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Abstract. We investigate the initial-value problem for the relativistic Euler equations

governing isothermal perfect fluid flows, and generalize an approach introduced by LeFloch

and Shelukhin in the non-relativistic setting. We establish the existence of globally defined,

bounded measurable, entropy solutions with arbitrary large amplitude. An earlier result

by Smoller and Temple for the same system covered solutions with bounded variation that

avoid the vacuum state. The new framework proposed here provides entropy solutions

in a larger function space and allows for the mass density to vanish and the velocity

field to approach the speed of light. The relativistic Euler equations become strongly

degenerate in both regimes, as the conservative or the flux variables vanish or blow-up.

Our proof is based on the method of compensated compactness for nonlinear systems of

conservation laws (Tartar, DiPerna) and takes advantage of a scaling invariance property

of the isothermal fluid equations. We also rely on properties of the fundamental kernel

that generates the mathematical entropy and entropy flux pairs. This kernel exhibits

certain singularities on the boundary of its support and we are led to analyze certain

nonconservative products (after Dal Maso, LeFloch, and Murat) consisting of functions of

bounded variation by measures.
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1. Introduction and main result

1.1. Purpose of this paper. The relativistic Euler equations describe the dynam-
ics of a compressible fluid in the context of special relativity, i.e. a fluid evolving on
the flat Minkowski spacetime. This system can be regarded as an approximation to
the Euler-Einstein equations, which is valid in a small region of the spacetime and
away from large matter concentrations. Under the assumption of plane-symmetry,
the fluid unknowns consist of the co-moving mass density ρ ≥ 0 and the velocity
field v ∈ (−c, c), where c denotes the speed of light. Our main purpose in the
present paper is the construction of weak solutions containing shock waves and
having arbitrary large amplitude.

The mathematical properties of this model were investigated in works by Taub
(1957), Thompson (1986), Lichnerowicz (1993), and others. These equations are
also important in computational physics and we refer to Marti and Müller (2003)
for an extensive review of the Riemann problem and the numerical methods in
hydrodynamics in the context of special relativity. The mathematical analysis of
the relativistic Euler equations for the isothermal fluids, considered in the present
paper, has received much less attention in the literature; our emphasis is on fluids
governed by the linear pressure law

p(ρ) = k2 ρ,

where k > 0 is the (local, constant) sound speed and by the principle of special
relativity must be less than the speed of light denoted here by c.

The Euler equations form a nonlinear system of partial differential equations
of hyperbolic type. It is well-known that solutions even they are smooth initially
will eventually become discontinuous and must be understood in the weak sense
of distributions. Furthermore, for the sake of solutions it is necessary to constrain
these weak solutions by certain entropy inequalities.

The initial-valued problem for relativistic isothermal fluids was first studied by
Smoller and Temple (1993). They established the existence of entropy solutions,
under the assumption that the initial mass density is bounded, is bounded away
from zero, and has bounded variation. Their result is based on the Glimm scheme
and extends an earlier approach for the non-relativistic version (Nishida, 1968).

In the present paper, we propose an alternative approach based on the method of
compensated compactness for nonlinear conservation laws (Tartar, 1983) and, for
the relativistic Euler equations, we provide a mathematical framework encompass-
ing a large class of weak solutions. These solutions may take vacuum values ρ = 0
and may have high-velocity approaching the speed of light. Solutions of this nature
arise naturally in applications; for instance, a star is described by a compactly sup-
ported mass density function. As can be checked easily, at points where ρ vanishes
the Euler equations are highly degenerate and the conservative variables vanish
identically while the velocity field is ill-defined. Another related singularity of the
equations is obtained in the limit when the fluid velocity approaches the light speed
and the wave speeds approach each other; hence, the model fails to be uniformly
strictly hyperbolic. These features of the relativistic Euler equations for isother-
mal fluids lead to particularly challenging mathematical questions, concerning the
existence and the behavior of entropy solutions.
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1.2. Relativistic fluid equations. We consider the following system of two con-
servation laws

∂t

(
ρ c2 + p v2/c2

c2 − v2

)
+ ∂x

(
(p+ ρc2) v
c2 − v2

)
= 0,

∂t

(
(p+ ρ c2) v
c2 − v2

)
+ ∂x

(
(p+ ρ v2) c2

c2 − v2

)
= 0,

which, by setting ε = 1/c and using the condition p(ρ) = k2 ρ, reads

(1.1)
∂t

(
1 + ε4 k2 v2

1− ε2 v2
ρ

)
+ ∂x

(
1 + ε2 k2

1− ε2 v2
ρ v

)
= 0,

∂t

(
1 + ε2 k2

1− ε2 v2
ρ v

)
+ ∂x

(
k2 + v2

1− ε2 v2
ρ

)
= 0.

Taking the formal limit ε = 0, we obtain the non-relativistic version of these equa-
tions:

(1.2)
∂tρ+ ∂x (ρ v) = 0,

∂t (ρ v) + ∂x

(
(k2 + v2) ρ

)
= 0.

Our starting point is the recent work by Huang and Wang (2003) and LeFloch
and Shelukhin (2005). The existence of entropy solutions to (1.2) is known when the
mass density is bounded and the velocity is unbounded. It was observed that the
natural function space associated with the non-relativistic Euler equations allows
for the velocity field to be unbounded. Our aim will be here to generalize to
relativistic fluids the method and results by LeFloch and Shelukhin (2005), based
on such “natural” estimates.

The equations (1.1) form a nonlinear hyperbolic system of partial differential
equations of the form

(1.3) ∂tG+ ∂xH = 0, ∂tH + ∂xF = 0,

where

G(ρ, v) =
1 + ε4k2v2

1− ε2v2
ρ, H(ρ, v) =

1 + ε2k2

1− ε2v2
ρv,

F (ρ, v) =
k2 + v2

1− ε2v2
ρ.

Since shock waves are known to arise even from smooth initial data (Pan and
Smoller, 2006), we need a concept of solutions that include discontinuous functions.

We introduce the following notion of entropy solution.
First of all, we will say that a Lipschitz continuous map (U,F) is an entropy pair

if every smooth solution of (1.1) satisfies the additional conservation law

∂tU(ρ, v) + ∂xF(ρ, v) = 0.

However, weak solutions are required to satisfy the above conservation laws for
convex functions U, but as inequalities only. Furthermore, the class of entropy
functions is further restricted as we only consider weak entropies that is functions
U vanishing on the vacuum line ρ = 0. For instance, both pairs (G,H) and (H,F )
in (1.3) are (trivial) weak entropy pairs. We also set

ε′ :=
2ε

1 + ε2
∈ (0, 1).
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Definition 1.1 (Notion of entropy solutions). A tame region is a set of the form

Tε(M) :=
{
ρ, v / 0 ≤ ρ ≤M, 1− ε|v| ≥ (ρ/M)ε′

}
for some constant M > 0. A pair of measurable and bounded functions ρ0, v0 : R →
R is a tame initial data if its range is included in a tame region.

Given a tame initial data ρ0, v0, a pair of measurable and bounded functions
ρ, v : R+ × R → R is called a tame entropy solution to the isothermal relativistic
Euler equations (1.1) associated with the initial data ρ0, v0 if the range of ρ, v is
included in a tame region and, moreover,∫∫

R+×R

(
U(ρ, v) ∂tθ + F(ρ, v) ∂xθ

)
dxdt+

∫
R

U(ρ0, v0) θ(0, ·) dx ≥ 0

for every convex, smooth, weak entropy pair (U,F) of the isothermal relativistic
Euler equations and every non-negative test-function θ supported in [0,∞)× R.

Observe that the inequality in the definition of a tame region allows the velocity
to approach the light speed (normalized here to be 1/ε) when the mass density
approaches zero. The concept of a tame region is quite natural, as it is equivalent
to uniform bounds on the Riemann invariants (defined later in Section 2). Clearly,
the entropy pairs under consideration need not be globally Lipschitz continuous,
but only so within any tame region, as those are the only regions of interest.

One of our main results in this paper is the following existence theorem.

Theorem 1.2 (Existence theory). Given any parameter value ε ∈ (0, 1) and a tame
initial data ρ0, v0, the initial-value problem for the relativistic Euler equations for
isothermal fluids (1.1) admits a tame entropy solution ρ, v : R+×R → R associated
with ρ0, v0.

1.3. Main ideas for the proof. The approach proposed in the present paper
will rely on the following observation, which was already pointed out in the non-
relativistic setting.

Lemma 1.3 (Linearity property). If (ρ, v) is a (weak, entropy) solution of the rel-
ativistic Euler equations for isothermal fluid (1.1), then for every positive constant
λ, the function (λρ, v) is also a (weak, entropy) solution of the same equations.

Our general strategy of proof follows, on one hand, DiPerna (1983), who obtained
bounded solutions ρ ≥ 0 and v ∈ R for non-relativistic polytropic fluids satisfying
p(ρ) = k2ργ , with γ > 1 and, on the other hand, LeFloch and Shelukhin (2005),
who extended DiPerna’s analysis to include isothermal fluids satisfying p(ρ) = k2 ρ
and observed that the velocity field v need not be bounded.

The main difficulty for our analysis in this paper lies in the lack of uniform strict
hyperbolicity of the Euler equations when the fluid velocity approaches the light
speed. To deal with this problem we will proceed along the following lines:

• Mathematical entropy pairs. Our first task will be to construct entropy
pairs which amounts to solve a linear hyperbolic equation in the variable
ρ, v. We will introduce the Riemann function R and the entropy kernel χ
associated with this equation, so that the entropy pairs of interest can be
expressed by an explicit formula in term of the kernel χ. Contrary to the
case of polytropic fluids (DiPerna, 1983) and in agreement with the case
of (non-relativistic) isothermal fluids, an initial data for the entropy kernel
must be imposed away from the vacuum, say on the line ρ = 1.
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• Singularities of the entropy kernel. We will show that the function χ is
discontinuous along the boundary ∂K of its support, so that its first-order
derivatives exhibit Dirac masses. In the case ε = 0 the kernel was given by
an explicit formula. In contrast, when ε > 0 we need to derive uniform esti-
mates on χ and determine explicitly the traces of its first-order derivatives
along ∂K.

• A priori bounds. We will next derive a priori bounds on approximate
solutions ρh, vh generated by the Lax-Friedrichs scheme. Our bounds show
that the mass density remains uniformly bounded and the velocity field
satisfies the tame condition.

