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Abstract. Let k be an algebraically closed field of characteristic zero. We
show that the centre of a homologically homogeneous, finitely generated k-
algebra has rational singularities. In particular if a finitely generated normal
commutative k-algebra has a noncommutative crepant resolution, as intro-
duced by the second author, then it has rational singularities.

1. Introduction

Throughout the paper, k will denote a fixed algebraically closed field of char-
acteristic zero and unless otherwise specified all rings will be k-algebras. Suppose
that X = Spec R for an affine (that is, finitely generated) normal Gorenstein k-
algebra R. The nicest form of resolution of singularities f : Y → X occurs when f
is crepant in the sense that f∗ωX = ωY . Even when they exist, crepant resolutions
need not be unique, but they are related—indeed Bondal and Orlov conjectured in
[BO1] (see also [BO2]) that two such resolutions should be derived equivalent.

Bridgeland [Br1] proved the Bondal-Orlov conjecture in dimension 3. The second
author observed in [VB3] that Bridgeland’s proof could be explained in terms of a
third crepant resolution of X which is now noncommutative (the definition will be
given below) and this had lead to a number of different approaches to the Bondal-
Orlov conjecture and related topics—see, for example, [Be, BK, Ch, IR, Kl2, Kw].

It is therefore natural to ask how the existence of a noncommutative crepant
resolution affects the original commutative singularity. It is well-known, and follows
easily from [KM, Theorem 5.10], that if a Gorenstein singularity has a crepant
resolution then it has rational singularities. So it is logical to ask, as was raised in
[VB2, Question 3.2], is this true for a noncommutative crepant resolution? In this
paper we answer this question affirmatively, but before stating the result precisely,
we need to define the relevant terms.

Let ∆ be a prime affine k-algebra that is finitely generated as a module over
its centre Z(∆). Mimicking [BH], we say that ∆ is homologically homogeneous of

dimension d if all simple ∆-modules have the same projective dimension d. By
[Ra] and [BH] such a ring ∆ has global and Krull dimensions equal to d and,
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as has been shown in [BH], the properties of homologically homogeneous rings
closely resemble those of commutative regular rings. So the idea is to use such a
ring ∆ as a noncommutative analogue of a crepant resolution. Formally, following
[VB2] we define a noncommutative crepant resolution of R to be any homologically
homogeneous ring of the form ∆ = EndR(M), where M is a reflexive, finitely
generated R-module. We refer the reader to [VB2, Section 4] for the logic behind
this definition.

The main result of the present note is the following:

Theorem 1.1. (Theorem 4.3) Let ∆ be a homologically homogeneous k-algebra.

Then the centre Z(∆) has rational singularities.

In particular if a normal affine k-domain R has a noncommutative crepant res-

olution then it has rational singularities.

In Section 5 we give two examples related to the theorem. The first example
shows that if ∆ = EndR(M) has finite global dimension then it need not be homo-
logically homogeneous even under reasonable hypotheses on M and R. The second
shows that Theorem 1.1 can fail in positive characteristic.

Notation. Throughout the paper R will be a normal commutative noetherian k-
domain and ∆ will be a k-algebra, with centre Z = Z(∆) containing R, such that
∆ is a finitely generated R-module. We say that R is essentially affine if it is a
localization of an affine k-algebra. The dimension function used in this paper will
be the Gelfand-Kirillov dimension of ∆ as a k-algebra, written GKdim∆. By [MR,
Proposition 8.2.9(ii) and Theorem 8.2.14(ii)] GKdim∆ = GKdimR and GKdimR
is just the transcendence degree of R over k.

2. Homologically homogeneous rings

In this section we introduce homologically homogeneous rings and prove some
basic facts about their structure and their dualizing complexes. Many of these
results use the machinery of tame orders and so we start by discussing this concept.

Tame orders. Assume that ∆ is a prime R-order in A, by which we mean that
∆ is a prime ring with simple artinian ring of fractions A. We write P1 = P1(R)
for the set of height one prime ideals of R and say that a property P holds for ∆ in

codimension one if it holds for all ∆p = ∆⊗R Rp : p ∈ P1. Following [Si], the prime
R-order ∆ is called a tame R-order if ∆ is a finitely generated, reflexive R-module
that is hereditary in codimension one.

The paper [Si] implicitly assumes that R = Z(∆), but we prefer not make this
assumption. However, by the following standard result, the question of whether ∆
is a tame R-order is independent of the choice of normal central subring R.

Lemma 2.1. Let ∆ be a tame R-order. Then a finitely generated ∆-module is

reflexive as an R-module if and only if it is reflexive as a ∆-module.

