Marrying Words and Trees

Rajeev Alur
University of Pennsylvania

ABSTRACT

Traditionally, data that has both linear and hierarchical
structure, such as XML documents, is modeled using or-
dered trees and queried using tree automata. In this pa-
per, we argue that nested words and automata over nested
words offer a better way to capture and process the dual
structure. Nested words generalize both words and ordered
trees, and allow both word and tree operations. We study
various classes of automata over nested words, and show
that while they enjoy expressiveness and succinctness bene-
fits over word and tree automata, their analysis complexity
and closure properties are analogous to the corresponding
word and tree special cases. In particular, we show that
finite-state nested word automata can be exponentially more
succinct than tree automata, and pushdown nested word au-
tomata include the two incomparable classes of context-free
word languages and context-free tree languages.

1. INTRODUCTION

Linearly structured data is usually modeled as words, and
queried using word automata and related specification lan-
guages such as regular expressions. XML documents exhibit,
in addition to the linear sequencing of text, a hierarchically
nested matching of open-tags with closing tags. Such dual
structure exists naturally in many contexts including exe-
cutions of structured programs, annotated linguistic data,
and primary/secondary bonds in genomic sequences. Also,
in some applications, even though the only logical struc-
ture on data is hierarchical, linear sequencing is added ei-
ther for storage or for stream processing. Data with linear-
hierarchical structure is modeled using binary (or more gen-
erally, ordered) trees and queried using tree automata (see
[18, 14, 20] for recent surveys on applications of tree au-
tomata and tree logics to document processing). In this
approach, navigation along the hierarchical axis (paths in
the tree) is natural for expressing and checking of queries.

Even though tree models and tree automata are exten-
sively studied with a well-developed theory with appealing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

properties (see [7]), they seem ill suited to capture and query
the linear structure. First, tree-based approach implicitly
assumes that the input linear document can be parsed into
a tree, and thus, one cannot represent and process data that
may not parse correctly. Word operations such as prefixes,
suffixes, and concatenation, while natural for document pro-
cessing, do not have analogous tree operations. Second, tree
automata do not generalize word automata. Finite-state
word automata can be exponentially more succinct than tree
automata. For example, the query that patterns pi,...pn
appear in the document in that order (that is, the regular
expression Y*pi1X*...p,X*) compiles into a deterministic
word automaton of linear size, but standard deterministic
bottom-up tree automaton for this query must be of size
exponential in n. This exponential gap is unsurprising in
retrospect since complexity of a bottom-up tree automa-
ton is related to the index of the congruence induced by
the query, while complexity of a word automaton is related
to the index of the right-congruence induced by the query.
This deficiency shows up more dramatically if we consider
pushdown acceptors: a query such as “the document con-
tains an equal number of occurrences of patterns p and ¢” is
a context-free word language but is not a context-free tree
language.

In a nutshell, binary/ordered trees encode both linear and
hierarchical structure, but not on an equal footing. In this
paper, we show that the model of nested words, recently
proposed in the context of specification and verification of
structured programs [4], is a better integration of the two
orderings. A nested word consists of a sequence of linearly
ordered positions, augmented with nesting edges connecting
calls to returns (or open-tags to close-tags). The edges cre-
ate a properly nested hierarchical structure, while allowing
some of the edges to be pending. This nesting structure can
be uniquely represented by a sequence specifying the types
of positions (calls, returns, and internals). Words are nested
words where all positions are internals. Ordered trees can
be interpreted as nested words using the following traversal:
to process an a-labeled node, first print an a-labeled call,
process all children in order, and print an a-labeled return.
Word operations such as prefixes, suffixes, concatenation,
reversal, as well as tree operations, can be defined easily on
nested words. Binary trees, ranked trees, unranked trees,
forests, and documents that do not parse correctly, all can
be represented with equal ease. Finally, since XML docu-
ments already contain tags that specify the position type,
they can be interpreted as nested words without any pre-
processing.

A nested-word automaton is similar to a classical finite-
state word automaton, and reads the input from left to right
according to the linear sequence, processing each symbol
based to its type [4]. At a call, it can propagate states along
both linear and hierarchical outgoing edges, and at a return,
the new state is determined based on states labeling both the
linear and hierarchical incoming edges. The resulting class
of regular languages of nested words seems to have all the
appealing theoretical properties that the classes of classical
regular word and tree languages enjoy. Deterministic nested
word automata are as expressive as their nondeterministic
counterparts. The class is closed under boolean operations
as well as a variety of word and tree operations. Decision
problems such as membership, emptiness, language inclu-
sion, and language equivalence are all decidable, typically
with the same complexity as the corresponding problem for
tree automata. Finally, the notion of regularity can be char-
acterized in multiple equivalent ways, and in particular, us-
ing definability in monadic second order logic.

In order to study the relationship of nested word automata
to various kinds of word and tree automata, we define re-
stricted classes of nested word automata and study the im-
pact of these restrictions on expressiveness and succinct-
ness. Flat automata do not propagate information along the
nesting edges at calls, and correspond to classical word au-
tomata accepting the weaker class of regular word languages.
Bottom-up automata, on the other hand, do not propagate
information along the linear edges at calls. Over the sub-
class of nested words corresponding to ordered trees, these
automata correspond exactly to bottom-up tree automata
for binary trees and stepwise bottom-up tree automata [6]
for unranked trees. We show that there is an exponential
price in terms of succinctness due to this restriction. Our
definition of joinless automata avoids a nontrivial join of in-
formation along the linear and nesting edges at returns, and
this concept is a generalization of the classical top-down
tree automata. While deterministic joinless automata are
strictly less expressive, nondeterministic ones can accept all
regular languages of nested words. The succinctness gap be-
tween nested word automata and traditional tree automata
holds even if we restrict attention to paths (that is, unary
trees): nested word automata are exponentially more suc-
cinct than both bottom-up and top-down automata.

We also introduce and study pushdown nested word au-
tomata by adding a stack to the finite-state control of non-
deterministic joinless automata. We show that both push-
down word automata and pushdown tree automata are spe-
cial cases, but pushdown nested word automata are strictly
more expressive than both. In terms of complexity of anal-
ysis problems, they are similar to pushdown tree automata:

membership is NP-complete and emptiness is EXPTIME-complete.

Our decision procedure for emptiness generalizes the corre-
sponding checks for pushdown word automata and for push-
down tree automata.

Related Work

Languages of words with well-bracketed structure have been
studied as Dyck languages and parenthesis languages, and
shown to have some special properties compared to context-

free languages (for example, decidable equivalence problem) [17,

11]. The new insight is that the matching among left and
right parantheses can be considered to be an explicit com-
ponent of the input structure, and this leads to a robust no-

tion of regular languages using finite-state acceptors. This
was first captured using visibly pushdown automata [3], and
later, a cleaner and improved reformulation using nested
word automata [4]. There is a lot of recent work on visibly
pushdown automata and/or nested word automata (see [15,
2,1, 21,12, 5]). However, none of this addresses succinctness
compared to tree automata. The use of visibly pushdown
automata to formulate decision questions for XML query
processing was first considered in [19]. Recent work pro-
poses the notion of XVPA for processing XML schema [13].
These automata, however, are a particular form of bottom-
up automata studied in this paper, and thus, do not process
linear structure well.