• Reduction of the Young measure. In the final part of the proof we identify
the structure of a Young measure ν = νt,x associated with the sequence
ρh, vh. We analyze certain nonconservative products (Dal Maso, LeFloch,
and Murat, 1995) consisting of functions of bounded variation by measures.
The term of interest contains a key coefficient (denoted below by Ξ(ρ))
which does not vanish, provided we take advantage of the scaling invariance
property in Lemma 1.3.

2. Basic properties of the model

2.1. Wave speeds and Riemann invariants. Scaling properties of the equations
(1.1) will play an important role. Observe that the transformation

v′ = v/k, t′ = k t, ε′ = k ε

allows one to reduce the system (1.1) to the same system with k = 1. In view of
the physical constraint 0 < k < c between the sound speed and the light speed this
amounts to impose c > 1. The limiting case c→ 1 corresponds to the special case
where the sound speed and the light speed coincide. From now on, we suppose that
k = 1 so that the Euler equations read

(2.1)
∂t

(
1 + ε4 v2

1− ε2 v2
ρ

)
+ ∂x

(
1 + ε2

1− ε2 v2
ρ v

)
= 0,

∂t

(
1 + ε2

1− ε2 v2
ρ v

)
+ ∂x

(
1 + v2

1− ε2 v2
ρ

)
= 0.

The velocity is restricted to lie in the interval (−1/ε, 1/ε); note that the conservative
and flux variables blow-up when v → ±1/ε. The range of physical interest for ε is

0 < ε < 1,

the limiting case ε = 0 and ε = 1 corresponding to the non-relativistic model (speed
of light is infinite) and the scalar field model (the sound speed and the light speed
coincide), respectively.

Indeed, the system (2.1) in the limit ε→ 1 converges to

(2.2)
∂t

(
1 + v2

1− v2
ρ

)
+ ∂x

(
2

1− v2
ρ v

)
= 0,

∂t

(
2

1− v2
ρ v

)
+ ∂x

(
1 + v2

1− v2
ρ

)
= 0,



6 P.G. LEFLOCH AND M. YAMAZAKI

which is simply equivalent to the linear wave equation. This is clear by introducing
the unknowns a := 1+v2

1−v2 ρ and b := 2
1−v2 ρ v, so that

∂ta+ ∂xb = 0,
∂tb+ ∂xa = 0.

The conservation laws (2.1) form a nonlinear hyperbolic system whose Jacobian
matrix admits the two eigenvalues

λ1 :=
v − 1

1− ε2 v
, λ2 :=

v + 1
1 + ε2 v

.

Clearly, the characteristic speeds are smooth functions in the closed interval v ∈
[−1/ε, 1/ε]. The corresponding eigenvectors are

r1 :=
( −1

1− ε2 v2
,

1
1 + ε2

1
ρ

)
,

r2 =
( 1

1− ε2 v2
,

1
1 + ε2

1
ρ

)
.

The Riemann invariants w, z, by definition, satisfy ∇w · r1 = 0, ∇z · r2 = 0, and
are uniquely defined up to the composition by a one-to-one map:

(2.3)
w := u+R, R =

w − z

2
,

z := u−R, u =
w + z

2
,

where R, u are functions of ρ, v:

R = R(ρ) :=
1

1 + ε2
ln ρ, ρ =e(1+ε2)R,

u = u(v) :=
1
2 ε

ln
(1 + ε v

1− ε v

)
, v =

1
ε

e2εu − 1
e2εu + 1

.

The Riemann invariants provide a change of variables (ρ, v) 7→ (w, z), which will
be often used.

Clearly, the mapping v 7→ u(v) is one-to-one from the bounded interval (−1/ε, 1/ε)
onto the real line R. The mapping ρ 7→ R(ρ) is one-to-one from (0,∞) onto R. It
is not difficult to check that, in terms of the variables w, z, the system (2.1) takes
the diagonal form

∂tw + λ2 ∂xw = 0, ∂tz + λ1 ∂xz = 0.

Observe that

(2.4)
λ1(w, z) = −1

ε

1 + ε− (1− ε)eε(w+z)

1 + ε+ (1− ε)eε(w+z)
,

λ2(w, z) = −1
ε

1− ε− (1 + ε)eε(w+z)

1− ε+ (1 + ε)eε(w+z)
= −λ1(−w,−z).

Sometimes, we will also use of the “modified” Riemann invariants defined as

(2.5)
W := ew = ρ1/(1+ε2)

(1 + ε v

1− ε v

)1/(2ε)

,

Z := e−z = ρ1/(1+ε2)
(1 + ε v

1− ε v

)−1/(2ε)

.
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Note that ρ = (WZ)(1+ε2)/2.
Expressing now the physical variables ρ, v as functions of the Riemann invariants,

ρ = R
−1

((w − z)/2) = exp
(

(1 + ε2)
w − z

2

)
,

and

v = v(w + z) : =
1
ε

eε(w+z) − 1
eε(w+z) + 1

=
1
ε

(
1− 2

eε(w+z) + 1

)
=

1
ε

tanh
(
ε
w + z

2

)
,

we obtain the w- and z-derivatives of (ρ, v):

vw = vz =
1

2uv
=

1
2

(
1− ε2 v2

)
,

ρw = −ρz =
1

2Rρ
=

1 + ε2

2
ρ.

Moreover, the derivatives of the Riemann invariants considered as functions of (ρ, v)
are

wρ = −zρ =
1

1 + ε2
1
ρ
,

wv = zv =
1

1− ε2 v2
.

Finally, for latter use we express the Euler equations in the nonconservative
variables (ρ, v). By setting

D(G,H)
D(ρ, v)

=


1 + ε4v2

1− ε2v2

2ε2(1 + ε2)ρv
(1− ε2v2)2

(1 + ε2)v
1− ε2v2

(1 + ε2)ρ(1 + ε2v2)
(1− ε2v2)2


and

D(H,F )
D(ρ, v)

=


(1 + ε2)v
1− ε2v2

(1 + ε2)ρ(1 + ε2v2)
(1− ε2v2)2

1 + v2

1− ε2v2

2(1 + ε2)ρv
(1− ε2v2)2

 ,

we can rewrite (2.1) as

∂tũ+ ∂xG̃(ũ) = 0, ũ :=
(
ρ
v

)
,

with
DG̃

Dũ
=

(
D(G,H)
D(ρ, v)

)−1
D(H,F )
D(ρ, v)

=


(1− ε2)v
1− ε4v2

(1 + ε2)ρ
1− ε4v2

(1− ε2v2)2

(1 + ε2)ρ(1− ε4v2)
(1− ε2)v
1− ε4v2

 .
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2.2. Strict hyperbolicity fails for high-velocity fields. From the relation

λ2 − λ1 = 2
1− ε2v2

1− ε4v2
> 0

we deduce that:

Lemma 2.1 (Hyperbolicity properties). The Euler equations for isothermal rela-
tivistic fluids are strictly hyperbolic in the region |v| < 1/ε for all ρ ≥ 0 (i.e. even
in the presence of vacuum singularities in the mass density field), but strict hyper-
bolicity fails as v → ±1/ε (i.e. in the presence of light speed singularities in the
velocity field).

In contrast, for polytropic perfect fluids the Euler equations also fail to be strictly
hyperbolic at the vacuum ρ = 0.

The v-derivatives of the eigenvalues considered as functions of (ρ, v) are

λ1v =
1− ε2

(1− ε2 v)2
, λ2v =

1− ε2

(1 + ε2 v)2
,

while λ1ρ = λ2ρ = 0. Their derivatives along the characteristic fields are

∇λ1 · r1 =
1− ε2

1 + ε2
1

ρ(1− ε2v)2
> 0,

∇λ2 · r2 =
1− ε2

1 + ε2
1

ρ(1 + ε2v)2
> 0,

while in terms of the Riemann invariants we have

(2.6)

λ1w = λ1vvw + λ1ρρw =
(1− ε2) (1− ε2 v2)

2 (1− ε2 v)2
= λ1z,

λ2z = λ2vvz + λ2ρρz =
(1− ε2) (1− ε2 v2)

2 (1 + ε2 v)2
= λ2w.

Hence, we conclude:

Lemma 2.2 (Genuine nonlinearity property). The Euler equations for isothermal
relativistic fluids admit two genuinely nonlinear characteristic fields in the domain
ρ ≥ 0, |v| < 1/ε. However, the genuine nonlinearity property fails in the limit
v → ±1/ε.

In contrast, for polytropic perfect fluids the Euler equations also fail to be gen-
uinely nonlinear at the vacuum.

We point out that the wave speeds and Riemann invariants are smooth functions
even as ε→ 0:

(2.7)
λ1 = (v − 1)(1 + ε2 v +O(ε4v2)),

λ2 = (v + 1)(1− ε2 v +O(ε4v2)),

and

(2.8) u(v) = v

(
1 +

ε2

3
v2 +O(ε4v4)

)
.

Note that (2.7) is uniform in the whole interval v ∈ [−1/ε, 1/ε], while the remainder
in (2.8) blows-up when v approaches the light speed.
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3. Derivation of additional conservation laws

3.1. Entropy equation. From the equations (1.1) and for smooth solutions we can
derive additional conservation laws, which will play a central role in the existence
theory. By definition, a pair of mathematical entropy U = U(ρ, v) and entropy-flux
F = F(ρ, v) provides a conservation law satisfied by all smooth solutions of (1.1).
The entropy pairs are determined by the compatibility conditions

∇F · rj = λj ∇U · rj , j = 1, 2.

Expressing U,F as functions of w, z and relying on the properties of the Riemann
invariants, these conditions are equivalent to

(3.1) Fw = λ2 Uw, Fz = λ1 Uz,

and imply an equation satisfied by the entropy U = U(w, z) only:

(λ1 Uz)w = (λ2 Uw)z .

That is, U satisfies

(3.2) Uwz +
λ2z

λ2 − λ1
Uw −

λ1w

λ2 − λ1
Uz = 0,

which we will refer to as the entropy equation.
Using the formulas (2.6), the coefficients in (3.2) are found to be

λ1w

λ2 − λ1
=

(1− ε2) (1 + ε2 v)
4(1− ε2 v)

,

λ2z

λ2 − λ1
=

(1− ε2) (1− ε2 v)
4(1 + ε2 v)

,

and thus (3.2) becomes

(3.3) Uwz + b(w + z) Uw + a(w + z) Uz = 0,

where the coefficients depend on w + z only. We have set

a(v) := − (1− ε2)(1 + ε2v)
4(1− ε2v)

,

b(v) :=
(1− ε2)(1− ε2v)

4(1 + ε2v)
= −a(−v),

in which v = v(w + z), and a := a ◦ v, b := b ◦ v, therefore

(3.4)
a(ξ) = −1− ε2

4
1− ε+ (1 + ε)eεξ

1 + ε+ (1− ε)eεξ
,

b(ξ) =
1− ε2

4
1 + ε+ (1− ε)eεξ

1− ε+ (1 + ε)eεξ
= −a(−ξ).