Proof. By [Si, Corollary 1.6] (which does not require R = Z(∆)) a ∆-reflexive
module is R-reflexive. Conversely, suppose that M is a finitely generated ∆-module
that is R-reflexive. Since M is therefore torsion-free as a ∆-module, Mp = M⊗RRp

is torsion-free and hence projective over the hereditary prime ring ∆p, for all p ∈ P1.
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Thus, by [Si, Lemma 1.1],

M =
⋂

p∈P1
Mp =

⋂
p∈P1

Hom∆p
(Hom∆p

(Mp, ∆p), ∆p)

⊇ Hom∆(Hom∆(M, ∆), ∆).

Thus, M = Hom∆(Hom∆(M, ∆), ∆), as required. �

Let ∆ be a tame R-order in A. A divisorial fractional ∆-ideal is any reflexive
fractional ∆-ideal in A that is invertible in codimension one. By [Si, Theorem 2.3],
divisorial fractional ideals form a free abelian group Div(∆) with product I · J =
(IJ)∗∗ where K∗ = HomR(K, R) denotes the R-dual of a fractional ideal K. The
nth power (In)∗∗ of I under this dot-operation is called the nth symbolic power of

I and written I(n). Write radS for the Jacobson radical of a ring S.

Homologically homogeneous rings. Homologically homogeneous ring, as de-
fined in the introduction, have a particularly pleasant structure and the following
result provides some of the properties we will need.

Theorem 2.2. Assume that ∆ is homologically homogeneous of dimension d.

(1) ∆ is CM as a module over its centre Z.

(2) Both GKdim∆ and the global homological dimension gl dim∆ of ∆ equal d.
(3) Z is an affine CM normal domain.

(4) ∆ is a tame Z-order.

Proof. (1,2) By [Ra, Theorem 8], gl dim∆ = d. The rest of parts (1) and (2) follow
from [BH, Theorem 2.5].

(3) By hypothesis, ∆ is finitely generated as both a Z-module and a k-algebra.
Thus the Artin-Tate Lemma [MR, Lemma 13.9.10] implies that Z is an affine k-
algebra. As chark = 0, the reduced trace map ∆ → Z is surjective and so Z is
a Z-module summand of ∆. Thus Z is CM by part (1). As ∆ is prime, Z is a
domain, while Z is normal by [BH, Theorem 6.1].

(4) As ∆ is CM as a Z-module, it is certainly reflexive. By [BH, Corollary 2.2
and Theorem 2.5], ∆ is hereditary in codimension one. �

The standing assumption that k have characteristic zero is crucial for the proof
of part (3) of the theorem. Indeed, [BHM, Example 7.3] shows that the centre Z(Γ)
of a homologically homogeneous ring Γ need not be CM in bad characteristic.

The following criterion for a ring to be homologically homogeneous will be useful.

Lemma 2.3. Suppose that R is an affine k-algebra and that ∆ is a prime ring. If

∆ is a CM R-module with GKdim∆ = gl dim∆, then ∆ is homologically homoge-

neous.

Proof. This is, essentially, [BH, Proposition 7.2], but here is a direct proof. Suppose
that S is a simple ∆-module with projective dimension u < d = gl dim∆ and
consider a projective ∆-resolution of S:

0 → Pu → · · · → P1 → P0 → S → 0.

Viewed as a complex over R this is a resolution of length < d of a finite length
R-module by CM modules of dimension d. An easy depth argument shows that
this is impossible. �
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Dualizing modules and complexes. In order to relate properties of a homo-
logically homogeneous ring to those of its centre we will use the machinery of
dualizing complexes and we discuss their structure in this subsection. Most of the
background material comes from [VB1, Ye2, YZ1, YZ2] and the reader is referred
to those papers for more details. Throughout this discussion, in addition to our
standing assumptions, we assume that R is essentially affine.

Write ∆e = ∆ ⊗k ∆op and denote the derived category of left ∆e-modules by
D(∆e). Following [Ye1], a dualizing complex for ∆ is a complex of ∆-bimodules D,
with finite injective dimension on both sides, such that

(1) the cohomology of D is given by ∆-bimodules that are finitely generated
on both sides, and

(2) in D(∆e) the pair of natural morphisms Φ : ∆ → RHom∆(D, D) and
Φo : ∆ → RHom∆op(D, D) are isomorphisms.

Following [VB1, Definition 8.1], the dualizing complex D∆ is called rigid if there is
an isomorphism χ : D∆

∼= RHom∆e(∆, D∆ ⊗ D∆) in D(∆e). The significance of
rigidity is that, although dualizing complexes are not unique, rigid dualizing com-
plexes are, in the sense that the pair (D∆, χ) is unique up to a unique isomorphism
[VB1, Proposition 8.2] [YZ1, Theorem 3.2].

