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Abstract

We consider the definability of constraint satisfaction problems (CSP) in various fixed-point and
infinitary logics. We show that testing the solvability of systems of equations over a finite Abelian group,
a tractable CSP that was previously known not to be definable in Datalog, is not definable in an infinitary
logic with counting. This implies that it is not definable in least fixed point logic or its extension with
counting. We relate definability of CSPs to their classification obtained from tame congruence theory of
the varieties generated by the algebra of polymorphisms of the template structure. In particular, we show
that if this variety admits either the unary or affine type, the corresponding CSP is not definable in the
infinitary logic with counting. We also study the complexity of determining whether a CSP omits both
unary and affine types.

1 Introduction
The classification of constraint satisfaction problems (CSP) according to their tractability has been a major
research goal since Feder and Vardi first formulated their dichotomy conjecture [14]. This classification
has been closely linked to logic, with definability in Datalog providing one important uniform explanation
for tractability. However, it has long been known that there are tractable CSPs, such as the satisfiability
of systems of linear equations over finite fields, which are not definable in Datalog. Bulatov [6] (see also
[5]) provides a uniform explanation for the tractability of these by showing that any constraint language that
has a Mal’tsev polymorphism is solvable in polynomial time. It has remained an open question, however,
whether there is an explanation for the tractability of these CSPs in terms of a natural logic whose data
complexity is in polynomial time and which can define these problems.

The general form of the constraint satisfaction problem takes as instance two finite relational structures
A and B and asks if there is a homomorphism from A to B. We think of the elements of A as the
variables of the problem and the universe of B as the domain of values which these variables may take. The
individual tuples in the relations of A act as constraints on the values that must be matched to the relations
holding in B. The general form of the problem is NP-complete [29, 30]. In this paper we are mainly
concerned with the non-uniform version of the problem which gives rise, for each fixed finite structure B

to a different decision problem that we denote CSP(B), namely the problem of deciding whether a given
A maps homomorphically to B. For many fixed B, this problem is solvable in polynomial time, while for
others it remains NP-complete. A classification of structures for which the problem is tractable remains a
major goal of research in the area.

In the present paper we are concerned with classifying constraint satisfaction problems according to
their definability in a suitable logic. This is an approach that has proved useful in studying the tractability of
constraint satisfaction problems [14, 9, 25]. In particular, it is known that many natural constraint satisfaction
problems that are tractable are definable (or, to be precise, their complements are definable) in Datalog, the
language of function-free Horn clauses. Any class of structures that is definable in Datalog is necessarily
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decidable in polynomial time, but there are known constraint satisfaction problems that are tractable but
are not definable in Datalog. A classical example is the solvability of systems of linear equations over
the two-element field [14], which we denote CSP(Z2). Furthermore, there are NP-complete constraint
satisfaction problems, such as 3-colourability of graphs, which we can show are not Datalog-definable,
without requiring the assumption that P is different from NP. Indeed, the class of constraint satisfaction
problems whose complements are definable in Datalog appears to be a robust, natural class of problems
with many independent and equivalent characterisations [10, 24].

A natural question arising from such considerations is whether we can offer any explanation based on
logical definability for the tractability of problems such as the satisfiability of systems of linear equations
over a finite field. Is there a natural logic such that all problems definable in this logic are polynomial-
time decidable and that can express CSP(Z2)? In particular, is this problem definable in LFP—the logic
extending first-order logic with least fixed points or LFP + C—the extension of LFP with counting? These
are both logics that have been extensively studied in the context of descriptive complexity as characterising
natural fragments of polynomial time. Interestingly, Blass, Gurevich and Shelah [2] proved that LFP + C
is able to define the class of non-singular square matrices over any fixed finite field, so it would not be very
surprising if this logic were able to express CSP(Z2). Despite this, it is a consequence of our results that
neither of these logics is able to express the solvability of systems of linear equations over any finite field.
Indeed, we show that these problems are not definable in Cω

∞ω, the infinitary logic with bounded number
of variables and counting, a logic much more expressive than LFP + C. Combined with the result of Blass,
Gurevich and Shelah about non-singular matrices, our result exhibits a fine-grained distinction between the
problem of computing the rank of a square matrix and the problem of computing its determinant.

Another important means of classifying constraint satisfaction problems is on the basis of the algebra of
the template structure B. A polymorphism of a structure is an operation of its universe that preserves all its
relations (see Section 2 for precise definitions). It is known that whether or not CSP(B) is tractable depends
only on the algebra B obtained from the universe of B endowed with its polymorphisms. Indeed, it depends
only on the variety generated by this algebra. This is established in [4] by showing that if the algebra
B′ of structure B′ is obtained from B as a power, subalgebra or homomorphic image, then CSP(B′) is
polynomial-time reducible to CSP(B). We show in the present paper that this can be improved to Datalog-
definable reductions. These are weak reductions that, in particular, preserve definability in LFP and Cω

∞ω.
This allows us to establish that definability of a CSP in these logics is also determined by var(B), the variety
generated by the algebra of B.

Using the tool of Datalog-reductions, which we expect to be useful for other applications in the area,
we relate definability of constraint satisfaction problems in Cω

∞ω to the classification of varieties of finite
algebras from tame congruence theory [19]. It is known [4] that CSP(B) is NP-complete if var(B) admits
the unary type (also known as type 1), and it is conjectured that CSP(B) is in P otherwise. Similarly, Larose
and Zadori showed [27] that CSP(B) is not definable in Datalog if var(B) admits the unary or affine types
(types 1 and 2), and conjectured the converse. It is a consequence of our results that we can strengthen
the assertion by replacing Datalog with Cω

∞ω. This implies that, if the Larose-Zadori conjecture is true, we
obtain a dichotomy of definability whereby, for every B, either CSP(B) is definable in Datalog or it is not
definable in Cω

∞ω.
Finally, we consider the meta-problems of deciding, given a structure B or an algebra B whether or not

var(B) omits the unary and affine types. For algebras, the problem was shown decidable in polynomial time
in [26], while for structures we show it is NP-complete.

The rest of the paper is structured as follows. In Section 2 we present some background definitions.
Section 3 gives a proof that solvability of linear equations is not definable in Cω

∞ω. Section 4 establishes that
the definability of CSP(B) is determined by the variety generated by the algebra of B. Section 5 shows that
if the variety admits the unary or affine type, then it contains an algebra with the operations of a module.
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These results are tied together in Section 6 to obtain the main conclusion relating definability in Cω
∞ω to the

omitting of types from tame congruence theory. Section 7 gives the complexity results for the meta-problem.
Proofs that are omitted or abbreviated in the main text can be found in the appendix.

2 Preliminaries
Structures and graphs A vocabulary σ is a finite collection of relation symbols, each with an associated
arity. A σ-structure A consists of a finite set A with a relation RA ⊆ Ar for each r-ary relation symbol
R in σ. A graph is a structure with a binary relation that is symmetric and irreflexive. A homomorphism
from a σ-structure A to a σ-structure B is a map h : A → B such that for each R in σ and each a ∈ Ar,
if a ∈ RA then h(a) ∈ RB. We write A → B to denote that there exists a homomorphism from A to B.
We write CSP(B) for the class of finite structures A such that A → B and also for the decision problem
of determining membership in this class. The class CSP of constraint satisfaction problems is the collection
of all problems CSP(B) for finite structures B. We also write co-CSP for the class of problems whose
complement is in CSP. It is easily seen that any problem in co-CSP is closed under homomorphisms. That
is to say if C is in co-CSP, A ∈ C and A → B then B ∈ C.

For the standard definition of the treewidth of a graph, we refer the reader to [12]. In our proofs we
will use the following alternative characterization in terms of the cops and robber game [33]. The game is
played by two players, one of whom controls the set of k cops attempting to catch a robber controlled by
the other player. The cop player can move any set of cops to any vertices of the graph, while the robber can
move along any path in the graph as long as there is no cop currently on the path. It is known [33] that the
cop player has a winning strategy on a graph using k+ 1 cops if and only if the graph has treewidth at most
k. The treewidth of a graph G is denoted tw(G).

Logic We assume familiarity with first-order logic. A formula of first-order logic is said to be positive
primitive if it is formed from the atomic formulas using only conjunctions and existential quantification.
A formula is existential positive if it is formed from the atomic formulas using conjunctions, disjunctions
and existential quantification. It is easily seen that the class of models of any existential positive formula
is closed under homomorphisms. A result of Rossman [32] shows that for any sentence φ of first-order
logic, if the collection of finite models of φ is closed under homomorphisms, then φ is equivalent over finite
structures to an existential positive formula. One consequence is that for any problem in co-CSP that is
definable by a first-order formula, there is a definition by an existential positive formula (a result that was
obtained independently by Atserias [1]).

We are interested in the definability of problems in CSP (or co-CSP) in various extensions of first-order
logic by means of fixed-point and infinitary operators. Datalog can be seen as the extension of existential
positive formulas with a recursion mechanism. Similarly, LFP is the extension of first-order logic with an
operator for forming the least fixed points of positive formulas. Finally, LFP + C is the extension of LFP
with a counting mechanism. For formal definitions, which we will not need in this paper, we refer the reader
to [28]. It is known that every class of structures definable in LFP + C is decidable in polynomial time.

The formulas of the logic C∞ω are obtained from the atomic formulas using negation, infinitary con-
junction and disjunction, and counting quantifiers (∃ixφ for any integer i ≥ 0). The fragment Ck

∞ω consists
of those formulas of C∞ω in which only k distinct variables appear and Cω

∞ω =
⋃

k∈ω Ck
∞ω. The signif-

icance of Cω
∞ω is that fixed-point logics can be translated into it. That is, any formula of Datalog or LFP,

and indeed of LFP + C is equivalent to one of Cω
∞ω. Moreover, these translations into infinitary logics have

provided some of the most effective tools for proving inexpressibility results for the fixed-point logics. See
[13, 20] for a discussion of this and the role of these logics in descriptive complexity.
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The expressive power of Cω
∞ω is characterised by a game known as the bijective game [17]. This is

played by two players, Spoiler and Duplicator, on a pair of structures A and B, with k pairs of pebbles
(xi, yi) for 1 ≤ i ≤ k. For each move, Spoiler chooses a pair of pebbles (xi, yi), Duplicator chooses a
bijection f : A → B such that f(xj) = yj for i 6= j, and Spoiler chooses a ∈ A and places xi on a and yi

on f(a). If, after some move, the map x 7→ y is not a partial isomorphism, Spoiler wins; Duplicator wins
infinite plays. By a result of Hella [17], Duplicator has a winning strategy if, and only if, A and B cannot
be distinguished by any formula of Ck

∞ω, a fact denoted by A≡Ck

B.

