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Abstract

We introduce the concept of locally excluded minors. Graph classes
locally excluding a minor generalise the concept of excluded minor classes
but also of graph classes with bounded local tree-width and graph classes
with bounded expansion.

We show that first-order model-checking is fixed-parameter tractable
on any class of graphs locally excluding a minor. This strictly generalises
analogous results by Flum and Grohe on excluded minor classes and Frick
and Grohe on classes with bounded local tree-width.

As an important consequence of the proof we obtain fixed-parameter
algorithms for problems such as dominating or independent set on graph
classes excluding a minor, where now the parameter is the size of the
dominating set and the excluded minor.

We also study graph classes with excluded minors, where the minor
may grow slowly with the size of the graphs and show that again, first-
order model-checking is fixed-parameter tractable on any such class of
graphs.

1 Introduction

An important task in the theory of algorithms is to find feasible instances of
otherwise intractable algorithmic problems. For this purpose, the notion of
bounded tree-width has proved to be extremely useful. Many NP-complete
problems become tractable on graphs whose tree-width is bounded by a fixed
constant. These include k-colourability, Hamiltonicity and the k-dominating
and k-vertex cover problems. Courcelle [2] proved a meta-theorem stating that
any decision problem definable in monadic second-order logic can be decided in
linear time on any class of graphs of bounded tree-width.

Although among the most prominent, tree-width is not the only structural
property of graphs that allows for efficient solutions of otherwise intractable
problems. Other important restrictions are planarity or bounded degree. Un-
fortunately, Courcelle’s theorem fails for any of these restrictions. Seese [19] was
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the first to give a logical meta-theorem for another general class of graphs. He
showed that any first-order definable decision problem can be decided in linear
time on any class of graphs of bounded degree. A property of planar graphs
and graphs of bounded degree that is often used to obtain tractable algorithms
is the fact that every neighbourhood of a vertex has low tree-width, i.e. the
tree-width of any neighbourhood of a vertex only depends on its diameter. This
observation led Eppstein [6] to introduce the notion of bounded local tree-width
(which he calls diameter tree-width property). The concept of local tree-width
strictly generalises tree-width, planarity and bounded degree.

In [10], Frick and Grohe generalise Seese’s result to classes of graphs of
bounded local tree-width. They proved that first-order definable decision prob-
lems can be decided in linear time on what they call locally tree-decomposable
classes of graphs. In the same paper, they show that any first-order definable
decision problem can be decided in quadratic time on any class of graphs of
bounded local tree-width.

Another important concept of graph structure that has been used to obtain
tractable algorithms is the concept of excluded minors. In a series now running
to 23 papers, Robertson and Seymour developed their groundbreaking theory
on graph minors that culminated in the proof of Wagner’s conjecture stating
that in every infinite class of finite graphs one graph is a minor of another. In
other words, every minor closed class of graphs that is not the class of all graphs
can be characterised by a finite set of excluded minors. They also proved that
testing whether a fixed graph is a minor of a graph G can be done in cubic time.
It follows, that any minor closed class of graphs can be decided in cubic time.

Many parts of the rich and deep theory developed by Robertson and Seymour
have found algorithmic applications. In [7], Flum and Grohe proved a meta-
theorem similar to the results mentioned above. They showed that any first-
order definable decision problem can be decided in polynomial time on any
class of graphs excluding a fixed minor. The concept of excluded minors is
incomparable to the concept of local tree-width, in fact even to bounded degree.
It is therefore a natural question whether there exists a common generalisation of
excluded minor classes and bounded local-tree width classes on which we can still
efficiently decide first-order definable decision problems. The main contribution
of this paper is to introduce such a generalisation. It is based on the following
simple concept. Let C be a class of graphs. Instead of requiring that any graph
in C excludes a fixed minor, we only require that every neighbourhood excludes
a minor, depending on its radius. Formally, we require that for every radius r
there is a graph Hr so that every r-neighbourhood of a vertex of any member of
C excludes Hr. We call classes of graphs with this property graph classes locally
excluding a minor. It is easily seen that if C is a class of graphs of bounded
local tree-width or C is a class of graphs excluding a fixed minor, then C also
locally excludes a minor. But the concept of locally excluded minors is fairly
rich. It also generalises the concept of bounded expansion, recently introduced
by Nešetřil and de Mendez [20]. The following is the main result on locally
excluded minor classes.

Theorem 1.1 Let C be a class of graphs locally excluding a minor. Then de-
ciding first-order properties is fixed-parameter tractable on C.

Here, the exponent of the polynomial is fixed and neither depends on the
formula used to define the problem nor on the locally excluded minors. With the
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exception of bounded clique-width [3], graph classes locally excluding a minor
strictly generalise all classes of graphs known so far on which first-order model
checking is fixed-parameter tractable.

We also consider classes C of graphs such that there is a (slowly growing)
function f : N → N with the property that any G ∈ C exclude a minor of
cardinality at most f(|G|) and show that also on such classes of graphs, first-
order model checking is still fixed-parameter tractable.

Theorem 1.2 There is an unbounded function f : N → N such that deciding
first-order properties is fixed-parameter tractable on the class Cf of graphs G
excluding a clique of order at most f(|G|).

The method we use to show the theorem has further important consequences.
It is well known that various intractable problems such as k-dominating set
and others are fixed-parameter tractable on classes of graphs excluding a fixed
minor, where k is the parameter. However, it was an open problem whether the
exponent of the polynomials can be made independent of the excluded minor,
i.e. whether these problems can be solved by a fixed-parameter algorithm where
the parameter is both k and the excluded minor. The second main contribution
of this paper is to give a positive answer to this question.

At the core of many algorithms on excluded minor classes is a deep de-
composition theorem by Robertson and Seymour which states that any graph
excluding a fixed minor can be decomposed into a tree whose bags are almost
embeddable into a surface that almost has bounded genus. In [4], Demaine
et al. give a polynomial time algorithm for computing such decompositions.
Grohe [12] derived from Robertson and Seymour’s work a different decomposi-
tion that is often easier to use in the design of algorithms. He showed that any
graph excluding a fixed minor can be decomposed into a tree whose bags have
bounded local tree-width after removal of a constant number of elements. The
main technical contribution of this paper is to show that we can compute such
a decomposition in time f(|H |) ·nO(1), where H is the excluded minor. We use
this to show the following theorem.

Theorem 1.3 Let C be a class of graphs excluding the fixed minor H. Then any
first-order definable decision problem can be solved in time f(|H |, |ϕ|) · nO(1),
where f is a computable function, ϕ is the sentence defining the decision prob-
lem, and H is the excluded minor.

This result immediately implies fixed-parameter algorithms for problems
such as the k-dominating set problem, where now the parameter is k and the
excluded minor. On the other hand, the new decomposition can also be used
directly to obtain faster algorithms for a variety of problems on excluded minor
classes.

2 Preliminaries

We denote the set of real numbers by R, the set of integers by Z, and the set
of positive integers (natural numbers) by N. For all n ∈ N, by [n] we denote
the set {1, . . . , n}, and for all m,n ∈ Z, by [m,n] we denote the set {m, . . . , n}
(the empty set if m > n). Occasionally, we use [0, 1] to denote the unit interval
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{x ∈ R | 0 ≤ x ≤ 1} instead of the set {0, 1}; it will always be clear from the
context what is meant.

Graphs are undirected and simple. If G is a graph, we write V (G) for its
vertex set and E(G) for its set of edges. For any set X ⊆ V (G) we write G[X ]
for the subgraph of G induced by X , and we let G \X = G[V (G) \X ]. For a
set F ⊆ E, we write G− F for the graph (V,E \ F ). For every set S, by K[S]
we denote the complete graph with vertex set S. Furthermore, for every k ∈ N

we let Kk = K
[
[k]

]
.

The distance dG(v, w) between two vertices v, w of a graph G is defined to be
the length of the shortest path from v to w. For nonempty sets X,Y ⊆ V (G),
we let dG(X,Y ) = min{dG(x, y) | x ∈ X, y ∈ Y }, and similarly we define the
distance dG(v,X) of a vertex v ∈ V (G) from a nonempty set X ⊆ V (G). We
write ρ(G) := minv∈V (G) maxv′∈V (G) d

G(v, v′) for the radius of G.
For every nonempty set X ⊆ V (G) and every r ≥ 1 we define the r-

neighborhood of X and the r-sphere around X by

NG
r (X) =

{
v ∈ V (G) : dG(v,X) ≤ r

}
,

SG
r (X) =

{
v ∈ V (G) : dG(v,X) = r

}
.

For a vertex v ∈ V (G), we let NG
r (v) = NG

r ({v}) and SG
r (v) = SG

r ({v}). For
a nonempty subgraph H ⊆ G we let NG

r (H) = NG
r (V (H)) and SG

r (H) =
SG

r (V (H)). For 1-neighborhoods and 1-spheres, we write NG and SG instead
of NG

1 and SG
1 , respectively.

A separation of a graph G is a pair (X,Y ) of subsets of V (G) such that
G = G[X ] ∪ G[Y ]. The set X ∩ Y is called the separator of the separation
(X,Y ), and its cardinality is the order of the separation.

We write G � H to denote that G is a minor of H . A class C of graphs is
minor-closed if it is downward closed under �. C is an excluded minor class if
its minor-closure is not the class of all graphs.

Theorem 2.1 (Robertson and Seymour [17]) The following problem is fixed-
parameter tractable:

p-Minor

Input: Graphs G,H .
Parameter: |V (H)|.

Problem: Decide if H � G.

More precisely, there is a computable function f and an algorithm that solves
the problem in time f(k) · n3, where k = |V (H)| and n = |V (G)|.

A curve in the plane R
2 is the image of a continuous function f : [0, 1] → R

2

(here [0, 1] denotes the unit interval of real numbers). The endpoints of the
curve are f(0) and f(1), and its interior is the set of all other points. The
curve is simple if f is one-to-one. A plane graph is a graph Γ whose vertices
are distinct elements of the plane and whose edges are simple curves such that
the endpoints of each edge are the two vertices incident with it, and the interior
of each edge is disjoint from the vertex set and from all other edges. Abusing
notation, we also write Γ to denote the point set V (Γ) ∪ ⋃

E(Γ) ⊆ R
2. We say

that Γ is embedded in a subset X ⊆ R
2 if Γ ⊆ X .
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3 Tree-Decompositions

A tree decomposition of a graph G is a pair D = (T,B), where T is a tree and
B is a mapping that associates with every node t ∈ V (T ) a set Bt ⊆ V (G) such
that G =

⋃
t∈V (T )G[Bt], and for every v ∈ V (G) the set B−1(v) = {t ∈ V (T ) |

v ∈ B(t)} is connected in T . The sets Bt, for t ∈ V (T ), are called the bags of
the decomposition D. For a subset U ⊆ V (T ) we let B(U) =

⋃
t∈U Bt, and for

a subtree or forest T ′ ⊆ T we let B(T ′) =
⋃

t∈V (T ′)Bt.

With each bag Bt of a tree decomposition (T,B) of a graph G we associate
two graphs:

• The closure of Bt is the graph Bt = G[Bt] ∪
⋃

u∈ST (t)K[Bt ∩Bu].

• The companion of Bt is the graph B̂t obtained from G[Bt] by adding new
vertices xu for all u ∈ ST (t) and edges from xu to all v ∈ Bt ∩Bu.

A tree decomposition is strongly over a class C of graphs if the closures of all
its bags belong to C, and it is weakly over C if the companions of all its bags
belong to C. The proof of the following lemma is straightforward:

Lemma 3.1 Let (T, (Bt)t∈V (T )) be a decomposition of a graph G, and let t ∈
V (T ). Then for every connected subgraph C of G the graph Bt[V (C) ∩ Bt] is
either empty or connected.

For a tree T and an edge e = {t, u} ∈ E(T ), by Ttu and Tut we denote the
two connected components of T − {e} such that u ∈ V (Ttu) and t ∈ V (Tut).
(Thus the indices determine which way we are looking from e.) The following
lemma is well-known and easy to prove:

Lemma 3.2 Let (T,B) be a tree decomposition of a graph G and {t, u} ∈ E(T ).
Then

(
B(Ttu), B(Tut)

)
is a separation of G with separator Bt ∩Bu.

