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Abstract

Gaifman’s locality theorem states that every first-order sentence is equivalent to a local sentence.
We show that there is no elementary bound on the length of the local sentence in terms of the original.
Gaifman’s theorem is an essential ingredient in several algorithmic meta theorems for first order logic.
Our result has direct implications for the running time of the algorithms.

The classical Łoś-Tarski theorem states that every first-order sentence preserved under extensions is
equivalent to an existential sentence. We show that there is no elementary bound on the length of the
existential sentence in terms of the original. Recently, variants of the Łoś-Tarski theorem have been
proved for certain classes of finite structures, among them the class of finite trees and more generally
classes of structures of bounded tree width. Our lower bound also applies to these variants.

The first-order theory of trees is decidable. We prove that there is no elementary decision algorithm.
Notably, our lower bounds do not apply to restrictions of the results to structures of bounded degree.

For such structures, we obtain elementary upper bounds in all cases. However, even there we can prove
at least doubly exponential lower bounds.

1 Introduction
Classical results of model theory provide syntactical normal forms for various semantical properties of struc-
tures. For example, the Łoś-Tarski theorem states that every first-order definable property that is preserved
under extensions of structures is actually definable by an existential first-order sentence. Gaifman’s locality
theorem provides a normal form for all properties definable in first-order logic. It states that each first-
order definable property is definable by a local sentence, that is, a sentence where quantification is basically
restricted to local neighbourhoods of elements.

Gaifman’s theorem has found various applications in algorithms and complexity [10, 6, 17, 18]. In par-
ticular, there are very general algorithmic meta-theorems stating that deciding first-order properties of vari-
ous classes of structures, such as planar graphs or graphs with excluded minors, is fixed-parameter tractable,
and that first-order definable optimization problems on such classes have polynomial time approximation
schemes. These algorithms are heavily based on (an effective version of) Gaifman’s theorem: First-order
formulas are first translated into local formulas, and then these local formulas are algorithmically evaluated.

While it is known that the Łoś-Tarski theorem fails when restricted to all finite structures, it has recently
been proved [1] that the theorem does still hold when restricted to specific “well-behaved” classes of finite
structures such as trees, structures of bounded tree width, and structures of bounded degree. These results are
part of recent efforts in finite model-theory towards developing a model theory for “well-behaved” classes
of finite structures [1, 2, 3].

In the context of algorithms, complexity, and finite model theory, questions about the efficiency of the
normal forms, which are usually neglected in classical model theory, are of fundamental importance. These
are the questions we address. By efficiency we mean the size of the formulas in normal form (succinctness)
and the question for efficient algorithms that translate formulas into their normal forms (complexity of the
translation). We shall prove nonelementary lower bounds for the succinctness — obviously, this implies
nonelementary lower bounds on the complexity of the translation. Specifically, we prove that there is no
elementary function f such that every first-order sentence ϕ is equivalent to a local first-order sentence ϕ̃
of length ||ϕ̃|| ≤ f(||ϕ||), not even on the class of all finite trees. Similarly, we prove that there is no

1



elementary function f such that every first-order sentence ϕ that is preserved under extensions (on arbitrary
structures) is equivalent to an existential first-order sentence ϕ̃ of length ||ϕ̃|| ≤ f(||ϕ||), not even on the
class of all finite trees. This provides a succinctness lower bound for both the classical Łoś-Tarski theorem
and its variants for the classes of finite trees and all classes of finite structures that contain all trees (but not
for classes of finite structures of bounded degree).

We prove two further, related lower bounds. The first is concerned with the classical decision problem. It
is known that the first-order theory (and actually also the monadic second-order theory) of trees is decidable
[27, 22]. We prove that there is no elementary decision algorithm. Finally, we prove that a version of
the Feferman-Vaught theorem based on a restriction of formulas by formula length necessarily entails a
non-elementary blow-up in formula size.

Technically, all our lower bound proofs rely on a suitable encoding of large natural numbers by trees of
small height that can be controlled by small first-order formulas. In fact, we show — and use — that full
arithmetic on a large initial segment of the positive integers can be simulated by comparably small first-order
formulas that operate on the tree encodings of the numbers. Let us emphasize, however, that all our non-
elementary lower bounds heavily rely on the fact that the degree of the underlying structures is unbounded.
In fact, when restricting attention to classes of structures of bounded degree, we can show elementary upper
bounds as counterparts of the non-elementary lower bounds on classes of structures of unbounded degree.
In particular, in the bounded degree case we obtain a 4-fold exponential upper bound for Gaifman’s locality
theorem, and we get a 5-fold exponential upper bound for the variant of the Łoś-Tarski theorem on the class
of acyclic structures of bounded degree.

As far as we know, techniques similar to those applied here go back to Stockmeyer and Meyer [24].
Much later, such techniques have been employed in [11, 20, 13, 14] to prove lower bounds in parameterized
complexity, respectively, on the succinctness of monadic logics. Let us also mention a related succinctness
lower bound: It has recently been proved by Rossman [23] that the homomorphism preservation theorem (in
contrast with the Łoś-Tarski theorem) holds in the class of all finite structures. Here, it is known that there
is no elementary bound on the length of the existential positive formula obtained.1

The rest of the paper is structured as follows. Section 2 establishes some definitions and notation and
Section 3 presents the encoding of numbers by trees that is then used to prove lower bounds on the size
of formulas in Gaifman normal form (Section 4), the lower bounds on the complexity of deciding the first-
order theory of trees (Section 5) and also the failure of the Feferman-Vaught theorem for formula length
(Section 6). Section 7 then establishes the lower bound for the Łoś-Tarski theorem, which is based on a
different encoding of numbers by trees. Finally, Section 8 contains the elementary upper bounds on classes
of structures of bounded degree.

2 Preliminaries
We use R to denote the set of reals and N to denote the set of natural numbers, i.e., the set of nonnegative
integers. For natural numbers m < n we write [m,n] to denote the set {m,m+1, . . . , n}.

We say that a function f : N → R is (1-fold) exponential if there is some polynomial p such that f(n)
is eventually bounded by 2p(n). For any k ≥ 2, a function f is called k-fold exponential if there is some
(k−1)-fold exponential function g such that f(n) is eventually bounded by 2g(n).

A function f : N → R is called elementary if it can be formed from the successor function, addition,
subtraction, and multiplication using compositions, projections, bounded additions, and bounded multipli-
cations (of the form

∑
z≤y g(x, z) and Πz≤yg(x, z)). The crucial fact for us is that a function f is bounded

by an elementary function if, and only if, there exists a k ≥ 1 such that f is bounded by a k-fold exponential
function (see, e.g., [5]).

One function of particular interest for the present paper is the function Tower : N → N, defined via
Tower(0) := 1 and, for all h ≥ 1, Tower(h) := 2Tower(h−1). I.e., Tower(h) is a tower of 2s of height h. Note
that, e.g., none of the functions Tower(h), Tower( 4

√
h), Tower(log h) is bounded by an elementary function.

A vocabulary is a finite set of relation symbols and constant symbols. Associated with every relation
1Rossman mentions this in his paper, referring to unpublished work of Gurevich and Shelah. As far as we know, a proof of this

lower bound result has not been published yet.
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symbol R is a positive integer called the arity of R. In the following, τ always denotes a vocabulary. τ is
called relational if it does not contain any constant symbol.

A τ -structure A consists of a non-empty set A, called the universe of A, an element cA ∈ A for each
constant symbol c ∈ τ , and a relation RA ⊆ Ar for each r-ary relation symbol R ∈ τ . A is called an
induced substructure of a τ -structure B if A ⊆ B, RA = RB ∩Ar, for each relation symbol R ∈ τ of arity
r, and cA = cB for each constant symbol c ∈ τ .

The Gaifman graph of a τ -structure A is the (undirected, loop-free) graph GA with vertex set A and
an edge between two vertices a, b ∈ A iff there exists an R ∈ τ and a tuple (a1, . . , ar) ∈ RA such that
a, b ∈ {a1, . . , ar}. The distance between two elements a, b ∈ A in A, denoted by distA(a, b), is defined
to be the length (that is, number of edges) of the shortest path from a to b in the Gaifman graph of A. For
r ≥ 0 and a ∈ A, the r-neighborhood of a inA is the set NAr (a) = {b ∈ A : distA(a, b) ≤ r}. The induced
substructure ofA with universe NAr (a) is denoted byNAr (a). We omit superscripts A ifA is clear from the
context.