Universal algebra An n-ary operation f on a set A is a polymorphism of a relation R ⊆ Ar if, for any
tuples a1, . . .an ∈ R, the tuple f(a1, . . .an) obtained by applying f component-wise also belongs to R.
We say that R is invariant under f . The set of all polymorphisms of a collection of relations F is denoted
by Pol(F ), and the set of all relations ρ such that every operation from a set C is a polymorphism of ρ
is denoted by Inv(C). For a relational structure A, Pol(A) denotes the set of operations on A that are
polymorphisms of every relation of A. The following theorem links polymorphisms and definability of
relations by positive primitive formulas (pp-formulas).

Theorem 1 ([15, 3, 22]). Let A be a finite structure, and let R ⊆ Ar be a non-empty relation that is
preserved by all polymorphisms of A. Then R is definable in A by a pp-formula.

In [21, 23], Jeavons et al. proved that the set of polymorphisms of B is included in the set of polymor-
phisms of A, then CSP(A) is log-space reducible to CSP(B). Therefore the complexity of non-uniform
CSPs is completely determined by the set of polymorphisms of the corresponding relational structures.

A set with a collection of operations on it is called an algebra. Every structure A can be naturally
associated with an algebra Al(A), called the algebra of A, whose base set is the universe of A, and whose
operations are the polymorphisms of A.

We shall use several standard ways of transforming algebras. Let A = (A,C) and A′ = (A′, C ′) be
algebras. Then

• A′ is said to be a reduct of A if A′ = A and C ′ ⊆ C;

• A′ is said to be a subalgebra of A if A′ ⊆ A, every operation from C is a polymorphism of A′ treated
as a unary relation, and C ′ = {f |A′ | f ∈ C}, where f |A′ denotes the restriction of f onto the set A′;

• A and A′ are said to be similar (or of the same type) if there exists a set I such that C = {f 1
i | i ∈ I},

C ′ = {f2
i | i ∈ I} and, for all i ∈ I , f 1

i , f
2
i are of the same arity; a map ϕ : A → A′ is called a

homomorphism from A to A′ if ϕf1
i (a1, . . . , ani

) = f2
i (ϕ(a1), . . . , ϕ(ani

)) holds for all i ∈ I and
all a1, . . . , ani

∈ A; if the map ϕ is onto then A′ is said to be a homomorphic image of A; and

• A′ is said to be the kth direct power of A (we write A′ = Ak) if A′ = Ak and C ′ consists of the
operations from C acting component-wise on Ak.

- algebra A′ is said to be a quotient algebra of A if there is an equivalence relation η ∈ Inv(C) on
A (such an equivalence relation is called a congruence of A) such that A′ is the quotient set of A mod-
ulo η, and C ′ = {fη | f ∈ C}, where fη denotes the quotient operation for f defined through the rule
fη(aη

1, . . . , a
η
n) = (f(a1, . . . , an))η for all a1, . . . , an ∈ A;

A variety is a class of algebras which, if it contains A also contains every subalgebra of A, every
homomorphic image of A, and every direct power of A. The smallest variety containing A is called the
variety generated by A and denoted by var(A). For further background on universal algebra, see [8].

We shall have occasion to use the following simple observation on pp-definability and reducts.
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Observation 2. Let σ and τ be relational vocabularies and A,B a σ- and a τ -structures, respectively.
Algebra Al(A) is a reduct of Al(B) if and only if every relation of B is pp-definable in A.

The following theorem is a direct consequence of the above mentioned result by Jeavons et al. and the
results of [4].

Theorem 3. Let σ and τ be relational vocabularies and A,B a σ- and a τ -structures, respectively.
(1) If Al(A) is a reduct of Al(B) then CSP(B) is log-space reducible to CSP(A).
(2) If the variety generated by Al(A) contains a reduct of Al(B) then CSP(B) is log-space reducible to
CSP(A).

3 Definability of Equations
In this section we show that the problem of determining the solvability of linear equations over the two-
element field, which we mentioned above as a canonical example of a tractable CSP whose complement is
not definable in Datalog, is also not definable in Cω

∞ω. Indeed, we prove a more general result by showing
that the solvability of equations over a finite Abelian group G with at least two elements is not definable in
Cω
∞ω. In the following we will write + for the group operation in G and 0 for the identity.

Consider the following formulation of the problem.

Definition 4. Let G be a finite Abelian group over a setG and r be a positive integer. We define the structure
EG,r to have universe G and, for each a ∈ G and 1 ≤ j ≤ r, it has a relation Rj

a of arity j that consists of
the set of tuples (x1, . . . , xj) ∈ Gj that satisfy the equation x1 + · · · + xj = a.

Thus, any structure A in the signature of EG,r can be seen as a set of equations in which at most r
variables occur in each equation. The universe of A is the set of variables and the occurrence of a tuple
(x1, . . . , xj) in a relation Rj

a signifies the equation x1 + · · · + xj = a. This set of equations is solvable if,
and only if, A → EG,r. In the sequel we will say “the equation x1 + · · · + xj = a occurs in A” to mean
that the tuple (x1, . . . , xj) is in Rj

a.
Our aim now is to exhibit, for each non-trivial finite Abelian group G and each positive integer k, a pair

of structures A and B such that A≡Ck

B and such that A ∈ CSP(EG,3) and B 6∈ CSP(EG,3). This will
show that CSP(EG,3) is not definable in Cω

∞ω. This, of course, implies the result for all CSP(EG,r) with
r ≥ 3. The structures we construct are sets of equations derived from 3-regular graphs of large treewidth.
From now on, fix a non-trivial finite Abelian group G, a 3-regular graph H , and a distinguished vertex u of
H . Let {a1, . . . , am} be the elements of G. We define, for each a ∈ {a1, . . . , am}, a set of equations EaH

u

as follows (note that EaH
u is a structure over the vocabulary of EG,3):

For each vertex v ∈ V H and each edge e ∈ EH that is incident on v, we have m distinct variables xv,e
i

where i ranges over {a1, . . . , am}. Since each vertex has three edges incident on it, there are 3m variables
associated to each vertex. For every vertex v other than u, let e1, e2, e3 be the three edges incident on v. We
then include the following equation in EaH

u for all i, j, k ∈ {a1, . . . , am}:

xv,e1

i + xv,e2

j + xv,e3

k = i+ j + k. (1)

For the distinguished vertex u, instead of the above, we include the following equation, again for all i, j, k ∈
{a1, . . . , am}:

xu,e1

i + xu,e2

j + xu,e3

k = i+ j + k + a. (2)

In addition, for each edge e ∈ EH let v1, v2 be its endpoints. We include the following equations in EaH
u

for all i, j ∈ {a1, . . . , am}:
xv1,e

i + xv2,e
j = i+ j. (3)
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We refer to equations of the form (1) and (2) as vertex equations and equations of the form (3) as edge
equations.

Lemma 5. EaH
u is satisfiable if, and only if, a = 0

Proof. To see that the system of equations E0H
u is satisfiable, just take the assignment that gives the

variable xv,e
i the value i.

To see that EaH
u is unsatisfiable when a 6= 0, consider the subsystem S0 of equations involving only

the variables xv,e
0 with subscript 0. Note that each such variable occurs exactly twice in S0, once in a vertex

equation and once in an edge equation. Thus, if we add up the left hand sides of all the equations, we get
2

∑

xv,e
0 . Note also that each variable xv,e

0 has a companion variable xv′,e
0 where v′ is the other endpoint of

the edge e and we have the equation xv,e
0 + xv′,e

0 = 0. Thus

2
∑

v,e

xv,e
0 = 2

∑

e

(xv,e
0 + xv′,e

0 ) = 0.

On the other hand, the right-hand side of all equations is 0 except for the one vertex equation for u, which
has right-hand side a. Thus summing the right-hand sides of all equations gives the sum a. Since a 6= 0,
this shows that the subsystem S0 and hence the system of equations EaH

u is unsatisfiable.

Lemma 6. If u, u′ ∈ V H belong to the same connected component of H , then EaH
u ∼= EaH

u′ .

Proof. The case where u = u′ is trivial, so assume that they are distinct.
Let u = v1, e1, . . . , es, vs+1 = u′ be the sequence of vertices and edges along a simple path from u to

u′. We now define a map η from EaH
u to EaH

u′ as follows:

• for any v 6∈ {v1, . . . , vs+1}, η(xv,e
j ) = xv,e

j ;

• for each l ∈ {1, . . . , s}, η(xvl,el

j ) = xvl,el

j+a ; and

• for each l ∈ {1, . . . , s}, η(xvl+1,el

j ) = x
vl+1,el

j−a .

To show that η is an isomorphism, we need to argue that it preserves all the equations in EaH
u. Clearly, all

equations corresponding to vertices and edges of H that do not appear on the path are preserved as η is the
identity map on the corresponding variables. Consider now the vertex equations corresponding to the vertex
u. Note that the edge e1 (the first edge on the chosen path) is incident on u and let f and g be the two other
edges incident on u. Then, the equation

xu,e1

i + xu,f
j + xu,g

k = i+ j + k + a

is mapped by η to
xu,e1

i+a + xu,f
j + xu,g

k = i+ j + k + a

which is, indeed, an equation of ErH
u′ .

