus, the
boolean decision tree in the parameterized propositicawse ¢s of size at mogimax{ma* n})"
which is not greater thafm*")kn" as claimed. O

Example3. We give an example of a decision tree constructed as in Cageebrem 1. We consider
the following sentencé which has no models:

Vaedy R(x,y) A JaVy -R(z,y).

As per our translation to propositional clauses, this isveent to the conjunction of the universal
clauses

(i.) VaVy -Sa(z,y)V R(x,y)and

(i1.) VaVy =Si(z) vV —~R(z,y),

together with the Skolem clauses
Va3y Se(x,y) and
Jz Sy (z).
Figure 1 shows a FO decision tree for this system of claudes nimber following eaclft specifies
the clause that has been contradicted. For example, thenboigjht # comes from the knowledge
S2(1,2) and—R(1, 2) — which contradicts the first universal clause.

Exampled. We give an example of a decision tree constructed as in Ca3é2arem 2. We consider
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the sentence which is the conjunction of the following.

dz U( ) U-existence

Vo -U(z) V ~R(x,x) U-antireflexivity

Vavy —=U(z) vV -U(y) V = R(z,y) V - R(y, x) U-antisymmetry

VavyVz =U(z) V =U (y) V -U(z) V = R(z,y) V =R(y,z) V R(x, z) U-transitivity
VaVy -U(x) vV =U(y) V R(z,y) V R(y, x) U-totality

Vy3z Uy ) (U(x) A R(x,y)) U-non-minimality

JxVy U(y) V R(x,y) —U-dominator

The sentence asserts the existence of a bipartition, in which theart is a non-empty strict total
R-order without minimal element, and such that there is alsieement with ar?-edge to all the
elements of the-U-part. Depending on which part this single element is in, @ehof will have
a dominating set of sizeor 2. As per our translation, this is equivalent to the univectalises

(i) Yo 81(2) V U(x)
(4i.) Va =U(x) V - R(z,x)
(#i.) Vavy =U(xz) V -U(y) V = R(z,y) V - R(y, x)
(iv.) VaVyVz -U(z) v -U(y) VvV -U(z) V=R(z,y) V -R(y,z) V R(x, 2)
(v.) Vavy U (x) V -U(y) V R(z,y) V R(y, )
(vi.) YyVax —Se(z,y) vV -U(y) V U(x)
(vi'.) YyVa =S (x,y) V -U(y) V R(z,y)
(vii.) VaVy =S5(z) VU (y) V R(z,y),
together with the Skolem clauses
Iz S (x)
Yy3dx Sa(x,y)
JzS3(x).

Note that the Skolem relatiofi; is somewhat redundant and is included for the sake of fotynali
(it would preserve meaning if we were to remove cla(iseand substitutélz: U (z) for the Skolem
clausedz S;(z)). Figure 2 shows a FO decision tree for this system in therpeterized case. (Note
that we have questioned constants and relations in anigeet| rather than natural, order. This is so
that we might keep the size of the tree to a minimum; the treddvstill close if we chose a natural
order.) The bullet pointse] indicate where, having just witnessed a new constant, wedoce
another new, independent constant. In the decision tre&new that2 must be independent from
1, and that4 must be independent from 2 and3; we do not know thaB is independent from
either2 or 1. The contradictions labeled with square brackets arisa frivlating the independence
condition. For example, a#[1,4] we have just learned the truth &(1,4), which violates the
assumed independencelodnd4.

The height of our tree i& = 9 and we never involve more than = 4 constants; the max-
imum arity isa = 2 and there aré = 5 involved relations. As in the previous proof, using the
bound(m®")kn*, we can state thab, ,, » has a parameterized tree-like resolution refutation of
size bounded bg!8%n?,

Owing to the rules that allow us to introduce independenstamts, the character of the FO
decision tree in the parameterized case is different fragrotidinary FO decision tree. Notice that
we have closed our tree without witnessing the Skolem reiefi (z). It would not be possible to
close an ordinary FO decision tree without this, since, aiththe U-existence clausé.), ¢ has
finite models.

We conclude this section with a further example of Case 2ahebfem 2. This specimen provides
a somewhat trivial instance, having, as it does, paramzettree-like resolution refutations not just
polynomial inn, but actually independent af (in contrast to Example 4 where the size of a smallest
tree-like refutation depends o).

Example5. We consider the (negation of the) least number principleédtal orders. Let)"NP: be

11
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Figure 2: Decision tree for Example 4

the conjunction of the following.

Vo —R(x,x) antireflexivity

VaVy - R(x,y) V ~R(y, x) antisymmetry
VaVyVz = R(x,y) V ~R(y, z) V R(x, 2) transitivity
VaVyR(z,y) V R(y, ) totality

Vy3z R(x,y) no least element

All models of/“NP+ have a dominating set of size moreover, every element of the model consti-
tutes such a dominating set. It is straightforward to vettilt (D, ,, ;) nen has tree-like resolu-
tion refutations of siz&k, independent from.