We write FO(τ) to denote the class of all formulae of first-order logic over the vocabulary τ , and we
write qr (ϕ) to denote the quantifier rank of an FO(τ)-formula ϕ. In a natural way, we view formulas
as trees (precisely, as their syntax trees), where leaves correspond to the atoms of the formulas, and inner
vertices correspond to Boolean connectives or quantifiers. We define the size (or, length) ||ϕ|| of a first-order
formula ϕ as the number of vertices of ϕ’s syntax tree.

E always denotes a binary relation symbol. We view {E}-structures as directed graphs. For a directed
graph A = (A,EA) and an a ∈ A, we let Aa be the set of all vertices b such there is a path from a to b
(this includes a), and we let Aa be the induced substructure of A with universe Aa. Unless we explicitly
call them undirected, we view trees as being directed from the root to the leafs. A forest is a directed graph
in which every vertex has indegree at most 1. Vertices of indegree 0 are called roots of the forest. A tree is a
forest with exactly one root. The class of all finite forests is denoted by F and the class of all finite trees by
T. The height of a tree T is the length of the longest path in T .

3 Encoding numbers by trees
In this section we introduce the technical machinery that is used for proving our main theorems in sections 4,
5, and 6. We use the following encoding of natural numbers by trees, introduced in [9].

Definition 3.1 (Encoding numbers by trees). For natural numbers i, n we write bit(i, n) to denote the i-th
bit in the binary representation of n. I.e., bit(i, n) = 0 if

⌊
n
2i

⌋
is even, and bit(i, n) = 1 if

⌊
n
2i

⌋
is odd.

Inductively we define a tree T (n) for each natural number n as follows:

• T (0) is the one-node tree.
• For n ≥ 1 the tree T (n) is obtained by creating a new root and attaching to it all trees T (i) for all i such

that bit(i, n) = 1.

These trees are illustrated in Figures 1 and 2. Figure 1 shows the trees T (0) up to T (10), and Figure 2
shows the tree T (2210

).
It is straightforward to see (cf. [9, Lemma 10.20])2 that

for all h, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n < Tower(h) . (1)

The next lemma from [9] shows that the tree encodings of numbers can be “controlled” by small first-order
formulas. (In [9], the statement of the lemma is formulated for trees instead of general structures. The proof
given there, however, also holds for general structures and thus leads to the following lemma.)

Lemma 3.2 ([9, Lemma 10.21]). For every h ≥ 0 there is a FO(E)-formula eqh(x, y) of lengthO(h) such
that for all structures A = (A,EA) and t, u ∈ A we have: If there are m,n < Tower(h) such that the
structures At and Au are isomorphic to T (m) and T (n), resp., then A |= eqh(t, u) ⇐⇒ m = n .

2Note that our function Tower(h) is slightly different than [9]’s function tow(h); precisely, we have tow(h) = Tower(h−1).
Thus, equation (1) looks slightly different than in [9, Lemma 10.20].
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Figure 2: The tree T (2210
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Using this, one easily obtains the following two lemmas which provide formulas of length polynomial
in h that recognise tree encodings and define arithmetic on the tree encodings of numbers of size up to
Tower(h).

Lemma 3.3. For every h ≥ 0 there is a FO(E)-formula encodingh(x) of length O(h2) such that for all
structures A = (T,EA) and t ∈ A we have:
A |= encodingh(t) ⇐⇒ there is an i ∈ {0, . . ,Tower(h)−1} such that At is isomorphic to T (i) .

Proof. Since Tower(0) = 1, the formula encoding0 has to express that Tt is isomorphic to T (0), i.e., to the
one-node tree. We can thus choose encoding0(x) := ¬∃y E(x, y).

For h ≥ 1 we choose

encodingh(x) :=

∀y
(
E(x, y)→ encodingh−1(y)

)
∧ ∀y ∀y′

((
E(x, y) ∧ E(x, y′) ∧ ¬y=y′

)
→ ¬eqh−1(y, y′)

)

It is straightforward to see that this formula has the intended meaning. Furthermore, considering the length
of the formula encodingh, there is a c > 0 such that

||encodingh|| ≤ ||encodingh−1||+ ||eqh−1||+ c
≤ ||encodingh−2||+ ||eqh−2||+ ||eqh−1||+ 2·c
≤ · · ·
≤ ||encoding0||+

∑h−1
h′=0 ||eqh′ ||+ c·h = O(h2)

(recall that due to Lemma 3.2, ||eqh′ || = O(h′)).

4



Lemma 3.4. For every h ≥ 0 there are FO(E)-formulas bith(x, y) of size O(h), lessh(x, y) of size O(h2),
min(x) of constant size (not depending on h), succh(x, y) of size O(h3), and maxh(x) of size O(h4) such
that for all structures A = (A,EA) and t, u ∈ A we have: If there are m,n < Tower(h) such that the
structures At and Au are isomorphic to T (m) and T (n), respectively, then we have:

(a) A |= bith(t, u) ⇐⇒ bit(m,n) = 1 .
(b) A |= lessh(t, u) ⇐⇒ m < n .
(c) A |= min(t) ⇐⇒ At is isomorphic to T (0) .
(d) A |= succh(t, u) ⇐⇒ m+ 1 = n .
(e) A |= maxh(t) ⇐⇒ At is isomorphic to T (Tower(h)−1) .

Proof. (a): Choose bith(x, y) := ∃y′
(
E(y, y′) ∧ eqh(y′, x)

)
.

(b): We define the formulas lessh(x, y) by induction on h.
Since Tower(0) = 1, we know that m,n < Tower(0) ⇐⇒ m = n = 0. Thus, less0(x, y) can be

chosen as a formula that is never satisfied, e.g. less0(x, y) := ∃x ¬x=x .
For h ≥ 1 we choose

lessh(x, y) := ∃y′
(
E(y, y′) ∧
∀x′

(
E(x, x′)→ ¬eqh−1(x′, y′)

)
∧

∀x′′
(
(E(x, x′′) ∧ lessh−1(y′, x′′))→ ∃y′′(E(y, y′′) ∧ eqh−1(y′′, x′′)

) )

Along Definition 3.1 it is straightforward to see that the formula lessh expresses that there exists an i (cor-
responding to the variable y′ in lessh) such that bit(i, n) = 1, bit(i,m) = 0, and for each j (corresponding
to the variable x′′ in lessh) with j > i and bit(j,m) = 1 we have bit(j, n) = 1. Thus, the formula expresses
that m < n. Furthermore, considering the length of the formula lessh, there is a c > 0 such that

||lessh|| ≤ ||lessh−1||+ 2·||eqh−1||+ c
≤ ||lessh−2||+ 2·||eqh−2||+ 2·||eqh−1||+ 2·c
≤ · · ·
≤ ||less0||+ 2 ·∑h−1

h′=0 ||eqh′ ||+ c·h = O(h2)

(recall that due to Lemma 3.2, ||eqh′ || = O(h′)).

(c): Since T (0) is the one-node tree, we can choose min(x) := ¬∃y E(x, y).

(d): We define succh by induction on h and make use of the formulas eqh−1 and lessh−1. Of course, for
h = 0, succ0 can be chosen to be a formula that is never satisfied.

For h ≥ 1, the first two lines of the following formula succh express that there is a number i (corre-
sponding to the variable y′) such that i is the smallest number with bit(i, n) = 1, and that for this particular
i we have bit(i,m) = 0. Lines 3 and 4 express for each j > i that bit(j, n) = 1 =⇒ bit(j,m) = 1 and,
vice versa, bit(j,m) = 1 =⇒ bit(j, n) = 1. The last two lines expresses the following: If i 6= 0 then
bit(0,m) = 1 and for each j < i with bit(j,m) = 1 we have

(
j+1 = i or bit(j+1,m) = 1

)
.

Altogether, the formula succh hence expresses that m+ 1 = n.

succh(x, y) := ∃y′
(

E(y, y′) ∧ ∀y′′
(

(E(y, y′′) ∧ ¬y′′=y′)→ lessh−1(y′, y′′)
)
∧ ∀x′

(
E(x, x′)→ ¬eqh−1(x′, y′)

)
∧

∀y′′
((
E(y, y′′) ∧ lessh−1(y′, y′′)

)
→ ∃x′′

(
E(x, x′′) ∧ eqh−1(x′′, y′′)

))
∧

∀x′′
((
E(x, x′′) ∧ lessh−1(y′, x′′)

)
→ ∃y′′

(
E(y, y′′) ∧ eqh−1(y′′, x′′)

))
∧

¬min(y′)→
(
∃x′
(
E(x, x′) ∧ min(x′)

)
∧

∀x′
((
E(x, x′) ∧ lessh−1(x′, y′)

)
→
(
∃z(succh−1(x′, z) ∧ (z=y′ ∨ E(x, z))

)))
.