Similarly, a vertex equation for u′:

xu′,es

i + xu′,f
j + xu′,g

k = i+ j + k

is mapped to
xu′,es

i−a + xu,f
j + xu,g

k = i+ j + k.
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Now, consider a vertex equaton for an intermediate vertex v = vl+1 along the path. In this case, there
are two edges el, el+1 of the path incident on v. Thus, the equation

xv,el

i + x
v,el+1

j + xv,f
k = i+ j + k

is mapped by η to
xv,el

i−a + x
v,el+1

j+a + xv,f
k = i+ j + k,

where f is the third edge incident on v.
Finally, for each edge el along the path, the equation

xvl,el

i + x
vl+1,el

j = i+ j

is mapped by η to
xvl,el

i+a + xv2,e
j−a = i+ j.

We have thus established that η maps equations to equations. Since η is a bijection, and the number of
equations in EaH

u and in EaH
u′ is the same, this proves that it is an isomorphism.

Lemma 7. If tw(H) > k and H is connected, then E0H
u ≡Ck

EaH
u for any a ∈ G.

Proof. Our aim is to exhibit a winning strategy for Duplicator in the k-pebble bijective game played on the
two structures A = E0H

u and B = EaH
u. Since tw(H) > k, we know that in the k cops and robber game

played on H , robber has a winning strategy and Duplicator will make use of this strategy.
For each vertex v ∈ V H let Xv denote the set of variables xv,e

i for edges e incident on v. Similarly, for
each e ∈ EH , let Xe denote the set of variables involving e.

We say that a bijection f : A → B is good for a vertex v ∈ V H if the following conditions hold:

1. for all w ∈ V H , fXw = Xw;
2. for all e ∈ EH , fXe = Xe;
3. for all x, y, if x+ y = i is an equation in A then f(x) + f(y) = i is an equation in B; and
4. for all x, y, z, if x+ y + z = i is an equation in A, then

• f(x) + f(y) + f(z) = i is an equation in B if x, y, z 6∈ Xv; and
• f(x) + f(y) + f(z) = i+ a is an equation in B if x, y, z ∈ Xv.

Observe that the identity is a bijection that is good for u. Also, observe that a bijection that is good for v
preserves all equations except the vertex equations for v.

Claim 8. Given a bijection f : A → B that is good for v, if there is a path in H from v to w avoid-
ing u1, . . . , uk then there is a bijection f ′ : A → B that is good for w such that f |(Xu1∪···∪Xuk ) =
f ′|(Xu1∪···∪Xuk ).

Proof. : Let the path from v to w avoiding u1, . . . , uk be v = v1, . . . , vn = w. For each edge e = {vi, vi+1}
along this path, write xe−

j for the variable xvi,e
j and xe+

j for the variable xvi+1,e
j . We then define f ′ by

f ′(xe−
j ) = f(xe−

j−a) and f ′(xe+
j ) = f(xe+

j+a); and f ′ agrees with f everywhere else. In particular, since the
path from v to w avoids u1, . . . , uk, f ′ agrees with f on Xu1 ∪ · · · ∪Xuk .
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We now describe Duplicator’s winning strategy in the bijective k-pebble game. Duplicator responds to
Spoiler’s first move with the identity bijection. She maintains a board on the side which describes a position
in the k cops and robber game played on the graph H . At any point in the game, if Spoiler’s pebbles are on
the position x1, . . . , xk in A and v1, . . . , vk are the vertices of H to which these variables correspond, then
the current position of the cops and robber game has k cops sitting on the vertices v1, . . . , vk. If the robber’s
position according to its winning strategy is v, then Duplicator will play a bijection that is good for v.

To see that Duplicator can do this forever, suppose Spoiler lifts a pebble from xi. Duplicator responds
with a current bijection f that is good for v. Since the only equations not preserved by f are those associated
with the vertex v, Spoiler must place at least three pebbles on variables associated with v to win the game.
However, Duplicator responds to Spoiler placing the pebble on a new position x′i by updating the position
of the cops and robber game. Suppose robber’s winning strategy dictates that the robber move from v to w.
Since robber’s move must be along a path avoiding the current cop positions, by Claim 8, Duplicator can
update the bijection f to a new f ′ that is good for w without changing f on any of the currently pebbled
positions. It is now clear that Duplicator can play forever.

Theorem 9. Let G be a non-trivial finite Abelian group. Then CSP(EG,3) is not definable in Cω
∞ω

Proof. Suppose, to the contrary, that there is a k such that CSP(EG,3) is definable in Ck
∞ω. Let H be any

connected, 3-regular graph with tw(H) > k and u any vertex of H . For instance, H could be a sufficiently
large brick graph. Let a be any element of G distinct from 0. Then, by Lemma 5, E0H

u ∈ CSP(EG,3) and
EaH

u 6∈ CSP(EG,3). But, by Lemma 7, E0H
u ≡Ck

EaH
u, a contradiction.

4 Logical Reductions
4.1 Definition
Let σ and τ = (R1, . . . , Rs) be two relational vocabularies. A k-ary interpretation with p parameters of τ
in σ is an (s + 1)-tuple I = (ϕU , ϕ1, . . . , ϕs) of formulas over the vocabulary τ , where ϕU = ϕU (x,y)
has k + p free variables x = (x1, . . . , xk) and y = (y1, . . . , yp), and ϕi = ϕi(x1, . . . ,xr,y) has kr free
variables where r is the arity of Ri and each xj = (x1

j , . . . , x
k
j ) and y = (y1, . . . , yp).

Let A be a σ-structure. A tuple c = (a1, . . . , ap) of of pairwise different points of A is called proper.
The interpretation of A through I with parameters c, denoted by I(A, c), is the τ -structure whose universe
is {a ∈ Ak : A |= ϕU (a, c)}, and whose interpretation for Ri is the set of tuples (a1, . . . ,ar) ∈ (Ak)r

such that A |= ϕU (a1, c) ∧ · · · ∧ ϕU (ar, c) ∧ ϕi(a1, . . . ,ar, c)}. If each formula in I belongs to a class of
formulas Θ, we say that I is a Θ-interpretation.

Now we are ready to define the notion of logical reduction:

Definition 10. Let σ and τ be finite relational vocabularies, let C be a class of σ-structures, let D be a
class of τ -structures that is closed under isomorphisms, and let Θ be a class of formulas. We say that a
Θ-interpretation with p parameters I of τ in σ is a Θ-reduction from C to D if, for every σ-structure A with
at least p elements, we have A ∈ C if, and only if, I(A, c) ∈ D for some proper c.

In case there is a reduction as in the definition, we say that C reduces to D under Θ-reductions, and write
C ≤Θ D. We will use the collections of positive quantifier-free formulas, existential positive formulas, and
datalog formulas (i.e. datalog programs) and write ≤pqf , ≤ep and ≤datalog, respectively. Note that these are
reductions of increasing power, and that definability in Cω

∞ω is preserved downwards by all three.
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4.2 Expansions by reduced definable relations
Let A be a set and let R ⊆ As be a relation on A. We define an equivalence relation θ(R) on {1, . . . , s} by
setting (i, j) ∈ θ(R) if, and only if, ai = aj for every (a1, . . . , as) ∈ R. We say that R is a reduced relation
if θ(R) is the trivial equivalence relation (i.e. equality). Note that the equality relation on A is not reduced.

Lemma 11. Let B be a finite structure, and let D be an expansion of B by a reduced relation R that is
definable in B by a pp-formula. Then, CSP(D) ≤pqf CSP(B).

Proof : Let σ be the vocabulary of B. Let r be the arity ofRD and let φ(x1, . . . , xr) be the primitive-positive
formula that defines RD in B. The formula has the following form:

(∃xr+1) · · · (∃xm)
(

R1(xI1
1
) ∧ · · · ∧R1(xI1

n1

) ∧ · · · ∧Rs(xIs

1
) ∧ · · · ∧Rs(xIs

ns
)
)

,

where R1, . . . , Rs are all the relation symbols of σ, each I i
j is a sequence of indices in {1, . . . ,m} whose

length matches the arity ri of Ri, and xI denotes the projection of the tuple (x1, . . . , xm) to the indices
indicated by I . We may assume that all variables xr+1, . . . , xm are distinct and disjoint from x1, . . . , xr.
Moreover, since RD is reduced, we may also assume that all variables x1, . . . , xr are distinct. Given an
instance C of CSP(D), we need to define an instance A of CSP(B) such that A → B if and only if
C → D. First we define A abstractly, and then show how to define it in C through a positive quantifier-free
interpretation with parameters.

The universe of A is the set
C ∪ (RC × {xr+1, . . . , xm}),

where xr+1, . . . , xm are the quantified variables in φ, which we assume not to be members of C. Intuitively,
we have a new copy of each quantified variable of φ for each tuple in RC. The interpretation of the relation
Ri in A consists of RC

i , together with a set of tuples defined next. For every c = (c1, . . . , cr) in RC and for
every I i

j = (i1, . . . , iri
), add to RA

i the tuple (z1, . . . , zri
) defined by:

1. zk = cik if ik is the index of a free variable of φ, that is, 1 ≤ ik ≤ r,
2. zk = (c, xik) if ik is the index of a bound variable of φ, that is, r + 1 ≤ ik ≤ m.

This defines the structure A. Let us prove it has the right property:

Claim 12. A → B if and only if C → D.

Proof : Let h be a homomorphism from A to B. We claim that the restriction of h to C is a homomorphism
from C to D. For every Ri we have RC

i ⊆ RA
i and RD

i = RB
i . Moreover, h is a homomorphism, so

h(RA
i ) ⊆ RB

i . Thus h(RC
i ) ⊆ RD

i . Let us now check that h(RC) ⊆ RD. Let then c be any tuple in RC.
Let d = h(c). We want to show that B |= φ(d), so d belongs to RD. By the definition of A, for every
Ii
j = (i1, . . . , iri

), the tuple (z1, . . . , zri
) defined as before belongs toRA

i . Now, if ik is the index of a bound
variable of φ, we view h((c, xik)) as a witness for xik when evaluating φ(d) in B. On the other hand, if ik
is the index of a free variable of φ, we view dik = h(cik) as the interpretation of xik . This interpretation
is well-defined because, critically, RD is reduced so all m variables x1, . . . , xm are distinct. Under this
interpretation for the free and bound variables, we have B |= φ(d) as was to be proved.