There is a rich literature on tree automata, and we used
[20, 7] for our research. Besides classical top-down and
bottom-up automata over binary trees, stepwise bottom-up
tree automata for processing unranked ordered trees [16, 6]
and pushdown tree automata [9] are the most relevant to
this paper. Deterministic word automata have been also
used for stream processing of XML documents [8], where
the authors argue, with experimental supporting data, that
finite-state word automata may be good enough given that
hierarchical depth of documents is small.

Outline

Section 2 and Sections 3.1-3.2 is a review and revised pre-
sentation of nested words and automata over nested words.
Compared to [4], we now allow pending call and return
edges, and use a different encoding for ordered trees. The
original definition in [4] actually corresponds to what we
call “weak automata” here. Sections 3.3 — 3.6 introduce
and study various restrictions of nested word automata and
their impact on succinctness and expressiveness. Section 4
introduces a new class of automata by adding a pushdown
store.

2. LINEAR HIERARCHICAL MODELS
2.1 Nested Words

Given a linear sequence, we add hierarchical structure us-
ing edges that are well nested (that is, they do not cross).
We will use edges starting at —oo and edges ending at +oco
to model “pending” edges. Assume that —oco < ¢ < 400 for
every integer ¢.

A nesting relation ~» of length £, for £ > 0, is a subset of
{=00,1,2,... £} x {1,2,...£,+00} such that

1. if i ~ j then i < j;
2. if i~ jand i ~ j' and i # —oco then j = j', and
if i ~ j and i’ ~ j and j # 400 then i =4’
3. if i ~ j and i’ ~» j' then it is not the case that
i<i <j<y
When i ~ j holds for 1 < i < j < £, the position i is
a call with the position j being its return-successor, and
the position j is a return with i being its call-predecessor.
When —oo ~» j holds, the position j is a return, but without
a matching call, and when ¢ ~» 400 holds, the position 7 is a
call, but without a matching return. Our definition requires
that a position has at most one return-successor and at most
one call-predecessor, and a position cannot be both a call
and a return. A position ¢ that is neither a call or a return
is called internal.

n, 6 e %

a b a a b a b a a b a a

<a <b a a><b a b>a><ab a a>

n, & % -6 o b & 6
a a b a a a a

a a> <b a a> <a <a

ey L
o, o L
a a a b b a

<a <a a> <b b> a> af(a(),b())

Figure 1: Sample nested words

A nested word n over an alphabet ¥ is a pair (a1 ... ag,~),
for k > 0, such that a;, for each 1 <+¢ < ¢, is a symbol in ¥,
and ~» is a nesting relation of length ¢. Let us denote the
set of nested words over ¥ as NW (X). A language of nested
words over X is a subset of NW (X).

A nested word n with nesting relation ~ is said to be well-
matched if there is no position ¢ such that —oo ~» i or 7 ~»
+00. Thus, in a well-matched nested word, every call has a
return-successor and every return has a call-predecessor. We
will use WNW(X) C NW(X) to denote the set of all well-
matched nested words over . A nested word n of length ¢
is said to be rooted if 1 ~» £ holds. Observe that a rooted
word must be well-matched.

While the length of a nested word captures its linear com-
plexity, its (nesting) depth captures its hierarchical complex-
ity. The depth of a nested word is the maximum number d
such that there exist call positions i1, . . .44 with correspond-
ing return-successors ji, ... jq such that ¢; < i <--- <ig <
Ja - <j2 < Ji.

It is convenient to define a notion of call-parent for all
positions. Let n be a nested word of length ¢. The call-
parent of position 1 is defined to be 0. For 1 <i < ¢, if i is
a call then the call-parent of ¢+ 1 is ¢; if 7 is an internal then
the call-parent of i+ 1 is same as the call-parent of 4; if 7 is a
return such that j ~» 4, then if j = —oo then call-parent of
i+ 11is 0, otherwise it is same as the call-parent of j. Thus,
if i is at top-level then its call-parent is 0 otherwise it is the
smallest call position whose return-successor is after i.

Figure 1 shows three nested words over the alphabet {a, b}.
The nested word n: is well-matched, and has length 12 and
depth 2. The nested word n» has an unmatched return and
two unmatched calls, and the nested word ns is rooted.

2.2 Redation to Words

Nested words over X can be encoded by words in a natural
way by using the tages (and) to denote calls and returns, re-
spectively. We assume that (and) are special symbols that
do not appear in the alphabet ¥. Then, given an alphabet
3, define the tagged alphabet X to be the set that contains
the symbols (a, a, and a) for each a € . Formally, we de-

fine the mapping nw_w : NW (L) — 5* as follows: given a
nested word n = (ai,...a¢,~) of length ¢ over &, nw_w(n)
is a word bi,...by over 3 such that for each 1 <@ <Y
b; = a; if 7 is an internal, b; = (a; if 7 is a call, and b; = a;)
if ¢ is a return.

Figure 1 also shows the tagged words corresponding to
each nested word. Since we allow unmatched calls and re-
turns, every word over the tagged alphabet % corresponds
to a nested word. This correspondence is captured by the
following lemma:

LEMMA 1. The transformation nw_w : NW (Z) — W ()
is a bijection.

The inverse of nw_w is a transformation function that
maps words over ¥ to nested words, and will be denoted
w_nw : W(X) = NW(X). This one-to-one correspondence
shows that there are exactly 3° distinct nesting relations
of length ¢, and the number of nested words of length ¢ is
3YIS[°. Observe that if w is a word over ¥, then w_nw(w)
is the corresponding nested word with the empty nested re-
lation.

We will also consider a mapping that views a word as a se-
quence of symbols along a hierarchical path. More precisely,
consider the transformation function path : £¥* — NW (%)
such that path(ai ...ar)is w-nw({a1 ... {(arar)...a1)). Note
that for a word w, path(w) is rooted and has depth |w|.

2.3 RedationtoOrdered Trees

Ordered trees can be interpreted as nested words. In this
representation, it does not really matter whether the tree is
binary, ranked, or unranked.

The set OT(X) of ordered trees over an alphabet X is
defined inductively:

1. € € OT(X): this is the empty tree;

2. if t1,...tn € OT(X), for n > 0, with each ¢; # ¢, and
a € X, then a(ti,...t,) € OT(X): this represents the
tree whose root is labeled a, and has n children ¢ ...t
in that order.

Consider the transformation t_w : OT(Z) — W () that
encodes an ordered tree over ¥ as a word over 3: t_w(e) = ¢;
and t-w(a(ti,.. .tn)) = {at-w(t1) - t-w(ty)a). This trans-
formation can be viewed as a traversal of the tree, where
processing an a-labeled node corresponds to first printing
an a-labeled call, followed by processing all the children in
order, and then printing an a-labeled return. An a-labeled
leaf corresponds to the word (aa), we will use (a) as its
abbreviation.