The equation (3.3) is a linear hyperbolic equation with smooth coefficients, and
its solutions are generated by the Riemann function R(w′, z′;w, z), defined for each
fixed (w, z) by the Goursat problem associated with the adjoint operator:

(3.5)

Rw′z′ −
(
b(w′ + z′) R

)
w′ −

(
a(w′ + z′) R

)
z′

= 0,

Rw′(w′, z;w, z) = a(w′ + z) R(w′, z;w, z) on the line z′ = z,

Rz′(w, z′;w, z) = b(w + z′) R(w, z′;w, z) on the line w′ = w,

R(w, z;w, z) = 1.
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The Riemann function allows us to solve the general characteristic value problem

(3.6)

Uwz + b(w + z) Uw + a(w + z) Uz = g,

U(w, z′) = ϕ(w) on the line z = z′,

U(w′, z) = ψ(z) on the line w = w′,

where ϕ,ψ are prescribed characteristic data and g is a given source. Indeed, we
have

U(w, z) :=
1
2
ϕ(w) R(w, z′;w, z) +

1
2
ψ(z) R(w′, z;w, z)

+
∫ w

w′

1
2

R(w′′, z′;w, z)ϕw(w′′) dw′′

+
∫ w

w′

(
(a(w′′ + z′) R(w′′, z′;w, z)− 1

2
Rw′(w′′, z′;w, z)

)
ϕ(w′′) dw′′

+
∫ z

z′

1
2

R(w′, z′′;w, z)ψz(z′′) dz′′

+
∫ z

z′

(
(b(w′ + z′′) R(w′, z′′;w, z)− 1

2
Rz′(w′, z′′;w, z)

)
ψ(z′′) dz′′

+
∫ w

w′

∫ z

z′
g(w′′, z′′) R(w′′, z′′;w, z) dw′′dz′′.

3.2. Non-relativistic limit. We assume first that ε = 0. Formally, when ε → 0
in (3.3) we obtain

U0
wz +

1
4

(
U0

w − U0
z

)
= 0.

The Riemann function associated with this equation was constructed by LeFloch
and Shelukhin (2005):

(3.7) R0(w′, z′;w, z) = e((w−w′)−(z−z′))/4 f0((w − w′) (z − z′)),

where the function f0 = f0(m) is related to the Bessel function of order 0 and can
be characterized as the solution to the ordinary differential equation

mf0
mm + f0

m + f0/16 = 0,

f0(0) = 1, f0
m(0) = −1/16.

One can check that, for every fixed (w, z), the function (w′, z′) 7→ R0(w′, z′;w, z)
defined in (3.7) is the unique solution of the Goursat problem

R0
w′z′ −

1
4

(
R0

w′ − R0
z′

)
= 0,

R0(w′, z;w, z) = e(w−w′)/4 on the line z′ = z,

R0(w, z′;w, z) = e−(z−z′)/4 on the line w′ = w.

The following description of the entropy kernel was also established.

Theorem 3.1 (Entropy kernel of the non-relativistic Euler equations). Consider
the isothermal non-relativistic Euler equations (1.2) (with k = 1 after normaliza-
tion). Then the function

χ0(w, z) =

{
R0(0, 0;w, z) = e(w−z)/4 f0(wz), w z ≤ 0,
0, w z > 0,
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is a fundamental solution of the entropy equation

χ0
wz +

1
4

(
χ0

w − χ0
z

)
= −2δw=0 ⊗ δz=0.

It is a function with bounded variation and

(3.8)
χ0

w(w, z) = e−z/4
(
− (sgn z) δw=0 + ew/4(

1
4
f0(wz) + z f0

m(wz))1wz<0

)
,

χ0
z(w, z) = ew/4

(
− (sgnw) δz=0 + e−z/4(−1

4
f0(wz) + w f0

m(wz))1wz<0

)
,

where 1wz<0 denotes the characteristic function of the set {wz < 0}.

It is is natural to define the entropy kernel by imposing data on the line ρ = 1.
(Observe that w = z = 0 correspond to (ρ, v) = (1, 0).) Hence, the mathematical
entropies of (1.2) that vanish on the vacuum are given by the formula

(3.9) U(w, z) =
∫

R
χ0(w − s, z − s)ψ(s) ds,

valid in each region ρ < 1 and ρ > 1 (as they avoid the point mass at w = z = 0),
where ψ : R → R is an arbitrary, integrable function. A similar formula hold for
the entropy flux.

We recall that entropy solutions to the non-relativistic Euler equations admit
bounded Riemann invariants, and therefore satisfy the restriction |v ± ln ρ| ≤ C
in the physical variables. In particular, the argument of the function f0 in the
definition of χ0 remains in a compact set. Note also that the entropy kernel satisfies

|χ0(ρ, v)| . ρ1/2.

3.3. Entropy kernel. We now return to the general model with ε 6= 0. One of the
main results in the present paper is the following characterization of the entropy
kernel.

Theorem 3.2 (Entropy kernel of the relativistic Euler equations). Consider the
Euler equations for isothermal relativistic fluids (2.1). The function

χ(w, z) =

{
R(0, 0;w, z), w z ≤ 0,
0, w z > 0,

is a fundamental solution of the entropy equation

χwz + b(w + z)χw + a(w + z)χz = −2δw=0 ⊗ δz=0.

It is solely a function of bounded variation and

(3.10)
lim

z→0,wz<0
χ(w, z) =

1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4,

lim
w→0,wz<0

χ(w, z) =
1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4,

(3.11)
χw(w, z) = −(sgn z)

1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4δw=0 + C1(w, z)1wz<0,

χz(w, z) = −(sgnw)
1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4 δz=0 + C2(w, z)1wz<0,



12 P.G. LEFLOCH AND M. YAMAZAKI

where C1, C2 are smooth functions. In the physical variables ρ, v, the kernel χ =
χ(ρ, v) has compact support in the variable v ∈ (−1/ε, 1/ε) (for every fixed value
ρ), and satisfies

lim
ρ→1

χ(ρ, ·) = 0, lim
ρ→1±

χρ(ρ, ·) = ± 1
1+ε2 δv=0 in the weak sense,

|χ(ρ, u)| . ρα, α := (1+ε)2

2(1+ε2) .

In the course of the proof of this theorem we will also show

(3.12)
C1(w, 0) =

1− ε2

4
1− ε+ (1 + ε)eεw

2
e(1−ε)2w/4,

C2(0, z) = −1− ε2

4
1 + ε+ (1− ε)eεz

2
e−(1+ε)2z/4,

and

(3.13)
C1(0, z) =

1− ε2

4

(
1− 1− ε2

4
z

)
1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4,

C2(w, 0) = −1− ε2

4

(
1 +

1− ε2

4
w

)
1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4.

Observe that the kernel χ is only Hölder continuous at the vacuum; the Hölder
exponent converges to 1/2 as ε → 0, allowing us to recover the behavior in

√
ρ

known in the non-relativistic regime. (In fact, as ε → 0, the expansion of the
entropy kernel converges term by term to the one of the non-relativistic case.)
Next, we introduce:

Definition 3.3 (Notion of weak entropy). A pair of continuous maps (U,F) : R+×
(−1/ε, 1/ε) → R2 is called a weak entropy pair of the isothermal relativistic Euler
equations if the partial differential equations (3.1) hold in the sense of distributions
and, moreover, U vanishes on the vacuum within any tame region, in the following
sense: for any M > 0 and ε ∈ (0, 1) there exist some constant C > 0 such that

(3.14) |U(ρ, v)|+ |F(ρ, v)| ≤ C ρα, (ρ, v) ∈ Tε(M).

For instance, the conservative and flux variables in (1.1) do qualify as weak
entropies. From Theorem 3.2 we deduce:

Corollary 3.4 (Entropy pairs of the relativistic Euler equations). In each of the
regions ρ < 1 and ρ > 1 the formula

(3.15) U(w, z) =
∫

R
χ(w − s, z − s)ψ(s) ds

determines a family of weak entropies, where ψ : R → R is an arbitrary integrable
function.

3.4. Entropy flux. Given an entropy U (with sufficient decay) we deduce from
(3.1), that the associated entropy flux is

F(w, z) =
∫ w

−∞
λ2(w′, z) Uw(w′, z) dw′

= λ2(w, z) U(w, z)−
∫ w

−∞
λ2w(w′, z) U(w′, z) dw′.
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A similar formula hold with λ2 replaced by λ1 and, therefore,

F(w, z) =
1
2

(λ1(w, z) + λ2(w, z)) U(w, z)

− 1
2

∫ w

−∞
λ2w(w′, z) U(w′, z) dw′ +

1
2

∫ ∞

z

λ1z(w, z′) U(w, z′) dz′.

These identities allow us to define the entropy flux kernel, denoted below by σ =
σ(ρ, v, s) from the entropy kernel χ, and in turn to compute the entropy flux via
the formula

(3.16) F(ρ, v) = F(w, z) =
∫

R
σ(w − s, z − s)ψ(s) ds.

More precisely, the condition (3.1) reads

(3.17) σw = λ2χw, σz = λ1χz.

By taking advantage of the Lorentz invariance property of the relativistic Euler
equations we can decompose the entropy flux as follows:

(3.18) σ(ρ, v, s) =: u(v)χ(ρ, v, s) + σ](ρ, v, s),

or, equivalently, σ(ρ, v, s) = w+z
2 χ(ρ, v, s) + σ](ρ, v, s). The key property (which is

easily checked from the equations defining the entropy and entropy flux kernel) is
that the dependence of χ and σ with respect to s can be suppressed, since

χ(ρ, v, s) = χ(w − s, z − s),

σ](ρ, v, s) = σ](w − s, z − s).

Clearly, the condition (3.17) is equivalent to

(3.19)
σ]

w = −w + z

2
χw −

1
2
χ+ λ2 χw,

σ]
z = −w + z

2
χz −

1
2
χ+ λ1 χz

Moreover we impose the following boundary condition on σ] = σ](w, z):

σ](0, 0) = 0.