Suppose now that h is a homomorphism from C to D. We need to extend h to map A to B. Fix a tuple
c in RC, and let d = h(c). Then d belongs to RD so B |= φ(d). Let br+1, . . . , bm be witnesses to the
existentially quantified variables in φ. We extend h by defining h((c, xi)) = bi for r + 1 ≤ i ≤ m. The
claim is that h is a homomorphism from A to B and that this follows directly from the definitions.
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We are left with the question of showing that this reduction is indeed a positive quantifier-free interpre-
tation with parameters. This is more or less routine. Fix a pair of distinct variables p0, p1 that will play the
role of parameters. For concreteness, we can think of p0 and p1 as distinct elements of C. Let q = m − r
and t = blog2 qc + 1. We can think of the universe of A as the subset of Cr+t+2 defined by the following
formula with r + t+ 2 free variables y0, y1, . . . , yr+t+1:

(y0 = p0 ∧ y1 = · · · = yr+t+1) ∨ (y0 = p1 ∧R(y1, . . . , yr) ∧ ψ(yr+1, . . . , yr+t+1)),

where ψ(yr+1, . . . , yr+t+1) is a formula that is satisfied by the set of numbers k ∈ {0, . . . , q − 1} when
encoded in binary; the bits are encoded by yr+b = p0 or yr+b = p1. In other words, when q is an exact
power of two, which we may as well assume by adding dummy variables, ψ is the following formula:

(yr+t+1 = p0 ∧ · · · ∧ yr+2 = p0 ∧ yr+1 = p0) ∨
∨ (yr+t+1 = p0 ∧ · · · ∧ yr+2 = p0 ∧ yr+1 = p1) ∨
...
∨ (yr+t+1 = p1 ∧ · · · ∧ yr+2 = p1 ∧ yr+1 = p0) ∨
∨ (yr+t+1 = p1 ∧ · · · ∧ yr+2 = p1 ∧ yr+1 = p1).

Intuitively, the set of tuples (y0, . . . , yr+t+1) for which y0 = p0 ∧ y1 = · · · = yr+t+1 holds encodes C,
and the set of tuples for which y0 = p1 ∧ R(y1, . . . , yr) ∧ ψq(yr+1, . . . , yr+t+1) holds encodes RC ×
{xr+1, . . . , xm}. With this universe at hand, the rest of the formal definition is easy to work out.

4.3 Reduction to the reduced case
Piece of notation: Let a = (a1, . . . , am) be a sequence and let I = (i1, . . . , ir) be a sequence of indices,
where 1 ≤ ij ≤ m for every j ∈ {1, . . . , r}. We write aI for the sequence (ai1 , . . . , air). Now let R be a
relation of arity s and I a sequence of indices from {1, . . . , s}. Then prIR denotes the relation {aI : a ∈ R}.

Let R be a relation of arity s and recall the definition of θ(R), the equivalence relation on {1, . . . , s}
defined in the previous section. Let I be a set of representatives of the equivalence-classes of θ(R), ordered
in an arbitrary way, and define red(R) = prIR. Note that red(R) does not depend on the choice of I .
Besides, for every i 6∈ I there exists some j ∈ I such that ai = aj for every tuple (a1, . . . , as) ∈ R. We
call red(R) the reduced version of R. A reduced structure is a structure all whose relations are reduced. To
every structure B we can associate a reduced structure, called the reduced version of B, whose universe is
the universe of B itself and whose relations are the reduced versions of the relations of B. Note that the
vocabularies of a structure and its reduced version may be different. Note that the polymorphisms of B and
its reduced version are the same.

Lemma 13. Let B a finite structure and let D be the reduced version of B. Then CSP(B) ≤datalog CSP(D)
and CSP(D) ≤pqf CSP(B).

Proof :
We start with the reduction CSP(D) ≤pqf CSP(B). Let σ be the vocabulary of B and let σ′ be the

vocabulary of the reduced structure D. Hence, for every symbol R in σ we have a symbol R′ in σ′ of the
arity of red(RB). Let C be an instance of CSP(D). We define an instance A of CSP(B). The universe of
A is C itself. The interpretation of the r-ary symbol R in A is defined as follows: let θ = θ(RB) and let I
be a set of representatives of the θ-classes, ordered in an arbitrary way. Then, RA is defined by the formula

ψR(x1, . . . , xr) = R′(xI) ∧
∧

(i,j)∈θ

xi = xj .
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It is clear that C → D if, and only if, A → B. Moreover, the reduction is positive quantifier-free.
We proceed now with the reduction CSP(B) ≤datalog CSP(D).
Let A be an instance of CSP(B). We define an instance C of CSP(D). The universe of C is A itself.

For the relations, the basic idea is to project every relation RA to the coordinates of a set of representatives
I of the θ-classes, where θ = θ(R). However, before we do that, we need to close each RA under all
equalities implied by the equivalences (i, j) ∈ θ. We do that using Datalog-definable intermediate relations.

So, let E be the binary relation on A defined by the following Datalog program:

E(xi, xj) : − R(x1, . . . , xs)

E(x, y) : − E(y, x)

E(x, z) : − E(x, y) ∧ E(y, z),

where the first rule is introduced for every symbol R in σ and every (i, j) ∈ θ(R). It is obvious that E is an
equivalence relation on A; reflexivity follows from the fact that (i, j) ∈ θ(R) in the first rule, symmetry is
enforced by the second rule, and transitivity is enforced by the third. Next, for every r-ary symbol R in σ,
let R̂ and R′ be the relations defined by

R̂(x1, . . . , xs) : − R(y1, . . . , ys) ∧ E(x1, y1) ∧ · · · ∧ E(xs, ys)

R′(xI) : − R̂(x),

where I is a set of representatives of the θ(R)-classes ordered in an arbitrary way. This defines C, and
we defined it by a Datalog program interpreted on A. It remains to argue that this datalog-interpretation is
indeed a reduction.

Claim 14. If h is a homomorphism from A to B and (a, a′) ∈ E, then h(a) = h(a′).

Proof : We proceed by induction on the stage on which (a, a′) enters the relation E. If it enters in the first
stage, then there exist R in σ, (i, j) ∈ θ(R), and a ∈ RA such that ai = a and aj = a′. Since h(a) ∈ RA

and (i, j) ∈ θ(R), t follows that h(ai) = h(aj). Hence h(a) = h(a′). The inductive cases follow trivially
from symmetry and transitivity of equality.

Claim 15. A → B if and only if C → D.

Proof : Suppose that A → B and let h be a homomorphism. We claim that h itself is also a homomorphism
from C to D. Suppose c ∈ R′C. Then there exists a ∈ R̂ such that aI = c, which in turn means that
there exists a′ ∈ RA such that (ai, a

′
i) ∈ E for every i ∈ {1, . . . , s}. Now, h(a′) ∈ RB because h is a

homomorphism. But also h(a) = h(a′) by the claim above because (ai, a
′
i) ∈ E for every i. But then

h(c) = h(aI) = h(a)I = h(a′)I ∈ prI(R
B) = red(RB) = R′D.

Thus h is a homomorphism from C to D.
Suppose now that C → D and let h be a homomorphism. For every a ∈ A, let aE be a fixed represen-

tative of the E-equivalence class of a. Let g(a) = h(aE) for every a. We claim that g is a homomorphism
from A to B. Suppose a ∈ RA. Then aE ∈ R̂, so (aE)I ∈ R′C. Then h((aE)I) ∈ R′D. Note that

g(a)I = h(aE)I = h((aE)I) ∈ R′D = red(RB) = prI(R
B).

But then g(a) ∈ RB by the definition of θ(R) and I . So g is a homomorphism.
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4.4 Powering, subalgebras, and homomorphic images
In this subsection we show how the basic algebraic constructions of powering, subalgebra and homomorphic
images can be handled by Datalog-reductions. We start with homomorphic images.

Let B be a finite structure and let B be its corresponding algebra. Suppose B ′ is an algebra that has a
homomorphic image A = h(B′) that is a reduct of B. Note thatA = B = h(B ′), i.e. the universes of A and
B are the same and are the image of the universe of B′ under h. We define a new structure B′ = pre(B, h),
the preimage of B, whose universe is B ′ and whose relations are the preimages h−1(RB) of the relations
RB of B.

Lemma 16. Let the algebras B and B′, and the structures B and B′ = pre(B, h) be as above. Then
CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

Proof : 1. We argue that CSP(B) = CSP(B′) by arguing that B and B′ are homomorphically equivalent.
The homomorphism from B′ to B is just h, and this is easy to check. As a homomorphism from B to B′

we take any inverse of h; that is, any function f : B → B ′ such that f(b) belongs to h−1(b) for every
b ∈ B. Such a function exists because h is onto B. It is a homomorphism because if b is a tuple in RB,
then h(f(b)) = b, so f(b) ∈ h−1(RB).

2. It suffices to show that every operation of B′ is a polymorphism of B′. Let f ′ be an m-ary operation
of B′, and let f be the corresponding operation of A. Suppose that a1, . . . ,am are m tuples that belong to
h−1(RB). Then the tuples h(a1), . . . , h(am) all belong to RB. We apply f component-wise and we obtain
the tuple

(f(h(a1
1), . . . , h(a

m
1 )), . . . , f(h(a1

r), . . . , h(a
m
r ))).

Since f is an operation of A, and A is a reduct of B, it is a polymorphism of B, so this tuple belongs to RB.
Now, by the choice of f , this tuple is the same as

(h(f ′(a1
1, . . . , a

m
1 )), . . . , h(f ′(a1

r , . . . , a
m
r ))).

We conclude that the tuple
(f ′(a1

1, . . . , a
m
1 ), . . . , f ′(a1

r , . . . , a
m
r ))

belongs to h−1(RB). This proves that f ′ preserves every relation of B′.