The transformation ¢t_nw : OT (X) — NW (X) is the func-
tional composition of t_w and w_nw. However, not all nested
words correspond to ordered trees. A nested word n =
(a1...ar,~) is said to be a tree word if (1) it is rooted,
(2) has no internals, and (3) for all i ~ j, a; = aj. The
first condition ensures that the nested word is well-matched
and has a single root. The latter two conditions ensure
one-to-one correspondence: in our encoding of trees, a leaf
is represented by a pair of call and return symbols, and
all matching calls and returns have identical labels. Let
TW (X) C NW(X) denote the set of all tree words over X.

LEMMA 2. The transformation t_nw : OT(X) — NW ()
is a bijection between OT(X) and TW (X).

The inverse of t_nw then is a transformation function that
maps tree words to ordered trees, and will be denoted nw_t :
TW(Z) = OT ().

In Figure 1, only the nested word n3 is a tree word, and
corresponds to the binary tree shown there.

2.4 Operationson Nested Words

Due to the correspondence between nested words and tagged

words, every classical operation on words and languages of
nested words can be defined for nested words and languages
of nested words. Operations on ordered trees and tree lan-
guages can be lifted to nested words and their languages.
We list a few operations below.

Concatenation: Concatenation of two nested words n and
n' is the nested word w_nw(nw_w(n)nw_w(n')). Notice that
the nested relation of the concatenation can connect un-
matched calls of the first with the unmatched returns of the
latter.

Subwords, prefixes, and suffixes: Given a nested word
n = w_nw(by...b), its subword from position i to j, de-
noted n[i, j], is the nested word w_nw(b;...b;), provided
1 <i<j </, and the empty nested-word otherwise. Note
that if ¢ ~ j in a nested word, then in the subword that
starts before i and ends before j, this nesting edge will
change to ¢ ~ +o00; and in the subword that starts after
¢ and ends after j, this nesting edge will change to —oo ~» j;
Subwords of the form n[1, j] are prefixes of n and subwords
of the form nl[i, £] are suffixes of n. Note that for 1 < i < ¢,
concatenting the prefix n[1,] and the suffix n[i + 1, ¢] gives
back n.

Reverse: Reverse of a nested word n is defined to be
w_nw(bg ...bab1), where for each 1 <i < ¢, b; = a; if 7 is an
internal, b; = (a; if ¢ is a return, and b; = a;) if ¢ is a call.
That is, to reverse a nested word, we reverse the underlying
word as well as all the nesting edges.

Insertion: If n is a nested word, a € ¥, and n' is a well-
matched nested word, then the result of inserting n’ into
n after every a-labeled position, written Insert(n,a,n’) is
defined to be n if a; # a for all 1 <7 < ¢, and the concate-
nation of n[l,i] and n' and Insert(n[i + 1,£],a,n’) if a; = a
such that a; # a, for 1 < j < i. Note that insertion of a tree
word into another tree word is same as tree insertion. Other
tree operations such as subtree deletion and substitution can
be defined similarly.

3. FINITE-STATE AUTOMATA
3.1 Nested Word Automata

Now we define finite-state acceptors over nested words
that can process both linear and hierarchical structure.

A nested word automaton (NWA) A over an alphabet ¥
is a structure (Q, qo, dc, 9, 0r, F') consisting of

e 3 finite set) of states,

e an initial state go € Q,

e a set of final states F C @,

e a call-transition function d. : Q X ¥ — Q x @,

e an internal-transition function §; : Q@ X ¥ — @,

e a return-transition function d, : Q@ X Q x ¥ — @Q,

The automaton A starts in the initial state, and reads the
nested word from left to right. The state is propagated
along the linear edges as in case of a standard word au-
tomaton. However, at a call, the nested word automaton
can propagate a state along the outgoing nesting edge also.
At a return, the new state is determined based on the states
propagated along the linear as well as the nesting incom-
ing edges. Formally, a run r of the automaton A over a
nested word n = (a1 ...a¢,~) is a linear sequence qo, . .., q¢
of states and a nesting sequence g;;, for ¢ ~» j, of states such
that for each position 1 <i </,

e if ¢ is a call with ¢ ~ j, then d.(qi—1,ai) = (gi, gij);

e if 7 is an internal, then d;(gi—1,a:) = ¢;;

e if ¢ is a return such that j ~ ¢, then §,(gi—1, gji, ai) =

@i, where if j = —oo then ¢;; = qo.

One can view nested word automata as graph automata over
the acyclic graph of linear and nesting edges (see [22]): arun
is a labeling of the edges such that the states on the outgoing
edges at a node are determined by the states on the incoming
edges and the symbol labeling the node. For the nesting
edges of the form —oo ~» i, the corresponding state is the
initial state go. Verify that for a given nested word n, the
automaton has precisely one run over n. The automaton
A accepts the nested word n if in this run, ¢ € F. The
language L(A) of a nested-word automaton A is the set of
nested words it accepts.

There is a close similarity to tree automata: at calls, the
automaton behaves like a top-down tree automaton forking
states, and at returns, it acts like a bottom-up tree automa-
ton joining states.

3.2 Regular Languages

A language L of nested words over ¥ is regular if there
exists a nested-word automaton A over ¥ such that L =
L(A). We recall the main properties of this class [4].

Closure: The class of regular languages of nested words is
(effectively) closed under union, intersection, complementa-
tion, concatenation, and Kleene-*. If L is a regular language
of nested words then all the following languages are regular:
the set of all prefixes of all the words in L; the set of all
suffixes of all the words in L; the set of reversals of all the
words in L.

Regular languages are closed under tree-like operations
that use hierarchical structure. For example, if L and L' are
regular languages of nested words then the set of all nested
words of the form Insert(n,a,n’') forn € L and n' € L', is
a regular language.

Logic-based characterization: The classical correspon-
dence between monadic second order logic and finite recog-
nizability for words and trees continues to hold for nested
words. The monadic second-order logic of nested words is
given by the syntax:

¢:=Qu(z)|z=ylz<y|lz~y|oVe|—=¢|Ir.d|IX.0,

where a € X, z,y are first-order variables, and X is a second
order variable. The semantics is defined over nested words
in a natural way. A language L of nested words over X is
regular iff there is an MSO sentence ¢ over ¥ such that L is
the set of all nested words that satisfy ¢.

Nondeterministic Automata: A nondeterministic NWA
A has finite set @Q of states, initial states Qo C Q, a set F C

Q of final states, a call-transition relation d. C QXX xXQ xQ,
an internal-transition relation §; C @ x ¥ x @, and a return-
transition relation 6, C @ X @ x ¥ x). The notion of a
run over a nested word and the language L(A) is defined in
the obvious way. Nondeterministic nested word automata
are no more expressive than the deterministic ones: given
a nondeterministic automaton A with s states, one can ef-

fectively construct a deterministic NWA B with 2+ states
such that L(B) = L(A).