Let D = (T, (Bt)t∈V (T )) be a tree decomposition of a graph G. For every

edge e = {t, u} ∈ E(T ), we call
(
B(Ttu), B(Tut)

)
the separation at e. We call

the collection of all such separations the separations of D. Similarly, we call
Bt∩Bu the separator at e and the collection of all these separators the separators
of D. The order of the decomposition D is defined to be the maximum of the
cardinalities of its separators.

The width of the decomposition is the number width(D) = max{|Bt| | t ∈
V (T )} − 1. The tree width of a graph G is the number

tw(G) = min{width(D) | D tree decomposition of G}.

The local tree width of G is the function ltw(G, · ) defined by ltw(G, r) =

max
{

tw
(
G[NG

r (v)]
)

: v ∈ V (G)
}
. For all nonnegative integers λ, µ we let

L(λ) =
{
G : ∀H � G ∀r ≥ 0 : ltw(H, r) ≤ λ · r

}
,

L(λ, µ) =
{
G : ∃X ⊆ V (G) s. th.

|X | ≤ µ and
G \X ∈ L(λ)

}
.

The following result is a consequence of Robertson and Seymour’s deep struc-
ture theorem for graphs with excluded minors proved in [18].
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Theorem 3.3 (Grohe [12]) There are computable functions λ, µ : N → N

such that for every k ∈ N, every graph G with Kk 6� G has a tree decomposition
that is strongly over L(λ(k), µ(k)).

The previous theorem can be used to obtain algorithms for various problems
on excluded minor classes. These algorithms usually work along the following
lines. Given a graph with a fixed forbidden minor, the first step is to compute
the tree decomposition over a class L(λ, µ). Then, for each block of the de-
composition, the µ elements that need to be removed to obtain a graph with
small local tree-width are computed. The problem, for instance the vertex cover
problem, is then solved on each of these blocks using methods on minor closed
classes with bounded local tree-width. The results are then extended to the
blocks with the µ removed elements put back in and then to the whole tree. For
this approach to work we need to be able to a) compute the tree decomposition
over the class L(λ, µ) and b) compute, for each block, the µ-elements that need
to be removed to obtain a graph in L(λ).

Polynomial-time algorithms for both steps are known, but the exponent of
the polynomials depend on the excluded minor, for instance on the number µ
of elements that need to be removed. In the following two sections, we show
that both steps are fixed parameter tractable if the parameter is the excluded
minor.

In the next section we give an algorithm to compute the decomposition
within the desired running time. In the section thereafter we show that the
second step can be computed within suitable time bounds.

4 Computing tree-decompositions over L(λ, µ)

The goal of this section is to prove the following theorem:

Theorem 4.1 There are computable functions f, λ, µ : N → N and an algo-
rithm that, given a graph G with Kk 6� G, computes a tree decomposition of G
that is weakly over L(λ(k), µ(k)) in time f(k) · nO(1).

Let us first give a high level description of the proof. The algorithm to com-
pute the tree decompositions is actually quite simple. Essentially we repeatedly
compute small separators in the input graph G to obtain a clique-sum decom-
position of G of order k. It turns out that we can take any separator of order
k in G, as long as the graph is separated into two parts which are both not too
small, where we can take “not too small” as being at least of order k!.

We then associate with any such a clique-sum decomposition a certain tree
decomposition and show that it can easily be computed given the clique-sum
decomposition. We call these k-CMS tree decompositions.

The main and difficult part of the proof consists in showing that these k-
CMS tree decompositions actually are tree decompositions that are weakly over
L(λ, µ) for some λ := λ(k) and µ := µ(k).

The proof of Theorem 4.1 is presented in two parts. In Section 4.1 we
present the necessary definitions and the algorithm to compute a k-CMS tree
decomposition. The proof that this is indeed a tree decomposition weakly over
some class L(λ, µ) is given in Section 4.2.
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4.1 Algorithms

A separation (X,Y ) of order k ≥ 1 of some graph is substantial if

|X |, |Y | > k!.

A separation (X,Y ) of order 0 is substantial if |X |, |Y | > 0. (X,Y ) is a minimum
substantial separation if it is substantial, and if there is no substantial separation
of smaller order.

Lemma 4.2 There is an fpt-algorithm with parameter k that decides whether
a given graph G has a substantial separation of order at most k and computes
a minimum substantial separation if there is one of order at most k.

Proof. We shall design a recursive fpt-algorithm for the following more general
problem:

Input: Graph G, sets P,Q ⊆ V (G), and
nonnegative integers k, k′, ℓ,m
with k′ ≤ k and ℓ,m ≤ k!.

Parameter: k.
Problem: Decide whether G has a sepa-

ration (X,Y ) of order k′ such
that P ⊆ X and Q ⊆ Y and
|X \ Y | ≥ ℓ and |Y \ X | ≥ m
and compute such a separation
if there is one.

Let G,P,Q, k, k′, ℓ,m be an instance of the problem. Without loss of gen-
erality we may assume that k ≥ 2. Let n = |V (G)|. If n < k′ + ℓ + m no
substantial separator with the desired properties exists, and the algorithm re-
ports failure. So suppose that n ≥ k′ + ℓ+m. If k′ = 0, it is straightforward to
check whether the connected components of G can be arranged into a separation
with the desired properties, so we further assume that k′ > 0.

Using standard techniques, the algorithm computes some separation (X,Y )
of G of order k′ with P ⊆ X and Q ⊆ Y . If no such separation exists, then the
algorithm reports failure. If |X \Y | ≥ ℓ and |Y \X | ≥ m, the algorithm returns
the separation (X,Y ). In the following, we assume without loss of generality
that |X \ Y | < ℓ. Let S = X ∩ Y .

Q

P

YX S

Figure 4.1:

Now for all separations (X1, X2) of G[X ] of order at most k′ with P ∩
X ⊆ X1 and Q ∩ X ⊆ X2, we recursively call our algorithm on the instance
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S2

S1X1

X2

Q

P

T Y

Figure 4.2:

G’

Q’

P’

Figure 4.3:

G′, P ′, Q′, k, k′′, ℓ′,m′ defined as follows: Let T = X1∩X2 and S1 = (S∩X1)\T ,
S2 = (S ∩X2) \ T (see Figures 4.1–4.3). Let

• G′ = G[Y ] \ T ,

• k′′ = k′ − |T |,

• P ′ = (P ∪ S1) ∩ V (G′),

• Q′ = (Q ∪ S2) ∩ V (G′),

• ℓ′ = max{0, ℓ− |X1 \ (X2 ∪ S)|} and

• m′ = max{0,m− |X2 \ (X1 ∪ S)|}.
If the recursive call returns a separation (Y1, Y2), then our algorithm returns
the separation (X1 ∪ Y1, X2 ∪ Y2), which can easily be seen to have the desired
properties. If the recursive calls fail for all (X1, X2), then the algorithm reports
failure.

Let tk(n, k, ℓ,m) denote the worst case running time of the algorithm in
terms of the parameters n, ℓ,m, k, and let T (n, k, s) = max{t(n, k, ℓ,m) | 0 ≤
ℓ,m ≤ s, ℓ + m = s}. (The parameter k′ is irrelevant for our running time
analysis.) We get the following recurrence in terms of s:

T (n, k, 0) = nO(1) for n ≥ 0

T (n, k, s) = O(1) for n < s

T (n, k, s) = O
(
2k! · Tk(n, s− 1)

)
for n ≥ s ≥ 1.

To obtain this recurrence, we put a crude upper bound of 2k! on the number of
separations (X1, X2) of G[X ] and ignore that not only s, but also n decreases
in the recursive calls. Since s ≤ 2k!, this yields an fpt-bound on the running
time. �
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Let G be a graph. The graph G is a clique sum of graphs A,B (we write
G = A⊕B) if there is a separation (X,Y ) of G such that A = G[X ]∪K[X ∩Y ]
and B = G[Y ]∪K[X∩Y ]. We write G = A⊕kB to indicate that G = A⊕B and
the order of the corresponding separation is at most k, and we similarly write
G = A ⊕S B to indicate that the separator is S. A clique-sum decomposition
of G is a pair (T,A) where T is a rooted binary tree and H is a mapping that
associates a graph At with every node t ∈ V (T ) such that:

1. Ar = G for the root r of T ;

2. At = At1 ⊕At2 for every node t ∈ V (T ) with children t1, t2.

The separation corresponding to the clique sum At = At1 ⊕ At2 is called the
separation at node t, and its separator V (At1) ∩ V (At2) is called the separator
at node t. The graphs At for the leaves t of T are called the pieces of the
decomposition. The order of a clique-sum decomposition (T,A) is the least k
such that At = At1 ⊕k At2 for every node t ∈ V (T ) with children t1, t2. The
height of the decomposition is the height of the tree T , that is, the maximum
length of a path from the root of T to a leaf.

A clique-sum decomposition (T,A) is an MS decomposition if all its separa-
tions are minimum substantial. It is a complete MS decomposition of order k
(for short: k-CMS decomposition) if the order of the decomposition is at most
k, and if for all leaves t of T the graph At has no substantial separation of order
at most k.

Lemma 4.3 There is an fpt-algorithm with parameter k that computes a k-
CMS-decomposition for a given graph G.

Proof. This follows directly from Lemma 4.2. �

Definition 4.4 Let D = (T,A) be a clique-sum decomposition of a graph G.
A tree decomposition associated with the clique decomposition D is a tree

decomposition D′ = (T ′, A′) such that

• the closures of the bags of D′ are the pieces of D (and hence the bags of
D′ are the vertex sets of the pieces of D).

• for every node t ∈ V (T ) there is an edge e ∈ E(T ′) such that for the
separation (X,Y ) at t and the separation (X ′, Y ′) at e it holds that X ′ ∩
V (At) = X and Y ′ ∩ V (At) = Y .

• for every edge e ∈ E(T ′) there is a node t ∈ V (T ) such that for the
separation (X,Y ) at t and the separation (X ′, Y ′) at e it holds that X ′ ∩
V (At) = X and Y ′ ∩ V (At) = Y .

• D and D′ have the same separators and hence the same order.

Lemma 4.5 For every clique-sum decomposition D = (T,A) of a graph G there
is an associated tree decomposition D′ = (T ′, A′).

Proof. By induction on the height of t ∈ V (T ), we define a tree T ′
t whose vertex

set is the set of all leaves of T that are in the subtree with root t. Let t ∈ V (T ).
If t ∈ V (T ) is a leaf of T , we let T ′

t be the tree ({t},∅). So suppose that t has
children t1, t2. Let (X1, X2) be the separation at t such that V (At1 ) ⊆ X1 and

9



V (At2) ⊆ X2. Let S = X ∩Y . As S induces a clique in both At1 and At2 , there
must be leaves u1, u2 of T such that for i = 1, 2 the leaf ui is in the subtree of
T with root ti, and S ⊆ V (Aui

).
Applying the induction hypothesis, let T ′

ti
be the trees constructed for Tti

.
Thus ui ∈ V (T ′

ti
). We let T ′

t be the tree obtained from the disjoint union of T ′
t1

and T ′
t2 by adding an edge from u1 to u2.

Now let T ′ = T ′
r for the root r of T . For every t ∈ V (T ) we let A′

t = V (At).
It is easy to see that (T ′, A′) is a tree decomposition of G with the desired
properties. �

A k-CMS tree decomposition of a graph G is a tree decomposition associated
with a k-CMS decomposition.

Corollary 4.6 There is an fpt-algorithm with parameter k that computes a k-
CMS tree decomposition for a given graph G.

4.2 Correctness

The goal of this section is to show that if G is a graph that has a tree decom-
position over L(λ, µ), then there is a λ′ such that any (λ + µ + 1)-CMS tree
decomposition is a tree decomposition weakly over L(λ′, µ) (see Lemma 4.11).
As a consequence, the algorithm presented in the previous section actually com-
putes a tree decomposition weakly over L(λ′, µ).