Although dualizing complexes (rigid or otherwise) do not exist for all finitely
generated noncommutative noetherian rings [KRS, p. 529], by [Ye2, Proposition 5.7]
and [YZ2, Theorem 3.8] they do exist for our rings R and ∆.

Write d = GKdim∆ = GKdimR. The cohomology of DR and D∆ lies in degrees
≥ −d and we define ωR = H−d(DR) and ω∆ = H−d(D∆). An important fact [YZ1,
Corollary 3.6] is that the cohomology of D∆ is Z-central in the sense that the left
and right actions of Z agree. In particular, ω∆ is Z-central.

The following results gives some basic properties that we will need about these
objects. If M is ∆-bimodule then Z(M) = {w ∈ M : δw = wδ for all δ ∈ ∆} is
called the centre of M .

Lemma 2.4. Assume that R is an essentially affine k-algebra. Then:

(1) D∆
∼= RHomR(∆, DR) in D(∆e).

(2) ω∆
∼= HomR(∆, ωR) as ∆e-modules.

(3) If C ⊂ Z is multiplicatively closed then ω∆C

∼= (ω∆)C as ∆-bimodules.

Assume in addition that ∆ is a tame R-order. Then:

(4) ω∆ is a reflexive as a left or right ∆-module.

(5) ω∆ is invertible in codimension one. Moreover, as bimodules

ω∆ =

(
ωZ ⊗

Z

∏

p∈P1(Z)

(
∆ ∩ rad(∆p)

)
· p(−1)

)∗∗

.

(6) There is a canonical isomorphism Z(ω∆) = ωZ .

Proof. (1) The proof of [Ye2, Proposition 5.7] shows that RHomR(∆, DR) is a rigid
dualizing complex for ∆ and so the result follows by the uniqueness of D∆.

(2) Take cohomology of (1).

(3) By [YZ2, Theorem 3.8] D∆C

∼= ∆C

L
⊗∆ D∆

L
⊗ ∆C as ∆-bimodules. Now take

cohomology, using the fact that, as mentioned above, each Hq(D∆) is Z-central.
(4) By part (2) and [Si, Lemma 1.5] it suffices to prove the result for ωR. This

case is well-known, but here is an easy proof. By part (3) we may assume that R
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is an affine k-algebra. By Noether normalization R is a finitely generated module
over some polynomial subring R0 and it is a tame R0-order since it is normal. It is
standard [YZ2, Example 3.13] that ωR0

∼= R0 as bimodules and so [Si, Lemma 1.5]
and Lemma 2.1 imply that ωR

∼= HomR0
(R, ωR0

) is a reflexive R-module.
(5) The first assertion follows, for example, from [CR, Corollary 37.9] combined

with part (2). In codimension one the displayed equation also follows easily from
part (2) and the general case then follows from parts (4) and (3).

(6) This follows from part (5). �

Remark 2.5. We emphasize that our definition of ωR does coincide with the usual

commutative notion
∧d(ΩR/k)∗∗ when R is essentially affine with GKdimR = d.

To see this, set ω′
R =

∧d(ΩR/k)∗∗. Then [Ye2, Lemma 5.4] shows that ωS = ω′
S

holds for any regular, essentially finite domain S. As R is normal, it is regular in
codimension one and so Lemma 2.4(3) implies that (ωR)p = (ω′

R)p for all height
one prime ideals p. By Lemma 2.4(4), ωR and ω′

R are reflexive, and hence ωR = ω′
R.

Proposition 2.6. Assume that ∆ is a prime affine k-algebra. Then ∆ is homo-

logically homogeneous of dimension d if and only if gl dim∆ < ∞ and D∆ = Ω[d]
for some invertible ∆-bimodule Ω. If this holds then Ω = ω∆.

Remark 2.7. In the notation of [VB1, Section 8], the proposition states that ∆
is homologically homogeneous of dimension d if and only if gl dim∆ < ∞ and ∆ is
AS-Gorenstein. See [SZ, Theorems 1.3 and 1.4] for a closely related result.

Proof. Assume first that ∆ is homologically homogeneous of dimension d. Since
the statement of the proposition is independent of the choice of R we may, by
Noether normalization, assume that R is a polynomial ring. By Theorem 2.2(1,3),
∆ is CM and hence free as an R-module. But now DR = ωR[d] ∼= R[d] and
so D∆ = RHomR(∆, DR) lives purely in dimension −d, whence D∆ = ω∆[d].
Lemma 2.4(2) implies that ω∆ is free and hence CM as an R-module and so [BH,
Corollary 3.1] implies that ω∆ is a projective ∆-module on either side. On the other
hand, as ∆ is a free R-module it is a tame R-order and so Lemma 2.4(5) implies
that ω∆ is invertible in codimension one. Together with [Si, Proposition 3.1], these
observations imply that ω∆ is invertible, finishing the proof in this direction.