Decision Problems: Given a nested word automaton A
and a nested word m, the membership problem (is n in
L(A)?) can be solved in linear time. The space required
is proportional to the depth of n since one needs to remem-
ber the labeling of pending nesting edges at every position.
If A is nondeterministic, membership problem can be solved
in time O(|A|3¢) using dynamic programming similar to the
one used for membership for pushdown word automata.

The emptiness problem for nested word automata(is L(A)
empty?) can be solved in cubic time using techniques sim-
ilar to the ones used for pushdown word automata or tree
automata.

Problems such as language inclusion and language equiv-
alence are decidable. These problems can be solved using
constructions for complementation and language intersec-
tion, and emptiness test. If one of the automata is nondeter-
ministic, then this would require determinization, and both
language inclusion and equivalence are EXPTIME-complete
for nondeterministic NWAs.

Weak Automata: Note that the call-transition function
dc of a nested word automaton A has two components that
specify, respectively, the states to be propagated along the
linear and the nesting edges. We will refer to these two com-
ponents as 6% and 6. That is, d.(q,a) = (6 (q,a), 6" (g, a)).
In terms of expressiveness, it suffices if the hierarchical com-
ponent propagates the current state. A nested word automa-
ton A with call-transition function d. is said to be weak if
for all states ¢ and symbols a, 6(g,a) = q. Weak NWAs
can capture all regular languages:

THEOREM 1. Given a nested word automaton A with s
states over X, one can effectively construct a weak NWA B
with s|X| states such that L(B) = L(A).

PRrROOF. Consider an NWA A = (Q, qo, F, 0c, di,0,). The
weak automaton B remembers, in addition to the state of A,
the symbol labeling the call-parent of the current position
so that it can be retrieved at a return and the hierarchi-
cal component of the call-transition function of A can be
applied. The desired automaton B is (Q X %, (qo,a0), F X
¥, d.,d;, 0r) (here ag is some arbitrarily chosen symbol in T).
The transitions are defined by: J;((q,a),b) = (d:(q,b),a);
8¢((g,a),b) = ((3&(q,0),b), (g,a)); and
8,((g,a),(¢',b),¢) = (6:(g,82 (¢, a),¢),b). O

3.3 Relation to Word Languages

A nested word automaton A = (Q, qo, F, d¢, d;,dr) is said
to be flat if for all a € ¥ and ¢ € Q, 6"(g,a) = go. Thus, in
a run of a flat automaton over a nested word, all the nesting
edges are labeled with the initial state, and hence, there is
no information propagated across these edges to the returns.
Consequently, a flat NWA is equivalent to a classical finite-
state word automaton. The only difference is that such an
automaton updates its state not only based on its current

state and the symbol being read, but also based on whether
the current position is a call, internal, or return. Conversely,
a classical word automaton A = (Q, qo, F,0) over ¥ can be
interpreted as a flat NWA A’ = (Q, qo, F, 4., 8;, 8,), where for
every ¢,¢' € Q and a € ¥, dc(g,a) = (J(g, (a), q0), di(g, a) =
d(g,a), and d,(q,q',a) = §(q,a)). This is summarized in the
following:

THEOREM 2. A nested word language L is accepted by a
flat nested word automaton with s states iff the correspond-
ing language nw_w(L) of tagged words over X is accepted by
a deterministic word automaton with s states.

In general, due to the ability to pass information across
nesting edges, for a regular language L nested words, nw_w(L)
need not be a regular word language. In particular, the
set nw_w(WNW (X)) is not regular. One can interpret the
nested word automaton as a pushdown word automaton that
is required to push while reading a call and pop while read-
ing a return. The height of the stack is determined by the
input word, and equals the depth of the prefix read. Such re-
stricted form of pushdown automata are called visibly push-
down automata [3].

When a language L of nested words is accepted by a flat
NWA, then using the classical algorithms for minimizing de-
terministic word automata, one can construct a minimal (in
terms of number of states) flat NWA accepting L. However,
such minimal automata can be exponentially larger than
NWASs that use the nesting edges for information propaga-
tion. This exponential price in succinctness is established
by the following theorem.

THEOREM 3. There exists a family Ls, s > 1, of regular
word languages over ¥ such that each w_nw(Ls) is accepted
by a NWA with O(s) states, but every word automaton ac-
cepting Ls must have 2° states.

ProoF. Let ¥ = {a,b}. For s > 1, let L, = {path(w) |
w € X°}. To accept L,, the automaton must check that
the input word is of the form (ai{az...(asas)...a2)ai). It
is easy to check that L, is regular, but a word automaton
accepting Ls must have 2° states (in fact, even nondeter-
minism won’t help in this case).

The NWA simply needs a counter to ensure that the depth
is s, and at each call, it passes the current symbol along
the nesting edge. At a return, the symbol along the nesting
edge must match the symbol being read. In fact, s+ 2 states
suffice to accept Ls. [

3.4 Bottom-up Automata

A nested word automaton A = (Q, qo, F), d¢, 0;,d,) is said
to be bottom-up iff the linear component of the call-transition
function does not depend on the current state: d.(g,a) =
8L(¢',a) for all ¢,¢' € Q and a € . Consider the run of a
bottom-up NWA A on a nested word n, let ¢ be a call with
return-successor j. Then, A processes the rooted subword
n[i, j] without using the prefix of n upto ¢. This does not
limit expressiveness provided there are no unmatched calls.
However, if i ~» 400, then the acceptance of n by A does not
depend at all on the prefix n[l,i — 1], and this causes prob-
lems. In particular, for ¥ = {a, b}, the language containing
the single nested word a(a can be accepted by a flat NWA,
but not by a bottom-up NWA (if a bottom-up NWA ac-
cepts a(a, then it will also accept n{a, for every nested word
n). To avoid this anomaly, we will assume that bottom-up
automata process only well-matched words.

THEOREM 4. Given a NWA A with s states, one can
effectively construct a weak bottom-up NWA B with s°|%|
states such that L(A)N WNW (X) = L(B)N WNW(X).

PROOF. Recall that we can transform any NWA into a
weak one, and this transformation increases the number of
states by a factor of |Z|. Let A = (Q,qo, F,6.,8:,6,) be a
weak NWA. A state of B is a function f : Q — (. The
automaton B simulates the behavior of A in the following
way. Consider a nested word n and a position ¢. The state
of B before processing position ¢ with call-parent 7, is f such
that the subword n[j,7 — 1] takes A from g to f(g), for each
q€Q.

The initial state of B is the identity function. A state
f is final if f(go) € F. After reading an a-labeled call
position, the state of B is f such that f(q) = 0'(q,a).
While reading an a-labeled internal in state f, B updates
its state to f’ such that f'(¢) = d:(f(q),a). While read-
ing an a-labeled return in state f, if the state along the
nesting edge is g, then B updates its state to f’ such that

(@) =6:(f(9(q),9(q),a). O

A variety of definitions of bottom-up tree automata have
been considered in the literature. All of these can be viewed
as special cases of bottom-up NWAs. In particular, bottom-
up stepwise tree automata are very similar and process the
input in the same order [6, 16]. The only difference is that
stepwise automata were defined to read only tree words, and
process the symbol at a call when first encountered. That is,
a stepwise bottom-up tree automaton is a weak bottom-up
NWA on tree words with the restriction that d, : @xQ XX +—
@ does not depend on its third argument.