The first step is to show that pieces of a CMS-decomposition can not be
decomposed into two parts that are both not too small.

Lemma 4.7 Let P be a piece of a k-CMS decomposition of a graph G, and let
(X,Y ) be a separation of G of order at most k. Then either |V (P ) ∩X | ≤ k!
or |V (P ) ∩ Y | ≤ k!.

Proof. The proof is by induction on the height of the decomposition. If the
height is 0, then P = G, and the existence of a separation (X,Y ) of order
at most k with |V (P ) ∩ X | > k! and |V (A) ∩ Y | > k! would contradict the
completeness of the decomposition.

For the induction step, let (T,A) be a k-CMS decomposition of G of height
at least 1 of which P is a piece, say, P = Aℓ for some leaf ℓ of T . Let r be
the root of T and r1, r2 its children such that ℓ is in the subtree rooted in r1.
Let (X1, X2) be the separation at r, and let S = X1 ∩X2 be its separator. For
simplicity, we let Ai = Ari

. Then Ai = G[Xi]∪K[S] for i = 1, 2. Note that the
decomposition (T,A) induces a decomposition of A1 of smaller height that still
has P as a piece. Thus we can apply the induction hypothesis to every separation
of A1 of order at most k. Suppose for contradiction that (Y1, Y2) is a separation
of G of order at most k such that |V (P ) ∩ Y1| > k! and |(V (P ) ∩ Y2| > k!. Let
T = Y1 ∩ Y2 be the separator of this separation.

Let U = S ∩ T , and for i = 1, 2, let Si = (S ∩ Yi) \ T and Ti = (T ∩Xi) \ S.
Furthermore, let s = |S|, t = |T |, u = |U |, si = |Si|, ti = |Ti|. Then

s1 + s2 + u = s ≤ k, (4.1)

t1 + t2 + u = t ≤ k. (4.2)

Without loss of generality we may further assume that

s1 ≤ s2. (4.3)

10



Consider the separation ((X1 ∩ Y1) ∪ S1, (X1 ∩ Y2) ∪ S1) of A1 with separator
S1 ∪ T1 ∪ U . The order of this separation is s1 + t1 + u. Since V (P ) ⊆ X1, we
have V (P ) ∩ ((X1 ∩ Y2) ∪ S1) = (V (P ) ∩ Y2) ∪ (V (P ) ∩ S1) and hence |V (P ) ∩
((X1∩Y2)∪S1)| ≥ |V (P )∩Y2| > k!, and similarly |V (P )∩((X1∩Y1)∪S1)| > k!.
We claim that

s1 + t1 + u > k ≥ t. (4.4)

To see this, suppose for contradiction that s1 + t1 + u ≤ k. Then ((X1 ∩
Y1) ∪ S1, (X1 ∩ Y2) ∪ S1) is a separation of A1 of order at most k, and by
the induction hypothesis we either have |V (P ) ∩ ((X1 ∩ Y1) ∪ S1)| ≤ k! or
|V (P ) ∩ ((X1 ∩ Y2) ∪ S1)| ≤ k!. This is a contradiction, which proves (4.4).

(4.4) and (4.2) imply
s1 > t2. (4.5)

Thus by (4.1),
s2 + t2 + u < s. (4.6)

By (4.3), this also implies
s1 + t2 + u < s. (4.7)

Furthermore, s ≥ 2, because s > s1 > t2 ≥ 0 by (4.7) and (4.5). Remember
that |X2| > s!, because the partition (X1, X2) is substantial. Thus at least one
of the two sets X2 ∩ Y1 and X2 ∩ Y2 is larger than (s − 1)!. Without loss of
generality we assume that

|X2 ∩ Y1| > (s− 1)! (4.8)

Consider the separation (X2 ∩ Y1, X1 ∪ Y2) of G. Its separator is S1 ∪ T2 ∪ U
and hence its order is at most s − 1 by (4.7). Thus by (4.8), it is substantial.
But this contradicts the assumption that S is a minimum substantial separator.

�

The next step is to show that in any MS tree-decomposition, the separa-
tors at an edge e are connected in both parts of the separation (see Corollary
4.10). We first prove this for minimum substantial separators (Lemma 4.8)
and then extend it to MS-decompositions (Lemma 4.9) and finally to MS tree-
decompositions.

Lemma 4.8 Let (X,Y ) be a minimum substantial separation of a graph G and
S = X ∩ Y . Then there is a connected component C of G[X \ Y ] such that
SG(C) = S.

Proof. Let k = |S| and suppose that S = {s1, . . . , sk}. The claim is obvious
for k ≤ 1, so assume that k ≥ 2. Suppose for contradiction that there is no
connected component C of G[X \ Y ] such that SG(C) = S. For each connected
component C of G[X \ Y ], we pick an iC ∈ [k] such that SG(C) ⊆ S \ {si}. For
all i ∈ [k], let

Wi =
⋃

{V (C) | C connected component of G[X \ Y ] with iC = i}.

Then (Wi ∪ (S \ {si}), V (G) \Wi) is a separation of G of order (k − 1). By the
minimality of S, this separation is not substantial. Hence Wi ≤ (k−1)!−(k−1).
It follows that

k! − k2 + k = k · ((k − 1)! − (k − 1)) ≥
∑k

i=1 |Wi|
≥ |

⋃k
i=1Wi| = |X \ S| > k! − k.

11



This is a contradiction. �

Lemma 4.9 Let (T,A) be an MS-decomposition of a graph G and let t ∈ V (T ).
Then for every connected subgraph C′ ⊆ At there is a connected subgraph C ⊆ G
such that V (C) ∩ V (At) = V (C′).

Proof. Let t0, t1, . . . , tp = t be the path in T from the root t0 to t. For i ∈ [0, p],
let Ai = Ati

, and for i < p, let (Xi, Yi) be the separation at i with separator
Si = Xi ∩ Yi. Without loss of generality, we may assume that V (Ai+1) = Xi.
By induction on i ∈ [0, p] we prove that there is a connected subgraph Cp−i

of Ap−i such that V (Cp−i) ∩ V (At) = V (C′). For i = 0, this is trivial. For
the induction step, suppose that for some j ∈ [0, p− 1] we have already defined
Cj+1 ⊆ Aj+1; we shall define Cj . Note that Cj+1 is not necessarily a subgraph
of Aj because some of its edges may be introduced by the clique K[Sj] in Aj+1.
However, if V (Cj+1) ∩ Sj = ∅, then Cj+1 ⊆ Aj , and we let Cj = Cj+1. So
assume that V (Cj+1) ∩ Sj 6= ∅.

By Lemma 4.8, there exists a connected component D of Aj \Xj such that
SAj (D) = Sj . We let Cj = Aj [V (Cj+1) ∪ V (D)]. Since V (Cj+1) ∩ Sj 6= ∅, this
graph is connected, and obviously we have V (Cj) ∩ V (Aj+1) = V (Cj+1). By
the induction hypothesis and since Ap ⊆ Aj+1, the claim follows. �

Corollary 4.10 Let D = (T,A) be an MS decomposition of a graph G, and let
D′ = (T ′, A′) be a tree decomposition of G associated with D.

Let {t, u} ∈ E(T ′). Then there is a connected subgraph C ⊆ G such that
SG(C) = A′

t ∩A′
u and

V (C) ⊆ A′[T ′
tu].

Proof. Let X ′ = A′[T ′
ut], Y

′ = A′[T ′
tu], and S = X ′ ∩ Y ′ = A′

t ∩ A′
u. Then

(X ′, Y ′) is the separation at e = {t, u}, and its separator is S. Since D′ is
associated with D, there is a node s of T such that for the separation (X,Y ) at
s it holds that X ′∩V (As) = X and Y ′∩V (As) = Y . Since (X,Y ) is a minimum
substantial separation of As, by Lemma 4.8, there is a connected component
C′ of As[Y \X ] such that SAs(C′) = S. By Lemma 4.9, there is a connected
subgraph C′′ of G such that V (C′′) ∩ V (As) = V (C′). Then V (C′′) ⊆ Y ′ \X ′,
and SG(C′′) ⊇ SAs(C′) = S. Let C be a connected component of G \X ′ such
that C′′ ⊆ C. Then SG(C) = S. �

We are now ready to prove the main result of this section.

Lemma 4.11 Let λ, µ ∈ N and κ = λ+µ+ 1. Let G be a graph that has a tree
decomposition over L(λ, µ), and let D = (T,A) be a κ-CMS tree decomposition
of G. Then the companions of all bags of D are in L(2κ!, µ).

Proof. Let t ∈ V (T ). Without loss of generality we assume that |At| > 2κ!;

otherwise, it is easy to see that Ât ∈ L(2κ!). For every s ∈ ST (t), let (Xs, X
′
s)

be the separation at the edge {t, s} ∈ E(T ) such that At ⊆ Xs. (To make this
unique, we assume without loss of generality thatAt 6⊆ As.) Let Ss = Xs∩X ′

s be
the corresponding separator, and let Cs be a connected subgraph of G[X ′

s \Xs]
such that SG(Cs) = Ss (see Corollary 4.10).

Let (U,B) be a tree decomposition of G over L(λ, µ). The order of this
decomposition is at most κ, because a graph in L(λ, µ) cannot contain a κ+ 1-
clique. We direct every edge e = {u, v} ∈ E(U) as follows: Let (Ye, Y

′
e ) be

12



the separation at e such that Bu ⊆ Ye. Then (Ye, Y
′
e ) is a separation of order

κ, and hence by Lemma 4.7, either |Ye ∩ At| ≤ κ! or |Y ′
e ∩ At| ≤ κ!, but not

both, because |At| > 2κ!. We direct e towards u if |Ye ∩ At| > κ! and towards
v otherwise.

There must exist one node u ∈ V (U) such that all edges incident with u
are directed towards u. Let U = SU (u). For every v ∈ U we let (Yv, Y

′
v)

be the separation at the edge {u, v} ∈ E(U) such that Bu ⊆ Yv, and we let
Tv = Yv ∩ Yv′ . Then

Bu = G[Bu] ∪
⋃

v∈U

K[Tv] ∈ L(λ, µ).

Note that V (G) = Bu∪
⋃

v∈U (Y ′
v \Yv), and actually that this is a disjoint union.

By the definition of u, for all v ∈ U we have |At ∩ Y ′
v | ≤ κ!.

Let T = ST (t). We partition T into three sets as follows:

T1 = {s ∈ T | V (Cs) ∩Bu = ∅},
T2 = {s ∈ T | V (Cs) ∩Bu 6= ∅ and Ss ⊆ Bu},
T3 = {s ∈ T | V (Cs) ∩Bu 6= ∅ and Ss 6⊆ Bu}.

By Lemma 3.1, for every s ∈ T2∪T3, the graph Bu[Bu∩V (Cs)] is connected.
Let H1 be the graph obtained from Bu by deleting all vertices not in At ∪⋃

s∈T V (Cs) and contracting the connected subgraphs Bu[Bu ∩V (Cs)] to single

vertices xs, for all s ∈ T2 ∪ T3. Then H1 is a minor of Bu and hence H1 ∈
L(λ, µ). Note that the vertices and edges of Bu[At ∩Bu] remain unaffected by
the deletions and contractions, hence Bu[At ∩Bu] ⊆ H1.

For every v ∈ U , we let Kv = K[At ∩ Y ′
v ]. Then |V (Kv)| ≤ κ!. Let

H2 = H1 ∪
⋃

v∈U

Kv.

It is not hard to prove that H2 ∈ L(κ!, µ), because each of the new cliques Kv

intersects H1 in the clique Tv, and in any tree decomposition of a part of H1

we can attach a new vertex to the vertex whose bag contains Tv and let the
bag of the new vertex contain Kv. We omit the details, because we will prove
a stronger statement later.

Claim 1. 1. For every s ∈ T1, the set Ss induces a clique in H1 (and hence in
H2).

2. For every s ∈ T2, the vertex xs is adjacent to all vertices of Ss in H2.

3. For every s ∈ T3, the vertex xs is adjacent to all vertices of Ss ∩ Bu

in H2.