3.2 Case 2b of Theorem 2

We now turn our attention to proving Case 2b of Theorem 2. @guraent will be facilitated by a
game based on those described by Pudlak [9] and Riis [10hictwProver (female) plays against
Adversary(male). In this game, a strategy for Prover gives rise to ddasodecision tree on a set of
clauses. Prover questions the propositional variablgdabeal the nodes of the tree and Adversary
attempts to answer these so as neither to violate any speleifise nor to have conceded that more
thank variables are truer(), for in either of these situations Prover is deemed the @in@f course,

12



assuming the set of clauses was unsatisfiable, Adversaegimdd to lose: the question is how large
he can make the tree in the process of losing. Note that eadiclvof the tree corresponds to a play
of this game, hence each decision tree corresponds to arRtoategy. We will be concerned with
Adversary strategies that perform well over all Provertegges, and hence induce a lower bound on
all decision trees and, consequently, all parameterizsdlike resolution refutations.

When considering a certain Prover strategy — a decision-tree will actually consider only
a certain subtree in which the missing branches correspppthtes where Adversary has simply
given up, already conceding the imminent violation of a stauln this way, there are two types
of non-leaf nodes in this subtree, those of out-dedr@ewhich Adversary’s decision waerced
(because he conceded defeat on the alternative valuatidnthase of out-degrezin which he is
happy to continue on either outcome. In the latter case, weanasider that he has given Prover a
free choiceas to the value of the relevant variable. The free choice siplisy a vital role in ensuring
the large size of this subtree, which in turn places a lowembicon the size of the decision tree of
which it is a subset.

Let Cy . be the propositional translation of some FO sentepnaghich has no finite models,
but holds in some infinite model. We formally define the gaié, .., k) as follows. At each turn
Prover selects a propositional variable®f ,, that she has not questioned before, and Adversary
responds either by answering that the variable is tileof that it is false (), or by allowing Prover
a free choice over those two. The Prover wins if at any poiathaids information that contradicts
aclause ot ,, or she holds more thanvariables evaluated true. In this formalism, given a Prover
strategy on her moves, and considering both possibilittethe free choice nodes, we generate a
game treethe subtree of the decision tree alluded to in the previamagraph.

Henceforth, we consider only the case in which some modél lofis no finite dominating set.
We will give a strategy for Adversary in the gargéC, », k) that guarantees a large game tree for
all opposing Prover strategies.

Adversary’s Strategy At any point in the game — node in the game tree — Adversaryhaille
conceded certain information to Prover. He always has imdriviio disjoint sets of already mentioned
constants” and@ on which he has conceded certain information: initiallyseneets are both empty.
The setQ is to be a P U Q)-independent set whose members are al30) (Q)-independent from
P. In some sensé is the only set of constants for which Adversary has actuatigceded an
interpretation; all he concedes@fis that it is a floating set with certain independence pragertf

X is a set of constants, |e¢1 x be the class of models @f that are consistent with the information
Adversary has conceded ah At each point Prover will ask Adversary a question of therfdt; (¢)

or S;(¢). The Adversary answers as follows:

I. If all constants of¢ are in P, then Adversary should choose some modeMip and answer
according to that.

II. If all constants of¢ are in P U @, and there is at least one fro@, then Adversary should
answer false ().

lll. If some constantirgis notinP U (@ then

— if no model in M p satisfies the question, then Adversary should answer falgeoh-
erwise

— he should give Prover a free choice on the question.

In all cases the set® and @ remain the same, except in Case Il Part 2. If the Prover @®os
true (T), then Adversary places all the constantgafi P, possibly removing some fro in the
process. If the Prover chooses falsgg (then Adversary places any constantg that are not already
in P UQ into Q. It turns out that, in Cases Il and Ill, the situation nevases in which Adversary
is forced to answer true. In particular, in Case lll, it wibver be the case that all modelsAr p
satisfy the question. This is vital to the success of Adwgrsatrategy, and we will return to it later.
We must now prove that this strategy leads to a large decistan we will need the following two
lemmas.
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Lemma 3. Letvy be a sentence af O in which no model has a finite dominating set. Rétbe a
model ofyy and letP be a finite subset ¢f\/|. For any positive integey, there exists an independent
set@ of sizeq such that all elements @} are independent fron®.

Proof. Suppose for contradiction somé fails to have this property. Consider any finite of sizep,
in | M]|. If there is ag such that all set§ C |M|\ P are either not independent or some elemeng in
is not independent fror®, then there is a maximal, the cardinality of a se®), that is independent
and whose elements are independent fi@nBut, P U Q, is now a finite dominating set aff by
the maximality ofgg. O

Lemma 4. Consider any path in the game tree®(C,, ., k) from the root to a leaf. If there arg
or fewer propositional variables evaluated to true by thaf|¢éhen every one of theconstants must
have appeared in a free choice node along that path.