Let B be a finite structure and let B be its corresponding algebra. Suppose B ′ is an algebra that has a
subalgebra A ⊆ B′ that is a reduct of B. Note that A = B ⊆ B ′, i.e. the universes of A and B are the same
and are a subset of the universe of B′. We define a new structure B′ = ext(B, B′), the extension of B, with
universe B′ and the same relations as B.

Lemma 17. Let the algebras B and B′, and the structures B and B′ = ext(B, B′) be as above. Then
CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

Proof : 1. The structures B and B′ are homomorphically equivalent. Indeed the identity mapping on B is a
homomorphism of B to B′, and any mapping h : B ′ → B that is the identity on B ⊆ B′ and maps elements
from B′ \B to any element of B is a homomorphism from B′ to B.

2. Let f ′ be an operation of B′ and let f be the corresponding operation in A. Then f preserves every
relation of B because A is a reduct of B. But then, trivially, f ′ also preserves every relation of B′ because
the relations in B′ and B are the same.

Let R be an r-ary relation on the set An. Then the flattening of R, denoted fla(R,n), is the rn-ary
relation onA that contains all tuples (x1, . . . , xrn) such that ((x1, . . . , xn), . . . , (x(r−1)n+1, . . . , xrn)) ∈ R.
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Let B be a finite structure and let B be its corresponding algebra. Suppose B ′ is an algebra that has a direct
power A = B′n that is a reduct of B. Note that A = B = B ′n, i.e. the universes of A and B are the same
and are the n-th power of the universe of B′. We define a new structure B′ = fla(B, n), the flattening of B,
whose universe is B and whose relations are the flattenings of the relations of B.

Lemma 18. Let the algebras B and B′, and the structures B and B′ = fla(B, n) be as above. Then
CSP(B) ≤pqf CSP(B′) and B′ is a reduct of Al(B′).

Proof : 1. Given an instance A of CSP(B), we need to define an instance A′ of CSP(B′) such that A → B

if, and only if, A′ → B′. First we define A′ abstractly, and then show how to define it on A through a
positive quantifier-free interpretation with parameters.

The universe of the structure A′ is A × {1, . . . , n}. For every k-ary symbol R in the vocabulary of B,
we have a corresponding kn-ary symbol R in the vocabulary of B′. The interpretation of R in A′ is defined
as follows:

((x1, 1), . . . , (x1, n), . . . , (xk, 1), . . . , (xk, n)) ∈ R
A′

⇐⇒ (x1, . . . , xk) ∈ RA.

First we prove that this structure has the right property. If A → B and h is a homomorphism, then clearly
the mapping h′ : A′ → B′ defined by the condition h′((x, i)) = h(x)i, where h(x) = (h(x)1, . . . , h(x)n),
is a homomorphism. Conversely, if h is a homomorphism from A′ to B′, then the mapping h′(x) =
(h′((x, 1)), . . . , h′((x, n))) is a homomorphism from A to B.

Next we show that this reduction is positive quantifier-free. Fix a pair of distinct variables p0, p1 that
will play the role of parameters. For concreteness, we can think of p0 and p1 as distinct elements of A.
Let t = blog2 nc + 1. We can think of the universe of A′ as the subset of At+1 defined by the formula
ψ(y0, y1, . . . , yt) with t+1 free variables that is satisfied by the tuples (y0, y1, . . . , yt) for which (y1, . . . , yt)
encodes a number from {0, . . . , n− 1} in binary; the bits are encoded by yb = p0 or yb = p1 for 1 ≤ b ≤ t
(see the proof of Lemma 11). The interpretation of the relational symbol R of arity kn is given by the
formula

ψR(y1, . . . ,ykn) = R(y1
0 , y

n+1
0 , . . . , y

(k−1)n+1
0 ) ∧

n
∧

j=1

k−1
∧

i=0

(bin(yin+j
1 , . . . , yin+j

t ) = j − 1),

where bin(yin+j
1 , . . . , yin+j

t ) = j − 1 abbreviates the expression

yin+j
1 = b1 ∧ · · · ∧ yin+j

t = bt

and b1 . . . bt is the binary representation of j − 1.
2. Since A is a reduct of B, every relation of B is invariant with respect to all operations of A = B ′n.

Now it is straightforward that every relation in the flattening of B is invariant with respect to every operation
of B′.

We will need the following consequence of Lemma 18.

Corollary 19. Let B and B′ be finite structures, and let B and B′ be their respective algebras. If some
power of B′ is a reduct of B, then CSP(B) ≤datalog CSP(B′).

Proof : Assume B′n is a reduct of B. Let D1 = fla(B, n), and let D2 be the reduced version of D1. We
prove the following chain of reductions CSP(B) ≤pqf CSP(D1) ≤datalog CSP(D2)leqpqfCSP(B′). The
result will follow because each pqf-reduction is also a datalog-reduction, and datalog-reductions compose.

The first reduction follows from Lemma 18. The second reduction follows from Lemma 13. We prove
the third reduction CSP(D2) ≤pqf CSP(B′). Let D3 be the expansion of D2 obtained by adding all the
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relations of B′. It is straightforward that every relation of D2 is invariant with respect to all polymorphisms
of B′. Therefore, by Theorem 1, every such relation is pp-definable in B′, and since they are reduced, we
have CSP(D3) ≤pqf CSP(B′) by Lemma 11. It is also obvious that CSP(D2) ≤pqf CSP(D3) through the
mapping that sends a structure to its expansion with empty relations. Composing we get CSP(D2) ≤pqf

CSP(B′).

Finally, we are ready to state and prove the consequence of these Lemmas that we will be using.

Theorem 20. Let B and B′ be finite structures and let B and B′ be their respective algebras. If some
algebra of var(B′) is a reduct of B, then CSP(B) ≤datalog CSP(B′).

Proof: Suppose that some algebra A of var(B′) is a reduct of B. By the HSP-theorem [8, Theorem 9.5] A
is a homomorphic image of a subalgebra of a direct power of B ′. Let Bp, Bs, and Bh be the direct power, its
subalgebra, and the homomorphic image, respectively. We have A = Bh. Let n be such that Bp = B′n, an
let h be a homomorphism from Bs to Bh.

We use three intermediate structures Bs = pre(B, h), Bp = ext(Bs, Bp), and Bf = fla(Bp, n)
that, by the definition, have the universes of the algebras Bs, Bp, and B′ respectively. By Lemma 16,
CSP(B) ≤pqf CSP(Bs) and Bs is a reduct of Al(Bs). By Lemma 17, CSP(Bs) ≤pqf CSP(Bp) and Bp

is a reduct of Al(Bp). By Lemma 18, CSP(Bp) ≤pqf CSP(Bf ), and B′ is a reduct of Al(Bf ). Now,
let D be the reduced version of Bf . Then CSP(Bf ) ≤datalog CSP(D) by Lemma 13. We prove that
CSP(D) ≤pqf CSP(B′) and the result will follow by composing.

Let D′ be the expansion of D obtained by adding all the relations of B′. Since B′ is a reduct of the
algebra of Bf and D′ is the flattening of Bf , it is straightforward that every relation of D′ is invariant
with respect to all polymorphisms of B′. Therefore, by Theorem 1, every such relation is pp-definable in
B′, and since they are reduced, we have CSP(D′) ≤pqf CSP(B′) by Lemma 11. It is also obvious that
CSP(D) ≤pqf CSP(D′) through the mapping that sends a structure to its expansion with empty relations.
Composing we get CSP(D) ≤pqf CSP(B′).

4.5 Reduction from the idempotent case
To every finite structure B we associate a new structure, the singleton-expansion of B, by adding one unary
relation {b} for every b ∈ B. In other words, if B = {b1, . . . , bn}, then the structure (B, {b1}, . . . , {bn}) is
the singleton-expansion of B. Note that the polymorphisms of the singleton-expansion of B are exactly the
idempotent polymorphisms of B, that is polymorphisms f satisfying the identity f(x, . . . , x) = x. Indeed,
every singleton set {b} is preserved by any idempotent polymorphism of B, and any polymorphism of B

that preserves every singleton set {b} must by idempotent.

Lemma 21. Let σ be a relational vocabulary, let B be a σ-structure, let D be the singleton-expansion of
B, and let f : Br → B be a function. Then, the following are equivalent:

1. f is an idempotent polymorphism of B,
2. f is a polymorphism of D.

Proof : Suppose f is an idempotent polymorphism of B. Then f(b, . . . , b) = b for every b ∈ B. and
also f is a polymorphism of B. It follows hat f preserves every relation of D, so it is a polymorphism of
D. Conversely, if f is a polymorphism of D, then f preserves every relation of D and in particular f is
a polymorphism of B and f(b, . . . , b) = b for every b ∈ B. That is, f is an idempotent polymorphism of
B.
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Lemma 22. Let B be a finite structure, and let D be the singleton-expansion of B. Then CSP(B) ≤pqf

CSP(D) and if B is a core with at least two points, then CSP(D) ≤ep CSP(B).

Proof : The reduction CSP(B) ≤pqf CSP(D) is straightforward: it suffices to map every instance of
CSP(B) to its expansion with n empty unary relations, where n is the cardinality of B. This is clearly a
positive quantifier-free reduction without any parameter.

Let us now prove that CSP(D) ≤ep CSP(B). Given an instance C of CSP(D), we need to define an
instance A of CSP(B) such that A → B if, and only if, C → D. First we define A abstractly, and then
show how to define it on C through an existential-positive interpretation with parameters.

The universe of the structure A is the disjoint union of C and B. For every relation symbol R of arity r
in the vocabulary of B, the interpretation of R in A is defined by cases: if the sets PC

b are pairwise disjoint,
we let RA = Ar. Otherwise, we let RA be the set

RB ∪
⋃

u∈F

u(RC),

where F is the set of mappings u : C → A such that the following two conditions are satisfied:

1. u(y) ∈ PC

b ∪ {b} for every b ∈ B and y ∈ PC

b ,
2. u(y) = y for every y ∈ C −

⋃

b∈B P
C

b .

This defines the structure A. Before we show how to define A by an existential-positive interpretation, let
us show that it has the property we want:

Claim 23. A → B if, and only if, C → D.