Proof: To prove (1), note that if V (Cs) ∩ Bu = ∅, then there exists a v ∈ U
such that V (Cs) ⊆ Y ′

v \ Yv. Then Ss = SG(Cs) ⊆ Tv.
To prove (2) and (3), we show that for every s ∈ T2 ∪ T3, the vertex xs is
adjacent to all vertices of Ss ∩ Bu in H2. Let s ∈ T2 ∪ T3. As G[V (Cs) ∪
SG(Cs)] is connected, Bu∩(V (Cs)∪SG(Cs)) induces a connected subgraph

of Bu. Recall that Ss = SG(Cs) and hence Ss ∩ Bu ⊆ SBu(Bu ∩ V (Cs)).
In the minor H1, the set V (Cs)∩Bu is contracted to the vertex xs. Hence
Ss ∩Bu ⊆ SH1(xs). As H1 is a subgraph of H2, this implies the claim.
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Claim 2. Let s ∈ T3, and let v ∈ U such that Ss ∩ (Y ′
v \Yv) = ∅. Then xs ∈ Tv.

Proof: Let D1, . . . , Dm be all connected components of G \ Bu that contain
a vertex in Ss ∩ Y ′

v . Then for 1 ≤ i ≤ m we have V (Di) ⊆ Y ′
v and

xs ∈ SG(Di). Thus xs ∈ SG(Y ′
v \ Yv) = Tv.

Note that Claim 2 implies that for every s ∈ T3 the vertex xs is adjacent to
all vertices in Ss \Bu in H2. Let H3 be the graph obtained from H2 by adding,
for all s ∈ T1, a new vertex xs and edges from xs to all vertices in Ss.

Claim 3. Ât is isomorphic to a subgraph of H3.

Proof: Follows from Claim 1 (2) and (3) and from Claim 2.

Claim 4. H3 ∈ L(κ!, µ).

Proof: Let X ⊆ V (H1) such that |X | ≤ µ and H1 \X ∈ L(λ). We shall prove
that H3 \X ∈ L(κ!). As local tree width is monotone with repect to taking
subgraphs, it suffices to prove that for every graph H ′ that is obtained from
H3 \X by contracting edges and for every r ≥ 1,

ltw(H ′, r) ≤ κ! · r. (4.9)

To simplify the notation, we first prove (4.9) for H ′ = H3\X ; it will then be
easy to see that essentially the same proof goes through for all H ′ obtained
fromH3\X by contracting edges. So let H ′ = H3\X andH ′

1 = H1\X . Let
r ≥ 1 and v ∈ V (H ′). If r = 1 and v = xs for an s ∈ T1 with Ss ∩Bu = ∅,
then NH′

r (v) = {v} ∪ Ss and hence tw(H ′[NH′

r (v)]) ≤ |NH′

r (v)| − 1 ≤ κ.
Otherwise, there exists a v1 ∈ V (H ′

1) such that NH′

r (v) ⊆ NH′

r (v1). Hence
without loss of generality, we may assume that v ∈ V (H ′

1).

Let H ′′ = H ′[NH′

r (v)] and H ′′
1 = H ′

1[N
H′

1

r (v)]. Let (P, (Cp)p∈V (P )) be a
tree decomposition of width at most λ · r of H ′′

1 . For every v ∈ U there is a
vertex p ∈ V (P ) such that Tv \X ⊆ Cp, because Tv induces a clique in H1.
If At ∩ (Y ′

v \ (Yv ∪X)) 6= ∅, we attach a new vertex pv to the tree P , attach
it to p, and let Cpv

= (At ∩ Y ′
v) \ X . For every s ∈ T1, by Claim 1 the

set Ss induces a clique in H1. Hence there is a node q ∈ V (P ) such that
Ss \X ⊆ Cq. We attach a new vertex qs to the tree P , attach it to q, and
let Cqs

= (Ss ∪ {xs}) \X . This yields a tree decomposition of H ′′. As the
new bags have size at most κ! ≥ κ+1, the width of this tree decomposition
is max{λ · r, κ! − 1} ≤ κ! · r.
We can proceed similarly if H ′ is obtained from H3 \ X by contracting
edges, because cliques remain cliques if we contract edges, and because
every minor of H1 \X is also in L(λ).

As Ât ⊆ H3, this completes the proof of the theorem. �

Remark 4.12 Note that we actually proved a stronger bound on the local tree
width of the companions than claimed in the statement of the lemma: Let Ât

be the companion of a bag. Then for every r ≥ 1 and every minor A′ of Ât we
have

ltw(A′, r) ≤ max{λ · r, 2κ!}.

We are now ready to prove the main theorem of this section.
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Theorem 4.1. There are computable functions f, λ, µ : N → N and an algo-
rithm that, given a graph G with Kk 6� G, computes a tree decomposition of G
that is weakly over L(λ(k), µ(k)) in time f(k) · nO(1).

Proof. Let G be a graph such that Kk 6� G. By Theorem 3.3 there are λ, µ ∈ N

such that G has a tree decomposition over L(λ, µ).
For κ := λ+µ+1, Lemma 4.11 implies that any κ-CMS tree decomposition

is a tree decomposition weakly over L(λ′, µ), with λ′ := 2κ!, and by Theorem
4.3 we can compute such k-CMS tree decompositions in time f(k) · nO(1), for
some computable function f . �

5 Graphs of almost bounded local tree-width

The goal of this section is to prove that there is an fpt-algorithm that, given
a graph in L(λ, µ), computes a set of at most µ vertices such that the graph
obtained by deleting these vertices is in L(λ′) for a suitable λ′ (Corollary 5.16).
The proof is based on a deep structure theorem (Theorem 5.1) by Robertson
and Seymour that essentially says that any graph either has small tree-width,
or contains a large clique minor, or consists of a large planar wall to which
subgraphs of small tree-width are attached in a not too complicated way together
with a bounded number of elements which may have arbitrary connections to
the rest. As the problem can easily be solved if G has low tree-width and
no graph in L(λ, µ) contains a large clique minor, we only have to deal with
the third case. This, however, requires some work. In the next subsection we
introduce necessary concepts and state Robertson and Seymour’s theorem. In
Section 5.2 we prove some facts about linkages in walls that are used in Section
5.3 where we finally present the algorithms.

5.1 Walls and Layouts

An elementary wall of height h ≥ 1 is a graph defined as in Figure 5.1. A wall
of height h is a subdivision of an elementary wall of height h. The perimeter of
a wall is the boundary cycle (cf. Figure 5.2). A wall in a graph G is a wall H
that is a subgraph of G. Note that, up to homeomorphisms, walls have unique
embeddings in the sphere. For walls of height 1, this is obvious, and for walls
of height h ≥ 2 this follows from a well known theorem due to Tutte stating
that 3-connected graphs have unique embeddings, because walls of height ≥ 2
are subdivisons of 3-connected graphs.

For a subgraph D of a graph G, we let ∂GD be the set of all vertices of D
that are incident with an edge in E(G) \ E(D).

In the following, let H be a wall of height at least 2 in a graph G, and let
P be the perimeter of H . Let K ′ be the unique connected component of G \ P
that contains H \ P . The graph K = K ′ ∪ P is called the compass of H in G.
A layout of K (with respect to the wall H in G) is a family (C,D1, . . . , Dm) of
connected subgraphs of K such that:

1. K = C ∪D1 ∪ . . . ∪Dℓ;

2. H ⊆ C, and there is no separation (X,Y ) of C of order ≤ 3 with V (H) ⊆
X and Y \X 6= ∅;
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Figure 5.1: Elementary walls of height 1–4
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Figure 5.2: A wall of height 4

3. ∂GDi ⊆ V (C) for all i ∈ [m];

4. |∂GDi| ≤ 3 for all i ∈ [m];

5. ∂GDi 6= ∂GDj for all i 6= j ∈ [m].

We let C be the graph obtained from C by adding new vertices d1, . . . , dm and,
for 1 ≤ i ≤ m, edges between di to the vertices in ∂GDi and edges between all
vertices in ∂GDi. Hence, for each i ∈ [m] the vertex di together with the (at
most 3) vertices in ∂GDi form a clique. We call C the core of the layout and
D1, . . . , Dm its extensions. The layout (C,D1, . . . , Dm) is flat if its core C is
planar. Note that this implies that the core has an embedding in the plane that
extends the “standard planar embedding” of the wall H (as shown in Figures 5.1
and 5.2), because the wall H has a unique embedding into the sphere. We call
the wall H flat (in G) if the compass of H has a flat layout.

Theorem 5.1 (Robertson and Seymour [17]) There are computable func-
tions f, g : N

2 → N and an algorithm A that, given a graph G and nonnegative
integers k, h, computes either

1. a tree decomposition of G of width f(k, h), or

2. a Kk-minor of G, or

3. a subset X ⊆ V (G) with |X | <
(
k
2

)
, a wall H of height h in G \X, and

a flat layout (C,D1, . . . , Dm) of the compass of H in G \X such that the
tree width of each of the extensions D1, . . . , Dm is at most f(k, h).
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Furthermore, the running time of the algorithm is bounded by g(k, h) ·n2, where
n is the number of vertices of the input graph G.

Proof. This is (essentially) Lemma (9.8) of [17]. Concerning the uniformity, see
the remarks at the end of [17] (on page 109). �

5.2 Linkages in graphs

A linkage in graph G is a family of pairwise disjoint paths in G. The endpoints
of a linkage L are the endpoints of the paths in L, and the pattern π(L) of L is
the matching on the endpoints induced by the paths, that is,

π(L) =
{
{s, t} : L contains a path from s to t

}
.

L is a linkage between S and T if S ∪ T is the set of endpoints of L, and each
path in L has one endpoint in S and one enpoint in T . By

⋃
L we denote the

subgraph of G that is the union of the paths in L. The linkage L is vital if
V (

⋃
L) = V (G) and there is no linkage L′ 6= L in G such that π(L′) = π(L).

Lemma 5.2 (Robertson and Seymour [14]) There is a computable func-
tion f such that every graph that has a vital linkage of cardinality k has tree
width at most f(k).

Lemma 5.3 Let Γ be a plane graph contained in a closed disk D, and let L be
a linkage of Γ with the following properties:

1. The intersection of Γ with the boundary of D consists of the endpoints of
L.

2. V (
⋃
L) = V (Γ).

3. There is no linkage L′ of Γ with π(L′) = π(L) and V (
⋃
L′) 6= V (Γ).

Then L is vital.

Proof. We prove the lemma by induction on |L|. For |L| = 0 it is trivial. So
suppose that |L| ≥ 1.

Let C denote the boundary of D. Choose a path P ∈ L such that one of
the two components B1, B2 of C \ P has an empty intersection with Γ. Say,
B2∩Γ = ∅. Let I2 denote the interior of the circle B2∪C. Then V (Γ)∩I2 = ∅,
because V (Γ) = V (

⋃
L) and the paths in L are pairwise disjoint. Furthermore,

there is no edge of Γ with interior in I2, because such an edge would connect
two vertices of P and hence allow us to replace P by a strictly shorter path with
the same endpoints, which contradicts condition (3). Hence Γ ∩ I2 = ∅. Let
D1 denote the closed disk with boundary P ∪ B1. We have just observed that
Γ ⊆ D1.

Let L′ be a linkage of Γ with π(L′) = π(L). We claim that L = L′. Let
P ′ be the path in L′ that has the same endpoints as P . If P ′ 6= P , then some
vertex v ∈ P is contained in the interior of the disk bounded by P ′ ∪B2. Then
v 6∈ ⋃

L′, which contradicts (3). Hence P = P ′. Let Γ1 = Γ \ P , L1 = L \ {P},
and L′

1 = L′ \ {P}. As Γ1 ⊆ D1, we can apply the induction hypothesis, which
implies that L1 = L′

1. Hence L = L′. �
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Let Γ be a plane graph and C1, . . . , Ck a sequence of cycles of Γ. We call
C1, . . . , Ck concentric if for all i ∈ [k−1], the cycle Ci is contained in the interior
of Ci+1 (where the interior of a cycle is defined with respect to the drawing of
Γ in the plane).