LEMMA 3. IfL C OT(X) is accepted by a stepwise bottom-
up tree automaton with s states, then t_nw(L) is accepted by
a bottom-up NWA with s states.

Since stepwise bottom-up tree automata accept all reg-
ular tree languages, it follows that NWAs can defined all
regular tree languages. Also, stepwise automata have been
shown to be more succinct than many other classes of tree
automata [16], so succinctness gap of NWAs with respect to
bottom-up NWAs carries over to these classes. Over word
encoding, the number of states of a minimal word automa-
ton accepting a language L is the index of the corresponding
right-congruence (two words u and v are equivalent iff for all
suffixes w, ww € L iff vw € L), while the number of states of
a minimal bottom-up tree automaton accepting a language
L is the index of the corresponding congruence (two well-
matched words v and v are equivalent iff for all prefixes w
and suffixes w', wuw' € L iff wow’ € L). The right con-
gruence induced by a language can have exponentially less
number of calsses than the congruence induced by L.

THEOREM 5. There exists a family Ls, s > 1, of reqular
languages of tree words such that each Ls is accepted by a flat
NWA with O(s?) states, but every bottom-up NWA accepting
L, must have 2° states.

PROOF. Let ¥ = {a,b}. We will use L to denote the set
{(a), (b)}. For s > 1, consider the language L, of tree words
of the form (a(b)™(aL'~*{a)L°*~‘a)a), where i = m mod s.

First, we want to establish that there is a deterministic
word automaton with O(s?) states accepting Ls. The au-
tomaton can compute the value of i = m mod s after reading

(a{b)™(a by counting the number of repetitions of (b) mod-
ulo s using O(s) states. Then, it must ensure that what
follows is L'='{a)L°""a)a). For each value of 4, this can be
done using O(s) states.

The bottom-up automaton cannot use the value of m mod s
while processing the next level. Let A be a bottom-up NWA
accepting Ls. Let g be the unique state of A having read the
prefix (a(b)™(a. This state ¢ is independent of m since A is
bottom up. The set L® contains 2° well-matched words. If
A has less than 2° states then there must exist two distinct
words n and n’ in L® such that A goes to the same state ¢’
after reading both n and n' starting in state g. Since n and
n' are distinct, they must differ in some block. That is, there
must exist 1 < i < s such that n is of the form L™ {a)L*™*
and 7’ is of the form Li=!(b)L°~*. Now consider the words
(a(b)'(ana)a) and (a(b)’(an’a)a). Only one of them is in
Ls, but A will either accept both or reject both. [

3.5 Joinless Automata

A nested word automaton at a return position joins the
information flowing along the linear axis and the nesting
edge. In this section, we study the impact of disallowing
such a join. A joinless automaton operates in two modes,
linear and hierarchical. Initially it is in linear mode. At
a call position, it decides either to stay in the linear mode
propagating only the dummy initial state along the nest-
ing edge, or to enter the hierarchical mode and process the
subword upto the matching return and the suffix after the
return independently. At a return, if the automaton is in
the linear mode, it checks that the state along the nesting
edge is initial, and continues based on the current state. In
a hierarchical mode the automaton behaves like a top-down
tree automaton, and at a return, next state is based upon
the state propagated along the nesting edge and the only
information flowing outwards is whether the inside subword
is accepted or not.

A nondeterministic joinless nested word automaton has fi-
nite set @ of states partitioned into Q; and @y, aset Qo C @
of initial states, a set F' C @ of final states, a call-transition
relation 0. C (Qn X T X Qr X Qn) U (Qi x T X Q X Q); an
internal-transition relation §; C (Qr XXX Qr)U(Qi XXX Q);
a return-transition relation d, C (Qr XX Qn)U(QI XL X Q).
The automaton is deterministic if there is only one initial
state and choice of at most one transition given the cur-
rent state and symbol. A run of A on a nested word n =
(a1,...a¢,~) is a linear sequence qo,qi1 - - - q¢ of states and
nesting sequence g;;, for i ~ j, of states (define g_oo; = qo)
such that go € Qo, for each position 1 <4 < ¢, (1) if 7 is
a call with ¢ ~ j then (gi—1,ai,qi,qij) € dc; (2) if @ is an
internal then (gi—1, as,q;i) € d;; (3) if i is a return with j ~» ¢
then either ¢;—1 € @Q; and ¢j; = qo and (gi—1,as,qi) € 6y, Or
gi—1 € Qn N F and (gji, ai,qi) € 6r.

Note that a flat automaton is joinless with Q; = @Q: all
states are linear. We will call a joinless automaton top-down
if Q; is empty and all states are hierarchical. Over tree words
, the standard definition of top-down tree automata is the
same as our notion of top-down automata:

LEMMA 4. IfL C OT(X), then L is accepted by a (non)deterministic

top-down tree automaton with s states iff t_nw(L) is accepted
by a (non)deterministic top-down NWA with s states.

This implies that the well-known expressiveness deficiency
of deterministic top-down tree automata applies in case of

nested words. Consider the requirement that the nested
word contains some a-labeled symbol. This can be checked
by a flat (and hence, deterministic joinless) automaton, but
not by a top-down automaton. The requirement that the
input word is a tree word can be checked by a deterministic
top-down (and hence, deterministic joinless) automaton, but
not by a flat automaton. Thus, expressiveness of determin-
istic top-down automata and flat automata is incomparable.
The conjunction of these two requirements can be checked
by an NWA but not by a deterministic joinless automaton:

THEOREM 6. Deterministic joinless nested word automata
are strictly less expressive than nested word automata.

ProOOF. Let ¥ = {a,b}. Consider the language of tree
words of the form ({a)®(b(c)b)(c)(a))®, for some s > 0 and
¢ € . We can construct an NWA to accept this language.
Let A be a deterministic joinless automaton with s states.
Consider the run of the automaton on a string of s a-labeled
calls. If the automaton stays in linear mode throughout this,
then one can pump in this part without changing the label-
ing of nesting edges, and use that to show that A cannot ac-
cept the language correctly. Hence, the automaton must be
in hierarchical mode at the end of this prefix. Consequently,
after reading the b-labeled call, it forks off two independent
copies, with state ¢1 along linear edge and state g» along
nesting edge. Now the obligation is that the next symbol
read by ¢ must match the next symbol read by g2. We can
show that this cannot be enforced by considering accepting
runs for different symbols and combining them. [

Nondeterminism can be used to address this deficincy:

THEOREM 7. Given a nondeterministic NWA A with s
states, one can effectively construct a nondeterministic join-
less NWA B with O(s?|Z|) states such that L(A) = L(B).