In particular, the traces along the boundaries w = 0 and z = 0 can be determined
explicitly from the boundary conditions for the Riemann function (3.5) and the
expansion (3.11). By plugging (2.4) and (3.11), we obtain the following corollary
of Theorem 3.2.

Lemma 3.5 (Entropy flux kernel).

(3.20)
σ]

w =C5(z) e−(1+ε)2z/4 δw=0 + C3(w, z)1wz<0,

σ]
z =C6(w) e(1−ε)2w/4 δz=0 + C4(w, z)1wz<0,

where

C3(w, z) =
(
λ2(w, z)−

w + z

2
)
C1(w, z)−

1
2
χ(w, z),

C4(w, z) =
(
λ1(w, z)−

w + z

2
)
C2(w, z)−

1
2
χ(w, z),
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and

C5(z) := |z| 1− ε+ (1 + ε)eεz

4
+ (sgn z)

1− ε− (1 + ε)eεz

2ε
,

C6(w) := |w| 1 + ε+ (1− ε)eεw

4
+ (sgnw)

1 + ε− (1− ε)eεw

2ε
.

Finally, it is not difficult to check that, again in each of the regions ρ < 1 and
ρ > 1, the formula

(3.21)
F(w, z) =

∫
R
σ(w − s, z − s)ψ(s) ds

=
∫

R

(
u(v)χ(w − s, z − s) + σ](w − s, z − s)

)
ψ(s) ds

determines the entropy flux associated with (3.15).

4. Technical estimates

In this section we give a proof of Theorem 3.2. The existence of the Riemann
function is standard, as it is determined by a Goursat problem for a linear hyperbolic
equation with regular coefficients. The main issues to be dealt with are the behavior
of χ near ρ = 0 and near v = ±1/ε, as well as the expansion of χ along the boundary
of its support.

Lemma 4.1. The traces of the kernel along its support (wz < 0) are given by

(4.1) χ(w, z) →

{
A(w) := 1+ε+(1−ε)eεw

2 e(1−ε)2w/4, z → 0,
B(z) := 1−ε+(1+ε)eεz

2 e−(1+ε)2z/4, w → 0,

and, moreover, within any compact set in ρ

χ(ρ, v) . ρα.

Proof. We need to integrate out the boundary conditions arising in (3.5). The
second differential equation in (3.5) implies

ln |R(w′, z;w, z)|+ C0 = −1− ε2

4

(
− (w′ + z) + 2

∫ w′
1

1− ε2v
dw′

)
for some constant C0, where∫ w′

1
1− ε2v

dw′ =
∫ w′

1
1− ε tanh (ε(w′ + z)/2)

dw′

=
2

1− ε2
ln

(
(1− ε)eε(w′+z) + 1 + ε

)
+

1
1 + ε

(w′ + z).

The third equation in (3.5) implies

ln |R(w, z′;w, z)|+ C0 =
1− ε2

4

(
− (w + z′) + 2

∫ z′ 1
1 + ε2v

dz′
)

for some constant C0, where∫ z′ 1
1 + ε2v

dz′ =
∫ z′ 1

1 + ε tanh (ε(w + z′)/2)
dz′

=− 2
1− ε2

ln
(
(1 + ε)eε(w+z′) + 1− ε

)
+

1
1− ε

(w + z′).
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Since R(w, z;w, z) = 1, we find

R(w′, z′;w, z)

=

e
−(1−ε)2(w′−w)/4 1−ε+(1+ε)e−ε(w+z)

(1−ε)eε(w′−w)+(1+ε)e−ε(w+z) =: A(w′;w, z), z′ = z,

e(1+ε)2(z′−z)/4 1+ε+(1−ε)e−ε(w+z)

(1+ε)eε(z′−z)+(1−ε)e−ε(w+z) =: B(z′;w, z), w′ = w,

and in particular

R(0, 0;w, z) =

{
e(1−ε)2w/4 1+ε+(1−ε)eεw

2 = A(0;w, 0) = A(w), z = 0,
e−(1+ε)2z/4 1−ε+(1+ε)eεz

2 = B(0; 0, z) = B(z), w = 0,

which provides the desired behavior on χ along its support.
Next, we write along the boundary z = 0 (corresponding to u = R and w = 2R)

A(w) =
1
2
ρ

(1−ε)2

2(1+ε2)
(
1 + ε+ (1− ε)ρ

2ε
1+ε2

)
,

which shows that χ(ρ, v) . ρα. On the boundary w = 0 we have u = −R and
z = −2R and we find a similar estimate χ(ρ, v) . ρα since

B(z) =
1
2
ρ

(1+ε)2

2(1+ε2)
(
1− ε+ (1 + ε)ρ−

2ε
1+ε2

)
.

Since χ is smooth, the estimate remains valid in any compact region. �

Lemma 4.2. The entropy kernel χ(w, z) = R(0, 0;w, z)1wz<0 is a fundamental
solution of the entropy equation

χwz + b(w + z)χw + a(w + z)χz = −2δw=0 ⊗ δz=0.

The traces of the derivatives χw and χz along the boundaries z = 0 and w = 0
(while keeping wz < 0) are

(4.2)
lim
z→0

χw(w, z) = C1(w, 0) = Aw(w)

=
1− ε2

4
1− ε+ (1 + ε)eεw

2
e(1−ε)2w/4 = −a(w)A(w),

and

(4.3)
lim
w→0

χz(w, z) = C2(0, z) = Bz(z)

= −1− ε2

4
1 + ε+ (1− ε)eεz

2
e−(1+ε)2z/4 = −b(z)B(z).

Proof. In view of (4.1), we obtain

(4.4)

χw(w, z) = Rw(0, 0;w, z)1wz<0 − (sgn z)B(z)δw=0

= −(sgn z)
1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4δw=0 + C1(w, z)1wz<0,

χz(w, z) = Rz(0, 0;w, z)1wz<0 − (sgnw)A(w) δz=0

= −(sgnw)
1 + ε+ (1− ε) eεw

2
e(1−ε)2w/4δz=0 + C2(w, z)1wz<0.
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On the other hand, from (4.1) we can determine

C1(w, 0) = Aw(w)

=
d

dw

(1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4

)
= (1− ε2)

1− ε+ (1 + ε)eεw

8
e(1−ε)2w/4 = −a(w)A(w)

and
C2(0, z) = Bz(z)

=
d

dz

(
1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4

)
= −(1− ε2)

1 + ε+ (1− ε)eεz

8
e−(1+ε)2z/4 = −b(z)B(z).

We differentiate (4.4) once again, and in view of (4.2) and (4.3) we obtain

χwz(w, z) = Rwz(0, 0;w, z)1wz<0 − (sgnw) Rw(0, 0;w, 0) δz=0

− (sgn z)Bz(z) δw=0 − 2B(0) δw=0 ⊗ δz=0

= Rwz(0, 0;w, z)1wz<0 − (sgnw)Aw(w) δz=0

− (sgn z)Bz(z) δw=0 − 2δw=0 ⊗ δz=0

= Rwz(0, 0;w, z)1wz<0 + (sgnw) a(w)A(w) δz=0

+ (sgn z) b(z)B(z) δw=0 − 2 δw=0 ⊗ δz=0,

which allows us to compute

χwz + b(w + z)χw + a(w + z)χz

= Rwz(0, 0;w, z)1wz<0 + (sgnw) a(w)A(w) δz=0

+ (sgn z) b(z)B(z) δw=0 − 2 δw=0 ⊗ δz=0

+ b(w + z) (Rw(0, 0;w, z)1wz<0 − (sgn z)B(z)δw=0)

+ a(w + z) (Rz(0, 0;w, z)1wz<0 − (sgnw)A(w) δz=0)

=
(
Rwz(0, 0;w, z) + b(w + z) Rw(0, 0;w, z) + a(w + z) Rz(0, 0;w, z)

)
1wz<0

+ (sgnw) (a(w)− a(w + z)) A(w) δz=0

+ (sgn z)
(
b(z)− b(w + z)

)
B(z) δw=0 − 2 δw=0 ⊗ δz=0

= −2δw=0 ⊗ δz=0.

�

Lemma 4.3. The traces of the derivatives χw and χz along the boundaries w = 0
and z = 0 (while keeping wz < 0) are

(4.5)

lim
w→0

χw(w, z) = C1(0, z)

=
1− ε2

4
(
1− (1− ε2)z/4

) 1− ε+ (1 + ε)eεz

2
e−(1+ε)2z/4

=
1− ε2

4
(
1− (1− ε2)z/4

)
χ(0, z)
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and

(4.6)

lim
z→0

χz(w, z) = C2(w, 0)

= −1− ε2

4
(
1 + (1− ε2)w/4

) 1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4

= −1− ε2

4
(
1 + (1− ε2)w/4

)
χ(w, 0).

Proof. We give the proof for the boundary z = 0 with w > 0, the calculation for
the other boundary being similar. Using (3.6) and the expressions (3.4) we write

d

dw
χz(w, 0−) + a(w)χz(w, 0−) = −b(w)χw(w, 0−),

where the coefficients a and b can be regarded as functions of w + z = w and the
right-hand side is already known. By integrating the above equation we obtain

(4.7)
χz(w, 0−)

= −
∫ w

0

b(w′)χw(w′, 0) e
R w′

w
a(w′′) dw′′

dw′ + χz(0, 0) e−
R w
0 a(w′) dw′

,

where χz(0, 0) stands for limw→0+ χz(w, 0−).
In view of (4.3), χz(0, 0) = −(1− ε2)/4. In view of (4.2) and A(0) = 1,

e−
R w
0 a(w′) dw′

= A(w) =
1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4

and

e
R w′

w
a(w′′) dw′′

=
A(w)
A(w′)

=
1 + ε+ (1− ε)eεw

1 + ε+ (1− ε)eεw′ e
−(1−ε)2(w′−w)/4.

Returning to (4.7), we find

b(w′)χw(w′, 0) e
R w′

w
a(w′′) dw′′

= −b(w′) a(w′)A(w′)
A(w)
A(w′)

=
(1− ε2)2

32
(
1 + ε+ (1− ε)eεw

)
e(1−ε)2w/4

and

χz(w, 0−) = −1− ε2

4
(
1 + (1− ε2)w/4

)
A(w),

thus

C2(w, 0) = −1− ε2

4
(
1 + (1− ε2)w/4

) 1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4.