Conversely, assume that gl dim∆ < ∞ and D∆ = Ω[d] for some invertible bi-
module Ω. We will show that every simple ∆-module S has projective dimension d.
By [YZ1, Corollary 6.9] D∆ is Auslander and GKdim-Macaulay in the sense of
[YZ1, Definitions 2.1 and 2.24]. Since S is finite dimensional the Macaulay prop-

erty means that Extd
∆(S, Ω) 6= 0. If gl dim∆ = e > d then, by [Ra, Theorem 8],

there exists a simple ∆-module S with Exte
∆(S, ∆) 6= 0. Since Ω is invertible, this

implies that E = Exte
∆(S′, Ω) 6= 0 for S′ = Ω⊗∆S. By the Auslander property, this

means that CdimD∆
(E) ≤ −e which, by the GKdim-Macaulay property, implies

that GKdimS < 0. This is absurd. �

The following formulæ will be useful.

Corollary 2.8. Assume that R is essentially affine with GKdimR = d and let ∆
be a tame R-order. Then

(2.9) ω
(−1)
∆ = Extd

∆e(∆, ∆e)∗∗.

If ∆ is homologically homogeneous then

(2.10) ω
(−1)
∆ = RHom∆e(∆, ∆e)[d].
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Proof. If ∆ is homologically homogeneous then it has dimension d by Theorem 2.2.
Thus [VB1, Proposition 8.4] and Remark 2.7 combine to prove (2.10).

Now suppose that ∆ is a tame R-order and set Γ = ∆p, for some p ∈ P1(Z).
Then Γ is an hereditary order and, by [MR, Theorem 13.10.1], Z(Γ) is a local PID.
By Lemma 2.4(4,5), ω∆ is invertible and hence, just as in the proof of Theorem 2.6,
D∆ = ω∆[d]. Thus, [VB1, Proposition 8.4] can again be applied to show that

ω
(−1)
Γ = Extd

Γe(Γ, Γe)∗∗. In other words, (2.9) holds in codimension one. Since both
sides of that equation are reflexive, it holds everywhere. �

3. Reduction to the Calabi-Yau case

Let ∆ be a homologically homogeneous ring. In Section 4 we will use the struc-
ture of ω∆ to show that Z has rational singularities, but this is awkward to prove
when ω∆ is not cyclic. In this section we show how to use a trick from [NV, The-
orem 3.1] to (locally) replace ∆ by an order for which ω∆ is generated by a single
central element. This is a noncommutative generalization of a well known technique
in algebraic geometry where one constructs a Gorenstein cover of a Q-Gorenstein
singularity.

Given a tame R-order Γ in A and I ∈ Div(Γ), the Rees ring Γ[I] of Γ is defined
to be the subring

∑∞

n=−∞
I(n)xn of the Laurent polynomial ring A[x, x−1].

Proposition 3.1. Assume that ∆ is homologically homogeneous. For some n ≥ 1,
suppose that ω⊗n

∆
∼= ∆ as bimodules and choose n minimal with this property. Write

Λ = ∆ ⊕ ω∆ ⊕ ω⊗2
∆ ⊕ · · · ⊕ ω⊗n−1

∆

where the multiplication is defined using the isomorphism ω⊗n
∆

∼= ∆. Then:

(1) Λ is a prime homologically homogeneous ring;

(2) ωΛ
∼= Λ, as Λ-bimodules.

Proof. (1) By Theorem 2.2(3,4), Z is an affine normal domain, and ∆ is a tame
Z-order in its simple artinian ring of fractions A. By [YZ1, Corollary 3.6], ω∆

is Z-central and so Lemma 2.4(4,5) implies that ω∆ is isomorphic to a divisorial
fractional ideal I. Therefore, I(n) = Λa for some a ∈ L = Z(A) and so Λ ∼=
∆[I]/(1 − axn). The field of fractions of Λ is therefore

B = A ⊗L L[x]/(1 − axn)

By [Si, Theorem 2.3], Div(∆) is a free abelian group. Therefore, if a = bm for some
m > 1 and b ∈ L then we would have m | n and I(n/m) = Λb contradicting the
minimality of n. If follows that L[x]/(1 − axn) is a field and thus B is a central
simple algebra. Consequently Λ is prime.