Since ||lessh−1|| = O((h−1)2) and ||eqh−1|| = O(h−1), we obtain (in a similar way as in the proof of
Lemma 3.3) that ||succh|| = O(

∑
h′≤h h

′2) = O(h3).
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(e): Since Tower(0) = 1, the formula max0 has to express that At is isomorphic to T (0), i.e., to the
one-node tree. We can thus choose max0(x) := ¬∃y E(x, y).

For h ≥ 1 we choose
maxh(x) := encodingh(x) ∧ max′h(x) ,

where the formula max′h(x) is defined by induction on h as follows: For h = 0 we let max′0(x) :=
max0(x) := ¬∃y E(x, y). For h ≥ 1 note that Tower(h)−1 = 2Tower(h−1)−1. Thus, the tree T ′ :=
T (Tower(h)−1) consists of a root node which, for each i with 0 ≤ i < Tower(h−1), has a child ti such
that T ′ti is isomorphic to T (i). In particular, the root of T ′ has a child t0 and a child tmax such that T ′t0 is
isomorphic to T (0) and T ′tmax

is isomorphic to T (Tower(h−1)−1). We choose

max′h(x) := ∃y
(
E(x, y) ∧ min(y)

)
∧

∀y
(
E(x, y) →

(
max′h−1(y) ∨ ∃z

(
E(x, z) ∧ succh−1(y, z)

) ) )
.

It is straightforward to see that the formula maxh(x) expresses the desired property. Furthermore, since
||succh−1|| = O((h−1)3) and ||eqh−1|| = O(h−1), we obtain (in a similar way as in the proof of
Lemma 3.3) that ||max′h|| = O(

∑
h′≤h h

′3) = O(h4). Thus, also ||maxh|| = O(h4).
Finally, the proof of Lemma 3.4 is complete.

4 Lower bounds for the size of formulas in Gaifman normal form
The aim of this section is to prove a non-elementary succinctness gap for Gaifman’s theorem. To give a
precise formulation of Gaifman’s theorem and our new bounds on formula length, we need to fix some
(standard) notation.

For every r ≥ 0, we let dist≤r(x, y) be an FO(τ)-formula expressing that the distance between x and y
is at most r. We often write dist(x, y) ≤ r instead of dist≤r(x, y) and dist(x, y) > r or dist>r(x, y) instead
of ¬dist≤r(x, y). An FO(τ)-formula ψ(x) is called r-local if for every τ -structure A and every a ∈ A we
have A |= ψ(a) ⇐⇒ NAr (a) |= ψ(a). A basic local sentence (with parameters k, r) is a sentence of the
form

∃x1 · · · ∃xk
( ∧

1≤i<j≤k
dist(xi, xj) > 2r ∧

∧

1≤i≤k
ψ(xi)

)
,

where ψ(x) is r-local.
For an FO(τ)-sentence ϕ we say that ϕ is in Gaifman normal form if ϕ is a Boolean combination of

basic local sentences. Gaifman’s well-known theorem from [12] states that every first-order sentence over a
relational vocabulary is equivalent to a first-order sentence in Gaifman normal form.

Theorem 4.1 (Gaifman [12]). Every first-order sentence over a relational vocabulary is equivalent to a
first-order sentence in Gaifman normal form.

The proof in [12] proceeds by induction on the length of the given first-order sentence ϕ and leads to
an effective algorithm that transforms a given ϕ into an equivalent sentence ψ in Gaifman normal form. A
closer look at Gaifman’s proof shows that the size of the constructed sentence ψ may be non-elementary in
the size of the original sentence ϕ.

The present section’s main result shows that this huge increase of formula size is not just an artifact of
Gaifman’s proof, but that indeed there are first-order formulas ϕ for which the shortest equivalent formula
in Gaifman normal form is non-elementarily larger than ϕ.

Theorem 4.2. For every h ≥ 1 there is an FO(E)-sentence ϕh of size O(h4) such that every FO(E)-
sentence in Gaifman normal form that is equivalent to ϕh on the class T of finite trees has size at least
Tower(h).

Before proving Theorem 4.2, we first show the following variant that speaks about the class of all forests
rather than trees. The proof of Theorem 4.3 will avoid some of the unpleasant details needed in the proof of
Theorem 4.2 while still exposing the main ideas that are crucial for the proof of Theorem 4.2.
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Theorem 4.3. For every h ≥ 1 there is an FO(E)-sentence ϕh of size O(h4) such that every FO(E)-
sentence in Gaifman normal form that is equivalent to ϕh on the class F≤h of finite forests of height ≤ h
has size at least Tower(h).

Proof. We use the tree encodings of natural numbers introduced in Section 3. For h ≥ 1 we define the struc-
ture Fh to be the forest that consists of the disjoint union of all trees T (j) for all j ∈ {0, . . ,Tower(h)−1}.
Furthermore, for every i ∈ {0, . . ,Tower(h)−1}, we let F−ih be the forest that consists of the disjoint union
of all trees T (j) for all j with j 6= i and j ∈ {0, . . ,Tower(h)−1}.

We let root(x) be a formula which expresses that a node x has in-degree 0, i.e., root(x) := ¬∃y E(y, x) .
We choose the FO(E)-sentence ϕh as follows:

ϕh := ∃x
(
root(x) ∧ min(x)

)
∧ ∀y

((
root(y) ∧ ¬maxh(y)

)
→ ∃z

(
root(z) ∧ succh(y, z)

)))
.

Using Lemma 3.4, it is straightforward to see that ||ϕh|| = O(h4) and

Fh |= ϕh and, for each i < Tower(h), F−ih 6|= ϕh . (2)

Now let ψ be an FO(E)-sentence in Gaifman normal form that is equivalent to ϕh on the class F≤h. In
particular, since Fh as well as all the F−ih belong to F≤h, we obtain from (2) that

Fh |= ψ and, for each i < Tower(h), F−ih 6|= ψ . (3)

Our aim is to show that H := ||ψ|| ≥ Tower(h). Aiming at a contradiction, let us now assume that
H < Tower(h).

Since ψ is in Gaifman normal form, it is a Boolean combination of basic local sentences χ1, . . , χL,
where each χ` (for ` ∈ {1, . . , L}) is of the form

χ` := ∃x1 · · · ∃xk`
( ∧

1≤i<j≤k`
dist(xi, xj) > 2r` ∧

∧

1≤i≤k`
ψ`(xi)

)
,

with k`, r` ≥ 1 and ψ`(x) a formula that is r`-local. In particular,

k1 + · · ·+ kL ≤ ||ψ|| =: H . (4)

We can assume w.l.o.g. that there exists an L̃ with 0 ≤ L̃ ≤ L such that

for each ` ≤ L̃, Fh |= χ` , and for each ` > L̃, Fh 6|= χ` . (5)

For all ` ≤ L̃ we know that Fh |= χ`, i.e., there are nodes t(`)1 , . . . , t
(`)
k`

in Fh such that the formula

∧

1≤i<j≤k`
dist(xi, xj) > 2r` ∧

∧

1≤i≤k`
ψ`(xi) (6)

is satisfied in Fh when interpreting each variable xi with the node t(`)i . The set { t(`)i : ` ≤ L̃ and i ≤ k` }
consists of at most k1 + · · · + kL̃ ≤ H nodes (see (4)). Since we assume that H < Tower(h), and since
Fh consists of Tower(h) disjoint trees, there must be at least one component T of Fh in which none of the
nodes from { t(`)i : ` ≤ L̃ and i ≤ k` } is present. Let j ∈ {0, . . ,Tower(h)−1} be such that T = T (j).

Now, of course, the forest F−jh , which is obtained from Fh by removing the component T (j), still
contains all the nodes in { t(`)i : ` ≤ L̃ and i ≤ k` }.