Lemma 5.4 (Robertson and Seymour [15]) There is a computable func-
tion f such that the following holds: Let Γ be a plane graph and L a linkage
of Γ. Let C1, . . . , Cf(k) be concentric cycles of Γ such that all endpoints of the
paths in L are contained in the interior of C1.

Then there is a linkage L′ with the same pattern as L such that all paths in
L are contained in the interior of Cf(k).

Proof. This is a simplified version of Lemma (3.1) of [15]. For the computability
of the function f , see the remarks at the end of [17]. �

Let Γ be a plane graph, and let C1, . . . , Ck be concentric cycles of Γ. For
i ∈ [k], let Ii be the interior of Ci, and let Di = Ii ∪ Ci be the closed disc
with boundary Ci. We say that a path P traverses C1, . . . , Ck if P ⊆ Dk \ I1
and the endpoints of P are on C1 and Ck, respectively. Now suppose P is a
path that traverses C1, . . . , Ck. We think of P as being directed from C1 to
Ck. For each inner point x of P (viewed as a curve in the plane), this gives us
an orientation of a small open neighborhood N of x, dividing N \ P into a left
and right part. We can extend this orientation to the two endpoints by slightly
extending the curve P into the interior of C1 and the exterior of Ck. Having
this orientation, we can distinguish between edges Γ \ P incident with a vertex
of P that approach P from the left and edges that approach P from the right.
Let Γ′ be the subgraph of Γ obtained by deleting all edges of Γ \ P that are
incident with a vertex of P and approach P from the left. We call Γ′ be the
graph obtained from Γ by cutting C1, . . . , Ck along P .

Lemma 5.5 Let Γ be a plane graph, and let C1, . . . , Ck be concentric cycles
of Γ. Let P1, . . . , Pk be pairwise disjoint paths in Γ that traverse C1, . . . , Ck,
and let Γ′ be the graph obtained from Γ by cutting C1, . . . , Ck along P1. Then
tw(Γ′) ≥ k − 1.

Before we prove the lemma, note that it is easy to see that tw(Γ) ≥ k − 1
using the robber and cops game: A winning strategy for the robber is to stay
on a path Pi and a cycle Cj currently not occupied by the cops.

Proof of Lemma 5.5. We shall prove that for j ∈ [k] there is a path Qj ⊆ Cj∩Γ′

such that Pi ∩Qj 6= ∅ for all i ∈ [k].
Fix j ∈ [k]. To simplify the notation, we let P = P1 and C = Cj . Let

S1, . . . , Sm be the connected components of C \ P . For 1 ≤ ℓ ≤ m, let Sℓ be
the path extending Sℓ by the two edges of C that connect Sℓ with P . Then
C =

⋃m
ℓ=1 Sℓ. The crucial observation is that there is precisely one ℓ0 such that

Sℓ0 leaves P on the right (of P , as defined above) and enters on the left. This can
be shown by a fairly straightforward induction on the number of intersections of
P and C. Now consider a path Pi for some i ≥ 2 and suppose for contradiction
that Pi does not intersect Sℓ0 . It is easy to see that for all ℓ ∈ [m] with
Sℓ ∩ Pi 6= ∅ it holds that Sℓ approaches P from the right at both ends. But
through such segments, Pi can never reach Ck.
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We letQj = Sℓ0∩Γ′. Then all Pi (including P1) have a nonempty intersection
with Qj. Now we can use the robber and cops game to establish that tw(Γ′) ≥
k − 1. �

The following lemma, which is the main result of this section, says that if
we have a linkage in a plane graph that connects vertices on the interior and
exterior of a large family of concentric cycles, then there is another linkage with
the same pattern that does not cross the “middle cycles” too often. To make
this precise, we need more definitions.

Let Γ be a plane graph and C1, . . . , Cℓ a sequence of concentric cycles of
Γ. For i ∈ [ℓ], let Ii be the interior of Ci and Di = Ii ∪ Ci. Let L be a
linkage of Γ with endpoints in I1 ∪ (R2 \Dℓ). The traversal linkage induced by
L on C1, . . . , Cℓ is the set T = T (L;C1, . . . , Cℓ) of all connected components of
graphs P ∩ (Dℓ \ I1) for P ∈ L. Note that T is a linkage of Γ with endpoints
in V (C1 ∪Cℓ). However, it not necessarily the case that all paths in P traverse
C1, . . . , Cℓ. Also note that the cardinality of T cannot be bounded in terms of
|L| and ℓ.

Lemma 5.6 There is a computable function f such that the following holds for
every k ≥ 1: Let Γ be a plane graph. For some ℓ > 2f(k), let C1, . . . , Cℓ be a
sequence of concentric cycles of Γ. Let L be a linkage of Γ of cardinality k with
all endpoints in the interior of C1 or the exterior of Cℓ.

Then there exists a linkage L′ of Γ with the same pattern as L such that
there are at most f(k) paths in the traversal linkage T (L′;C1, . . . , Cℓ) that have
a nonempty intersection with one of the cycles Cf(k), . . . , Cℓ−f(k)+1.

Proof. Let f1, f2 be the functions f of Lemmas 5.2 and 5.4, respectively, and
define f by letting f(k) = max{2 · f1(k) + 1, f2(k)} for all k ∈ N.

If L does not contain a path that has one endpoint in the interior of C1

and one endpoint in the exterior of Cℓ, then the statement follows by applying
Lemma 5.4 twice (once to the interior and once to the exterior). In the following,
we assume that there is at least one path in P that has one endpoint in the
interior of C1 and one endpoint in the exterior of Cℓ.

Let L′ be a linkage in Γ with π(L) = π(L′) such that V (
⋃
L′) is minimal with

respect to set inclusion, that is, there is no linkage L′′ of Γ with π(L′) = π(L′′)
and V (

⋃
L′′) ⊂ V (

⋃
L′).

Let Γ′ be the topological minor of Γ obtained from the subgraph
⋃
L′ ∪⋃ℓ

i=1 Cℓ by contracting all segments of the cycles Ci that are not on paths in L′

to single edges. We view Γ′ as a plane graph that is identical with Γ if considered
as a subset of the plane. Let C′

1, . . . , C
′
ℓ be the cycles of Γ′ corresponding to the

cycles C1, . . . , Cℓ.
Then L′ is a linkage of Γ′ with its endpoints in the interior of C′

1 or the
exterior of C′

ℓ, and there is no linkage L′′ of Γ′ with π(L′) = π(L′′) and
V (

⋃
L′′) ⊂ V (

⋃
L′). Furthermore, V (

⋃
L′) = V (Γ′). Consider the traver-

sal linkage T = T (L′;C′
1, . . . , C

′
ℓ). Let P ∈ T be a path with one endpoint on

C′
1 and one endpoint in C′

ℓ. Such a P exists because L contains a path that has
one endpoint in the interior of C1 and one endpoint in the exterior of Cℓ. Let
Γ′′ be the subgraph of Γ′ obtained by cutting C′

1, . . . , C
′
ℓ along P .

Claim 1. L′ is a vital linkage of Γ′′.
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Proof: By the construction, there is no linkage L′′ of Γ′′ with π(L′) = π(L′′) and
V (

⋃
L′′) ⊂ V (

⋃
L′). It is easy to see that Γ′′ can be drawn into a closed

disk such that the endpoints of L′ are the only points on the boundary of
the disk. Hence by Lemma 5.3, L′ is vital.

Claim 2. tw(Γ′′) ≤ f1(k) < f(k)/2.

Proof: Follows immediately from Lemma 5.2.

Now let j ∈ [f(k), ℓ − f(k) + 1)] and suppose for contradiction that more
than f(k) paths in T (L′;C1, . . . , Cℓ) have a nonempty intersection with Cj .
Then more than f(k) paths in T (L′;C′

1, . . . , C
′
ℓ) have a nonempty intersection

with C′
j in Γ′. Hence either more than f(k)/2 paths in T (L′;C′

1, . . . , C
′
ℓ) have

a nonempty intersection with all cycles C′
i for all i ∈ [j] or more than f(k)/2

paths in T (L′;C′
1, . . . , C

′
ℓ) have a nonempty intersection with all cycles C′

i for
all i ∈ [j, ℓ]. Then by Lemma 5.5, tw(Γ′′) ≥ f(k)/2. This contradicts Claim 2

�

5.3 Algorithmic Aspects

For every ℓ ≥ 1, the (ℓ× ℓ)-pyramid is the graph obtained from the (ℓ× ℓ)-grid
by adding a new vertex a (the apex ) and edges from a to all vertices of the grid.
For every λ ≥ 1, we let

K(λ) = {G | the (λ + 1) × (λ+ 1)-pyramid is not a minor of G},
K(λ, µ) = {G | ∃X ⊆ V (G) : |X | ≤ µ and G \X ∈ K(λ)

}
.

The bricks of an elementary wall are the cycles of length 6, and the bricks of
a wall are the subdivisions of the bricks of the corresponding elementary wall.
Two bricks are adjacent if they are distinct and have a nonempty intersection.
We can assign coordinates to the bricks of a wall as shown in Figure 5.3. In the
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(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(4, 1) (4, 2) (4, 3) (4, 4)

Figure 5.3: The coordinates of the bricks of a wall

folllowing, we always assume that we have fixed the coordinates in our walls.
Let H be a wall. For 1 ≤ i, j ≤ h, let Bij denote the brick of H with coordinates
(i, j). A subgraph H ′ ⊆ H is a subwall if there exist h′ ≤ h and i, j ≤ h − h′

such that
H ′ =

⋃

i+1≤i′≤i+h′

j+1≤j′≤j+h′

Bi′j′ .

Hence a subwall consists of consecutive bricks both in horizontal and vertical
direction.
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Lemma 5.7 There is a computable function f : N
4 → N such that the following

holds for all h′, κ, λ, µ ∈ N: Let G ∈ K(λ, µ), X ⊆ V (G) with |X | ≤ κ, and let
H be a flat wall of height at least f(h′, κ, λ, µ) in G \X. Then

1. either there is a vertex x ∈ X such that G \ {x} ∈ K(λ, µ− 1),

2. or H has a subwall H ′ of height h′ such that the compass of H ′ in G has
an empty intersection with X.

Furthermore, there is an algorithm with running time f(h′, κ, λ, µ) · nO(1) that
tests which of the two cases applies and either computes the subwall H ′ or the
element x ∈ X so that G \ {x} ∈ K(λ, µ − 1).

Proof. Let g(k,m) denote the least n such that if we color [n]2 with k colors then
there are subsets I, J ⊆ [n] with |I| = |J | = m such that I×J is monochromatic.
The existence of such a number follows from Ramsey’s theorem, but also can
easily be proved directly.

We define f by f(h′, κ, λ, µ) = (h′ + 1) · g(κ, (λ + 1) · √µ + 1). Let H be a
flat wall of height h ≥ f(h′, κ, λ, µ) in G \X . For i, j ∈ [g(κ, (λ+ 1) · √µ+ 1)],
let H ′

ij be the subwall of H of height h′ + 1 such that the brick in the upper
right corner of H ′

ij has coordinates (i · (h′ + 1), j · (h′ + 1)). Then the subwalls
H ′

ij cover the wall H and have disjoint interiors. Let Hij be the subwall of H ′
ij

of height h′ such that the brick in the upper right corner of Hij is the same as
the brick in the upper right corner of H ′

ij . Thus, Hij is the subwall of H ′
ij with

the lowest row and the right-most column removed. By construction, the Hij

are disjoint.
Now suppose that (2) does not hold. Then, in particular, for all i, j, the

compass of the subwall Hij in G has a nonempty intersection with X . Fix i, j
for a moment. As the compass of Hij has a nonempty intersection with X , we
can find a shortest path Pij from a vertex yij of Hij to a vertex xij ∈ X . As H
is flat in G \X , we have V (Pij) ∩ V (H) = {yij} and V (Pij) ∩X = {xij}. We
can view the mapping (i, j) 7→ xij as a coloring of [g(κ, (λ+ 1) · √µ+ 1)]2 with
κ colors. Hence there are subsets I, J ⊆ [g(κ, (λ + 1) · √µ+ 1)] of size at least
(λ + 1) · √µ+ 1 and an x ∈ X such that x = xij for all i ∈ I, j ∈ J . Pick such
I, J, x.