Proor. Let A = (Q,Qo, F,dc,d;,0-) be an NWA. For
each state g, B has a corresponding linear state. For every
pair (g,q') of states of A, B has a hierarchical state meaning
that the current state of A is ¢ and there is an obligation
that the state of A will be ¢’ at the first unmatched return.
We will also need auxiliary hierarchical states of the form
(q,q',a) to label nesting edges to mean that the symbol at
the return is guessed to be a.

The initial states are Qo, and linear states in F' and hi-
erarchical states of the form (g, q) are accepting. For every
internal transition (g, a,q’) of A, B has a correponding linear
internal transition and for every ¢”, it also has a hierarchical
internal transition ((¢,q"),a, (q,q")). For every call transi-
tion (q,a,q,qn), there is a linear call transition (q,a, q, o)
denoting the guess that there is no matching return, and for
every return transition (q1,qn,b, g2), there is a linear return
transition (q1,b,q2), and for every ¢', B has a hierarchical
call transition ((q,q"),a, (¢, q1),(q2,4,b)). Note that here
B is demanding a run from g; to g1 on the inside subword,
and the accepting condition ensures that this obligation is
met. The hierarchical return transitions of B are of the form

((¢,4',a),a,(q,¢")). O

Note that a similar theorem does not hold for top-down
automata. The reason is that in a top-down automaton
information cannot flow outwards. Hence, if a position is an
unmatched return, then even a nondeterministic top-down
automaton won’t be able to relate the subwords before and
after this position.

3.6 Path Languages

The mix of top-down and bottom-up traversal in nested
word automata can be better explained on unary trees. For
a word language L C X", let path(L) = {path(w) | w € L}
be the corresponding language of tree words. We call such
languages path languages. Observe that for unary trees,
the multitude of definitions of tree automata collapse to
two: top-down and bottom-up. Top-down tree automata
for path(L) correspond to word automata accepting L, while
bottom-up tree automata correspond to word automata pro-
cessing the words in reverse. The following lemma follows
from definitions:

LEMMA 5. For a word language L, nw_t(path(L)) is ac-
cepted by a deterministic top-down tree automaton with s
states iff L is accepted by a deterministic word automaton
with s states, and nw_t(path(L)) is accepted by a determinis-
tic bottom-up tree automaton with s states iff L%, the reverse
of L, is accepted by a deterministic word automaton with s
states.

It follows that path(L) is a regular language of nested
words iff L is a regular language of words. Also, for path lan-
guages, deterministic top-down and deterministic bottom-
up automata can express all regular languages. Given that
a word language L and its reverse can have exponentially
different complexities in terms of the number of states of
deterministic acceptors, we get

THEOREM 8. There erists a family Ls, s > 1, of reqular
path languages such that each L is accepted by a NWA with
O(s) states, but every deterministic bottom-up or top-down
NWA accepting Ls must have 2° states.

ProoOF. For ¥ = {a,b}, let Ls be L°aX*aX’. An NWA
with linear number of states can accept the corresponding
path language: it needs to count s calls going down, count s
returns on way back, and also make sure that the input word
is indeed a path word by passing each call-symbol along the
nesting edge. It is easy to see that Ly requires 2° states for
a DFA to enforce the constraint that s + 1-th symbol from
end is an a. Since L, is its own reverse, from Lemma 5, the
theorem follows. [

4. PUSHDOWN AUTOMATA

In this section, we generalize the classical definitions of
pushdown automata over words and trees to nested words.
Note that pushdown automata over words can be used to im-
plement finite-state NWAs where the stack stores the states
labeling the pending nesting edges so that these states can
be accessed at returns. In this section, we will use the push-
down store for labeling itself so that at a call, the automaton
can fork off two runs each with its own stack.

4.1 Pushdown Nested Word Automata

Given that nondeterministic pushdown automata over words
are more expressive than deterministic ones (and correspond
to the well understood class of context-free languages), we
will consider only nondeterministic automata. Furthermore,
we will restrict attention to joinless automata for two rea-
sons. First, for finite-state acceptors, nondeterministic join-
less automata can specify all regular languages, and gen-
eralize both word automata and top-down tree automata.
Second, in presence of stacks, while there is an obvious and

natural generalization of the transition relation in the join-
less case, it’s not clear how to join two stacks. Consistent
with the classical definitions of pushdown automata, we will
allow e-transitions, but for simplicity of presentation, we
will assume that the transitions updating the stack are pre-
cisely the e-transitions. It is easy to verify that this does
not change the class of languages accepted.
A pushdown nested word automaton consists of

e 3 finite set QQ of states, partitioned into linear states
Q@ and hierarchical states @,

e a set of initial states Qo C @,

e 3 finite set I' of stack symbols,

e a bottom symbol L€ T,

e 3 call-transition relation d. which is a subset of Q; X
Y xQxQand Qp X X x Qp X @,

e an internal-transition relation ¢; which is a subset of
Qi x X xQand Qn X ¥ X Qp,

e a return-transition relation §, which is a subset of Q; x
¥ x Q@ and Qn x ¥ x Q,

e a push-transition relation d4 C Q@ x @ x '\ {_L}, and

e a pop-transition relation _ C Q x ' x Q.

A configuration is a pair consisting of the automaton state
and a sequence of stack symbols. We will use C = Q x I'*
to denote the set of all configurations. The initial configu-
ration of the automaton is (go, L) for some gqo € Qo. The
automaton either processes a position of the input word,
and updates the state exactly as in case of joinless automata
without updating the stack, or it executes a push or a pop
transition updating the state and the stack without pro-
cessing the input. Thus, the automaton can take a sequence
of e-steps along a linear edge. The automaton accepts by
empty stack. We also assume that the unmatched return
edges are labeled with some default configuration.

To define runs formally, we lift the transition relations
of the automaton to relate configurations. The internal-
transition relation §; defines the relation A; C C x ¥ x C
as follows: ((q,),a,(q,a)) belongs to A; iff (q,a,q’) € ;.
The relations A CCx X xC xCand A, CCxXxC
are defined using 0. and ¢, in a similar manner. The push
transition relation 04 defines the relation Ay C C x C:
((q,), (¢', ya) belongs to Ay iff (q,q',7) € 64+. Similarly,
((¢,72), (¢,) € A_iff (¢,7,¢') is a pop-transition.

A run of A on a nested word n = (a1, ...ar,~) is a linear
sequence co, ¢y, c1 - - - ¢, ¢y of configurations and nesting se-
quence ¢;j, for i ~ j (let c—oo; = (qo, L) for some go € Qo),
of configurations such that, for each i, (1) (c;,c;) is in the
reflexive-transitive closure of Ay UA_; (2) if i is a call with
i~ j then (cj_1,ai,ci,cij) € Ag; (3) if ¢ is an internal then
(ci_1,ai,ci) € As; (4) if 4 is a return with j ~» ¢ then either
(a) the state of configuration c;_; is in Q; and the state of
the configuration cj; is go and (¢i_y,ai,ci) € A,, or (b) the
state of configuration c;—1 is in Q5 and (cji,a:,¢) € A,.
For such a run, cp is the start configuration, ¢} is the end
configuration, and each ¢,_; such that its state is in Qj and
i is a return, is called a leaf configuration.