The ring Λ is strongly graded and hence gl dimΛ = gl dim∆ follows from [MR,
Corollary 7.6.18] together with the fact that the categories of ∆-modules and graded
Λ-modules are equivalent. Thus gl dimΛ = gl dim∆ = GKdim∆ = GKdimΛ by
Theorem 2.2(2) and [MR, Proposition 8.2.9(ii)]. By Theorem 2.2(1), ∆ is CM as a

Z-module and hence so is each ω⊗j
∆ and Λ. Thus Λ is homologically homogeneous

by Lemma 2.3.
(2) Using the formula ωΛ = HomR(Λ, ωR) we compute that

ωΛ = ω∆ ⊕ ω⊗2
∆ ⊕ · · · ⊕ ω⊕n−1

∆ ⊕ ∆

as Z/nZ-graded Λ-bimodules. Forgetting the grading gives the result. �
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Remarks 3.2. (1) Assume that Z an essentially affine k-algebra. Following [Br] or
[Gi], ∆ is called Calabi-Yau of dimension d if D∆

∼= ∆[d] in D(∆e). (Some authors
also require Calabi-Yau algebras to have finite global dimension; see, for example,
[IR, Theorem 3.2(iii)].) For a survey on the Calabi-Yau property in an algebraic
context see [Gi].

By Proposition 2.6, an affine Calabi-Yau algebra of finite global dimension is
automatically homologically homogeneous. Conversely, Proposition 3.1 can be re-
garded as a reduction to the Calabi-Yau case.

(2) Proposition 3.1 can also be regarded as a reduction to the case of orders
unramified in codimension one. In order to explain this, recall that a tame order
∆ is unramified in codimension one if p∆p = rad∆p for all p ∈ P1(Z). Given a
tame Calabi-Yau order ∆, then Lemma 2.4(6) implies that Z ∼= Z(ω∆) = ωZ and
so Lemma 2.4(5) implies that p∆p = rad∆p for all p ∈ P1(Z).

Even when ∆ is homologically homogeneous, there is no reason for ω∆ to have
finite order and so Proposition 3.1 cannot be applied directly. However, ω∆ has
finite order locally, which will be sufficient for our applications. Before stating the
result, we prove some elementary facts.

Lemma 3.3. If S is a ring with Jacobson radical rad(S) and P is an invertible

S-bimodule then rad(S)P = P rad(S).

Proof. We claim that the image of composition

(3.4) χ : P−1 ⊗S rad(S) ⊗S P → P−1 ⊗S S ⊗S P ∼= S

lies in rad(S). This proves the inclusion rad(S)P ⊆ P rad(S). To prove the opposite
inclusion interchange P and P−1.

In order to prove the claim we will prove that the image of χ annihilates all
simple S-modules. Let M be a simple S-module. We must show that the map

(3.5) P−1 ⊗S rad(S) ⊗S P ⊗S M → M

is zero. Tensoring (3.5) on the left by P we obtain the map

(3.6) rad(S) ⊗S P ⊗S M → P ⊗S M

Since P ⊗S − is an autoequivalence of Mod(S), P ⊗S M is a simple module and
hence (3.6) is indeed the zero map. �

Lemma 3.7. Assume that R is local and that Γ is a tame R-order in A, with

R = Z(Γ). If P is an R-central invertible Γ-bimodule, then there exists an integer

n > 0 such that P⊗n ∼= Γ as Γ-bimodules.

Proof. Since P is invertible, tensor powers, symbolic powers and ordinary powers
all coincide, so we will drop the tensor product sign.

We first prove that Pn ∼= Γ as left Γ-modules. By Lemma 3.3, P/ rad(Γ)P is an
invertible bimodule over Γ/ rad(Γ). Since Γ/ rad(Γ) is semi-simple, it is easy to see
that there exists n > 0 such that

Pn/ rad(Γ)Pn = (P/ rad(Γ)P )n ∼= Γ/ rad(Γ)

as left Γ/ rad(Γ)-modules. By Nakayama’s Lemma it follows that Pn ∼= Γ, again as
left Γ-modules.

Let K denote the fraction field of R. Since P is R-central, K⊗RP is an invertible
A-bimodule. After choosing an isomorphism K ⊗R P ∼= A we may assume that P
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is a divisorial fractional R-ideal. By [LVV, Proposition II.4.20], some power P (e) of
P lies in the image of Div(Z(Γ)) in Div(Γ); that is, P (e) ∼= (ΓI)∗∗ for some reflexive
ideal I of R. By the last paragraph, we may also assume that P e ∼= Γ as left Γ
modules.

Now let u = rkR Γ. Then
(∧u

R(ΓI)
)∗∗ ∼=

∧u
R P e ∼=

( ∧u
R(Γ)

)∗∗
as R-modules.

On the other hand,

( u∧
(ΓI)

)∗∗
=

(
(

u∧
Γ)Iu

)∗∗
=

( u∧
Γ
)∗∗(

Iu
)∗∗

and so
( ∧u

Γ
)∗∗(

Iu
)∗∗

=
(∧u

(Γ)
)∗∗

. Cancelling
( ∧u

R Γ
)∗∗

gives
(
Iu

)∗∗ ∼= R as R-
modules. Since P e ∼= (ΓI)∗∗ as Γ-bimodules we obtain P eu ∼= Γ as Γ-bimodules. �

Corollary 3.8. Suppose that ∆ is homologically homogeneous k-algebra. Then for

every maximal ideal m of Z there exist f ∈ Z r m and n > 0 with the property that

ω⊗n
∆f

∼= ∆f as ∆f -bimodules.