Note that for i ∈ I, j ∈ J , the paths Pij have pairwise no points other
than x in common, for otherwise the wall H would not be flat in G \ X . Let
G′ = H ∪

⋃
i∈I,j∈J Pij . It is not hard to see that G′ has the ((λ+1) · √µ+1)×

((λ+ 1) · √µ+ 1)-pyramid with grid vertices yij and apex x as a minor.
Let Y ⊆ V (G) with |Y | ≤ µ and G \ Y ∈ K(λ). We claim that x ∈ Y .

Suppose not. Then the ((λ + 1) · √µ + 1) × ((λ + 1) · √µ + 1)-grid has a
(λ + 1) × (λ + 1)-subgrid such that no vertex in Y is contained in any of the
connected subgraphs of G′ that are contracted to the vertices of the subgrid.
Hence G \ Y has the (λ + 1) × (λ + 1)-pyramid with apex x as a minor. This
contradicts G \ Y ∈ K(λ). Thus x ∈ Y , which implies (1). �

A model of a graph G in a graph H is a minimal subgraph M ⊆ H such that
G � M . (Minimality means that there is no M ′ ⊂ M with G � M ′.) With
each model M of G in H we associate a mapping that associates a connected
subgraph M(v) with each vertex v ∈ V (G) in such a way that for all distinct
v, w ∈ V (G) the graphsM(v) andM(w) are disjoint, and if {v, w} ∈ E(G) there
is an edge from M(v) to M(w) in M . It follows from the minimality condition

21



in the definition of a model M that M(v) is a tree for every v ∈ V (G). Note
the slight abuse of notation: We use M to denote both a subgraph of H and a
mapping from V (G) to the set of connected subgraphs of H .

Lemma 5.8 Let λ ≥ 1. Let G be a graph, H a wall of height h in G, and
(C,D1, . . . , Dm) a flat layout of the compass K of H such that every extension
Di has tree width at most λ−4. Furthermore, let G′ be the graph obtained from
G by replacing the compass K of H by C. That is, for every i ∈ [m] we delete
Di \ ∂GDi, add a new vertex di, and add edges between all pairs of vertices of
∂GDi and between di and all vertices of ∂GDi.

If the (λ + 1) × (λ + 1)-pyramid is a minor of G then it is also a minor of
G′.

Proof. Suppose that the (λ + 1) × (λ + 1)-pyramid is a minor of G, and let M
be a model of the pyramid in G.

Claim 1. For every i ∈ [m], there is at most one vertex v of the (λ+1)×(λ+1)-
pyramid such that M(v) ⊆ (Di \ ∂GDi).

Proof: Let D = Di and D = D ∪K∂GD. Then tw(D) ≤ λ − 2, and therefore
D does not have the (λ− 1) × (λ− 1)-grid as a minor. Hence there are at
least two vertices x1, x2 of the pyramid such that M(xi) ∩ V (D) = ∅.
Suppose for contradiction that there are two vertices y1, y2 of the pyramid
with M(yi) ⊆ (D \ ∂GD). There are at least 4 internally disjoint paths
from {x1, x2} to {y1, y2} in the pyramid (one through the apex and at least
3 in the grid. This contradicts |∂GD| ≤ 3. ⊣

Let M ′ be defined by letting

M ′(x) =






M(x) ∩ V (C) if M(x) ∩ V (C) 6= ∅,

({di},∅)
if M(x) ⊆ Di \ ∂GDi

for some i ∈ [m].

Here ({di},∅) denotes the graph with vertex di and no edges. It is easy to see
that M ′ induces a model of the (λ+ 1) × (λ+ 1)-pyramid in G′. �

Figure 5.4: The shells of a wall of height 5

Let H be a wall of height h. We view H as a plane graph (drawn into the
plane in the natural way). The central brick of H is the brick with coordinates
(⌈h/2⌉ , ⌈h/2⌉). The shells of H are the cycles S0, . . . , S⌈h/2⌉−1, where S0 is
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boundary cycle of the central brick and for r ≥ 1, the cycle Sr is the shortest
cycle disjoint from Sr−1 with Sr−1 in its interior. The index r is called the
radius of the shell. The closed disk bounded by Sr is denoted by Dr and its
interior by Ir. Furthermore, we let S0 be the set consisting of the central brick,
and for r ≥ 1, we let Sr be the set of all bricks between Sr−1 and Sr. We shall
use the notation Sr, Dr, Ir and Sr for the rest of this section.

Let r ≥ 1. The bricks in Sr are arranged in a cycle. For every brick B ∈ Sr

there is a unique brick adjacent to B on the left of B in clockwise order and a
unique brick adjacent to B on the right of B in clockwise order. Furthermore,
every brick in Sr is adjacent to one or two bricks in Sr−1. Those bricks in Sr

that are only adjacent to one vertex in Sr−1 are called cornerbricks. Note that
Sr contains exactly six cornerbricks. Finally, a straightforward induction shows
that |Sr| = 6r and that there are exactly r − 1 non-cornerbricks between any
two adjacent cornerbricks.

We call a tuple (x1, . . . , xm) ∈ V (Sr)
m accessible from the interior if x1, . . . , xm

appear on the cycle Sr in clockwise order, and if every brick of Sr contains at
most one vertex xi. If r ≤ ⌈h/2⌉ − 2, we call (x1, . . . , xm) ∈ V (Sr)

m accessible
from the exterior if x1, . . . , xm appear on the cycle Sr in clockwise order, and if
every brick of Sr+1 contains at most one vertex xi. We call a tuple (x1, . . . , xm)
of vertices of the outermost shell S⌈h/2⌉−1 accessible from the exterior if it is
accessible from the exterior in all extensions of H by another layer of bricks.

Lemma 5.9 Let h, k, ℓ,m ∈ N such that m ≤ k ≤ ℓ < ⌈h/2⌉ and ℓ − k − 1 ≥
(3/2)m. Let H be a wall of height h, and let (y1, . . . , ym) ∈ V (Sk)m be accessible
from the exterior and (y′1, . . . , y

′
m) ∈ V (Sℓ)

m be accessible from the interior.
Then there is a linkage L in H ∩ (Dℓ \ Ik) with pattern

{
{yi, y

′
i} : i ∈ [m]

}
.

Proof. Let H̃ = H ∩ (Dk \ Ii). Let Y = {y1, . . . , ym} and Y ′ = {y′1, . . . , y′m}.
Observe that for every linkage L between Y and Y ′ there is an integer p with
−m/2 < p ≤ m/2 such that for all i ∈ [m] the path in L with endpoint yi ∈ Y
has endpoint y′((i+p) mod m)+1 ∈ Y ′. This follows easily from the planarity of
H . We call p the offset of L.

Claim 1. Let (x1, . . . , xm) be an m-tuple on some shell Sr.

1. If r < ⌈h/2⌉ − 1 and (x1, . . . , xm) is accessible from the exterior,
then there are m pairwise disjoint paths from {x1, . . . , xm} to Sr−1 in⋃Sr+1 whose endpoints form a tuple on Sr−1 that is accessible from
the exterior.

2. If r > m and (x1, . . . , xm) is accessible from the interior, then there
arem pairwise disjoint paths from {x1, . . . , xm} to Sr−1 in

⋃Sr whose
endpoints form a tuple on Sr−1 that is accessible from the inside.

Proof: The first claim is obvious. For the second, observe that between any two
cornerbricks of Sr there are at least m non-corner bricks of Sr, and hence
whenever a cornerbrick is occupied, each adjacent side of the hexagon Sr

has at least one brick that contains none of the vertices xi. This gives us
enough room for the desired paths.

Claim 2. There is a linkage between Y and Y ′.

Proof: By Menger’s theorem, it suffices to prove that there is no separator
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of order less than m that separates Y from Y ′. This follows easily from
Claim 1.

Let {P1, . . . , Pm} be a linkage between Y and Y ′ such that for each i ∈ [m]
the vertex yi is an endpoint of Pi. Let Σ be the cylinder {z ∈ R

2 | 1 ≤ ||z|| ≤ 2},
and let S = {z ∈ R

2 | ||z|| = 1}, S′ = {z ∈ R
2 | ||z|| = 2} be the boundary

cycles. In the following, we shall use polar coordinates to describe the points in
Σ. We may assume that H̃ is embedded into Σ such that:

• H̃∩S = Y , and for all i ∈ [m], the polar coordinates of yi are (1, 2π · i/m).

• For all i ∈ [m], the path Pi is the straight line {(r, 2π · i/m) | 1 ≤ r ≤ 2}.

• H̃ ∩ S′ = Y ′.

We shall complete the proof by applying a theorem about the existence of link-
ages on cylinders due to Robertson and Seymour [16]. A continuous function
f : [0, 1] → Σ is H̃-normal if f([0, 1])∩ H̃ ⊆ V (H̃). Of course here [0, 1] denotes
the unit interval {x ∈ R | 0 ≤ x ≤ 1} and not the set {0, 1}. We let ℓ(f) be the
number of times f intersects H̃, that is, ℓ(f) = |{x | f(x) ∈ V (H̃)}|. Further-
more, we let ϑ(f) be 1/2π times the total angle (measured counterclockwise)
that is covered by a ray from the origin through f(x) as x ranges from 0 to 1.
For 1 ≤ i ≤ m, let xi = (1, 2π · i/m+ π/m) and x′i = (2, 2π · i/m + π/m). A
helix is an H̃-normal curve h such that ℓ(h) is finite, h(0) = xi for some i ∈ [m],
and h(1) = xj for some j ∈ [m].

Let p be the offset of the linkage {P1, . . . , Pm}. Theorem (5.10) of [16] implies
that for every q ∈ [−p,m− p] there is a linkage with offset q if and only if every
helix h satisfies

m · ϑ(h) − ℓ(h) ≤ q ≤ m · ϑ(h) + ℓ(h)

The existence of a linkage with offset 0 and hence with the desired pattern
follows from the next claim:

Claim 3. Let h : [0, 1] → Σ be a helix. Then

m · ϑ(h) − ℓ(h) ≤ −p ≤ m · ϑ(h) + ℓ(h) (5.1)

Proof: Recall that |p| ≤ m/2. It is easy to see that there is a family of 2m
pairwise disjoint paths in H̃ from Sk to Sℓ. If the helix h winds around
the cylinder i times, it must intersect all these paths i times and hence
ℓ(h) ≥ 2m · i. Thus

ℓ(h) ≥ 2m · ⌊|ϑ(h)|⌋ ,
and both inequalities in (5.1) hold if |ϑ(h)| ≥ 1. If |ϑ(h)| < 1, we use the ob-
servation that h has a nonempty intersection with the shells Sk+1, . . . , Sℓ−1.
Thus ℓ(h) ≥ (3/2)m and therefore

ℓ(h) − |m · ϑ(h)| ≥ m

2
≥ |p|,

which implies (5.1).

�
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Lemma 5.10 Let h, k, ℓ,m ∈ N such that m ≤ k ≤ ℓ < ⌈h/2⌉ and ℓ− k − 1 ≥
(5/2)m. Let H be a flat wall of height h in a graph G, and let y1, . . . , ym ∈
V (Sk), y′1, . . . , y

′
m ∈ V (Sℓ) such that:

1. The tuple (y1, . . . , ym) is accessible from the exterior.

2. The vertices y′1, . . . , y
′
m appear on Sℓ in that clockwise order.

3. There is a linkage L′ such that every path in L′ has precisely one end-
point in {y′1, . . . , y′m} and a nonempty intersection with each of the cycles
Sℓ, . . . , Sℓ−m+1.

Then there is a linkage L in G ∩ (Dℓ \ Ik) with pattern
{
{yi, y

′
i} : i ∈ [m]

}
.

Proof. Let Y ′ = {y′1, . . . , y′m}, and let X ⊆ V (Sℓ−m+1) be a set of vertices that
contains exactly one vertex from every brick in Sℓ−m+1.