Considering (6), note that each formula ψ`(xi) is r`-local around xi. Thus, when interpreting xi with
the node t(`)i , the formula can only “speak” about the r`-neighborhood of t(`)i , which is the same in F−jh as
in Fh. We thus obtain from (6) that F−jh |= χ` for each ` ≤ L̃.
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Let us now consider the formulas χ` with ` > L̃. From (5) we know that Fh 6|= χ`, i.e., Fh |= ¬χ`,
where the formula ¬χ` is of the following form:

¬∃x1 · · · ∃xk`
( ∧

1≤i<j≤k`
dist(xi, xj) > 2r` ∧

∧

1≤i≤k`
ψ`(xi)

)
.

Since the formula ψ`(xi) is r`-local and since F−jh is obtained from Fh by removing an entire component
of Fh, it is straightforward to see that also F−jh |= ¬χ`. In total, we now know the following:

for each ` ≤ L̃, F−jh |= χ` , and for each ` > L̃, F−jh 6|= χ` . (7)

From (7) and (5) we obtain that F−jh satisfies exactly the same basic local sentences from {χ1, . . . , χL}
as Fh. Since ψ is a Boolean combination of the sentences χ1, . . , χL, we thus have that F−jh |= ψ ⇐⇒
Fh |= ψ . This, however, is a contradiction to (3). Altogether, the proof of Theorem 4.3 is complete.

We are now ready for the proof of Theorem 4.2.

Proof of Theorem 4.2:
We use a modification of the proof of Theorem 4.3, where instead of a single forest Fh we consider a series
of trees Fh,R for all R > 2h. Precisely, for each R > 2h the structure Fh,R is defined as follows:

• Fh,R contains a disjoint copy Tj of the tree T (j), for each j ∈ {0, . . ,Tower(h)−1}.

• Additionally, there is a path a0, a1, . . , aR·(Tower(h)+1) of 1 +R · (Tower(h)+1) distinct nodes that do not
belong to any of the trees Tj .

• For each number j ∈ {0, . . ,Tower(h)−1} there is an edge from node aR·(j+1) to the root of Tj .

Note that the resulting structure Fh,R is indeed a tree.
For each i ∈ {0, . . ,Tower(h)−1} we let F−ih,R be the tree obtained from Fh,R by deleting the entire

subtree Ti.
Instead of the formula root(x) from the proof of Theorem 4.3, we now choose rooth(x) to be a formula

which expresses the following:

1. every directed path starting in x has length at most h, and

2. there is a node y for which we have E(y, x) and for which there exists a directed path of length at
least 2h that starts in y.

It should be clear that this can be formalised by a FO(E)-formula rooth(x) of size O(h). Furthermore, if A
is the tree Fh,R or one of the trees F−ih,R, and t is a node in A, then

A |= rooth(t) ⇐⇒ t is the root of one of the trees Tj .

Now, the sentence ϕh is chosen in the same way as in the proof of Theorem 4.3, where instead of the formula
root(x) now the formula rooth(x) is used. One then obtains that ||ϕh|| = O(h4) and, for all R > 2h,

Fh,R |= ϕh and, for each i < Tower(h), F−ih,R 6|= ϕh . (8)

Now let ψ be a FO(E)-sentence in Gaifman normal form that is equivalent to ϕh on the class T of finite
trees. In particular, since Fh,R as well as all the F−ih,R belong to T, we obtain from (8) that

Fh,R |= ψ and, for each i < Tower(h), F−ih,R 6|= ψ . (9)

Our aim is to show that H := ||ψ|| ≥ Tower(h). Aiming at a contradiction, let us now assume that
H < Tower(h).
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Since ψ is in Gaifman normal form, it is a Boolean combination of basic local sentences χ1, . . , χL. We
choose the same notation concerning these sentences as in the proof of Theorem 4.3, i.e., k`, r` denote the
according parameters of χ`. In particular, we again have

k1 + · · ·+ kL ≤ ||ψ|| =: H . (10)

Letting r := max{r1, . . , rL}, we now choose a particular number R as follows:

R := 1 + max{2h, 4r} . (11)

I.e., from now onR is a fixed number which is larger than 2h and larger than four times the “locality radius”
of each of the formulas χ1, . . , χL. Using this fixed R, we can assume w.l.o.g. that there exists a L̃ with
0 ≤ L̃ ≤ L such that

for each ` ≤ L̃, Fh,R |= χ` , and for each ` > L̃, Fh,R 6|= χ` . (12)

For all ` ≤ L̃ we know that Fh,R |= χ`, i.e., there are nodes t(`)1 , . . . , t
(`)
k`

in Fh,R such that the formula

∧

1≤i<j≤k`
dist(xi, xj) > 2r` ∧

∧

1≤i≤k`
ψ`(xi) (13)

is satisfied in Fh,R when interpreting each variable xi with the node t(`)i . The set

{ t(`)i : ` ≤ L̃ and i ≤ k` }

consists of a total number of at most k1 + · · · + kL̃ ≤ H nodes (see (10)). Since we assume that H <
Tower(h), and since Fh,R contains all the trees Tj , for all j ∈ {0, . . ,Tower(h)−1}, and they are of pairwise
distance ≥ R in Fh,R, there must be at least one j ∈ {0, . . ,Tower(h)−1} such that none of the nodes from
{ t(`)i : ` ≤ L̃ and i ≤ k` } is contained in the R

2 -neighbourhood of Tj .
Now, of course, the tree F−jh,R, which is obtained from Fh,R by removing the subtree Tj , still contains all

the nodes in { t(`)i : ` ≤ L̃ and i ≤ k` }. Furthermore, since R
2 ≥ r`, the r`-neighbourhood of node t(`)i in

F−jh,R is isomorphic to the r`-neighbourhood of node t(`)i in Fh,R. Considering (13), note that each formula

ψ`(xi) is r`-local around xi. Thus, when interpreting xi with the node t(`)i , the formula can only “speak”
about the r`-neighbourhood of t(`)i which is the same in F−jh,R as in Fh,R. We thus obtain from (13) that

for each ` ≤ L̃, F−jh,R |= χ` .

Let us now consider the formulas χ` with ` > L̃. From (12) we know that Fh,R 6|= χ`.

Claim 4.4. Let Fh,R 6|= χ`. Then, also F−jh,R 6|= χ`.

Proof. Aiming at a contradiction, let us assume that F−jh,R |= χ`. Then, there are nodes t1, . . , tk` in F−jh,R
such that the formula ∧

1≤i<j≤k`
dist(xi, xj) > 2r` ∧

∧

1≤i≤k`
ψ`(xi) (14)

is satisfied in F−jh,R when interpreting each variable xi with the node ti. I.e., in F−jh,R the nodes t1, . . , tk` are

of pairwise distance greater than 2r` and the r`-neighbourhood of each ti in F−jh,R satisfies ψ`(ti). Our aim
now is to show that also Fh,R |= χ`, contradicting the claim’s assumption.

Of course, each of the nodes t1, . . , tk` also occurs in Fh,R, and the pairwise distance of these nodes in
Fh,R is the same as in F−jh,R, and thus > 2r`. However, the r`-neighbourhood of some of the nodes may

be different in Fh,R than in F−jh,R. Namely, the r`-neighbourhood is different for exactly those nodes from
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{t1, . . , tk`} that belong to the (r`−1)-neighbourhood of the node aR·(j+1) (i.e., the node to which Tj is
attached in Fh,R). Of course, these are exactly the nodes in

V := { t1, . . , tk` } ∩ { aR·(j+1)+i : −r` < i < r` } .

Since the vertices t1, . . , tk` have pairwise distance > 2r`, we obtain that |V | ≤ 1.
If |V | = 0, then the formula from (14) is obviously satisfied in Fh,R when interpreting the variables

x1, . . , xk` with the nodes t1, . . , tk` .
If |V | = 1 we can assume w.l.o.g. that V = {t1}. Note that the r`-neighbourhood of t1 in F−jh,R is just

a path of 2r` + 1 vertices with t1 being in the middle (whereas the r`-neighbourhood of t1 in Fh,R contains
vertices from Tj). To satisfy the formula in (14), it suffices to find a node t′1 in Fh,R which has distance
> 2r` to each of the nodes t2, . . , tk` and whose r`-neighbourhood in Fh,R is a path of 2r` + 1 vertices with
t′1 being in the middle.