Proof. By Proposition 2.6, ω∆ is invertible and, as has been observed before, it is Z-
central. By Lemma 2.4(3) and Theorem 2.2(4), we can therefore apply Lemma 3.7
to P = ω∆m

and conclude that ω⊗n
∆m

∼= ∆m as ∆m-bimodules. As usual this isomor-
phism may be “spread out” on a neighbourhood of m in Spec Z. �

4. The centre of homologically homogeneous rings

In this section we prove Theorem 1.1 from the introduction. We start with two
preparatory lemmas, the first of which gives a useful algebraic criterion for a ring
to have rational singularities.

Lemma 4.1. Let Z be an affine normal CM k-domain with field of fractions K.

Then Z has rational singularities if and only if, for all regular affine k-algebras S
satisfying Z ⊆ S ⊂ K, we have ωZ ⊆ ωS inside ωK .

Proof. Let X = Spec Z. By Remark 2.5, ωX in the sense of [KKMS, KM] is equal
to ωZ in the sense of this paper and so, by Lemma 2.4(4), ωX is reflexive. According
to [KKMS, p. 50] or [KM, Theorem 5.10], X has rational singularities if and only
if for one (or for all) resolution(s) of singularities f : Y → X we have f∗ωY = ωX

inside ωK . Since ωX and ωY are reflexive this is equivalent to ωX ⊆ f∗ωY and the
latter condition is equivalent to (f∗ωX)∗∗ ⊆ ωY . This can be checked locally on Y .

So assume that ωZ ⊆ ωS for all affine regular k-algebras S satisfying Z ⊆ S ⊂ K.
Pick Y by the last paragraph and an open affine subset U ⊂ Y . Then ωZ ⊆ ωS for
S = O(U) and hence (S ⊗Z ωZ)∗∗ ⊆ ωS . Globalizing gives (f∗ωX)∗∗ ⊆ ωY and so
Z has rational singularities.

Conversely assume that Z has rational singularities and let Z ⊆ S be as in the
statement of the lemma. Put U = Spec S. We may compactify the map g : U → X
to a projective map ḡ : Y ′ → X . A priori Y ′ will not be smooth but we can resolve
it further without touching U (see [KM, Theorem 0.2]) to arrive at a resolution of
singularities f : Y → X . The fact that (f∗ωX)∗∗ ⊆ ωY yields (S ⊗Z ωZ)∗∗ ⊆ ωS

after restricting to U . Thus ωZ ⊆ ωS . �

Lemma 4.2. Let Λ1 and Λ2 be affine k-algebras of finite global dimension that

satisfy a polynomial identity. Then Λ1 ⊗k Λ2 has finite global dimension.
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Proof. By the Nullstellensatz [MR, Theorem 13.10.3], every primitive factor ring
of Λi is isomorphic to a full matrix ring over k. Hence every primitive factor ring
Γ of Λ = Λ1 ⊗k Λ2 decomposes as Γ = Γ1 ⊗k Γ2 for primitive factor rings Γi of Λi.
Thus any simple Λ-module M can be written as M = M1 ⊗k M2, where each Mi is
a simple Λi-module. Now use [CE, Proposition IX.2.6]. �

Theorem 4.3. If ∆ is a homologically homogeneous k-algebra, then Z = Z(∆) has

rational singularities.

Proof. It is enough to prove the result locally, so by Corollary 3.8 we can replace
∆ by some ∆f and assume that ω⊗n

∆
∼= ∆ as ∆-bimodules. By Proposition 3.1,

the algebra Λ = ∆ ⊕ ω∆ ⊕ ω⊗2
∆ ⊕ · · · ⊕ ω⊗n−1

∆ satisfies ωΛ
∼= Λ as Λ-bimodules.

Then Λ and hence Z(Λ) are Z/nZ-graded. Moreover, as ω∆ is Z-central, clearly Z

commutes with each ω⊗j
∆ and so Z ⊆ Z(Λ)0. Since the other inclusion is trivial,

Z = Z(Λ)0 and Z is a module-theoretic summand of Z(Λ). Since a direct summand
of a ring with rational singularities has rational singularities [Bo] we may therefore
replace ∆ by Λ and assume that that ω∆

∼= ∆ as bimodules. By Proposition 3.1(1)
∆ remains homologically homogeneous.