The run is initialized if the start configuration is (qo, L)
for some qop € Qo. The run is accepting if the stack in end
configuration as well as each leaf configuration is empty.
The nested word n is accepted by A if there is an initialized
accepting run of A on n, and the language L(A) consists
of all the nested word accepted by A. A language L C

NW (X) of nested words is said to be a pushdown language
if there exists a pushdown nested word automaton A such
that L(A) = L.

4.2 EXpressiveness

A nondeterministic joinless NWA is a pushdown NWA,
and hence, pushdown NWAs can define all regular languages
of nested words. A classical pushdown word automaton ac-
cepting using final states is also a special case where all
states are linear. This implies that all context-free word
languages are definable:

LEMMA 6. If L C W(3) is a context-free language, then
w-nw(L) is a pushdown language of nested words.

Top-down pushdown tree automaton is also a special case
where all states are hierarchical. This implies that context-
free tree languages are definable:

LEMMA 7. If L C OT(X) is a contest-free tree language,
then t_-nw(L) is a pushdown language of nested words.

Context-free tree languages can be defined using nonde-
terministic top-down tree automata. Such automata, how-
ever, cannot simulate a linear stack-based information flow.
A top-down automaton splits the run into two independent
ones at a call position (i.e. a tree node). Nondeterminism
can be used to exchange finite amount of information across
the two runs (as in the proof of expressive completeness of
joinless automata). However, this trick fails in case of push-
down automata.

THEOREM 9. There exists a language L of nested words
such that nw_w(L) is accepted by a pushdown word automa-
ton, but nw_t(L) is not a context-free tree language.

ProoOF. Let ¥ = {a,b}. Consider the language L of
nested words n such that the number of a-labeled positions
is equal to the number of b-labeled positions. This is a stan-
dard context-free word requirement.

Now consider the language of trees that are in L. We will
show that this cannot be accepted by a pushdown tree au-
tomaton. Assume to the contrary. Let L' be trees ¢t such
that ¢ consists of a stem ¢; consisting of a-labeled nodes fol-
lowed by a tree t2 consisting of only b-labeled nodes such
that the length of the stem ¢; equals the number of nodes in
t2. It follows that there exists a pushdown tree automaton A
that accepts L'. Consider accepting runs of A over trees in
which the subtree ¢ is a fully balanced binary tree. In this
case, the depth of t» will be k if the length of ¢; is 2% In such
runs, without loss of generality, we can assume that when a
configuration splits at a tree node, the two copies are iden-
tical (this can be made precise by modifying the transition
relation of the automaton). Now consider the word push-
down automaton which converts the call-transitions into in-
ternal transitions by using a single copy instead of the fork.
This automaton runs on the stem and a path of t2, and

accepts words of the form a2 b, Using standard pumping
lemma for context-free languages, one can derive a contra-
diction [10]. O

4.3 Membership

The membership question is to decide, given a pushdown
NWA A and a nested word n, whether n € L(A) holds. For
pushdown word automata as well as for nondeterministic

nested word automata, the membership problem is solvable
in cubic time. For pushdown NWAs, the problem turns out
to be NP-complete.

THEOREM 10. The membership question for pushdown nested

word automata is NP-complete.

PrOOF. For membership in NP, we need to show that if
the nested word is accepted then it is accepted in a run in
which the number of e-transitions, and hence, the size of the
stack can be polynomially bounded. This can be established
easily.

For hardness, it suffices to consider unary alphabet. The
proof is by reduction from satisfiability of CNF formulas.
Given a formula over v variables and s clauses, consider the
nested word ({(aa”a))®. Initially, the automaton executes
v e-moves pushing either 0 or 1 onto its stack guessing a
truth assignment to the variables. While reading a call, the
automaton simply propagates the stack along the nesting
edge. For the i-th copy of a” enclosed between a call and a
return, the automaton pops the stack and checks if the i-th
clause is satisfied according to the popped assignment. The
word is accepted if there exists an assignment satisfying all
the clauses. [

Note that the NP-hardness is really due to the ability
to propagate the same stack to distinct branches. Hence,
membership problem is also NP-complete for pushdown tree
automata.

4.4 Emptiness

Given a pushdown nested word automaton A, we want to
decide if it accepts some word. Throughout let F' denote the
set of states from which L can be popped, that is, g € F iff
(q,L,q") € 6_ for some q'.

Let’s first briefly recall the emptiness check for pushown
word automata. The key to the procedure is computing the
so-called “stackless summaries” of runs: we want to define a
relation R C Q x @ such that R(q,q’) holds precisely when
there is word w and a run of the automaton over w starting
in the configuration (g, €) and ending in (q’,€). This would
also imply a run from the start configuration (g,) to the
end configuration (¢,), for all possible stack contents a.
The relation R(g,q’) can be defined using inductive rules. In
particular, if R(q,q’) holds, and there is a push-transition
from ¢1 to q and a pop-transition from ¢’ to g2, both involv-
ing the same stack symbol v, then one can infer R(q1,q2).
The relation R can be computed in polynomial-time. The
language is empty iff R(qo, gs) holds for some g5 € F'.

For pushdown (top-down) tree automata, the notion of
summaries needs to be generalized. In particular, when a
stack symbol + is pushed, it can get popped along multiple
branches. The definition of a stackless summary then is
a relation R C @ x 29 such that R(g,U) holds precisely
when there is a tree ¢ and a run of the automaton over
t starting in the configuration (g,€) at the root and each
leaf configuration is of the form (q',¢) for some ¢ € U.
The push-pop rule for words generalizes to: R(q',U’) can be
inferred from R(q,U) if there is a stack symbol v such that
there is a transition from ¢’ to ¢ that pushes ~, and for each
u € U, there is some u' € U’ such that there is a transition
from u to u' popping y. The number of summaries now is
exponential, and so is the complexity of the emptiness test.
The language is empty iff R(qo, U) holds for some U C F'.

The summaries for pushdown nested word automata com-
bine these two ideas. Our summaries will be of the form
R(q,U,q"). Intuitively, ¢ is the start state of the run, ¢’ is
the end state, and U is the set of states labeling the leaf
configurations. The stack is empty in the start, end and leaf
configurations. Formally, define R C Q x 2°* x Q to hold
iff there is a nested word n and a run r of the automaton
over n such that the start configuration is (g,€), the end
configuration is (¢, €), and each leaf configuration is of the
form (u,€), for some u € U. Note that all states in U must
be hierarchical, and if both ¢ and ¢’ are hierarchical states,
then the word must be well-matched.

LEMMA 8. The language of a pushdown word automaton
A is empty iff R(qo, U, qr) holds for someU C F and gy € F.

It follows that emptiness can be checked by computing
the relation R. Let R be the smallest subset of Q x 29" x Q
that satisfies the following constraints:

Internal transitions If (¢,a,q’) € §; then

(¢,0,q) €R.