�

The singularities (3.11) of the derivatives of χ with its values at the boundary
(3.12), (3.13) follow then from (4.4) and from (4.2), (4.3), (4.5), and (4.6). Moreover
substituting (3.11) into

χρ = (∂w − ∂z)χRρ,

we obtain:

Lemma 4.4. The traces of the derivatives χρ along ρ = 1± are

lim
ρ→1±

χρ(ρ, v) = ± 1
1 + ε2

δv=0.
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Lemma 4.5 (Derivatives of the entropy kernel and the entropy-flux kernel). We
have

(4.8)
χs(ρ, v, s)

= X(1)(w − z) (−δs=w + δs=z) +X(2)(s− w, s− z)1(s−w)(s−z)<0,

where

X(1)(w − z) := sgn (w − z)
1 + ε+ (1− ε) eε(w−z)

2
e(1−ε)2 (w−z)/4

= sgn (w − z) lim
η→0,ξη<0

χ(ξ, η)|ξ=w−z,

and

X(2)(ρ, v, s) = X(2)(s− w, s− z) := − (C1(w − s, z − s) + C2(w − s, z − s)) .

We have also

(4.9)
σ]

s(ρ, v, s)

= X(3)(w − z) (δs=w + δs=z) +X(4)(s− w, s− z)1(s−w)(s−z)<0,

where

X(3)(w − z) := −
(
|w − z|

2
1 + ε+ (1− ε)eε(w−z)

2

+sgn (w − z)
1 + ε− (1− ε)eε(w−z)

2ε

)
e(1−ε)2(w−z)/4

= sgn (w − z)
(
λ1(w − z, 0)− w − z

2

)
lim

η→0,ξη<0
χ(ξ, η)|ξ=w−z,

and

X(4)(ρ, v, s) = X(4)(s− w, s− z) := − (C3(w − s, z − s) + C4(w − s, z − s)) .

Proof. In view of (3.11) and (3.20), we obtain

χs(ρ, v, s) =
∂

∂s
(χ(w − s, z − s)) = −(χw + χz)(w − s, z − s)

=sgn (z − s)
1− ε+ (1 + ε)eε(z−s)

2
e−(1+ε)2(z−s)/4 δw=s

− C1(w − s, z − s)1(w−s)(z−s)<0

+ sgn (w − s)
1 + ε+ (1− ε)eε(w−s)

2
e(1−ε)2(w−s)/4 δz=s

− C2(w − s, z − s)1(w−s)(z−s)<0

and thus

χs(ρ, v, s) =sgn (w − z)
1 + ε+ (1− ε)eε(w−z)

2
e(1−ε)2(w−z)/4 (−δs=w + δs=z)

− (C1(w − s, z − s) + C2(w − s, z − s))1(w−s)(z−s)<0.

Defining X(1)(w−z) and X(2)(s−w, s−z) as in the lemma we obtain the derivative
of the entropy kernel (4.8). In view of (3.10), we have also

X(1)(w − z) = sgn (w − z) lim
η→0,ξη<0

χ(ξ, η)|ξ=w−z.
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Similarly, for the entropy flux kernel we use using (3.20) and obtain

σ]
s(ρ, v, s) =

∂

∂s

(
σ](w − s, z − s)

)
= −(σ]

w + σ]
z)(w − s, z − s)

=
(
−|z − s| 1− ε+ (1 + ε)eε(z−s)

4
− sgn (z − s)

1− ε− (1 + ε)eε(z−s)

2ε

)
e−(1+ε)2(z−s)/4 δs=w − C3(w − s, z − s)1(w−s)(z−s)<0

+
(
−|w − s| 1 + ε+ (1− ε)eε(w−s)

4
− sgn (w − s)

1 + ε− (1− ε)eε(w−s)

2ε

)
e(1−ε)2(w−s)/4 δs=z − C4(w − s, z − s)1(w−s)(z−s)<0

=−
(
|w − z|

2
1 + ε+ (1− ε)eε(w−z)

2
+ sgn (w − z)

1 + ε− (1− ε)eε(w−z)

2ε

)
e(1−ε)2(w−z)/4 (δs=w + δs=z)

− (C3(w − s, z − s) + C4(w − s, z − s))1(w−s)(z−s)<0.

Defining X(3)(w−z) and X(4)(s−w, s−z) as in the lemma we obtain the derivative
of the entropy-flux kernel (4.9). Furthermore, in view of (2.4), (3.10)

X(3) = sgn (w − z)
(
λ1(w − z, 0)− w − z

2
)

lim
η→0,ξη<0

χ(ξ, η)|ξ=w−z

= sgn (−w + z)
(
λ2(−w + z, 0)− −w + z

2
)1 + ε+ (1− ε)eε(w−z)

2
e(1−ε)2(w−z)/4.

�

5. Uniform estimates for the Lax-Friedrichs scheme

In this section, we follow DiPerna (1983) who considered non-relativistic poly-
tropic fluids, and we apply the Lax-Friedrichs scheme. As observed by Hsu, Lin,
and Makino (2004), DiPerna’s arguments carry over to relativistic fluids. Our main
purpose is to derive new uniform bounds, and establish that Lax-Friedrichs approxi-
mations remain in a tame region, which is uniquely determined from the initial data
of the initial value problem under consideration.

We begin with:

Lemma 5.1 (Riemann problem). Consider the relativistic Euler equations (1.1)
for ε ∈ (0, 1]. The Riemann problem corresponding to an initial data made of a sin-
gle jump discontinuity (at x = 0) separating two constant states (ρl, vl) and (ρr, vr)
admits a unique self-similar solution (ρ, v) = (ρ, v)(x/t) satisfying all entropy in-
equalities. The solution of the Riemann problem satisfies the uniform L∞ bounds
in the Riemann invariant variables,

(5.1)
0 ≤W (x/t) ≤W0 := sup(Wl,Wr),

0 ≤ Z(x/t) ≤ Z0 := sup(Zl, Zr),

where the notation W,Z stands for the modified Riemann invariants associated with
the variables (ρ, v). As a consequence, there exists a constant M > 0 depending
only on (ρl, vl) and (ρr, vr) such that

(5.2)
0 ≤ ρ(x/t) ≤M,

1− ε|v(x/t)| ≥ (ρ(x/t)/M)ε′ ,
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where ε′ was defined in the introduction.

Proof. When ε ∈ (0, 1) the Riemann problem was solved by Smoller and Temple
(1993). In particular, they established that the shock curves lie in the interior of the
rectangular regions limited by the integral curves of the characteristic fields. This
property implies directly the maximum principle (5.1). Recall that the rarefaction
curves are given by

R1 :u+R = ul +Rl, ρ ≤ ρl,

R2 :u−R = ul −Rl, ρ ≥ ρl.

Hence on R1, w is constant and z increases and on R2, z is constant and w increases.
The shock curves are given by (i = 1, 2)

Si : ρ = ρ(v; ρl, vl) = ρl + ρl β(v, vl)
(
1 + (−1)i

√
1 + 2/β

)
,

where

β(v, vl) :=
(1 + ε2)2

2
(v − vl)2

(1− ε2v2)(1− ε2v2
l )
.

From the definition (2.5), the condition (5.1) can be rewritten in the form

1
Z0

ρ(x/t)1/(1+ε2) ≤
(1 + εv(x/t)

1− εv(x/t)

)1/(2ε)

≤W0 ρ(x/t)−1/(1+ε2),

which leads to (5.2) with a constant Mε := (sup(W0, Z0))
1+ε2

depending upon ε.
In fact, from ρ = (WZ)(1+ε2)/2,

ρ(x/t) ≤ (W0Z0)(1+ε2)/2 ≤Mε.

On one hand, 1+εv(x/t)
1−εv(x/t) ≤ ρ(x/t)−2ε/(1+ε2)W 2ε

0 leads to

1− εv(x/t) ≥ 2
1 + ρ(x/t)−2ε/(1+ε2)W 2ε

0

≥ 2

1 + (ρ(x/t)/Mε)
−2ε/(1+ε2)

≥ (ρ(x/t)/Mε)
ε′

On the other hand, the inequality

1 + εv(x/t)
1− εv(x/t)

≥ ρ(x/t)2ε/(1+ε2)Z−2ε
0

leads us to

1 + εv(x/t) ≥ 2
1 + ρ(x/t)−2ε/(1+ε2)Z2ε

0

≥ 2

1 + (ρ(x/t)/Mε)
−2ε/(1+ε2)

≥ (ρ(x/t)/Mε)
ε′
.

This establishes (5.2).
Now, by expressing Wl, Zl,Wr, Zr in terms of the initial density and velocity,

one see that the constant Mε can be taken to be independent of ε. In fact, from
the definition (2.5),

W0 = ρ
1/(1+ε2)
0

(
1 + εv0
1− εv0

)1/(2ε)

, Z0 = ρ
1/(1+ε2)
0

(
1 + εv0
1− εv0

)−1/(2ε)

,
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so

W 1+ε2

0 = ρ0

(
1 + εv0
1− εv0

)(1+ε2)/(2ε)

= ρ0e
A with A =

1 + ε2

2ε
log

(
1 + εv0
1− εv0

)
.

By taking ϕ(x) = 1
2x log

(
1+x
1−x

)
(x 6= 0) with ϕ(0) = 0,

A = (1 + ε2)v0 ϕ(εv0)

= (1 + ε2)v0
ϕ′′(0)

2
(εv0)2 (1 + o(|εv0|))

and ϕ′(0) = 0, ϕ′′(0) = 8/3. Hence

W 1+ε2

0 = ρ0 exp
(

(1 + ε2)v0
ϕ′′(0)

2
(εv0)2 (1 + o(|εv0|))

)
Similarly, we can show Z1+ε2

0 = ρ0 exp
(
(1 + ε2)v0

ϕ′′(0)
2 (εv0)2 (1 + o(|εv0|))

)
. There-

fore Mε can be expressed only in terms of (ρl, vl) and (ρr, vr). �

Consider a family of cartesian discretizations of the spacetime R+×R, based on a
time length τ and a space length h, where the ration τ/h is kept fixed while h→ 0.
Set tn := nτ (n being a positive integer) and xj := j h (j being an integer). The Lax-
Friedrichs scheme allows us to construct approximate solutions ρh, vh : R+×R → R
to the relativistic Euler equations, which, for any pair (n, j) with n + j even, is
constant equal to ρn

j , v
n
j in every slab [tn, tn+1) × Ij := [tn, tn+1) × (xj−1, xj+1).

The initial data ρ0, v0 is averaged over each initial cell

(ρ0
j , v

0
j ) :=

1
2h

∫
Ij

(ρ0, v0)(x) dx, j even.