We will use Lemma 4.1, so fix a ring Z ⊆ S ⊂ K as in the lemma and let Γ be a
maximal, and therefore tame S-order containing S∆ inside the simple artinian ring
of fractions A of ∆. Our discussion in Section 2 on dualizing complexes also applies
to Γ, so ωΓ = HomS(Γ, ωS) and ωS = Z(ωΓ) in the notation developed there. We
will show that ω∆ ⊆ ωΓ inside ωA. Since S ⊂ K, this will yield Z(ω∆) ⊆ Z(ωΓ) as
subgroups of Z(ωA) and so Lemma 2.4(6) will imply that ωZ ⊆ ωS , as required.

In order to prove that ω∆ ⊆ ωΓ we may as well prove that ω∆Γ ⊆ ωΓ. The
bimodule isomorphism ω∆

∼= ∆ means that ω∆ = c∆ for some central element
c ∈ ωA. From this we deduce that ω∆Γ = Γω∆ is an invertible Γ-bimodule with

inverse ω
(−1)
∆ Γ = c−1Γ. By Lemma 2.4(4), ωΓ is reflexive and so it suffices to prove

that ω
(−1)
Γ ⊆ ω

(−1)
∆ Γ inside ω

(−1)
A .

We claim that

(4.4) Γ
L
⊗

∆
RHom∆e(M, ∆e)

L
⊗

∆
Γ = RHomΓe(Γ

L
⊗

∆
M

L
⊗

∆
Γ, Γe)

for any object M in Db(∆e) with finitely generated cohomology. To prove this recall
that, by Lemma 4.2, gl dim∆e < ∞. Thus we can replace M by a finite projective
resolution of ∆e-modules and it then suffices prove the claim for M = ∆e. This
case is obvious.

Applying (4.4) with M = ∆ and using the formula ω
(−1)
∆ = RHom∆e(∆, ∆e)[d]

from (2.10) we obtain

Γ
L
⊗

∆
ω

(−1)
∆

L
⊗

∆
Γ = RHomΓe(Γ

L
⊗

∆
Γ, Γe)[d].

Using the fact that the derived tensor product maps to the ordinary tensor this
induces a composed map

RHomΓe(Γ, Γe)[d] → RHomΓe(Γ
L
⊗

∆
Γ, Γe)[d] = Γ

L
⊗

∆
ω

(−1)
∆

L
⊗

∆
Γ → ω

(−1)
∆ Γ.

Taking cohomology in degree zero and then biduals gives a map

Extd
Γe(Γ, Γe)∗∗ → (ω

(−1)
∆ Γ)∗∗ = ω

(−1)
∆ Γ.
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Using (2.9) this induces a map

(4.5) ω
(−1)
Γ → ω

(−1)
∆ Γ.

Now we could have done these computations after tensoring with the field of frac-
tions K of Z. Since K = KZ = KS and K∆ = KΓ = A, all morphisms would
then have been (canonically) the identity. From this we deduce that (4.5) is an

inclusion which takes place inside ω
(−1)
A . This means we are done. �

Remarks 4.6. (1) Suppose that ∆ is an affine Calabi-Yau k-algebra of finite global
dimension. Then Theorem 4.3 and Remark 3.2(1) combine to prove that Z has
rational singularities.

(2) Homologically homogeneous rings were defined in [BH] for orders in semisim-
ple rather than simple artinian rings. However, by [BH, Theorem 5.3], these more
general algebras are direct sums of prime homologically homogeneous rings and so
the more general case also follows from this theorem. Similarly, one can weaken
the hypothesis that ∆ be finitely generated as a module over its centre to the as-
sumption that it be an affine algebra satisfying a polynomial identity since, by [SZ,
Theorem 5.6(iv)], this already forces ∆ to be a finitely generated Z-module.

5. Examples

Here we give two examples to illustrate the earlier results. The first shows that
[VB2, Lemma 4.2] cannot be improved while the second one shows that Theorem 1.1
can fail in finite characteristic.

In addition to our standing hypotheses, suppose that R is an affine Gorenstein
k-algebra and that ∆ = EndR(M) for some finitely generated reflexive R-module
M . Then it follows from [VB2, Lemma 4.2] that ∆ is homologically homogeneous
if and only if gl dim∆ < ∞ and ∆ is a CM R-module. This is useful for the theory
of noncommutative crepant resolutions, so it would be useful if we could weaken
the hypotheses in this result. In our first example, we show that the Gorenstein
condition is necessary.

Here is the example. Let T be a one-dimensional torus acting on the generators
of the polynomial ring S = k[x1, x2, x3, x4, x5] with weights 1, 1, 1,−1,−1 and let
R = ST . We may also view R as the coordinate ring of the variety of 2×3-matrices
of rank ≤ 1.