Linear calls If (¢,a,q',qo) € d. for ¢ € Q; then
(¢,0,q) €R.

Linear returns If (¢,a,q') € 6, for ¢ € Q; then
(¢,0,q) €R.

Hierarchical call-returns If (q,a,q,qn) € . with
Q€ Qh and (Qh,b, q,) € 6 then (q7 {ql}7q,) €R.

Push-pop transitions If (¢q,U,¢') € R and
(q1,4,7) € 0+ then (q1,U’, ¢2) € Rprovided (¢',7,¢2) €
d_, and for each u € U, (u,v,u’) € J_ for some
! !
u eU.
Linear concatenation If (¢,U,q') and (¢',U’,q") are in R
then so is (¢, UUU’,q").

Hierarchical concatenation If (¢,U,q') and (u, U’,v) are
in R for some u € U, then so is (¢, (UU U U {v}) \

{ul,d).

In the above rules, the internal push-pop rule is the gen-
eralization of the corresponding rules for matching pushes
with pops in case of words and trees. In the hierarchical
mode, the calls and returns must be processed jointly, and
this is captured by the hierarchical call-returns rule. For
concatenating summaries, we need to consider both linear
concatenation at top-level and hierarchical concatenation at
the leaf-level. The correctness is captured by the following
lemma, and its tedious proof is omitted from this abstract:

LEMMA 9. The relation R capturing summaries of semi-
runs coincides with the relation R defined using above deriva-
tion rules.

The desired relation R can be computed in exponential
time. Putting all pieces together, and using the fact that
emptiness for pushdown games (or pushdown tree automata)
is EXpTIME-hard, we get

THEOREM 11. The language emptiness problem for push-
down nested word automata is EXPTIME-complete.

5. CONCLUSIONS

We have shown that nested words is a suitable model for
data that has both linear and hierarchical structure. Both
words and ordered trees are special cases of nested words,
and nested words support both word and tree operations.
We have shown that nested word automata combine left-to-
right, top-down, and bottom-up traversals, and are expo-
nentially more succinct than word automata as well as all
varieties of tree automata. We have also introduced push-
down automata over nested words, studied their decision
problems, and shown them to be more expressive than push-
down tree automata.

In terms of future work, on practical side, we need to ex-
plore if compiling existing XML query languages into nested
word automata reduces query processing time. On the-
oretical side, many problems such as algorithms for edit
distances, transducers, and temporal and first-order logics,
seem worth investigating. A particularly intriguing problem
concerns minimization of nested word automata. From re-
sults of [12], it follows that weak bottom-up automata can
be minimized in polynomial-time based on a congruence-
based characterization. Minimization in the general case,
however, seems to be a computationally-hard combinatorial
optimization problem.

Acknowledgements: When I gave a talk on nested words
at the Newton Institute Workshop on Games and Verifica-
tion in June 2006, many people including Thomas Schwentick,
Wolfgang Thomas, and Moshe Vardi, asked questions re-
garding the relationship between ordered trees and nested
words. I thank them for initiating this research, and also the
workshop organizers for a stimulating meeting that brought
together researchers from database theory and program anal-
ysis. I would also like to thank Swarat Chaudhuri, Kousha
Etessami, Neil Immerman, Leonid Libkin, P. Madhusudan,
Benjamin Pierce, and Mahesh Viswanathan, for fruitful dis-
cussion regarding nested words.

6. REFERENCES

[1] R. Alur, S. Chaudhuri, and P. Madhusudan.
Languages of nested trees. In Proc. 18th International
Conference on Computer-Aided Verification, LNCS
4144, pages 329-342. Springer, 2006.

R. Alur, V. Kumar, P. Madhusudan, and

M. Viswanathan. Congruences for visibly pushdown
languages. In Automata, Languages and Programming:
Proceedings of the 32nd ICALP, LNCS 3580, pages
1102-1114. Springer, 2005.

R. Alur and P. Madhusudan. Visibly pushdown
languages. In Proceedings of the 36th ACM Symposium
on Theory of Computing, pages 202-211, 2004.

R. Alur and P. Madhusudan. Adding nesting structure
to words. In Developments in Language Theory, LNCS
4036, pages 1-13, 2006.

[5] M. Arenas, P. Barcelo, and L. Libkin. Fixed-point and
automata characterisations of nested words.
Unpublished manuscript, 2006.

A. Briiggemann-Klein, M. Murata, and D. Wood.
Regular tree and regular hedge languages over
unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of
Science and Technology, 2001.

[2

(3

[4

[6

[7] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques
and applications. Draft, Available at
http://www.grappa.univ-1ille3.fr/tata/, 2002.

[8] T. Green, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata.
In ICDT ’03: Proceedings of the 9th International
Conference on Database Theory, pages 173-189.
Springer, 2003.

[9] L. Guessarian. Pushdown tree automata. Mathematical
Systems Theory, 16:237-264, 1983.

[10] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages, and Computation.
Addison-Wesley, 1979.

[11] D. Knuth. A characterization of parenthesis languages.
Information and Control, 11(3):269-289, 1967.

[12] V. Kumar, P. Madhusudan, and M. Viswanathan.
Minimization, learning, and conformance testing of
Boolean programs. In CONCUR’06: 17th
International Conference on Concurrency Theory,
LNCS 4137, pages 203-217. Springer, 2006.

[13] V. Kumar, P. Madhusudan, and M. Viswanathan.
Visibly pushdown languages for XML. Technical
Report UTUCDCS-R-2006-2704, UTUC, 2006.

[14] L. Libkin. Logics for unranked trees: An overview. In
Automata, Languages and Programming, 32nd
International Collogquium, Proceedings, LNCS 3580,
pages 35—50. Springer, 2005.

[15] C. Léding, P. Madhusudan, and O. Serre. Visibly
pushdown games. In FSTTCS 2004: Foundations of
Software Technology and Theoretical Computer
Science, 24th International Conference, LNCS 3328,
pages 408-420. Springer, 2004.

[16] W. Martens and J. Niehren. Minimizing tree
automata for unranked trees. In Proceedings of the
10th International Symposium on Database
Programming Languages, pages 233-247, 2005.

[17] R. McNaughton. Parenthesis grammars. Journal of the
ACM, 14(3):490-500, 1967.

[18] F. Neven. Automata, logic, and XML. In Proceedings
of the 11th Annual Conference of the European
Association for Computer Science Logic, CSL 2002,
pages 2—26. Springer, 2002.

[19] C. Pitcher. Visibly pushdown expression effects for
XML stream processing. In Programming Language
Technologies for XML, pages 1-14, 2005.

[20] T. Schwentick. Automata for XML — a survey.
Technical report, University of Dortmund, 2004.

[21] J. Srba. Visibly pushdown automata: from language
equivalence to simulation and bisimulation. In
Computer Science Logic: 20th International
Workshop, LNCS 4207, pages 89-103, 2006.

[22] W. Thomas. On logics, tilings, and automata. In
Automata, Languages and Programming, 18th
International Colloquium, Proceedings, LNCS 510,
pages 441-454, 1991.