Proof. We give a sketch proof of the lemma; for a fuller explanatisee Riis’ paper [10]. It is
important to see that Adversary plays faithfully accordiogome (infinite) models of, because
this means that an elementary contradiction can only béneghoy the violation of a Skolem clause.
In order to see that Adversary plays so, it becomes necesaxplain why in Case Il of his strategy
he never loses any of his putative modgls> and why in Case Il he is never forced to answer true
(m).

In Case Il, Adversary never loses a modélin M p because) can always be chosen to be
independent, and independent frémby Lemma 3. Indeed, if such an interpretation is putbim
M, then Adversary’s answer is forced to be faldg.(

Suppose, in Case lll, that Adversary were forced to answer(fr), i.e., all models\ in Mp
satisfy the questioR®; (¢) or S;(¢). By the floating nature of all elements that are naPithis would
generate a finite dominating set BfU Q on M. Let us dwell on this point further. L&t be the
subtuple of: consisting of those constants of the latter that are n&tirn). Some of the constants of
¢ could have been mentioned in questions before, but only &s éor which Adversary’s response
had been forced false. Suppose that) ) were not a dominating set fav/, then there exists an
elementr € M, independent fronP U Q. But this element is such that it can fill the tujgleand
falsify R;(¢) or.S;(¢) in M (and falsify any questions that previously involved it, afhhad already
been answered false). This contradicts the question hédag forced true in the first place.

Recalling that we can only reach an elementary contradittyche violation of a Skolem clause,
we can now complete the proof. L&tbe a constant that never appears in a free choice node in our
game tree. In order to violate a Skolem clause, Adversary iraxe denied somg(c, x), for each
of then constants substituted fer But that his denial of (¢, ¢’) was forced implies a contradiction.
Sincec’ is uninterpreted in any of the modelsM p, it follows thatS(¢, ¢”) is false for allc” in any
model inMp. This tells us that\ » is empty and, consequently, thathad no infinite model. [

We are now in a position to argue the key lemma in this section.

Lemma 5. Leta be the maximum arity of any relation ihand suppose that there are no more than
b different relations in the propositional translation ¢f(including Skolem relations in both cases).
Following the strategy that we have detailed for the g&it@, ., k), and withp andgq the cardinality

of the sets? andQ, respectively, Adversary cannot lose while bpth &'/ andp + ¢ < n.

Proof. Consider the game tree 6{C,, .., k). Note that Adversary only answers true in the case that
all involved constants are then added to hisi3etr, of course, were already there. Thus, at a certain
node in the game tree, the number of true answers given iallyibounded by the size of the set
of all possible questions oR, which is certainly bound by®®. Hence, whilsp®® < k, there must

be fewer thark propositional variables evaluated to true. Furthermdrg,4 ¢ < n at this node,
then not all of thex constants can have appeared in a free choice (since cangtahhave appeared

in a free choice are necessarily added to eitResr Q). It follows from the previous lemma that
Adversary has not yet lost. O

We are now in a position to settle Case 2b.

Proof of Case 2b, Theorem 2Ve aim to provide a lower bound on the size of any game tree for
G(Cy.n, k). Since a lower bound on the size of a game tree induces a lawegrdoon the size of a
boolean decision tree, the result follows.
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Consider a game tree f6(Cy, ,,, k). Recall that, at any node in this tree, Adversary has in mind
two setsP andQ, of sizep andg, respectively, and, by the previous lemma, whilst k'/%* and
p + g < n, he has not lost. Consider, therefore any node in this gageeand the set® and @
that Adversary there has in mind. L&{p, ¢) be some monotonic decreasing function that provides
a lower bound on the size of the subtree of the game tree radthé chosen node; when§¢0, 0)
is a lower bound on the size of the game tree itself. In showhiagS(p, ¢) satisfies the recurrence
relation

* S(p,q) = 5(p+a,q) +Sp,g+a)+1,with
e S(p,q) >0, whenp > kl/ab orp+gq>n,

we are able to derive the following statement whose full pegpears in the appendix.
Letn, k, a andb be positive integers such that

(Ya>2 (i)n>k (i)n>7a+1 (iv)EY® > (16a2)2,

then
5(0,0) > n*" wherey := 1/16a%b.