Since k`−1 < H < Tower(h) (see (10)) and R
2 > 2r` (see (11)), we can find an i ∈ {0, . . ,Tower(h)}

such that none of the nodes t2, . . , tk` belongs to the 2r`-neighbourhood of the node aR·i+(R/2). Choosing
t′1 := aR·i+(R/2), we have found a node in Fh,R that has distance > 2r` to each of the nodes t2, . . , tk` and
whose r`-neighbourhood in Fh,R is isomorphic to the r`-neighbourhood of t1 in F−jh,R. Altogether, we thus
obtain that the formula from (14) is satisfied in Fh,R when interpreting the variables x1, x2, . . , xk` with the
nodes t′1, t2, . . , t`. Hence, Fh,R |= χ`, contradicting the claim’s assumption and thus completing the proof
of Claim 4.4.

Proceeding with the proof of Theorem 4.2, note that we are now in a situation where we know the following:

for each ` ≤ L̃, F−jh,R |= χ` , and for each ` > L̃, F−jh,R 6|= χ` . (15)

From (15) and (12) we thus obtain thatF−jh,R satisfies exactly the same basic local sentences from {χ1, . . . , χL}
as Fh,R. Since ψ is a Boolean combination of the sentences χ1, . . , χL, we thus have that F−jh,R |= ψ ⇐⇒
Fh,R |= ψ . This, however, is a contradiction to (9). Altogether, the proof of Theorem 4.2 is complete.

To conclude this section let us mention that an easy reduction shows that Theorem 4.2 and Theorem 4.3
still hold when replacing T and F≤h by the class Tu and Fu≤h of undirected trees, respectively, undirected
forests of height at most h.

5 Lower bounds for the complexity of the theory of trees
The first-order theory Th(C) of a class C of structures is the set of all first-order sentences that hold in all
structures in C. It is a classical topic of mathematical logic to determine the decidability of various theories,
which led to seminal results such as the decidability of the theory of the field of real numbers [26] or the
undecidability of arithmetic [28, 4]. It is known since at least the 1960s that the first-order theory of the class
of trees is decidable. This is known for both the class of finite trees and the class of all trees. Furthermore,
the decidability result remains true if the trees are labelled, and whether they are directed or undirected. For
simplicity, we focus on the class T of finite unlabelled directed trees in the following, but it is easy to see
that our lower bound result also holds for all other variants. The only important assumption for our lower
bound result below is that the trees are unranked and not of bounded degree. Actually, the decidability result
even holds for the monadic second-order theory of trees [27] (for infinite trees, this is a deep result due to
Rabin [22]). It is proved by translating monadic-second order sentences into tree-automata. An example of a
class of finite structures with an undecidable monadic second-order theory and a decidable first-order theory
is the class of finite initial segments of Presburger arithmetic. (That is, the class of all structures whose
universe is {0, . . . , n} and that have one ternary relation, the graph of the addition restricted to {0, . . . , n}.
The decidability of the first-order theory of this class follows from the decidability of Presburger arithmetic
[21], and the undecidability of monadic second-order logic from the fact that multiplication is monadic
second-order definable from addition and the strong undecidability results known for arithmetic.) However,
natural classes of graphs such as planar graphs or graphs of bounded degree, which are well-behaved with
respect to first-order logic in other respects [2, 10], have an undecidable first-order theory. To see this,
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observe that we can easily use labelled grids to encode the sequence of configurations of a run of a Turing
machine. The labels can be replaced by little gadgets, and the degree can be reduced from four to three by
replacing grids by walls. This yields the following:

Fact 5.1. Th(P3) is undecidable, where P3 denotes the class of all finite planar graphs of degree ≤ 3.

Our main result in this section is a lower bound for the complexity of the theory of trees:

Theorem 5.2. There is no elementary algorithm deciding Th(T).

Proof. We only sketch the proof. We prove that for every Turing machine M and every n there is a first-
order sentence ϕM,n of length polynomial in n and the size of the description of M such that ϕM,n is
satisfiable in T if and only if M halts in less than Tower(n) steps when started with empty input. Clearly,
this implies the desired lower bound.

Let M be a 1-tape Turing machine and n ∈ N. Without loss of generality we may assume that the states
of M and the tape symbols are elements of [0, n−1].

We can encode a run of M of length at most ` by a set of 5-tuples (t, u, s, q, h), where t, u, h ∈ [0, `−1],
s, q ∈ [0, n−1]. Here t is a step of the computation, s is the symbol of the u-th tape cell in step t, q is the
state, and h is the head position. Using standard coding techniques, we can encode each set of such 5-tuples,
and hence each run of M of length at most `, by a single integer less than 22` , provided ` is sufficiently
large.

Using the encodings of natural numbers by trees introduced in Section 3, the first-order formulas defined
there to speak about the trees, and standard techniques for describing Turing machine computations by
logical formulas, it is not hard to construct a formula ϕM,n with the following properties:

• If ϕM,n is satisfiable, then (up to isomorphism) the only model of ϕM,n is the tree T (m), where m =
Tower(n+3)−1.

• ϕM,n is satisfiable (i.e., holds in T (m)) if and only if there is a number j < Tower(n+2) such that j is
the encoding of an accepting run of the machine M of length at most Tower(n).

• The length of ϕM,n is polynomial in n.

Observe that in T (m), where m = Tower(n+3)−1, we have all numbers i ∈ [0,Tower(n+2)−1] “avail-
able”, represented by the children of the root. Furthermore, the formulas lessn+2 and bitn+2 from Lemma 3.4
give us sufficient arithmetic on these numbers. Thus in T (m) we have an initial segment of arithmetic of
length Tower(n+2) represented in such a way that we can access it by first-order formulas of length poly-
nomial in n. This allows us to decode the run of the Turing machine represented by the number j.

6 Failure of Feferman-Vaught theorems for formula size
The classical Feferman-Vaught theorem [8] states that for certain forms of compositions of structures the the-
ory of a structure composed from simpler structures is determined by the theories of the simpler structures.
The plainest form of composition is the disjoint union, denoted by⊕ in the following. The Feferman-Vaught
theorem for disjoint union and first-order logic states that for all structures A1,A2,B1,B2, if for i = 1, 2
the structures Ai and Bi satisfy the same first-order sentences, their disjoint unions A1 ⊕ A2 and B1 ⊕ B2

also satisfy the same first-order sentences. This can be stratified by the quantifier rank, that is, if Ai and Bi
satisfy the same first-order sentences of quantifier rank at most q, thenA1⊕A2 and B1⊕B2 also satisfy the
same first-order sentences of quantifier rank at most q. This result is an immensely useful tool in analysing
the expressivity of first order logic, and for deriving bounds on the quantifier rank.

To derive bounds on the formula size, it would be similarly useful to have an analogous result for
formula size instead of quantifier rank. As (for a fixed, finite vocabulary) there are only finitely many first-
order sentences of quantifier rank q, up to logical equivalence, we immediately get the following: There is a
function f such that if for i = 1, 2 the structures Ai and Bi satisfy the same first-order sentences of length
at most f(`), then A1 ⊕A2 and B1 ⊕ B2 satisfy the same first-order sentences of length at most `. It is not
hard to derive an upper bound of Tower(O(`)) on the function f . Maybe surprisingly, this upper bound is
essentially tight:
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Theorem 6.1. There is no elementary function f such that the following holds for all trees A,B, C ∈ T: If
A and B satisfy the same first-order sentences of length at most f(`), thenA⊕C and B⊕C satisfy the same
first-order sentences of length at most `.

Proof. We use the encoding and the formulas from Section 3.
For every h ≥ 1, let ϕh := ∀x

(
encodingh(x)→

(
maxh(x) ∨ ∃y succh(x, y)

))
.

Then there is a constant c ≥ 1 such that |ϕh| ≤ c · h4 for all h.
Suppose for contradiction that f is an elementary function with the desired property. We may assume

that f(`) ≥ ` for all ` ≥ 1. As there are only exponentially many first-order sentences ϕ of a given length,
there is an h ≥ 1 such that there are less than Tower(h−1) first-order sentences of length at most f(c·h4)
(up to equivalence). Let us fix such an h, and let ` = c·h4 and n = Tower(h)−1. For every j ∈ [0, n],
let Fj denote the forest consisting of the trees T (j), . . . , T (n), and let Uj be the tree obtained from Fj by
connecting a new root with the roots of all trees inFj . Then there are numbers j, k such that 1 ≤ j < k ≤ n,
and the trees Uj and Uk satisfy the same first-order sentences of length at most f(`). Observe that

Fj ⊕ T (j−1) |= ϕh and Fk ⊕ T (j−1) 6|= ϕh.