Given a piecewise constant approximation at a given time tn, we solve a Riemann
problem in the neighborhood of each point xj+1, for j such that n+ j is even, and
we then average the solution at time t = tn+1 − 0 over the intervals (xj , xj+2):

(ρn+1
j+1 , v

n+1
j+1 ) :=

1
2h

∫
Ij+1

(ρh, vh)(tn+1 − 0, x) dx, n+ j even.

Observe that, if ε ∈ (0, 1) (as well as for ε = 1), the characteristic speeds
λ1, λ2 remain bounded globally, even when the velocity approaches the light speed.
Indeed, all wave speeds in the problem under consideration are bounded. (Note that
a quite different situation is met with the non-relativistic model corresponding to
ε = 0, for which the characteristic speeds are unbounded.) To avoid any interaction
in two neighboring Riemann problems, it is necessary to restrict the ratio τ/h by
the CFL stability condition

(5.3)
τ

h
max

( |vh|+ 1
1− ε2|vh|

)
<

1
2
,

where the maximum is taken over all (t, x). For instance, a sufficient condition is

(5.4)
τ

h

1
ε
<

1
2
,

which clearly becomes more restrictive as ε approaches 0.
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We observe that both the Riemann problem and the projection step satisfy
uniform stability estimates. Finally, from Lemma 5.1 we deduce the key estimate
of this section:

Lemma 5.2 (Uniform a priori bounds). Provided that the CFL condition (5.3)
holds, the approximations (ρh, vh) satisfy the tame condition

(5.5)
0 ≤ ρh(t, x) ≤M,

1− ε|vh(t, x)| ≥
(
ρh(t, x)/M

)ε′

,

for some constant M > 0 depending solely on the initial data.

In addition to the uniform amplitude bound on ρh, vh one can also derive entropy
dissipation bounds which imply that the entropy inequalities associated with any
weak entropy are satisfied up to an error term vanishing in the distribution sense as
h→ 0. We omit the details and refer to DiPerna (1983) and Hsu, Lin, and Makino
(2004) for further details on Lax-Friedrichs approximations.

6. Reduction of the Young measure

We rely on the theory of compensated compactness for nonlinear hyperbolic
systems for which we refer to Tartar (1979 & 1983), Murat (1978 & 1981), and
DiPerna (1983). In view of the uniform bounds derived in Lemma 5.2 we can
associate to the sequence ρh, vh a Young measure ν = νt,x supported in a tame
region T(M) for some uniform constant M > 0. By definition, for almost every
point, νt,x is a probability measure in the variable ρ, v which has compact support
in the Riemann invariant variables W,Z. The Young measure allows us to compute
the weak limit of any composite function of the sequence ρh, vh, that is:

(6.1) g(ρh, vh) → 〈ν, g〉

in the sense of distributions, for every function g that is continuous in the Riemann
invariants W,Z.

Relying on standard arguments one can check that the entropy dissipation mea-
sure associated with a weak entropy pair (U,F),

∂tU(ρh, vh) + ∂xF(ρh, vh)

belongs to a compact set of the Sobolev space H−1
loc . By the div-curl lemma, this

property implies that ν satisfies Tartar’s commutation relation

(6.2) 〈ν,U1F2 − U2F1〉 = 〈ν,U1〉〈ν,F2〉 − 〈ν,U2〉〈ν,F1〉

for any two weak entropy pairs (U1,F1), (U2,F2). Plugging the entropy-entropy flux
pairs given by (3.15) and (3.21) in the relation (6.2) and dropping the test-function
ψ, we obtain for almost every (t, x) and for all s, s′ ∈ R

(6.3) 〈ν, χ(s)σ(s′)− χ(s)σ(s′)〉 = 〈ν, χ(s)〉〈ν, σ(s′)〉 − 〈ν, χ(s′)〉 〈ν, σ(s)〉.

Equivalently, this identity holds with σ replaced by σ] = σ − uχ.
Our main result in this section is as follows. We fix a point (t, x) (where the

above relation holds) and consider the Young measure at that point.
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Theorem 6.1 (Young measure reduction for the relativistic Euler equations). A
probability measure ν with compact support in the (W,Z)-plane and satisfying (6.3)
for all s, s′ is either a Dirac mass

ν = δρ,v

or else has its support included in the vacuum line

supp ν ⊂
{
ρ = 0

}
=

{
WZ = 0

}
.

In other words, there exists a function (ρ, v) = (ρ, v)(t, x) defined for almost
every (t, x) such that, almost everywhere, either ρ(t, x) > 0 and νt,x = δ(ρ,v)(t,x) or
else ρ(t, x) = 0 and νt,x is supported in the vacuum line (the velocity begin then
irrelevant). This immediately implies, for instance, that ρh as well as ρhvh converge
to their limits ρ and ρ v, respectively. By a (standard) property of consistency of
the Lax-Friedrichs scheme the limit must be a weak solution of the relativistic Euler
equations satisfying entropy inequalities for all weak entropy pairs. This completes
the proof of our main result stated earlier in Theorem 1.2.

Proof. We closely follow the method used by LeFloch and Shelukhin (2005). Given
some s1 ∈ R, it will be convenient to write χ1 = χ(ρ, v, s1). Given s1, s2, s3 ∈ R,
we consider the corresponding identity (6.3) for the three pairs

(s1, s2), (s2, s3), (s3, s1).

We then multiply these identities by 〈ν, χ3〉, 〈ν, χ1〉, 〈ν, χ2〉, respectively, where χj =
χ(ρ, v, sj) (j = 1, 2, 3), and we add up these three identities. Then, due to the
symmetry of the expressions, the sum of the right-hand sides vanishes identically:

〈ν, χ3〉
(
〈ν, χ1〉〈ν, σ]

2〉 − 〈ν, χ2〉 〈ν, σ]
1〉

)
+ 〈ν, χ1〉

(
〈ν, χ2〉〈ν, σ]

3〉 − 〈ν, χ3〉 〈ν, σ]
2〉

)
+ 〈ν, χ2〉

(
〈ν, χ3〉〈ν, σ]

1〉 − 〈ν, χ1〉 〈ν, σ]
3〉

)
= 0,

where σ]
j = σ](ρ, v, sj), whereas the sum of the left-hand side is

〈ν, χ3〉〈ν, χ1σ
]
2 − χ2σ

]
1〉+ 〈ν, χ1〉〈χ2σ

]
3 − χ3σ

]
2〉+ 〈ν, χ2〉〈ν, χ3σ

]
1 − χ1σ

]
3〉 = 0.

Then, by differentiating once in s2 and in s3 and by setting ∂j := ∂/∂sj , we
obtain

(6.4)
〈ν, ∂3χ3〉〈ν, χ1∂2σ

]
2 − ∂2χ2σ

]
1〉+ 〈ν, ∂2χ2〉〈ν, ∂3χ3σ

]
1 − χ1∂3σ

]
3〉

=− 〈ν, χ1〉〈∂2χ2∂3σ
]
3 − ∂3χ3∂2σ

]
2〉,

which is valid in the sense of distributions in R3. In view of (4.8) and (4.9), by
setting X(i)

j := X(i)|s=sj we find, on one hand,

(6.5)
χ1∂2σ

]
2 − ∂2χ2σ

]
1 =

(
χ1X

(3) + σ]
1X

(1)
)
δs2=w +

(
χ1X

(3) − σ]
1X

(1)
)
δs2=z

+
(
χ1X

(4)
2 − σ]

1X
(2)
2

)
1E2

where Ej :=
{
(w − sj)(z − sj) < 0

}
and

(6.6)
∂3χ3σ

]
1 − χ1∂3σ

]
3 =

(
− σ]

1X
(1) − χ1X

(3)
)
δs3=w +

(
σ]

1X
(1) − χ1X

(3)
)
δs3=z

+
(
σ]

1X
(2)
3 − χ1X

(4)
3

)
1E3



24 P.G. LEFLOCH AND M. YAMAZAKI

and, on the other hand,
(6.7)

∂3χ3∂2σ
]
2 − ∂2χ2∂3σ

]
3

= 2X(1)X(3)
(
δs2=wδs3=z − δs2=zδs3=w

)
+

((
X

(2)
3 X(3) +X(1)X

(4)
3

)
δs2=w +

(
X

(2)
3 X(3) −X(1)X

(4)
3

)
δs2=z

)
1E3

+
((
−X(1)X

(4)
2 −X

(2)
2 X(3)

)
δs3=w +

(
X(1)X

(4)
2 −X

(2)
2 X(3)

)
δs3=z

)
1E2

+
(
X

(2)
3 X

(4)
2 −X

(2)
2 X

(4)
3

)
1E21E3 .

In view of the formulas (6.5) and (6.6), the right-hand side of (6.4) contains
products of functions with bounded variation and Dirac masses, plus regular terms.
Such products were already discussed by Dal Maso, LeFloch, and Murat (1995).
On the other hand, the right-hand side of (6.4) is more singular and involves also
products of measures. Our calculations will show that the left-hand side of (6.4)
tends to zero in the sense of distributions when s2, s3 → s1, while the right-hand
side tends to a non-trivial limit.

We test the identity (6.4) with the following function of the variables s1, s2, s3

(6.8) ψ(s1)ϕκ
2 (s1 − s2)ϕκ

3 (s1 − s3) := ψ(s1)
1
κ2
ϕ2

(
(s1 − s2)/κ

)
ϕ3

(
(s1 − s3)/κ

)
,

where κ is a small parameter, ψ is a smooth and compactly supported function,
and ϕj : R → R (j = 2, 3) are mollifiers such that

ϕj ≥ 0,
∫

R
ϕj(sj) dsj = 1, supp ϕj ⊆ (−1, 1).