Claim 1. There is a family of m pairwise disjoint paths in G ∩ (Dℓ \ Iℓ−m+1)
from Y ′ to X .

Proof: Suppose for contradiction that there is a separator Z of cardinality at
most m−1 that separates Y ′ from X . Then there is a path P in the linkage
L′ and a shell S = Sj for some j ∈ [ℓ, ℓ −m + 1] such that Z ∩ V (P ) =
Z ∩ V (S) = ∅. Furthermore, it is easy to see that there are m pairwise
disjoint paths from S to X . In particular, there is one path Q from S to
X with V (Q) ∩ Z = ∅.
Then we obtain a path from Y ′ to X that does not intersect Z by following
P from Y to S, then going to Q on S, and then following Q from S to X .
This contradicts Z being a separator of Y ′ and X .

Now the lemma follows from Lemma 5.9. �

Let Γ be a plane graph embedded in a closed disk D, and let x1, . . . , xk be
the vertices of Γ that appear on the boundary of D in that clockwise order. Let
M be a model of Γ in a wall H of height h. Then M is boundary preserving if:

• M is contained in the disk bounded by some shell S of H .

• For i ∈ [k], the intersection of M(xi) and S has exactly one vertex yi, and
the tuple (y1, . . . , yk) is accessible from the exterior.

• For all v ∈ V (Γ) \ {x1, . . . , xk}, the intersection of M(v) and S is empty.

We say that M avoids a set X of vertices of H if V (M) ∩X = ∅.

Lemma 5.11 There is a computable function f : N
2 → N such that the follow-

ing holds for all m,n ∈ N: Let H be a wall of height h ≥ f(m,n) and X ⊆ V (H)
with |X | ≤ m. Let Γ be a plane graph with |V (Γ)| ≤ n that is drawn in a closed
disk D. Then there is a boundary preserving model M of Γ in H that avoids
X.

Proof. Without loss of generality we may assume thatD is the square {(x1, x2) ∈
R

2 | 0 ≤ x1, x2 ≤ 1}.
Recall that the ℓ1-distance between x = (x1, x2), y = (y1, y2) ∈ R

2 is |x1 −
y1| + |x2 − y2|. Choose ε > 0 such that:
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• For all v, w ∈ V (Γ) we have ℓ1(v, w) > 2ε · n.

• For all edges e, f ∈ E(Γ) and all points x ∈ e, y ∈ f , either ℓ1(x, y) ≥ 2ε,
or there exists a vertex v ∈ V (Γ) such that ℓ1(x, v) < 2ε ·n and ℓ1(y, v) <
2ε · n.

The existence of such an epsilon follows from a simple compactness argument.
Then it is easy to see that Γ has a model in the ⌈1/ε⌉×⌈1/ε⌉-grid: Think of the
grid as being embedded into the unit square in the natural way. Each vertex
occupies an n× n subgrid around its position in the square, and the edges are
routed as closely as possible to their curve in the square.

If we further subdivide the grid into an ⌈(m+ 1)/ε⌉ × ⌈(m+ 1)/ε⌉ grid, we
can easily modify the model in such a way that it avoids a given set X of at most
m vertices. Observing that a shell of radius r in a wall has a subwall of height
r in its interior, and that each wall of height r has an r × r grid minor that
essentially has the same topology as the wall, it follows that there is a model of
Γ in every wall H of height at least 2 ⌈(m+ 1)/ε⌉ that avoids a given set X of
at most m vertices. The boundary vertices will appear on the perimeter of H
in the right order. Using similar arguments as in Lemma 5.9, it is not hard to
turn this model into a bondary preserving model.

It remains to prove that ⌈1/ε⌉ has a computable upper bound in terms of
m and n. One easy way to obtain such a bound is to enumerate all n-vertex
graphs and all their planar drawings, choose a suitable ε for each of them, and
then take the maximum ⌈1/ε⌉ for all the εs. Here we may view planar drawings
as combinatorial objects such as rotation systems, which are then turned into
actual drawings in some systematic way. Of course this may give us values of ε
which are smaller than necessary, but this does not matter. �

Lemma 5.12 There is a computable function f : N
2 → N such that for all

λ, µ ≥ 1 the following holds: Let G be a graph, H a wall of height f(λ, µ) in
G, and (C,D1, . . . , Dm) be a flat layout of the compass K of H such that every
extension Di has tree width at most λ− 4. Furthermore, let z be a vertex of the
central brick of H. Then

G ∈ K(λ, µ) ↔ G \ {z} ∈ K(λ, µ)

and if X ⊆ V (G) \ {z} is such that |X | ≤ µ and G \ (X ∪ {z}) ∈ K(λ) then
G \X ∈ K(λ).

Proof. Let f1, f2 be the functions f of Lemmas 5.6 and 5.11, respectively. Let

ν = 10(λ+ 1)2,

ξ = 2f1(ν) · (f1(ν) + 1),

ρ = f2
(
2f1(ν) + 3ν, µ+ 1

)
,

h = ξ + ρ+ (5/2) · (2f1(ν) + 3ν),

and let f(λ, µ) = h. Let H be a flat wall of height h in G. Furthermore, let z
be a vertex of the central brick of H .

If G ∈ K(λ, µ) then trivially G \ {z} ∈ K(λ, µ), because G \ {z} is a minor
of G.

For the backward direction, assume that G \ {z} ∈ K(λ, µ). Let X ⊆ V (G)
with |X | ≤ µ and G \ (X ∪ {z}) ∈ K(λ). Suppose for contradiction that
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G \ X 6∈ K(λ). Let M ⊆ G be a model of the (λ + 1) × (λ + 1)-grid in G.
We decompose the graph M into a family of stars and a linkage as follows: Let
B be the set of vertices of M of degree at least 3. For every b ∈ B, let Nb

denote the subgraph of M with vertex set NM (b) an edges between b and its
neighbors. Let NB =

⋃
b∈B Nb. Let L be the set of connected components of

M \ NB. Then vertices of graphs in L have degree at most 2. Hence L is a
linkage. It is easy to see that |V (NB)| ≤ ν, |E(NB)| ≤ ν, and |L| ≤ ν.

By Lemma 5.8 we may assume without loss of generality that each of the
extensions Di of the flat layout of the compass K of H consist of just one vertex.
Then K is a planar graph. We fix some embedding into the plane that extends
the natural embedding of H and view K as a plane graph. Let S1, . . . , Sh/2 be
the shells of H . By the pigeonhole principle, there must be an

i ∈
[
⌈h/2⌉ − 1 − ν · ξ, ⌈h/2⌉ − 1 − ξ

]

such that no v ∈ NB is contained in Di+ξ \ Ii+1, where, as usual, Dj denote the
closed disk bounded by the shell Sj of H and Ij denotes its interior (for every
j ∈ [⌈h/2⌉ − 1]). Choose such an i and consider the sequence Si+1, . . . , Si+ξ

of concentric cycles. All endpoints of the linkage L are in NB and hence in
the interior of Si+1 or the exterior of Si+ξ. By Lemma 5.6, there is a linkage
L′ of G with the same pattern as L such that at most f1(ν) paths in the
traversal linkage T (L′;Si+1, . . . , Si+ξ) have a nonempty intersection with one of
the 2f1(ν) · (f1(ν) + 1) cycles Si+f1(ν), . . . , Si+ξ−f1(ν). We choose such an L′.
Applying the pigeonhole principle again, we find a i′ ∈ [i+ f1(ν), i+ ξ− 2f1(ν)]
and subset T ′ ⊆ T (L′;Si+1, . . . , Si+ξ) of cardinality |T ′| ≤ f(k) such that:

• For every P ∈ T ′ and every j ∈ [i′+1, . . . , i′+2f1(ν)] we have P ∩Sj 6= ∅.

• For every P ∈ T (L′;Si+1, . . . , Si+ξ), if there exists a j ∈ [i′ + 1, . . . , i′ +
2f1(ν)] such that P ∩ Sj 6= ∅, then P ∈ T ′.

Let σ = i′ + 2f1(ν). Let L1 =
{
P ∩Dσ | P ∈ L′} and L2 =

{
P ∩ (R2 \ Iσ) |

P ∈ L′}. Then |L1| ≤ |T ′| + ν ≤ f1(ν) + ν, because each path in L1 is either a
path of L′ that is fully contained in Di′+f1(ν) or it contains a path in T ′. Let
N1 = NB ∩Dσ and N2 = NB \N1 = NB ∩ (R2 \ Iσ). Let M1 = N1 ∪

⋃
L1 and

M2 = N2∪
⋃
L2. Then M1∪M2 =

⋃
L′∪NB is a model of the (λ+1)× (λ+1)-

grid in G.
M1 is a plane graph drawn in the disk Dσ. By contracting all the paths in L1

to single edges, we obtain a plane graphM ′
1, which is identical with M1 if viewed

as a point set in the plane. Since |L1| ≤ f1(ν) + ν and |V (NB)| ≤ ν, we have
|V (M1)| ≤ 2f1(ν) + 3ν. By Lemma 5.11, there is a boundary preserving model
M ′

1 of M1 in the disk Dρ that avoids X ∪{z}. Suppose that the boundary shell
of M ′

1 is Sρ. Let y1, . . . , ym be the vertices of M1 on the boundary cycle Sσ, and
let y′1, . . . , y

′
m be the corresponding vertices of M ′

1 on Sρ. Then m ≤ 2f1(ν)+3ν,
and hence σ− ρ− 1 ≥ (5/2)m. By Lemma 5.10, there is a linkage L3 of G with
pattern

{
{yi, y

′
i} : i ∈ [m]

}
such that

⋃
L3 ⊆ Dσ \ Iρ. Then M ′

1 ∪
⋃
L3 ∪M2

is a model of the (λ + 1) × (λ + 1)-grid in G \ (X ∪ {z}). This contradicts our
assumption that G \ (X ∪ {z}) ∈ K(λ). �

We are now ready to prove the main result of this section.
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Theorem 5.13 There are computable functions f, g : N
2 → N and an algorithm

that, given a graph G ∈ K(λ, µ), computes a set X ⊆ V (G) with |X | ≤ µ such
that G \X ∈ K(g(λ, µ)) in time f(λ, µ) · nO(1).

Proof. Let k := (λ+1)2 +µ+2 and let h be “big enough”, so that the recursive
calls to the algorithms work. (It is easy but tedious to compute the correct
value for h.) By Theorem 5.1, G either

1. has tree-width at most f(k, h), or

2. contains a Kk-minor, or

3. there is a subset X ⊆ V (G) with |X | <
(
k
2

)
, a wall H of height h in G\X ,

and a flat layout (C,D1, . . . , Dm) of the compass of H in G \X such that
the tree width of each of the extensions D1, . . . , Dm is at most f(k, h).

As no graph in K(λ, µ) can contain a K(λ+1)2+µ+2 as a minor and the problem
can easily be solved for graphs of bounded tree-width, we only have to deal with
Case 3). In this case, the algorithm in Theorem 5.1 actually returns the wall
and its layout. We can now apply the algorithm from Lemma 5.7. It either
returns an element x ∈ X so that G \ {x} ∈ K(λ, µ− 1) or a subwall H ′ whose
compass has an empty intersection with X . In the first case we have found one
of the µ elements and repeat the process on the graph G \ {x}. In the latter
case, we call the algorithm recursively on the smaller graph G \ {z} for some
vertex z of the central brick of H ′. By Lemma 5.12, G ∈ K(λ, µ) if, and only
if, G \ {z} ∈ K(λ, µ) and, in addition, if the recursive call to the algorithm on
G \ {z} returns a set X then, by Lemma 5.12 again, G \X ∈ K(λ). �

The previous theorem gives an fpt algorithm to compute, given a graph
G ∈ K(λ, µ), a set X of vertices with |X | ≤ µ such that G\X ∈ K(λ). However,
we aim at computing for a given graphG ∈ L(λ, µ) a set X so that G\X ∈ L(λ).
The following lemma by Eppstein [6] and Demaine and Hajiaghayi [5] solves this
problem.