Now letA = Uj , B = Uk, and C = T (j−1). As the new roots ofA,B are not nodes satisfying encodingh(x)
(becauseA andB are isomorphic to trees T (nA) and T (nB) with nA, nB ≥ Tower(h)), we haveA⊕C |= ϕh
and B ⊕ C 6|= ϕh. Since the length of ϕh is at most ` and A,B satisfy the same sentences of length at most
f(`), this is a contradiction.

7 Existential preservation on forests — lower bounds for the size of formulas
A structure B is called an extension of A if A is an induced substructure of B. Let τ be a vocabulary and
let C be a class of finite τ -structures that is closed under induced substructures. A FO(τ)-sentence ϕ is
preserved under extensions on C if the following is true for all structures A,B ∈ C: If A |= ϕ and B is an
extension of A, then also B |= ϕ.

The well-known Łoś-Tarski Theorem (see e.g. [16]) states that every first-order sentence that is pre-
served under extensions on the class of all structures (i.e., finite as well as infinite structures), is equivalent
to an existential first-order sentence. Here, the class of existential first-order formulas is obtained by clos-
ing the atomic formulas and the negated atomic formulas under conjunction, disjunction, and existential
quantification.

It is known that the Łoś-Tarski Theorem fails when shifting the attention from the class of all structures
to the class of all finite structures. I.e., there are first-order sentences that are preserved under extensions on
the class of all finite structures, but not equivalent to any existential first-order sentence ([25, 15]).

On the other hand, [1] exposed “well-behaved” classes of finite structures for which a Łoś-Tarski like
theorem holds. For example, it was shown that every first-order sentenceϕ that is preserved under extensions
on the class of finite acyclic structures is equivalent, over this class, to an existential first-order sentence ψ.
The proof given in [1] leads to an algorithm which on input ϕ produces a corresponding existential sentence
ψ; the size of the resulting sentence ψ, however, may be non-elementarily larger than the size of the original
sentence ϕ. The main result of the present section, Theorem 7.1, shows that this increase in formula size
is not just an artifact of the proof given in [1], but that indeed the size of the shortest equivalent existential
sentence may be non-elementarily larger than the size of the original formula ϕ.

In the following, we let L and X be two unary relation symbols. An {L,X}-labelled tree is an
{E,L,X}-structure T = (T,ET , LT , XT ) where (T,ET ) is a tree.

Theorem 7.1. Let τ be a vocabulary that consists of a binary relation symbol E and two unary relation
symbols L andX . For every h ≥ 1 there is a FO(τ)-sentence ϕh of size 2O(h) with the following properties:

1. ϕh is preserved under extensions on the class of all τ -structures, and
2. every existential FO(τ)-sentence ψ that is equivalent to ϕh on the class T≤h of all {L,X}-labelled

trees of height at most h is of size at least Tower(h−1).
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Using the same approach as in the previous sections, i.e., the encoding of natural numbers by trees
introduced in Section 3, it is not difficult to construct a sentence ϕh of small size which meets requirement
2. We were, however, unable to find a sentence based on this encoding which also meets requirement 1 (even
when considering T≤h instead of the class of all τ -structures). To prove Theorem 7.1, we therefore introduce
the following encoding of numbers by {L,X}-labelled trees. The remainder of Section 7 is devoted to the
proof of Theorem 7.1.

From now on, until the end of this section, we let τ denote a vocabulary that consists of a binary relation
symbol E and two unary relation symbols L and X .

Definition 7.2. For each natural number h ≥ 1 and each n ∈ {0, 1, . . ,Tower(h)−1}, we define the {L,X}-
labelled tree T̃h(n) as follows:

• T̃1(0) consists of two nodes u and v such that there is an edge from u to v, and v is labelled to be a leaf
(which is encoded by “v ∈ L”) and v is labelled 0 (which is encoded by “v 6∈ X”).
• T̃1(1) consists of two nodes u and v such that there is an edge from u to v, and v is labelled to be a leaf

(which is encoded by “v ∈ L”) and v is labelled 1 (which is encoded by “v ∈ X”).
• for h ≥ 1 and n ∈ {0, . . ,Tower(h+1)−1} = {0, . . , 2Tower(h)−1}, the {L,X}-labelled tree T̃h+1(n) is

obtained by creating a new root, attaching to it one copy of T̃h(i), for each i ∈ {0, . . ,Tower(h)−1}, and
labelling the root of T̃h(i) with 1 if bit(i, n) = 1, and 0 otherwise.

These trees are illustrated in Figure 3, which shows all the trees T̃1(n) and T̃2(n), and Figure 4 which
shows T̃3(5).

0 0 0 0
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(0) (1)2 (2)2 (3)2

~ ~
2

~ ~ ~ ~
T (0) T T T T T

0

0
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1 0
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Figure 3: The trees T̃1(0), T̃1(1) and the trees T̃2(0), T̃2(1), T̃2(2), T̃2(3). Vertices in L are indicated by
bold circles, vertices in X are labelled 1, vertices outside X are labelled 0.

(2)2
~T

1 0

(1)2
~T ~

2T (0)

10

(3)2
~T

0

Figure 4: The tree T̃3(5)

Note that for every fixed h, the trees T̃h(n) for n < Tower(h) all have the same shape and only vary in
the labelling (w.r.t. 0 and 1) of the children of the root. Furthermore, each path from the root of T̃h(n) to a
leaf has exactly length h (i.e., consists of h edges), and the nodes that are labelled L are exactly the leaves
of T̃h(n).
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Unlike in the previous sections, it does not suffice to restrict attention to structures that are obtained as
disjoint unions or similar, easy combinations of the trees T̃h(n). Instead, we will consider a suitable notion
where a node t in an arbitrary τ -structureA is called “h-good” if the substructureAt is “sufficiently similar”
to the tree T̃h(n), for a number n < Tower(h). The precise definition of this notion will be given below.
Prior to that, however, we need the following (easy) lemma.

Lemma 7.3 (The sentence forest≤h′). For every h′ ≥ 1 there is a universal FO(τ)-sentence forest≤h′
of length O(h′) such that for every finite τ -structure A = (A,EA, LA, XA) the following is true: A |=
forest≤h′ ⇐⇒ (A,EA) is a disjoint union of trees such that every node in LA is a leaf, and for every root
r in A (i.e., for every node r in A that has in-degree 0 in EA) the following is true: every path in A that
starts in r has length at most h′.

Proof. The formula forest≤h′ expresses the following:

1. There is no path of length h′+1, i.e.

∀x1 ∀x2 · · · ∀xh′+1 ¬
h′∧

i=1

E(xi, xi+1)

(note that the above formula also implies that there is no directed cycle, since the existence of a directed
cycle implies that there are arbitrarily long paths).

2. Every node has in-degree at most 1, i.e.

∀x ∀y ∀y′
((
E(y, x) ∧ E(y′, x)

)
→ y = y′

)

(note that along with 1. this implies that there is no “undirected cycle”, i.e., no cycle in the undirected
graph on vertex set A which, for each u, v ∈ A, has an undirected edge between u and v if, and only if,
(u, v) ∈ EA or (v, u) ∈ EA).

3. Every node that is labelled L has out-degree 0, i.e.

∀x ∀y
(
L(x)→ ¬E(x, y)

)

It should be straightforward to verify that the resulting formula forest≤h′ has the desired properties.

Definition 7.4 (h-good nodes x, and the numbers RepAh (x) represented by them). Let h′ ≥ 1 and let A
be a structure with A |= forest≤h′ . By induction on h ∈ {1, . . , h′} we define the following notion:

• A node x of A is called 1-good in A iff it has at least one child y with LA(y), and for all children y′ of x
in A the following is true: if LA(y′), then XA(y′)↔ XA(y).
Every 1-good node x in A represents a number RepA1 (x) ∈ {0, 1} = {0, . . ,Tower(1)−1} as follows:

RepA1 (x) = 0 ⇐⇒ x has a child that belongs to LA but not to XA

RepA1 (x) = 1 ⇐⇒ x has a child that belongs to LA and to XA.

• Let h < h′ be such that the notion of h-goodness as well as the numbers RepAh (y), for all h-good nodes y
in A are already defined.
Then, a node x ofA is called (h+1)-good inA iff the following is true: For each number i ∈ {0, . . ,Tower(h)−1}
there exists a h-good child yi of x in A with RepAh (yi) = i, and for all h-good children z of x in A with
RepAh (z) = i the following is true: XA(z)↔ XA(yi).
Every (h+1)-good node x in A represents the (uniquely defined) number

RepAh+1(x) = n ∈ {0, 1, . . , 2Tower(h)−1} = {0, 1, . . ,Tower(h+1)−1}

which satisfies the following: for every i ∈ {0, . . ,Tower(h)−1}, bit(i, n) = 1 ⇐⇒ XA(yi).
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The following notion of h-inconsistency can be viewed as a counterpart of the notion of h-goodness.
Note, however, that h-goodness is a property of a node whereas h-inconsistency is a property of a whole
structure.