Proof : If the sets PC

b are not pairwise disjoint, then clearly C 6→ D. In this case, every relation in A is the
full relation and in particular it is reflexive. But then A 6→ B since otherwise B would also be reflexive and
hence not a core with at least two elements.

Suppose in the following that the sets PC

b are pairwise disjoint. Let h be a homomorphism from C to
D. Note that h(y) = b for every y ∈ PC

b ; this remark will be of use later. Let g be the unique extension
of h to A = B ∪ C such that g(b) = b for every b ∈ B. We prove that g is a homomorphism from
A to B. Let x ∈ RA for some relation symbol R, and we prove g(x) ∈ RB. Since x ∈ RA, either
x ∈ RB, or x ∈ u(RC) for some u ∈ F . In the first case, g(x) = x and hence g(x) ∈ RB as required.
In the second case, x = u(y) for some y ∈ RC. Let y = (y1, . . . , yr) and let us analyze the components
yi dinstinguishing by cases whether they belong to some PC

b or not. Suppose first yi ∈ PC

b for some b.
Then h(yi) = b by the remark above. Also u(yi) ∈ PC

b ∪ {b} by the definition of F . Continuing, if
u(yi) ∈ PC

b then g(u(yi)) = b again by the remark above, and if u(yi) = b then g(u(yi)) = g(b) = b
by the definition of g. Therefore g(u(yi)) = h(yi). Suppose next that yi 6∈ PC

b for all b ∈ B. Then
u(yi) = yi by the definition of F , and g(u(yi)) = h(yi) again. It follows that g(u(y)) = h(y). Since
y ∈ RC and h is a homomorphism from C to D, we have h(y) ∈ RD. It follows that g(x) ∈ RB because
g(x) = g(u(y)) = h(y) and RD = RB. This proves that g is a homomorphism.

Suppose next that f is a homomorphism from A to B. Note that B is an induced substructure of A,
so the restriction of f to B is a homomorphism from B to itself. Since B is a core, this restriction must
be an automorphism π of B. We may assume then that f is the identity on B; otherwise we start with the
homomorphism obtained from f by composing it with π−1 on B. Now we define the map h : C → B as
follows: if y ∈ PC

b for some b ∈ B, then h(y) = b; otherwise, h(y) = f(y). Since we are assuming that
the sets PC

b are pairwise disjoint, the map h is well-defined. We claim that h is a homomorphism from C to
D. First note that if y ∈ PC

b , then h(y) ∈ PD

b by definition. Now, let y ∈ RC for some relation symbol R,
and we prove h(y) ∈ RD. Define u : C → A by u(y) = b if y ∈ PC

b for some b, and u(y) = y otherwise.
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Since the sets PC

b are disjoint, this is well-defined. Note that u ∈ F . Let y = (y1, . . . , yr) and let us analyze
the components yi distinguishing by cases on whether they belong to some PC

b or not. Suppose first that
yi ∈ PC

b for some b. Then u(yi) = b by the definition of u, and f(u(yi)) = b because f is the identity onB.
Also h(yi) = b by the definition of h. Therefore h(yi) = f(u(yi)). Suppose next that yi 6∈ PC

b for any b.
Then u(yi) = yi by the definition of u, and h(yi) = f(yi) by the definition of h. Again h(yi) = f(u(yi)).
It follows then that h(y) = f(u(y)). Now, u(y) ∈ RA because u ∈ F and y ∈ RC. Hence f(u(y)) ∈ RB

because f is a homomorphism from A to B. Thus h(y) ∈ RD because RD = RB. This proves that h is a
homomorphism.

We are left with the question of showing that this reduction is indeed existential-positive. Fix a pair of
distinct variables p0, p1 that will play the role of parameters. For concreteness, we can think of p0 and p1 as
distinct elements of C. Let q = |B| and t = blog2 qc + 1. We can think of the universe of A as the subset
of Ct+1 defined by the following formula with t+ 1 free variables y0, y1, . . . , yt:

(y0 = p0 ∧ y1 = · · · = yt) ∨ (y1 = p1 ∧ ψ(y1, . . . , yt)),

where ψ(y1, . . . , yt) is a formula that is satisfied by the set of numbers k ∈ {0, . . . , q− 1} when encoded in
binary; the bits are encoded by yb = p0 or yb = p1. This is the same formula as in the proof of Lemma 11.
Intuitively, the set of tuples (y0, . . . , yt) for which y0 = p0 ∧ y1 = · · · = yt holds encodes C, and the set
of tuples for which y0 = p1 ∧ ψ(y1, . . . , yt) encodes B. Now we define the interpretation of the relation
symbol R by the following formula:

ξ ∨ φR ∨
∨

v∈G

θv,R,

whereG is the set of mappings v : {1, . . . , r} → B×{0, 1}, and ξ, φR and θv,R are formulas to be described
soon. Note the similarity of this formula with the abstract definition of RA that we gave:

RB ∪
⋃

u∈F

u(RC).

The formula φR(y1, . . . ,yr,p) encodes the set RB as a finite disjunction of conjunctions of equalities
encoding the tuples of RB. This is easy to work out. The formula θv,R(y1, . . . ,yr,p) encodes the set
u(RC) as follows:

(∃z1) · · · (∃zr)(R(z1, . . . , zr) ∧ T1 ∧ T2)

where

T1 =
∧

{

yj
0 = p0 ∧ y

j
1 = . . . = yj

t ∧ Pb(zj) ∧ Pb(y
j
1) : j ∈ {1, . . . , r}, v(j) = (b, 0)

}

,

T2 =
∧

{

yj
0 = p1 ∧ y

j
1 = pb1 ∧ . . . ∧ y

j
t = pbt

: j ∈ {1, . . . , r}, v(j) = (b, 1)
}

,

where b1, . . . , bt denote the bits of the binary encoding of b in a fixed numbering of B. Finally, the formula
ξ is defined as

∨

b1 6=b2

(∃z)(Pb1(z) ∧ Pb2(z)),

where b1 and b2 range over B. This completes the definition of RA. Note that ξ is used to make RA = Ar

whenever the sets PC

b are not disjoint.
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5 Omitting types
Let A be an algebra. A congruence of A is an equivalence relation α that is invariant with respect to all
operations of A. In other words, for any (n-ary) operation f of A and any a1, . . . , an, b1, . . . , bn ∈ A such
that (ai, bi) ∈ α we have (f(a1, . . . , an), f(b1, . . . , bn)) ∈ α. The congruences of A form its congruence
lattice con(A). A prime quotient in this lattice is a pair of congruences α, β such that α ≤ β, α 6= β, and
for any γ with α ≤ γ ≤ β we have either α = γ, or β = γ. The fact that α, β is a prime quotient will be
denoted by α ≺ β.

Tame congruence theory [19] allows one to assign to each prime quotient of the congruence lattice
con(A) of a finite algebra A one of five types. The type reflects the local structure of the algebra, which can
be one of the following:

1. a finite set with a group action on it,
2. a finite vector space over a finite field,
3. a two-element Boolean algebra,
4. a two-element lattice,
5. a two-element semilattice.

We use tame congruence as a black box extracting properties we need from existing results, and we do not
therefore need a precise definition of the types.

The type of a prime quotient α ≺ β is denoted by typ(α, β), while typ(A) denotes the set of types
appearing as types of some prime quotient of A. If A is a class of algebras, typ(A) denotes the set
⋃

A∈A
typ(A). If i 6∈ typ(A), we say that A omits type i. Otherwise, we say A admits type i. We need

the following:

Lemma 24. Let A be a finite idempotent algebra.

1. If var(A) does not omit type 1 then it contains a finite algebra term equivalent to a set.
2. If var(A) omits type 1, but does not omit type algebra term equivalent to the full idempotent reduct of

a module.

Proof. By a result from [7], if var(A) does not omit type 1 the it contains a finite set, that is an algebra all
of whose opeartions are projections. So, suppose that var(A) omits type 1, but does not omit type 2.

Since var(A) does not omit type 2, there is a finite algebra B ∈ var(A) and a prime quotient α ≺ β ∈
con(B) such that typ(α, β) = 2. Note first that taking B/α instead of B we may assume that α = 0, the
equality relation, because it follows from tame congruence theory that typ(α/γ , β/γ) = typ(α, β) for any
γ ≤ α. Next we notice that B is an idempotent algebra, every congruence class of β is a subalgebra. Take
a non-trivial β-class, and let C be the corresponding subalgebra. The restriction of β onto C is the total
congruence 1.

A congruence θ centralizes η modulo ε if for any term operation f(x1, . . . , xn, y1, . . . , yn, z1 . . . zk),
any c1, . . . , ck ∈ A, and any a1

1, . . . , a
1
n, a2

1, . . . , a
2
n, b11, . . . , b1m, b21, . . . , b2m ∈ A such that (a1

i , a
2
i ) ∈ θ,

(b1i , b
2
i ) ∈ η, the following implication holds:

f(a1
1, . . . , a

1
n, b

1
1, . . . , b

1
m, c1, . . . , ck)

ε
≡ f(a2

1, . . . , a
2
n, b

1
1, . . . , b

1
m, c1, . . . , ck)

⇓

f(a1
1, . . . , a

1
n, b

2
1, . . . , b

2
m, c1, . . . , ck)

ε
≡ f(a2

1, . . . , a
2
n, b

2
1, . . . , b

2
m, c1, . . . , ck).

It is known that typ(η, θ) ∈ {1,2} if and only if θ centralizes itself modulo η (see [19, Theorem 7.2]).
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In our situation we have that β centralizes itself modulo 0 in B. Therefore, 1 centralizes itself modulo
0 in C. This implies typ(C) ⊆ {1,2}, and, since var(A) omits type 1, we obtain typ(C) = {2}. By
Theorem 9.6 of [19] there is a ternary term operation d that is Mal’tsev on C, that is d satisfies the identities
d(x, y, y) = d(y, y, x) = x. Therefore C generates a congruence permutable variety, and by a result of [18]
it is an idempotent reduct of a module.