Lemma 5.14 There is a computable function f : N → N such that for all
λ ∈ N:

L(λ) ⊆ K(λ) ⊆ L(f(λ)).

The lemma easily extends to K(λ, µ) and L(λ, µ).

Corollary 5.15 There is a computable function f : N → N such that for all
λ, µ ∈ N:

L(λ, µ) ⊆ K(λ, µ) ⊆ L(f(λ), µ).

From this, the main result of this section follows immediately.

Corollary 5.16 There are computable functions f, g : N
2 → N and an algo-

rithm that, given a graph G ∈ L(λ, µ), computes a set X ⊆ V (G) with |X | ≤ µ
such that G \X ∈ L(g(λ, µ)) in time f(λ, µ) · nO(1).
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6 FO-model checking on graphs with excluded

minors

In [7], Flum and Grohe show that the model-checking problem for first-order
logic is fixed-parameter tractable with parameter ϕ on any class of graphs with
an excluded minor. In their proof, Flum and Grohe use the tree-decomposition
of graphs excluding a fixed minor guaranteed by Theorem 3.3. The proof
can easily be modified to work with tree-decompositions that are weakly over
L(λ, µ). As a consequence, we immediately get the following theorem.

Theorem 6.1 The following problem

FO-Model-Checking

Input: Graphs G,H such that H 6� G
and ϕ ∈ FO.

Parameter: |ϕ| + |H |.
Problem: Decide wether G |= ϕ.

is fixed-parameter tractable.

The theorem implies that problems such as the dominating or independent
set problem become fixed-parameter tractable when the parameter is the ex-
cluded minor and the size of the independent set etc. This improves over
previously know results, where the minor was not part of the parameter and
determined the exponent of the polynomials.

Another consequence of the methods developed in the previous sections is
the following result. For any function f : N → N, let Cf be the class of graphs
G such that the excluded clique number of G is at most f(|G|).

Theorem 6.2 There is an unbounded function f : N → N such that first-order
model checking is fixed-parameter tractable on Cf .

The algorithms presented in the previous sections depend in various ways on
the excluded minor H . For instance H determines the numbers λ and µ used
throughout the sections. We therefore refrain from giving expicit bounds on the
function f whose existence is proved in Theorem 6.2.

7 Locally Excluding a Minor

In [7] Flum and Grohe prove that first-order model checking is fixed-parameter
tractable on any class of graphs with an excluded minor. In the same year,
Frick and Grohe [10] established the analogous result for graph classes with
bounded local tree-width. As the two structural properties are incomparable,
i.e. there are classes of graphs excluding a minor but with unbounded local
tree-width and vice-versa, it is a natural question, whether there is a common
generalisation of excluded minors and bounded local tree-width on which first-
order model checking is still fixed-parameter tractable. In this section we present
such a generalisation and show that it also generalises graph classes of bounded
expansion, a notion recently introduced by Nešetřil and de Mendez [20].
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7.1 Definition

Definition 7.1 A class C of graphs locally excludes a minor if for every r ∈ N

there is a graph Hr so that if G ∈ C and v ∈ V (G) then H 6� NG
r (v), i.e. H is

not a minor of the r-neighbourhood of v in G.

It is easily seen that any class of graphs with bounded local tree-width locally
excludes a minor as does any class of graphs excluding a fixed minor. Another
example are graph classes with bounded expansion, introduced by Nešetřil and
de Mendez [20]. We recall the definition.

Definition 7.2 Let G be a graph. A ball of G is a subset of vertices inducing
a connected subgraph. We denote the set of all families of balls of a graph G by
B(G). Let P := {B1, . . . , Bk} be a family of balls of G. The radius ρ(P) of P
is defined as ρ(P) := maxX∈P(ρ(G[X ])). The quotient G/P is defined as the
graph with vertex set 1, . . . , k and an edge between vertex i and j if, and only if,
there is an edge {v, v′} ∈ E(G) with v ∈ Bi and v′ ∈ Bj.

Clearly, the quotients of a graph are precisely its minors (up to isomorphism).
However, the notion of quotient allows us to define the radius of a quotient, and
hence of a minor, as the radius of the family of balls the quotient is taken over.

Definition 7.3 For every graph G and every r ∈ N we define the greatest
reduced average density (grad) ∇r(G) of G with radius r as

∇r(G) := max
{ |E(G/P)|
|V (G/P)| : P ∈ B(G), ρ(P) ≤ r

}
.

We also define ∇(G) := maxr ∇r(G) = max{ |E(H)|
|V (H)| : H � G}.

Definition 7.4 A class C of graphs has bounded expansion if there exists a
function b : N → N such that ∇r(G) ≤ b(r) for all G ∈ C and r ∈ N.

Note that any class of graphs excluding a fixed minor has bounded expansion
(indeed, bounded by a constant) and every class of graphs with bounded degree
has bounded expansion (by an exponential function). However, the class of
graph classes with bounded expansion does not include all graph classes with
bounded local tree-width. The next lemma shows that any class of graphs with
bounded expansion also locally excludes minors.

Lemma 7.5 Let C be a class of graphs with bounded expansion and let b : N → N

be a function witnessing this. Then for every r ∈ N there exists a graph Hr so
that if G ∈ C and v ∈ V (G) then Hr 6� NG

r (v).

Proof. Let G ∈ C be a graph and r ∈ N. As the expansion of C is bounded by
b, we have ∇r(G) ≤ b(r). Let N := Nr(v) be the r-neighbourhood of a vertex

v ∈ V (G). Hence, |E(N)|
|V (N)| ≤ b(r) and the same holds for all minors of N . It

follows that Kb(r)+2 is not a minor of N . �

Corollary 7.6 If C is a class of graphs with

• bounded expansion or

• bounded local tree-width or
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• excluding a fixed minor,

then C locally excludes a minor. The converse is not true, i.e. there are classes
of graphs locally excluding a minor with unbounded expansion or unbounded local
tree-width or whose minor closure is the class of all graphs.

Note, however, that the concept of excluding slowly growing minors as we
considered in Section 6 is incomparable to locally excluding a minor.

7.2 First-Order Model-Checking

We show next that first-order model checking is fixed-parameter tractable on
any class of graphs locally excluding a minor.

Gaifman [11] showed that any first-order sentence is equivalent to a Boolean
combination of basic-local sentences. We recall the definition. For every r ≥
0 we will use formulas d(x, y) ≤ r and d(x, y) > r to say that the distance
between x and y is at most r and greater than r, respectively. Clearly, these
are easily first-order definable. If ϕ(x) is a first-order formula, then ϕNr(x)(x)
is the formula obtained from ϕ by relativising the quantifiers in ϕ to the r-
neighbourhood of x, i.e. replacing ∀yψ by ∀y(d(x, y) ≤ r → ψ) and ∃yψ by
∃y(d(x, y) ≤ r∧ψ). A formula ψ(x) of the form ϕNr(x)(x) is called r-local. The
essential property of an r-local formula is that its truth value at a vertex x in
G only depends on the r-neighbourhood of x in G.

Theorem 7.7 (Gaifman [11]) Every first-order sentence is equivalent to a
Boolean combination of basic-local sentences, i.e. a Boolean combination of sen-
tences of the form

∃x1 . . .∃xk

( ∧

1≤i<j≤k

d(xi, xj) > 2r ∧
∧

1≤i≤k

ϑ(xi)
)
,

for suitable r, k > 0 and an r-local formula ϑ(x).

We are now ready to prove the main result of this section.

Theorem 7.8 Let C be a class of graphs locally excluding a minor. Then the
following problem

FO-ModelChecking on C
Input: G ∈ C, ϕ ∈ FO.

Parameter: |ϕ|.
Problem: Decide G |= ϕ.

is fixed-parameter tractable.

Proof. Let ϕ ∈ FO be a sentence. By Gaifman’s theorem 7.7, ϕ is equivalent to
a Boolean combination of basic local sentences. Hence, to prove the theorem,
it suffices to only consider the case where ϕ is a sentence of the form

∃x1 . . . ∃xk

∧

1≤i<j≤k

d(xi, xj) > 2 · r ∧
∧

1≤i≤k

ϑ(xi)

for r, k ≥ 1 and an r-local formula ϑ.
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As C locally excludes a minor, there is for every s ∈ N a graph Hs such that
Hs is excluded in every s-neighbourhood of vertices in any member of C. Let
G ∈ C.

The first step of the evaluation algorithm is to compute the set P ⊆ V (G) of
vertices v such that G[Nr(v)] |= ϑ(v). As Hr 6� G[Nr(v)], Theorem 6.1 implies
that there is a computable function f : N × N → N such that checking whether
G[Nr(v)] |= ϑ(v) can be done in time f(|Hr|, |ϑ|) · |Nr(v)|O(1).

It remains to find a set of k elements of P whose distance is pairwise > 2r.
For this, we proceed as follows. Set Q := P and set l := 0. While Q 6= ∅ and
l < k, choose an arbitrary element al ∈ Q, increase l to l+1 and remove NG

r (al)
from Q. If this process stops with l = k, we can accept, as then {a1, . . . , ak}
is the required set. If l = 0, then P := ∅ and therefore ϑ is false in every r-
neighbourhood of a vertex in G and hence G 6|= ϕ. Finally, if 0 < l < k, we know
that every v ∈ P is contained in the 2r-neighbourhood of some ai, 1 ≤ i ≤ l. Let
N := G

[
NG

2r

(
{a1, . . . , al}

)]
. By construction, the radius of N is at most 2r · l

and hence H := H2rl 6� N . By Theorem 6.1, there is a function g : N × N → N

such that we can test whether (N,P ) |= ψ in time g(|H |, |ψ|) · |N |O(1), where

ψ := ∃x1 . . . ∃xk

(∧k
i=1 Pxi∧

∧
1≤i<j≤k d(xi, xj) > r

)
. If (N,P ) |= ψ, then there

is a set of k vertices in P pairwise far apart and we can accept. Otherwise we
reject.

Note that k and hence |ψ|, |Hr|, and |H | only depend on ϕ and hence are
bounded by the parameter |ϕ|. The algorithm correctly determines whether
G |= ϕ and has a total running time of h(|ϕ|) · |G|O(1), where h : N → N is a
function that dominates the functions f and g above. �

As an immediate consequence of this we obtain that on classes C locally
excluding a minor the following problems are fixed parameter tractable with
parameter H : For every fixed graph H decide whether for a graph G ∈ C: H
has a homomorphism to G; H is a subgraph of G; H is an induced subgraph of
G.

Furthermore, problems such as independent or dominating set and many
others are fixed-parameter tractable on any class of graphs locally excluding a
minor.

8 Conclusions

We introduce the notion of graph classes locally excluding a minor and prove
that deciding first-order properties of such classes is fixed-parameter tractable.
The result is particularly interesting because it unifies incomparable previous
results for classes of bounded local tree width [10] and for classes with excluded
minors [7] in a natural way. But the result is considerably stronger than just
a combination of those two. In particular, it also covers all classes of bounded
expansion.

To prove the result, we need to strengthen the fixed-parameter tractability
result for classes with excluded minors [7] in such a way that the size of the ex-
cluded minor can now be taken as a parameter in the running time analysis. This
implies fixed-parameter tractability results for problems such as dominating set
and independent set, now parameterized by the size of the desired solution and
the size of the excluded minor. Even though both problems have been intensely
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studied on restricted graph classes including classes with excluded minors (see
e.g. [13, 1, 9, 8] and the references there), the existence of such algorithms was
not known before.

Let us finally remark that algorithmic meta theorems like ours are not meant
to be practical, as usually the dependence of the running time on the formula
size is nonelementary and the hidden constants are enormous. One reason for
the interest in such results is that they often provide an easy way to quickly
check if a concrete problem is fixed-parameter tractable (see our remarks on
dominating set and independent set above). The more significant reason for
our interest in such meta theorems is that they yield a better understanding
of the limits of general algorithmic techniques and, in some sense, the limits
of tractability. In particular, they clarify the interactions between logic and
combinatorial structure, which we believe to be fundamental for computational
complexity.
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