Definition 7.5 (h-inconsistency). Let h′ ≥ 1 and let A be a structure with A |= forest≤h′ . By induction on
h ∈ {1, . . , h′}, we define the following notion:

• We say that A is 1-inconsistent if there exist nodes x, y, y′ such that y and y′ are children of x with the
following properties: y and y′ both belong to LA, and we have XA(y) and ¬XA(y′).
• Let h < h′ be such that the notion of h-inconsistency is already defined.

We say that A is (h+1)-inconsistent if there exist nodes x, y, y ′ such that y and y′ are children of x with
the following properties: y and y′ both are h-good in A with RepAh (y) = RepAh (y′), and we have XA(y)
and ¬XA(y′).

Furthermore, we say thatA is (≤h)-inconsistent if there exists a h̃ ∈ {1, . . , h} such thatA is h̃-inconsistent.

For example, let us consider the structure A := T̃h(n) from Definition 7.2: The root t of A is the only
node that is h-good inA, and it represents the number RepAh (t) = n. Furthermore, each child of t is (h−1)-
good in A. Finally, there is no h̃ ≤ h such that A is h̃-inconsistent, and thus A is not (≤h)-inconsistent.

Lemma 7.6. For every h ≥ 1 there is a FO(τ)-sentence ϕh of size 2O(h) such that the following is true for
every τ -structure A: A |= ϕh ⇐⇒
(
A |= ¬forest≤h

)
or
(
A is (≤h)-inconsistent

)
or
(

there exists a node x that is h-good in A
)

.

Before proving Lemma 7.6, we need the following two lemmas.

Lemma 7.7. There is a constant c ≥ 1 such that for every h ≥ 1 there are FO(τ)-formulas goodh(x),
minh(x), maxh(x), eqh(x), lessh(x, y), and succh(x, y), each of size at most c · 12h, such that the following
is true: For every τ -structure A for which there is a h′ ≥ h such that A |= forest≤h′ and for all nodes
t, u ∈ A we have

1. A |= goodh(t) ⇐⇒ t is h-good in A

2. A |= minh(t) ⇐⇒ t is h-good in A and RepAh (t) = 0

3. A |= maxh(t) ⇐⇒ t is h-good in A and RepAh (t) = Tower(h)−1

4. A |= eqh(t, u) ⇐⇒ t and u are h-good in A and RepAh (t) = RepAh (u)

5. A |= lessh(t, u) ⇐⇒ t and u are h-good in A and RepAh (t) < RepAh (u)

6. A |= succh(t, u) ⇐⇒ t and u are h-good in A and RepAh (t)+1 = RepAh (u)

Proof. We define all these formulas simultaneously by induction on h. We start with h = 1 and define the
following formulas:

1. good1(x) := ∃y
(
E(x, y) ∧ L(y) ∧ ∀y′

((
E(x, y′) ∧ L(y′)

)
→
(
X(y′)↔ X(y)

)))

2. min1(x) := good1(x) ∧ ∃y
(
E(x, y) ∧ L(y) ∧ ¬X(y)

)

3. max1(x) := good1(x) ∧ ∃y
(
E(x, y) ∧ L(y) ∧X(y)

)

4. eq1(x, y) := good1(x) ∧ good1(y) ∧
(
min1(x)↔ min1(y)

)

5. less1(x, y) := good1(x) ∧ good1(y) ∧
(
min1(x) ∧ max1(y)

)

6. succ1(x, y) := less1(x, y) .

15



It is straightforward to see that all these formulas have the intended meaning. Let c be larger than the
maximum size of these formulas. Then, each of the formulas has size ≤ c < c · 121. For the induction step

from h to h+1 we choose the following formulas:

goodh+1(x) := ∃y
(
E(x, y) ∧ minh(y)

)
∧ ∃y

(
E(x, y) ∧ maxh(y)

)
∧

∀y
((
E(x, y) ∧ goodh(y) ∧ ¬maxh(y)

)
→ ∃y′

(
E(x, y′) ∧ succh(y, y′)

))
∧

∀y ∀z
((
E(x, y) ∧ E(x, z) ∧ eqh(y, z)

)
→
(
X(z)↔ X(y)

))
.

The first two lines of this formula express that for every i ∈ {0, . . ,Tower(h)−1}, x has a h-good child yi
with RepAh (yi) = i. The last line expresses that for all h-good children y, z of x with RepAh (y) = RepAh (z)
the following is true: XA(z) ↔ XA(y). Thus, the formula goodh+1(x) expresses that x is (h+1)-good in
A. Furthermore,

||goodh+1|| ≤ c+ ||minh||+ 2 · ||maxh||+ ||goodh||+ ||succh||+ ||eqh||
≤ c+ 6 · c · 12h ≤ 7 · c · 12h < c · 12h+1 .

We note for further use that ||goodh+1|| ≤ 7 · c · 12h.
Next we choose

minh+1(x) := goodh+1(x) ∧ ∀y
((
E(x, y) ∧ goodh(y)

)
→ ¬X(y)

)
.

This formula expresses that x is (h+1)-good in A and that for n := RepAh+1(x) we have bit(i, n) = 0 for
all i ∈ {0, . . ,Tower(h)−1}, i.e., n = 0. Furthermore,

||minh+1|| ≤ c+ ||goodh+1||+ ||goodh|| ≤ c+ 7 · c · 12h + c · 12h ≤ c · 12h+1 .

The formula maxh+1(x) is chosen analogously:

maxh+1(x) := goodh+1(x) ∧ ∀y
((
E(x, y) ∧ goodh(y)

)
→ X(y)

)
.

This formula expresses that x is (h+1)-good in A and that for n := RepAh+1(x) we have bit(i, n) = 1 for
all i ∈ {0, . . ,Tower(h)−1}, i.e., n = Tower(h+1)−1. Furthermore,

||maxh+1|| ≤ c+ ||goodh+1||+ ||goodh|| ≤ c+ 7 · c · 12h + c · 12h ≤ c · 12h+1 .

The formula eqh+1(x, y) is chosen as follows:

eqh+1(x, y) := ∀u
((
u=x ∨ u=y

)
→ goodh+1(u)

)
∧

∀x′ ∀y′
((
E(x, x′) ∧ E(y, y′) ∧ eqh(x′, y′)

)
→
(
X(x′)↔ X(y′)

))
.

The first line of this formula expresses that x and y are (h+1)-good in A. The second line expresses that
RepAh+1(x) = RepAh+1(y). Furthermore,

||eqh+1|| ≤ c+ ||goodh+1||+ ||eqh|| ≤ c+ 7 · c · 12h + c · 12h ≤ c · 12h+1 .

The formula lessh+1(x, y) is chosen as follows:

lessh+1(x, y) := ∀u
((
u=x ∨ u=y

)
→ goodh+1(u)

)
∧

∃x′ ∃y′
(
E(x, x′) ∧ E(y, y′) ∧ eqh(x′, y′) ∧ ¬X(x′) ∧X(y′) ∧

∀x′′ ∀y′′
((
E(x, x′′) ∧ E(y, y′′) ∧ eqh(x′′, y′′) ∧ lessh(x′, x′′)

)
→
(
X(x′′)↔ X(y′′)

)))
.
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The first line of this formula expresses that x and y are (h+1)-good in A. The remaining lines express that
there exist h-good children x′, y′ of x, y with the following properties: RepAh (x′) = RepAh (y′) =: i such that
for m := RepAh+1(x) and n := RepAh+1(y) we have bit(i,m) = 0, bit(i, n) = 1, and for all j > i we have
bit(j,m) = bit(j, n). Thus, the formula lessh+1(x, y) expresses that m < n. Furthermore,

||lessh+1|| ≤ c+ ||goodh+1||+ 2 · ||eqh||+ ||lessh||
≤ c+ 7 · c · 12h + 3 · c · 12h ≤ c+ 10 · c · 12h ≤ c · 12h+1 .