We consider first the right-hand side of (6.4). Applying the test-function (6.8)
to the distribution 〈ν, χ1〉〈∂2χ2∂3σ

]
3 − ∂3χ3∂2σ

]
2〉, we obtain the integral term

(6.9)
∫

R3
〈ν, χ1〉〈∂2χ2∂3σ

]
3 − ∂3χ3∂2σ

]
2〉ψ(s1)ϕκ

2 (s1 − s2)ϕκ
3 (s1 − s3) ds1ds2ds3,

which we decompose as a sum
4∑

i=1

Iκ
i . Relying here on Lemma 4.5, we distinguish

between products of Dirac measures

Iκ
1 := 2

∫
R
ψ(s1)〈ν, χ1〉

〈
X(1)X(3) (ϕκ

2 (s1 − w)ϕκ
3 (s1 − z)− ϕκ

2 (s1 − z)ϕκ
3 (s1 − w))

〉
ds1,

products of Dirac measures by functions with bounded variation

Iκ
2 :=

∫
R
ψ(s1)〈ν, χ1〉

〈
ϕκ

2 (s1 − w)
∫

R

(
X

(2)
3 X(3) +X(1)X

(4)
3

)
ϕκ

3 (s1 − s3)1E3 ds3
〉
ds1

−
∫

R
ψ(s1)〈ν, χ1〉

〈
ϕκ

3 (s1 − w)
∫

R

(
X

(2)
2 X(3) +X(1)X

(4)
2

)
ϕκ

2 (s1 − s2)1E2 ds2
〉
ds1

=:Iκ
2,1 − Iκ

2,2,



ENTROPY SOLUTIONS OF THE EULER EQUATIONS 25

Iκ
3 :=

∫
R
ψ(s1)〈ν, χ1〉

〈
ϕκ

2 (s1 − z)
∫

R

(
X

(2)
3 X(3) −X(1)X

(4)
3

)
ϕκ

3 (s1 − s3)1E3 ds3
〉
ds1

−
∫

R
ψ(s1)〈ν, χ1〉

〈
ϕκ

3 (s1 − z)
∫

R

(
X

(2)
2 X(3) −X(1)X

(4)
2

)
ϕκ

2 (s1 − s2)1E2 ds2
〉
ds1.

The remainder

Iκ
4 :=

∫
R3
ψ(s1)〈ν, χ1〉

〈 (
X

(2)
3 X

(4)
2 −X

(2)
2 X

(4)
3

)
1E21E3

〉
ϕκ

2 (s1 − s2)ϕκ
3 (s1 − s3) ds1ds2ds3

involve functions only.
By a change of variable we see that the integral term

Iκ
1 =

2
κ

∫
W,Z

∫
W ′,Z′

∫
R
ψ(κy + w)χ(ρ, v, κy + w)X(1)X(3)

(ϕκ
2 (y)ϕκ

3 (y + (w − z)/κ)− ϕκ
2 (y + (w − z)/κ)ϕκ

3 (y)) dydνdν′

tends to zero, i.e. Iκ
1 → 0. The same is true for the smoothest term Iκ

4 , in fact

Iκ
4 =

∫
W,Z

∫
W ′,Z′

∫
R

( ∫ w

z

X(2)(ρ, v, s3)ϕκ
3 (s1 − s3) ds3

∫ w

z

X(4)(ρ, v, s2)

ϕκ
2 (s1 − s2) ds2 −

∫ w

z

X(2)(ρ, v, s2)ϕκ
2 (s1 − s2) ds2

∫ w

z

X(4)(ρ, v, s3)

ϕκ
3 (s1 − s3) ds3

)
ψ(s1)χ(ρ, v, s1) ds1dνdν′,

which clearly tends to∫
W,Z

∫
W ′,Z′

∫
R

(
X(2)(ρ, v, s1)X(4)(ρ, v, s1)−X(2)(ρ, v, s1)X(4)(ρ, v, s1)

)
ψ(s1)χ(ρ, v, s1) ds1dνdν′ = 0.

Next, let us consider the term Iκ
2 = Iκ

2,1 − Iκ
2,2 in (6.9). By defining

Q− := X(2)X(3) +X(1)X(4),

Q−j := Q−(ρ, v, sj), χ′ := χ(ρ′, v′, s), χ′j := χ(ρ′, v′sj),

we can write

Iκ
2,1 = −

∫
W,Z

∫
W ′,Z′

∫
R
ψ(s1)χ′1ϕ

κ
2 (s1 − w)

∫ z

w

Q−3 ϕ
κ
3 (s1 − s3) ds3ds1dνdν′.

Lemma 6.2. Let f, F : R → R be continuous functions. Then, for every interval
[a, b], [a′, b′] ⊆ R, the integral term

Iκ(a, b, a′, b′) :=
∫ b′

a′
f(s1)ϕκ

2 (s1 − a)
∫ b

a

F (s3)ϕκ
3 (s1 − s3) ds3ds1

converges (when κ→ 0) toward

f(a)F (a) (A2,3 1a′<a<b′ +B2,3 1a=a′ + C2,3 1a=b′) ,
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where the coefficients A2,3 := B2,3+C2,3 and B2,3 and C2,3 depend on the mollifying
functions as follows:

B2,3 :=
∫ ∞

0

∫ y1

−∞
ϕ2(y1)ϕ3(y3) dy3dy1,

C2,3 :=
∫ 0

−∞

∫ y1

−∞
ϕ2(y1)ϕ3(y3) dy3dy1.

Formally the integral Iκ has the limit

I(a, b, a′, b′) :=
∫ b′

a′
f(s1) δs1=a

∫ b

a

F (s3)δs3=s1 ds3ds1.

Proof. Making first the change of variables s3 = s1 − κy3 and then s1 = κy1 + a,
we can write

Iκ = −
∫ (b′−a)/κ

(a′−a)/κ

f(κy1 + a)ϕ2(y1)
∫ y1−(b−a)/κ

y1

F (κ(y1 − y3) + a)ϕ3(y3) dy3dy1.

Clearly, we have Iκ → 0 when a < a′ or a > b′.
Now, if a = a′, we can write

Iκ = −
∫ (b′−a)/κ

0

f(κy1 + a)ϕ2(y1)
∫ y1−(b−a)/κ

y1

F (κ(y1 − y3) + a))ϕ3(y3) dy3dy1

→ f(a)F (a)
∫ ∞

0

ϕ2(y1)
∫ y1

−∞
ϕ3(y3) dy3dy1

as κ → 0. The other values of a can be studied by the same argument and this
completes the proof of Lemma 6.2. �

Applying Lemma 6.2, we find that Iκ
2,1 tends to

−
∫

W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w)
(
A2,31−∞<w<∞ +B2,31w=−∞ + C2,31w=∞

)
dνdν′

= −A2,3

∫
W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w) dνdν′

and that Iκ
2,2 tends to

−A3,2

∫
W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w) dνdν′.

We conclude that the limit of Iκ
2 is

A

∫
W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w) dνdν′,

where
A :=A3,2 −A2,3

=
∫

R

∫ y1

−∞
(ϕ2(y3)ϕ3(y1)− ϕ2(y1)ϕ3(y3)) dy3dy1.

We can determine similarly that the limit of Iκ
3 which is found to be

−A
∫

W,Z

∫
W ′.Z′

ψ(z)χ′(z)Q+(z) dνdν′,
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where
Q+ := X(2)X(3) −X(1)X(4).

In conclusion, we have identified the limit of the term (6.9), as

A

(∫
W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w) dνdν′ −
∫

W,Z

∫
W ′.Z′

ψ(z)χ′(z)Q+(z) dνdν′
)
.

One can also check (LeFloch and Shelukhin, 2005) that the distribution

〈ν, ∂3χ3〉〈ν, χ1∂2σ
]
2 − ∂2χ2σ

]
1〉+ 〈ν, ∂2χ2〉〈ν, ∂3χ3σ

]
1 − χ1∂3σ

]
3〉

(which is the left-hand side of (6.4) applied by the test-function (6.8) tends to zero
as κ→ 0.

Since the molifying functions ϕ2 and ϕ3 can always be chosen such that A 6= 0,
we have reached the following conclusion

(6.10)

∫
W,Z

∫
W ′,Z′

ψ(w)χ′(w)Q−(w) dνdν′ −
∫

W,Z

∫
W ′.Z′

ψ(z)χ′(z)Q+(z) dνdν′

=
〈
ν ⊗ ν′, ψ(w)χ′(w)Q−(w)− ψ(z)χ′(z)Q+(z)

〉
= 0.

By Lemma 4.5 we have

Q−(w) =X(2)(0, w − z)X(3)(w − z) +X(1)(w − z)X(4)(0, w − z),

Q+(z) =X(2)(−w + z, 0)X(3)(w − z)−X(1)(w − z)X(4)(−w + z, 0).

Observe that the test-function ψ is arbitrary and can be used to localize the
equation (6.10). In turn, we end up with a necessary condition satisfied by the
Young measure ν:

〈ν ⊗ ν′,Ξ g〉 = 0.

Here, ν⊗ν′ denotes the tensor product of ν and ν′ (another copy of the Young mea-
sure ν), while g is some (non-negative) characteristic function, while the function
Ξ is defined by

Ξ(ρ) := lim
z→0,wz<0

χ(w, z)
(
σ]

w(w, z) + σ]
z(w, z)

)
+ (χw(w, z) + χz(w, z)) σ](w, z),

ρ and w being related by w = 2R = 2(ln ρ)/(1 + ε2). An analogous identity holds
with lim

z→0,wz<0
replaced by lim

w→0,wz<0
. For convenience, we write simply χ(w, 0)

instead of lim
z→0,wz<0

χ(w, z), etc. This allows to rewrite the expression of Ξ as

(6.11)
Ξ(w) = −

(
χ(w, 0, 0)σ]

s(w, 0, 0) + χs(w, 0, 0)σ](w, 0, 0)
)

= χ(w, 0)
(
σ]

w(w, 0) + σ]
z(w, 0)

)
+ (χw(w, 0) + χz(w, 0))σ](w, 0).

Provided the coefficient Ξ keeps a constant sign, the above condition implies
(LeFloch and Shelukhin, 2005) that the support of ν either is a single point, or
else has its support concentrated where WZ = 0, which is nothing but the vacuum
line. Recall that the relativistic equations are automatically satisfied if the density
vanishes identically.

It remains to establish that Ξ(ρ) < 0. More precisely, we only need this to
hold for sufficiently small ρ, since by using the scaling invariance property of the
relativistic Euler equations (Lemma 1.3) we can always ensure that the range of
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the Lax-Friedrichs approximations and therefore the support of the Young measure
is included in a neighborhood of the vacuum. We will actually prove that

(6.12) Ξ(ρ) ≤ −1
2
ρ2α < 0, 0 < ρ� 1.

We set Ξ(w) =: lim
z→0,wz<0

χ2(w, z) Ω(w), and we observe that lim
z→0,wz<0

χ(w, z)

behaves like ρα near the vacuum and, therefore, we need to check that

(6.13)
Ω(w) =

(
−1

2
+
w

8

)
+O(ε2)

< 0.

The term O(ε2) should be bounded by a constant times ε2, uniformly for all large
(negative) w. This will show that Ω has a fixed sign for all sufficiently negative
values of w, and this will indeed complete the proof of the theorem.