Recall from Section 3 the definition of the structure EG,r for every finite Abelian group G and every
integer r ≥ 1.

Lemma 25. Let M be a finite module, let G be its underlying Abelian group, and let A be an idempotent
reduct of M. Then A is a reduct of the algebra of EG,r for every r ≥ 1. for any equation

x1 + . . .+ xr = a

in G the relation whose members are the tuples satisfying the equation is invariant with respect to every term
operation of A.

Proof. Let E = EG,r. Every m-ary term operation of A can be represented in the form

f(x1, . . . , xm) = r1x1 + · · · + rmxm,

and, as f is idempotent, r1 + · · · + rm = 1. Take m tuples a1, . . . ,am in the relation Rj
a in E, where

ai = (ai1, . . . , aij) for i ∈ {1, . . . ,m}. Check that the tuple

(f(a11, . . . , am1), . . . , f(a1j , . . . , amj))

also belongs to Rj
a:

f(a11, . . . , am1) + · · · + f(a1j , . . . , amj)

= (r1a11 + · · · + rjam1) + · · · + (r1a1j + · · · + rmamj)

= r1(a11 + · · · + a1j) + · · · + rm(am1 + · · · + amj)

= r1a+ · · · + rma

= a.

Therefore, every relation of E is invariant under every operation of A. That is, A is a reduct of the algebra
of E.

6 Results
We can bring together the results of Section 4 and 5 to establish the following theorem.

Theorem 26. Let B be a finite structure such that its algebra B is idempotent.

1. If var(B) admits type 1, then CSP(Kr) ≤datalog CSP(B) for every r ≥ 3.
2. If var(B) omits type 1 but admits type 2, then CSP(EG,r) ≤datalog CSP(B) for some finite Abelian

group G and every r ≥ 1.
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Proof : Suppose first that var(B) admits type 1. By Lemma 24, there exists an algebra C in var(B) that is
term equivalent to a finite set with at least two elements. Since every direct power of a set is a set, and every
subalgebra of a set is a set, we may assume that |C| = r for any chosen r ≥ 3. Then C is a reduct of the
algebra of Kr because the only idempotent polymorphisms of Kr are the projections when r ≥ 3 (see, e.g.
[16, Corollary 2.44]) It follows from Theorem 20 that CSP(Kr) ≤datalog CSP(B).

Suppose now that var(B) omits type 1 but dmits type 2. By Lemma 24, there exists an algebra C in
var(B) that is term equivalent to the full idempotent reduct A of a module M. Let G be the underlying
Abelian group of M. By Lemma 25, the algebra A is a reduct of the algebra of EG,r for any r ≥ 1, so C is
also a reduct of the algebra of EG,r. It follows from Theorem 20 that CSP(EG,r) ≤datalog CSP(B).

We have seen in Section 3 that CSP(EG,3) is not definable in Cω
∞ω when G is non-trivial. It is also

known (see [11, Remark 4.12]) that CSP(K3), i.e. graph 3-colourability, is also not definable in Cω
∞ω. Since

definability in Cω
∞ω is preserved downwards by Datalog-reductions, this yields the following corollary:

Corollary 27. Let B be a finite structure and let B be its algebra. If CSP(B) is definable in Cω
∞ω, then

var(B) omits the unary and affine types.

Proof. By Lemma 22, the singleton-expansion D of B has an idempotent algebra D and satisfies CSP(D) ≤datalog

CSP(B). Moreover, if var(B) admits unary or affine types, so does var(D) because D is a reduct of B (see
[19, Chapter 5]). Since definability in Cω

∞ω is closed downwards with respect to ≤datalog, we have that
CSP(D) is also definable in Cω

∞ω. Thus, by Theorem 26, if var(B) were to admit the unary type, CSP(K3)
would be definable in Cω

∞ω and if var(B) were to omit the unary type and admit the affine type, then
CSP(EG,3) would be definable in Cω

∞ω.

Corollary 27 can be seen as a strengthening of the result of Larose and Zadori [27] that if the complement
of CSP(B) is definable in Datalog then var(B) omits the unary and affine types. Larose and Zadori also
conjectured the converse, namely that if var(B) omits the unary and affine types then the complement of
CSP(B) is definable in Datalog. By Corollary 27 this conjecture would imply that every CSP(B) is either
definable in Datalog or not definable in Cω

∞ω, which can be seen as a definability dichotomy.

7 Testing omitting types
We consider three decision problems.
ALGEBRA-OF-TYPE-2
Instance. A finite set A and operation tables of idempotent operations f1, . . . , fn on A.
Question. Does var(A) where A = (A; {f1, . . . , fn}) omit types 1 and 2?

RELATIONAL STRUCTURE-OF-TYPE-2
Instance. A finite relational structure A.
Question. Does var(Al(A)) omit types 1 and 2?

RELATIONAL STRUCTURE-OF-TYPE-2(k)
Instance. A finite relational structure A, |A| ≤ k.
Question. Does var(Al(A)) omit types 1 and 2?

The problems ALGEBRA OF TYPE 2 and RELATIONAL STRUCTURE OF TYPE 2(k) were shown tractable
in [26].

Theorem 28. RELATIONAL STRUCTURE OF TYPE 2 is NP-complete.
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Proof. (1) and (2) are proved in [26].
(3) In [7] it is proved that the problem of given a relational structure whether the variety generated

by the algebra of this structure omits type 1 is NP-complete. Here we actually prove that RELATIONAL
STRUCTURE-OF-TYPE-2 is NP-complete even if the input structures give rise to algebras omitting type 1.

We reduce NOT-ALL-EQUAL SATISFIABILITY (NAE) to RELATIONAL STRUCTURE-OF-TYPE-2. Let
C = C1 ∧ . . . ∧Cq be an instance of NAE. Let V denote the set of variables occurring in C. We construct a
set of relations Γ.

Set A0 = {a, b}, Av = Wv ∪ A
0
v ∪ A

1
v, v ∈ V , where Wv = {a0v, a1v, a2v, a3v}, A0

v = {00
4v, 0

0
5v, 0

0
6v,

00
7v, 0

1
4v, 0

1
5v, 0

1
6v, 0

1
7v}, A1

v = {10
4v, 1

0
5v, 1

0
6v, 1

0
7v, 1

1
4v, 1

1
5v, 1

1
6v, 1

1
7v}; and A = A0 ∪

⋃

v∈V Av. For each
1 ≤ i ≤ q, let {u, v, w} be the variables occurring in Ci. Define a 6-ary relation Ri as

Ri =

















a b b a
b a b a
b b a a
a0

u a1
u a2

u a3
u

a0
v a1

v a2
v a3

v

a0
w a1

w a2
w a3

w

















∪









a
a
b



 ×R4
i



 ∪









a
b
a



 ×R5
i



 ∪









b
a
a



 ×R6
i



 ∪









b
b
b



 ×R7
i



 ,

where

Rj
i =





00
1u 01

1u 00
1u 01

1u 00
1u 01

1u 10
1u 11

1u 10
1u 11

1u 10
1u 11

1u

00
1v 01

1v 10
1v 11

1v 10
1v 11

1v 00
1v 01

1v 00
1v 01

1v 10
1v 11

1v

10
1w 11

1w 10
1w 11

1w 00
1w 01

1w 10
1w 11

1w 00
1w 01

1w 00
1w 01

1w



 .

Finally, set Γ = {{(c)} | c ∈ A} ∪ {θ} ∪ R1 ∪ . . . ∪ Rq where θ is the equivalence relation whose blocks
are {a} and A′ = A− {a}. Denote by A the algebra (A; PolΓ).

For c, d ∈ A we shall write c ≡ d if c = s0iu, d = t0iv, or c = s1iu, d = t1iv, for some s, t ∈ {0, 1},
u, v ∈ V , and i ∈ {4, 5, 6, 7}. Furthermore, for c, d ∈ A0

v ∪ A1
v we shall write c ∼= d if c, d both lie

either in A0
v or in A1

v for , c ∼ d if c, d ∈ {00
iv, 1

0
iv} or c, d ∈ {01

iv, 1
1
iv} some v ∈ V . Denote the tuples

(a, b, b), (b, a, b), (b, b, a), (a, a, a), (a, a, b), (a, b, a), (a, a, b), (b, b, b) by a0, . . . ,a7 respectively.
We prove two claims:
CLAIM 1. The class of all homomorphic images of subalgebras of A omits type 1. Moreover, it omits

type 2 if and only if A has a term operation satisfying one of the following two conditions

f





a b a
b a a
b b a



 =





a
a
b



 or f





a b a
b a a
b b a



 =





b
b
a



.

CLAIM 2. C has a solution if and only if a term operation f exists satisfying the first condition.
Proof first Claim 1. As is easily seen {a, b} is a subalgebra. Post’s description of clones on a 2-element

set [31] implies that if this subalgebra is not of type 1 or 2, then it has either a semilattice, or majority term,
and therefore, an operation satisfying one of the two conditions exists. Thus, if there is no such operation
then {a, b} is a subalgebra of type 1 or 2.

If h′ is an affine operation on {a, b} then its action on the set {a0, . . . ,a7} defines an affine operation
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h′′ on the set {0, . . . , 7}. Let also + denote addition modulo 2. It is not hard to see that the operation

g(x, y, z) =















































































h′(x, y, z), if x, y, z ∈ {a, b},
ah′′(i,j,k)v, if x = aiv, y = ajv, z = akv, or x = aiv,

y ∈ A0
jv ∪A

1
jv, z ∈ A0

kv ∪A
1
v, or

x ∈ A0
iv ∪A

1
iv, y = ajv, z ∈ A0

kv ∪A
1
kv,

or x ∈ A0
iv ∪A

1
iv, y ∈ A0

jv ∪A
1
jv, z = akv,

(s1 + s2 + s3)
(t1+t2+t3)
h′′(i,j,k) , if x = (s1)

t1
iv, y = (s2)

t1
jv, z = (s3)

t3
kv,

st
h′′(i,j,k)v, if x = aiv, y = ajv, z = st

kv, or x = aiv,
y = st

jv, z = akv, or x = st
iv, y = ajv, z = akv,

x, if {x, y, z} 6⊆ Av and {x, y, z} 6⊆ {a, b}, and (x, y) ∈ θ,
y, if {x, y, z} 6⊆ Av and {x, y, z} 6⊆ {a, b}, and (x, z) ∈ θ,
z, otherwise.

is a polymorphism of Γ. This operation is an affine operation on {a, b}, and so it witnesses that this subal-
gebra has at least type 2. Now we show that all other divisors of A have types 3,4,5, which will follow from
Claims 3 and 4.