The result follows immediately from this statement for stéfntly largek (> (16a2)%??) andn

(> 7a + 1). By noting that all boolean decision trees of Case 2b arézef>s 2, we can modify the
given- to one that works for alh, £ > 1. Note that the assumption that (maximum arity} 2 is
innocuous — there are no unary FO sentencegich have no finite models but possess an infinite
one, therefore we would be in neither Case 2a nor Case 2b. O

Example6. We consider the (negation of the) least number principletuotial orders. Let)-NP=
be the conjunction of the FO clauses given in Example 5 wittioeiforth clause (totality)y)-NP
has models without a finite dominating set. For exampl&,if the set of integers, thé¥i x Z under
the strict partial ordering

(n,z) < (n',2") ifand only if n = n" andz < 2’

provides such a model.

Example7. We return to the sentene€’™HP defined in Example 1. This has models without a finite
dominating set: for example the positive integBrswith R(z,y) < y = x + 1, provides such a
model.
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Appendix
Lemma 6. Letn, k, a andb be positive integers such that
(i)a>2 (i)yn>k (ii)n>T7a+1 (iv.) kY% > (16a%)?,

then
5(0,0) > n*" wherey := 1/16a3b.

The reminder of the appendix is devoted to proving this lemma

We consider the combinatorial choose functi@jﬁ) to be defined on the integers and to be
m!/(rl(m — r!)), whenm > r andm andr are non-negative, and to Ioeotherwise. The proof
of Lemma 6 requires several technical lemmas.

Lemma 7. Consider a game tree f&(Cy .., k). Leta be the maximum arity of any relationpfand
let b be the number of relations af (including Skolem relations in both cases). Then a monotoni
decreasing subtree size-bounding functi{p, ¢) satisfies the following properties:

o S(p.q) > S(p+a,9) + S(p, g+ a) + 1, with
e S(p.q) > 0, whenp > k' orp + ¢ > n.

Proof. The second part follows from Lemma 5. For the first part, wesaer only the free choice
branching points in the game tree — that is we consider tharpitnee that is a minor of the game
tree in the natural way. At these points, on answering tragesconstants — at mogt— may be
added toP. Some may have been taken frap but since the functio$ is monotonic decreasing
the bound still holds. If the answer is false then at nsosbnstants may be added@and the bound
holds for similar reasons. O

Lemma 8. The recurrence relation of the previous lemma satisfies:

S(p.q) > (L%J) -1

kl/ab_
| ——2]

Proof. By induction on the (binary tree minor of the) game treed¢¢,, ,,, k), starting from the the
leaves.

(Base case.) The choose function evaluatdsao) whenp + ¢ > n orp > k'/%. SinceS(p, q)
is defined and is always 0, the bound holds.

(Inductive step.) Assume the solution holds farsteps, or less, in from a leaf. We will prove
that it holds form + 1 steps in. Consider such a (free choice) node. T$ignq) := S(p + a,q) +
S(p, ¢+ a) + 1 where the two child nodes are or fewer steps from the leaves. So, by the inductive
hypothesis, we have

LWJ WJ

Spq) = (Lkl/ab“paj) + (LL@J > -2+1

a a

= (et )+ () 20

a a

(LL’:#‘?J) -

a

Y

Lemma 9. Letm andr be positive integers such that > r2; m > 7. Then

m > mr/4.
r) =
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Proof. Fromm > r2; m > 7, we may derivém — r) > (m —m'/?) > m?3/4. Thence

T 1/2\r 3r/4
(m)z(m—r) >(m—m/) m3"/ —

r T = mr/2 = /2
O
Lemma 10. Letm, r andc be non-negative reals such that> 1.
A. Ifm > /(1) then(%)r > mr/e.
B. Ifr >2andm > 3then(m —1)" —1 > mr/2,
C. lfm" > ¢¢/(c=1) theanT > mr/e,
Proof. May be easily verified. O

We are now in a position to proceed with the proof of Lemma 6.

Proof of Lemma 6By Lemma 9, and the knowledge that the preconditions yietti bg | > 7 and
2] > L%M’JQ we have that

2] L)

() =12 (2]

Noting that the preconditions yield > 1 andk'/2® > 1, we derive

1/ab7a
1| kt/ab 1\
{HJ4 ERRGhak) ~1

a a

Now, by Part A of the previous lemma, together with the knalgke that the preconditions yield
n—1> a1 we have that
kl/abia

— 1 4a 1/ab_,
(n—1) —1> (-1 1.

a

By Part B of the previous lemma, together with the fact thatgreconditions yield% >2and
n—12> 3, we have

rl/ab_, rl/ab_,

(n—1) 42 —1>n s

Noting that the preconditions yie@% — % > %/:; we derive

8a?

Kl/ab_g wl/ab
n~ sa2 > n 1642

Finally, we deploy Part C of the previous lemma, togethehwie knowledge that preconditidiv.)
yieldsk!/a® > (16a2)'6a*/(16a°~1) o demonstrate that

kl/ab L1/16a%0
n 162 >n .

Hence we have shown that

However, it follows from Lemma 8 that

) —1>n*" wherey := 1/164%.

so our proof of Lemma 6 is concluded. O
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