The T -weights give a grading S =
⊕∞

ℓ=−∞
Sℓ with S0 = R. According to the

proof of [VB2, Lemma 8.8] the Si are isomorphic to reflexive ideals of R with
Sa+b = (SaSb)

∗∗ for all a, b ∈ Z. Furthermore it is easy to see that Si is not a
projective R-module when i 6= 0.

It follows from [VB2, Lemma 8.1] that S−2, S−1, R and S1 are CM R-modules
while R is certainly normal. It follows from [VB2, Lemma 8.2 and Theorem 8.6]
that

∆ = EndR(R ⊕ S1) =

(
R S1

S−1 R

)
.

has finite global dimension and hence is a tame order over its centre R. By [Kn,
Korollar 2], the dualizing module ωR is isomorphic to S−1 (where −1 represents
minus the sum of the weights of the generators of S) from which we deduce that

ω∆ = HomR(∆, ωR) ∼=

(
S−1 R
S−2 S−1

)
.
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Both ∆ and ω∆ are graded for the standard grading on R. For this choice of
grading, ∆ is graded semi-local and ω∆ is (as left or right module) not a direct sum
of indecomposable graded ∆-projectives. Consequently, ω∆ is not projective.

By Proposition 2.6, ∆ is therefore not homologically homogeneous.

Remarks 5.1. (1) By the proof of [DV, Proposition A.2] it follows that ω∆ defines
an element of the derived Picard group of ∆.

(2) The methods of [BLV] allow one to treat this example in the context of
determinantal varieties. It follows from the results given there that one of the
simple graded ∆-modules has projective dimension 4 and the other has projective
dimension 5.

The example leads naturally to the following question.

Question 5.2. Assume that Z = Z(∆) is an affine normal k-domain and that ∆
is a finitely generated CM Z-module with finite global dimension. Then, does Z
have rational singularities?

We now turn to an example in finite characteristic of a homologically homoge-
neous ring whose centre is CM but which does not have rational singularities in any
reasonable sense.

Assume that F is a field of characteristic 2 and let C = F [u, v, x, y]/(p, q) where

p = x + u2 + x2u and q = y + v2 + y2v.

As the Jacobian matrix of p, q with respect to x, y is invertible, C/F [x, y] is étale
and hence C is regular. Consider the action of G = Z/(2) = {1, σ} on C by
σ(u) = u + x2, σ(v) = v + y2, σ(x) = x, and σ(y) = y. Clearly B = CG is an affine
normal domain of Krull dimension two and hence it is CM.

Resolutions of singularities are known to exist for surfaces in all characteristics
and there is a corresponding satisfactory theory of rational singularities. We will
show that B does not have rational singularities. Let m = (u, v) ⊂ C and notice

that m = (u, v, x, y) is maximal; thus Ĉm = F [[u, v]]. It suffices to prove that B̂n,
for n = B ∩ m, does not have rational singularities. Since uuσ = u2 + ux2 = x ∈

ĈG
m = B̂n and vvσ = y ∈ B̂n, our notation conforms with that of [Ar, Theorem].

Now the fact that u2 + x2u + x = 0 = v2 + y2v + y means that B̂n does not have
rational singularities by the observation from [Ar, p. 64].

Finally, let Λ = C[x; σ] be the twisted polynomial ring; thus xc = cσx for all
c ∈ C. By the Nullstellensatz, every simple Λ-module is finite dimensional and
so, by [MR, Theorem 7.9.16], Λ is homologically homogeneous of dimension 3. As
σ2 = 1, the element x2 is central. It follows routinely that Z(Λ) = B[x2]. Thus,
Z(Λ) also does not have rational singularities.

The basic reason why such counterexamples exist in bad characteristic is that a
fixed ring SG need not be a summand of the ring S. The example [BHM, Exam-
ple 7.3] of a homologically homogeneous ring with a non-CM centre occurs for a
similar reason. So, it is natural to ask:

Question 5.3. Suppose that Λ is a homologically homogeneous ring whose centre
Z(Λ) is an affine F -algebra for field F of characteristic p > 0. If Z(Λ) is a Z(Λ)-
module summand of Λ, then does Z(Λ) have rational singularities?

It was conjectured in [VB3] and proved in [VB2, Theorem 6.6.3] that a 3-
dimensional k-variety with terminal singularities has a noncommutative crepant
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resolution if and only if it has a commutative one (see also [IR, Corollary 8.8]). We
end by noting that this is not true in higher dimensions. One way to produce coun-
terexamples is with the fixed ring R = C[V ]G of a finite group G ⊂ SL(V ), where
V = Cn. In this case, the twisted group ring C[V ] ∗ G ∼= EndR(C[V ]) is a non-
commutative crepant resolution of R [VB2, Example 1.1], but it is well-known that
such a ring R need not have a commutative crepant resolution (see, for example,
[Kl1, Theorem 1.7]).
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