It remains to determine the sign of the function Ξ. For the sake of comparison,
we recall first the relevant formula when ε = 0:

λ0
1(w, 0) =

w

2
− 1, λ0

2(w, 0) =
w

2
+ 1,

and
χ0(w, 0) = ew/4,

χ0
w(w, 0) =

1
4
ew/4, χz(w, 0) = −1

4
(1 + w/4)ew/4,

(χ0
w + χ0

z)(w, 0) = − w

16
ew/4,

and
σ0(w, 0) =

(w
2
− 1

)
ew/4, σ](w, 0) = −ew/4,

(σ0
w + σ0

z)(w, 0) =
(

1
2

+
w

16
− w2

32

)
,

(σ],0
w + σ],0

z )(w, 0) =
(
−1

2
+
w

16

)
ew/4.

Hence, in the non-relativistic case we do have

Ξ0(w) =
(
−1

2
+

1
8
w

)
ew/2.

For the general case ε 6= 0 we have already determined the traces of the entropy
kernel along the boundary z = 0 while keeping wz < 0 (see (4.1), (4.2) and (4.6)):

(6.14)

χ(w, 0) =
1 + ε+ (1− ε)eεw

2
e(1−ε)2w/4,

χw(w, 0) =
1− ε2

8
(
1− ε+ (1 + ε)eεw

)
e(1−ε)2w/4

=
1− ε2

4
1− ε+ (1 + ε)eεw

1 + ε+ (1− ε)eεw
χ(w, 0) = a(w)χ(w, 0),

χz(w, 0) = −1− ε2

4
(
1 + (1− ε2)w/4

)
χ(w, 0).
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On the other hand, for the entropy kernel, from (3.17), (2.4) and (4.2) it follows
that

σw(w, 0) = λ2(w, 0)χw(w, 0),

= −1
ε

1− ε− (1 + ε)eεw

1− ε+ (1 + ε)eεw

1− ε2

4
1− ε+ (1 + ε)eεw

2
e(1−ε)2w/4

= −(1− ε2)
1− ε− (1 + ε)eεw

8ε
e(1−ε)2w/4,

that is

σ(w, 0) =
∫ w

−∞
σw(w′, 0)dw′

= −
∫ w

−∞
(1− ε2)

1− ε− (1 + ε)eεw′

8ε
e(1−ε)2w′/4 dw′.

So, we find

σ(w, 0) = −1 + ε− (1− ε)eεw

2ε
e(1−ε)2w/4

= −1
ε

1 + ε− (1− ε)eεw

1 + ε+ (1− ε)eεw
χ(w, 0) = λ1(w, 0)χ(w, 0)

and thus in view of (3.19)

(6.15)
σ](w, 0) =

(
λ1(w, 0)− w

2

)
χ(w, 0),

σ]
w(w, 0) =

(
λ2(w, 0)− w

2

)
χw(w, 0)− 1

2
χ(w, 0).

Furthermore, from (3.19) we get

(6.16) σ]
z(w, 0) =

(
λ1(w, 0)− w

2

)
χz(w, 0)− 1

2
χ(w, 0).

Finally, we are in a position to compute the quantity of interest. In view of
(6.14), (6.15), and (6.16), we can obtain

Ξ(w)(ρ) := χ(w, 0)σ]
w(w, 0) + χw(w, 0)σ](w, 0),

Ξ(z)(ρ) := χ(w, 0)σ]
z(w, 0) + χz(w, 0)σ](w, 0),

as follows:

Ξ(z)(ρ) = χ(w, 0)
((

λ1(w, 0)− w

2

)
χz(w, 0)− 1

2
χ(w, 0)

)
+ χz(w, 0)

(
λ1(w, 0)− w

2

)
χ(w, 0)

= χ(w, 0)
(

2
(
λ1(w, 0)− w

2

)
χz(w, 0)− 1

2
χ(w, 0)

)
= −1

2
χ2(w, 0)

(
(1− ε2)

(
1 + (1− ε2)w/4

) (
λ1(w, 0)− w

2

)
+ 1

)
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and

Ξ(w)(ρ) = χ(w, 0)
((

λ2(w, 0)− w

2

)
χw(w, 0)− 1

2
χ(w, 0)

)
+ χw(w, 0)

(
λ1(w, 0)− w

2

)
χ(w, 0)

= χ(w, 0)
(

(λ1(w, 0) + λ2(w, 0)− w)χw(w, 0)− 1
2
χ(w, 0)

)
= χ(w, 0)2

(
(λ1(w, 0) + λ2(w, 0)− w) a(w)− 1

2

)
.

Thus, we conclude that Ξ(w) = χ2(w, 0) Ω(w), where

(6.17)
Ω(w) :=− 1

2
(1− ε2)

(
1 + (1− ε2)w/4

) (
λ1(w, 0)− w

2

)
+

(
λ1(w, 0) + λ2(w, 0)− w

)
a(w)− 1.

We easily see that
λ1(w, 0) = w/2− 1 +O(ε2),

λ2(w, 0) = w/2 + 1 +O(ε2),

a(w) = −1/4 +O(ε2),
thus (6.13) holds and Ξ vanishes only at the vacuum ρ = 0. �

The formulas derived in the present paper converges formally to the ones of the
non-relativistic case, as we now show by using the notation introduced by LeFloch
and Shelukhin (2005). Just before the identity (5.7) on p. 424 of that paper, the
function D(R) := Q−(w) is defined while Q−(w) := Gχ − Gh is introduced on
p. 420. The terms Gχ and Gh are introduced in Theorem 4.6 on p. 414, that is:

Gχ(R, u) = −2|R|f ′(0)eR/2, u ≤ −|R|,

Gh(R, u) = eR/2
(
2R+

1
2
)
, |u| ≥ |R|.

The calculation in the proof of Theorem 4.6 should be modified, as follows.
First of all, given a test function ϕ = ϕ(s), we can write

〈χ′, ϕ〉 = −
∫

R
χ(s)ϕ′(s) ds = −eR/2

∫ u+|R|

u−|R|
ϕ′(s)f(|u− s|2 −R2) ds

= −eR/2 (ϕ(u+ |R|)− ϕ(u− |R|))

− eR/2

∫ u+|R|

u−|R|
2ϕ(s)f ′(|u− s|2 −R2)(u− s) ds,

which yields

χs = eR/2
(
δs=u−|R| − δs=u+|R|

)
+Gχ(R, u− s)1|u−s|<|R|,

where, for all |v| ≤ |R|,

Gχ(R, v) = −2eR/2vf ′(v2 −R2).

Hence, we find
Gχ(R, u) = 2|R|f ′(0)eR/2, u ≤ −|R|,

and this formula contains a plus sign, instead of a minus sign as stated originally.
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Second, for the expression of the derivative of the entropy flux hs, a term f ′(0)
should be added, as follows. We write

hs = sgn (u− s)e−|u−s|/2
(
δs=u−|R| − δs=u+|R| +

1
2
sgn (u− s)1|u−s|<|R|

)
− 2

∫ −|u−s|

−(|R|∨|u−s|)

∂

∂s

(
(u− s)er/2f ′(|u− s|2 − r2)

)
dr

+ 2f ′(0)e−|u−s|/2(u− s)sgn (u− s)− 2e−|u−s|/21|u−s|≥|R|f
′(0)|u− s|

= eR/2
(
δs=u−|R| + δs=u+|R|

)
+

1
2
e−|u−s|/21|u−s|<|R|

+ 2
∫ −|u−s|

−(|R|∨|u−s|)

(
er/2f ′(|u− s|2 − r2) + 2er/2|u− s|2f ′′(|u− s|2 − r2)

)
dr

+ 2f ′(0)e−|u−s|/2|u− s|1|u−s|<|R|

and, therefore,

hs = eR/2
(
δs=u−|R| + δs=u+|R|

)
+Gh(R, u− s)1|u−s|<|R|

with

Gh(R, v) : = e−|v|/2
(1
2

+ 2f ′(0)|v|
)

= e−|v|/2
(1
2
− 1

8
|v|

)
.

Hence, we find

Gh(R, u) = eR/2
(1
2

+
R

8
)
, u ≤ −|R|.

In conclusion, for small ρ we have R < 0 and

Q−(w) = −2R
(
− 1

16
)
eR/2 − eR/2

(1
2

+
R

8
)

= eR/2
(
− 1

2
+
R

4
)

= ew/4
(
− 1

2
+
w

8
)
,

which is precisely the same expression as the limit ε → 0 of the expression (6.13)
obtained in the present paper.

Acknowledgments

The first author (PLF) is very thankful to the organizers (P.T. Chrusciel, H.
Friedrichs, P. Tod) of the Semester Program “Global Problems in Mathematical
Relativity” which took place at the Isaac Newton Institute of Mathematical Sciences
(Cambridge, UK) and where this research was initiated.

PLF was partially supported by the A.N.R. (Agence Nationale de la Recherche)
through the grant 06-2-134423 entitled “Mathematical Methods in General Relativ-
ity” (MATH-GR), and by the Centre National de la Recherche Scientifique (CNRS).
The second author (MY) was supported by a Grant-in-Aid for Scientific Research
from the Japan Society for the Promotion of Science (JSPS).



32 P.G. LEFLOCH AND M. YAMAZAKI

References

[1] Dal Maso G., LeFloch P.G. and Murat F., Definition and weak stability of nonconserva-
tive products, J. Math. Pures Appl. 74 (1995), 483–548.

[2] DiPerna R.J., Convergence of the viscosity method for isentropic gas dynamics, Commun.
Math. Phys. 91 (1983), 1–30.

[3] DiPerna R.J., Convergence of approximate solutions to conservation laws, Arch. Rational
Mech. Anal. 82 (1983), 27–70.

[4] Hsu C.H., Lin S.S. and Makino T., On spherically symmetric solutions of the relativistic
Euler equation, J. Differential Equations 201 (2004), 1–24.

[5] Huang F.M. and Wang Z., Convergence of viscosity solutions for isothermal gas dynamics,
SIAM J. Math. Anal. 34 (2003), 595–610.

[6] LeFloch P.G. and Shelukhin V., Symmetries and global solvability of the isothermal gas
dynamics equations, Arch. Rational Mech. Anal. 175 (2005), 389–430.

[7] Lichnerowicz A., Magnetohydrodynamics: waves and shock waves in curved spacetime,
Kluwer Acad. Publisher, Vol. 14, 1993.

[8] Marti J. M. and Müller E., Numerical hydrodynamics in special relativity, Living Rev.
Relativity 6 (2003), 2003-7 (electronic).
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