CLAIM 3. If a subset of A is a subalgebra of A, then it is either a singleton, or is one of A,A′, {a, b},
or C ∪D where C ⊆ Wv, v ∈ V , and D ⊆

⋃

v∈V A
0
v ∪ A

1
v such that if |D ∩ (A0

iv ∪ A1
iv)| ≥ 2 for some i

then A0
iv ∪A

1
iv ⊆ D.

Obviously, A′, {a, b},Wv ∪ A0
v ∪ A1

v are subalgebras, because they are projections of certain relations
from Γ, or a class of θ. Take a subset B ⊆ A. Suppose first B 6= A′, B 6⊆ {a, b}, B 6⊆ Wv ∪ A

0
v ∪ A

1
v, for

any v ∈ V , say B = {a1, . . . , ak} (a1 6= a). Then let k-ary operation gB(x1, . . . , xk) be such that

gB(a1, . . . , ak) = c ∈ A′ −B,

gB(x1, . . . , xk) = x1, otherwise.

We have to prove that gB preserves relations from Γ. By (a), (b), (c) we mark the parts of the proof
corresponding to the parts of Γ: unary relations, equivalence relation θ, and the Ri.

(a) gB obviously preserves unary one-element relations, but destroys B.

(b) Take (x1, y1), . . . , (xk, yk) ∈ θ. Then gB

((

x1

y1

)

. . .

(

xk

yk

))

=

(

x1

y1

)

whenever neither (x1, . . . , xk)

nor (y1, . . . , yk) equals (a1, . . . , ak). If (x1, . . . , xk) = (a1, . . . , ak) then x1 ∈ A′, and hence, y1 ∈ A′.
Thus gB(x1, . . . , xk), gB(y1, . . . , yk) ∈ A′.

(c) For any x1, . . . ,xk ∈ Ri where xj = (x1j , . . . , x6j), none of (xl1, . . . , xlk) equals (a1, . . . , ak).
Hence, gB(x1, . . . ,xk) = x1 which means gB preserves Ri.

Further, suppose that |(A0
iv ∪ A1

iv) ∩ B| ≥ 2, but A0
iv ∪ A1

iv 6⊆ B for some v ∈ V and i ∈ {4, 5, 6, 7}.
Let c, d ∈ (A0

iv ∪ A1
iv) ∩ B and e ∈ (A0

iv ∪ A1
iv) − B. There are 12 possibilities of what c, d, e are. We

consider one of them, namely, when c = 00
iv, d = 01

iv, e = 10
iv. The other 11 cases are quite similar. Define

the operation gc,d,e(x, y) as follows

gc,d,e(x, y) =















e, if x = c, y = d,
00

iu, if x ∈ A1
iu, y ∈ A0

iu ∪A1
iu, u ∈ V , x 6∼ y;

10
iu, if x ∈ A0

iu, y ∈ A0
iu ∪A1

iu, u ∈ V , x 6∼ y;
x otherwise.

a) is obvious.
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b) Let
(

g1
g2

)

= gc,d,e

((

x1

x2

)

,

(

y1

y2

))

where (x1, x2), (y1, y2) ∈ θ. If x1, x2 6= a then (g1, g2) ∈ A′2 ⊆

θ. If x1 = a then x2 = a and (g1, g2) = (a, a) ∈ θ.
c) Let g = gc,d,e(x,y), x,y ∈ Ri. If (x1, x2, x3) or (y1, y2, y3) does not equal (a, a, b) if i = 4, (a, b, a)

if i = 5, (b, a, a) if i = 6, and (b, b, b) if i = 7, then g = x. If (x1, x2, x3) and (y1, y2, y3) are equal to
the corresponding triple, then x4 ≡ x5 ≡ x6, y4 ≡ y5 ≡ y6. Therefore (g1, g2, g3) equals the same triple
as (x1, x2, x3), (y1, y2, y3); g4 ≡ g5 ≡ g6; (g4, g5, g6) = (x4, x5, x6) when xj ∼ yj , j ∈ {4, 5, 6}, and
gj = 00

1v if xj ∈ A1
1v, gj = 10

1v if xj ∈ A0
1v when xj 6∼ yj , j ∈ {4, 5, 6}. In both cases g ∈ Ri.

CLAIM 4. For each subalgebra B of A, and a congruence η of B, B/η is not a set, and if {a, b} has one
of the operations f1, f2 then every such simple subalgebra also omits type 2.

Note that if subalgebra {a, b}3 has either a semilattice, or majority, or minority operation, then the
subalgebra Wv ∪A

0
v ∪A

1
v being factorised modulo ηv, whose blocks are {a0v}, {a1v}, {a2v}, {a3v}, A

0
4v ∪

A1
4v, A

0
5v ∪ A1

5v, A
0
6v ∪ A1

6v, A
0
7v ∪ A1

7v, also has such an operation. Moreover, this is also true for any
subalgebra B of Wv ∪ A0

v ∪ A1
v factorized modulo the restriction of ηv onto B. Since B is idempotent, any

its congruence class is a subalgebra. Claim 3 implies that every congruence of B is either the restriction of
ηv, or is isomorphic to a certain divisor of {a, b}3, or is non-trivial on one of the sets A0

iv ∪ A
1
iv. In the first

and second cases operation g witnesses that such a divisor is not a set, and if an operation f satisfying one
of the two conditions stated in Claim 1 is present then the divisor omits type 2. So, the only subalgebras to
check are A,A′, A0

iv ∪A
1
iv.

1)A0
iv ∪A

1
iv has no nontrivial subalgebras. Since it is idempotent, this implies simplicity. The following

operation witnesses that this subalgebra omits types 1 and 2:

h(x, y) =







s0iv, if x = s0iv, y ∈ A0
iv ∪A

1
iv,

or x ∈ As
iv and y ∈ {00

iv, 1
0
iv},

x, otherwise.

2) A/θ is isomorphic to {a, b}, and therefore, is not a set and if a term operation satisfying the conditions
of Claim 1 is present it omits type 2. Furthermore, any congruence of A which differs from θ and the total
relation is not total on A′.

3) A′ = A|A′ is simple.
Since each congruence block is a subalgebra, any nontrivial congruence η is a subset of the equivalence

relation η′ whose blocks are {b}, Wv ∪A
0
v ∪A

1
v, v ∈ V . For each c, d ∈Wv ∪A

0
v ∪A

1
v define an operation

hc,d as follows

hc,d(x, y) =







c, if x = c, y = b,
b, if x = d, y = b,
x, otherwise.

(a) hc,d is idempotent, consequently, it preserves all unary relations from Γ.

(b)
(

h1

h2

)

= hc,d

((

x1

x2

)

,

(

y1

y2

))

=

(

x1

x2

)

whenever a ∈ {x1, x2, y1, y2}, and h1, h2 ∈ A′ otherwise.

(c) Set h = hc,d(x,y) where x,y ∈ Ri. Since hc,d(x, y) = x if x, y ∈ {a, b}, we have (h1, h2, h3) =
(x1, x2, x3). Further, since y4, y5, y6 6= b, (h4, h5, h6) = (x4, x5, x6).

This means that if (c, d) ∈ η, then (c, b) ∈ η, but (c, b) 6∈ η′, a contradiction with η ⊆ η′. Operation h
constructed above guarantees that A′ omits types 1,2. Claim 4 is proved. This also completes the proof of
Claim 1.
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Let us prove Claim 2. Note that if f1 or f2 are present, then for each Ci with Vi = {u, v, w} we have

f(a0u, a1u, a2u, a3u) ∈ Aa
u

f(a0v, a1v, a2v, a3v) ∈ Ab
v

f(a0w, a1w, a2w, a3w) ∈ Ac
w

where (a, b, c) is a solution for Ci. Therefore, C has a solution.
Conversely, suppose C has a solution ϕ : V → {0, 1}. Let · denote the semilattice operation on {a, b}

(a · b = b · a = a), its extention to the set {a0, . . . ,a7}, and the corresponding operation on {0, . . . , 7}. Set

f1(x, y, z, t) = g(x, y) =











































x, if x = y,
a, if x = a or y = a,
ϕ(v)0(i·j)v, if x ∈ {aiv, 0

0
iv, 0

1
iv, 1

0
iv, 1

1
iv},

y ∈ {ajv, 0
0
jv, 0

1
jv, 1

0
jv, 1

1
jv}, and i · j ∈ {4, 5, 6, 7},

a(i·j)v, if x ∈ {aiv, 0
0
iv, 0

1
iv, 1

0
iv, 1

1
iv},

y ∈ {ajv, 0
0
jv, 0

1
jv, 1

0
jv, 1

1
jv}, and i · j ∈ {0, 1, 2, 3},

x, otherwise.

(a) Since f is idempotent, it preserves all unary relations from Γ.
(b) As is easily seen, f preserves A′. Take (x1, x2), (y1, y2) ∈ θ. If a 6∈ {x1, x2, y1, y2} then

g

((

x1

x2

)

,

(

y1

y2

))

∈ A′2 ⊆ θ. Otherwise, if x1 = a (y1 = a) then x2 = a (y2 = a); therefore

g

((

x1

x2

)

,

(

y1

y2

))

=

(

a
a

)

∈ θ.

(c) Denote the set of tuples {b |

(

ci

b

)

∈ Rt} by Dit. We just have to prove that g(ci, cj) ∈

{c0, . . . , c7}, and if g(ci, cj) = ck then g(Dit, Djt) ⊆ Dkt. However, this follows straightforwardly
from the definition of g.
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