Finally, the formula succh+1(x, y) is chosen as follows:

succh+1(x, y) := ∀u
((
u=x ∨ u=y

)
→ goodh+1(u)

)
∧

∃x′∃y′
(
E(x, x′) ∧ E(y, y′) ∧ eqh(x′, y′) ∧ ¬X(x′) ∧X(y′) ∧

∀x′′∀y′′
((
E(x, x′′) ∧ E(y, y′′) ∧ eqh(x′′, y′′)

)
→

((
lessh(x′, x′′)→ (X(x′′)↔ X(y′′))

)
∧
(
lessh(x′′, x′)→ (X(x′′) ∧ ¬X(y′′))

))))
.

The first line of this formula expresses that x and y are (h+1)-good in A. The remaining lines express that
there exist h-good children x′, y′ of x, y with the following properties: RepAh (x′) = RepAh (y′) =: i such
that for m := RepAh+1(x) and n := RepAh+1(y) we have bit(i,m) = 0, bit(i, n) = 1, and for all j > i we
have bit(j,m) = bit(j, n), and for all j < i we have bit(j,m) = 1 and bit(j, n) = 0. Thus, the formula
inch+1(x, y) expresses that m+1 = n. Furthermore,

||succh+1|| ≤ c+ ||goodh+1||+ 2 · ||eqh||+ 2 · ||lessh||
≤ c+ 7 · c · 12h + 4 · c · 12h ≤ c+ 11 · c · 12h ≤ c · 12h+1 .

This finally completes the proof of Lemma 7.7.

Lemma 7.8. There is a constant d ≥ 1 such that for every h ≥ 1 there are FO(τ)-sentences inconsistenth
and inconsistent≤h, each of size < d ·12h, such that the following is true: For every τ -structureA for which
there is a h′ ≥ h such that A |= forest≤h′ we have

• A |= inconsistenth ⇐⇒ A is h-inconsistent

• A |= inconsistent≤h ⇐⇒ A is (≤h)-inconsistent.

Proof. For h = 1 we choose

inconsistent1 := ∃x∃y∃y′
(
E(x, y) ∧ E(x, y′) ∧ L(y) ∧ L(y′) ∧X(y) ∧ ¬X(y′)

)
.

Along Definition 7.5 one immediately sees that A |= inconsistenth ⇐⇒ A is h-inconsistent.
For h ≥ 1 we use Lemma 7.7 and choose

inconsistenth+1 := ∃x∃y∃y′
(
E(x, y) ∧ E(x, y′) ∧ eqh(y, y′) ∧X(y) ∧ ¬X(y′)

)
.

Using Lemma 7.7 one obtains that this formula expresses that there exist nodes x, y, y ′ such that y and
y′ are h-good children of x with RepAh (y) = RepAh (y′) and XA(y) and ¬XA(y′). Thus, the formula
inconsistenth+1 expresses thatA is (h+1)-inconsistent. Since ||eqh|| ≤ c · 12h, we obtain that for a suitable
constant d ≥ 1 and for all h ≥ 1 we have ||inconsistenth|| < d · 12h−1.

Finally, for each h ≥ 1 we choose

inconsistent≤h :=
h∨

h̃=1

inconsistenth̃ .
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It should be clear that this formula expresses that A is (≤h)-inconsistent. Furthermore,

||inconsistent≤h|| ≤
h∑

h̃=1

d · 12h̃−1 < d · 12h .

This completes the proof of Lemma 7.8.

Finally, we are ready for the

Proof of Lemma 7.6:
We use Lemma 7.3, Lemma 7.7, and Lemma 7.8 and choose for every h ≥ 1

ϕh := ¬forest≤h ∨ inconsistent≤h ∨ ∃x goodh(x) .

We know that ||forest≤h|| = O(h), ||inconsistent≤h|| ≤ d·12h, and ||goodh|| ≤ c·12h. Thus, ||ϕh|| = 2O(h).
Furthermore, for each τ -structure A we have A |= ϕh if and only if
(
A |= ¬forest≤h

)
or
(
A is (≤h)-inconsistent

)
or
(

there exists a node x that is h-good in A
)

.

Thus, the proof of Lemma 7.6 is complete.
The next two lemmas will enable us to show that this sentence ϕh is preserved under extensions.

Lemma 7.9. Let h′ ≥ 1 and let A be a τ -structure with A |= forest≤h′ . Let B be an extension of A with
B |= forest≤h′ . Let h ∈ {1, . . , h′}, and let x be a node in A that is h-good in A. Then, at least one of the
following statements is true:

1. x is h-good in B and RepBh (x) = RepAh (x).
2. B is (≤h)-inconsistent.

Proof. By induction on h.
For h = 1 we know that x is 1-good in A. I.e., x has a child y in A with LA(y), and for all children y′

of x in A with LA(y′) we have XA(y′)↔ XA(y).
If x is 1-good in B, then we must have RepB1 (x) = RepA1 (x), because the node y is a child of x in B

with LB(y), and for all children y′′ of x in B with LB(y′′) we have XB(y′)↔ XB(y)↔ XA(y).
On the other hand, if x is not 1-good in B, then we know that in B the node x must have (at least) one

further child z with LB(z) and XB(z)↔ ¬XB(y). Then, however, B is 1-inconsistent.
Let us now consider the induction step from h to h+1. We know that x is (h+1)-good in A, i.e., for

every i ∈ {0, . . ,Tower(h)−1} there exists a child yi of x in A that is h-good in A with RepAh (yi) = i.
Applying the induction hypothesis to each of the nodes yi we obtain that at least one of the following
statements is true:

1. B is (≤h)-inconsistent.

2. yi is h-good in B and RepBh (yi) = RepAh (yi) = i.

In case that B is (≤h)-inconsistent, it is also (≤h+1)-inconsistent, and we are done. There remains to
consider the case where each yi is h-good in B and RepBh (yi) = i.

Now let z be an arbitrary child of x in B that is h-good in B. Let iz := RepBh (z). If there is (at least) one
such z with XB(z)↔ ¬XB(yiz), then B is (h+1)-inconsistent and thus also ≤(h+1)-inconsistent. On the
other hand, if all such z satisfy XB(z)↔ XB(yiz), then x is (h+1)-good in B.

Lemma 7.10. Let h′ ≥ 1 and let A be a τ -structure with A |= forest≤h′ . Let B be an extension of A with
B |= forest≤h′ . Let h ∈ {1, . . , h′}. Then the following is true: If A is (≤h)-inconsistent then also B is
(≤h)-inconsistent.
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Proof. Let A be (≤h)-inconsistent. Then there is a h̃ ∈ {1, . . , h} such that A is h̃-inconsistent.
In case that h̃ = 1, there thus are nodes x, y, y′ in A such that y, y′ are children of x in A which both

belong to LA such that XA(y) and ¬XA(y′). Since B is an extension of A, we know that y, y′ are children
of x in B which both belong to LB such that XB(y) and ¬XB(y′). Thus B is 1-inconsistent and hence also
(≤h)-inconsistent.

In case that h̃ > 1, we know that there are nodes x, y, y′ inA such that y, y′ are children of x inA which
have the following properties: y and y′ both are (h̃−1)-good in A with i := RepA

h̃−1
(y) = RepA

h̃−1
(y′), and

we have XA(y) and ¬XA(y′). From Lemma 7.9 we obtain that at least one of the following statements is
true:

1. y and y′ are (h̃−1)-good in B and i = RepB
h̃−1

(y) = RepB
h̃−1

(y′).

2. B is (≤ h̃−1)-inconsistent.

In the second case we know that B is (≤h)-inconsistent and thus we are done. In the first case we know
that x, y, y′ are nodes in B such that y, y′ are children of x in B which have the following properties: y and
y′ both are (h̃−1)-good in B with RepB

h̃−1
(y) = RepB

h̃−1
(y′), and we have XB(y) and ¬XB(y′). Thus, the

nodes x, y, y′ witness that B is h̃-inconsistent and thus also (≤h)-inconsistent.

We are now ready to prove Theorem 7.1. Proof of Theorem 7.1:
For each h ≥ 1 let ϕh be the FO(τ)-sentence of length 2O(h) obtained from Lemma 7.6.
By applying Lemma 7.10 and Lemma 7.9 one easily obtains the following:

Claim 7.11. ϕh is preserved under extensions on the class of all τ -structures.

Proof. We have to show that ϕh is preserved under extensions on the class of all τ -structures. To this end
let A be a τ -structure with A |= ϕh, and let B be an extension of A. Our aim is to show that B |= ϕh.
Since A |= ϕh, we know from Lemma 7.6 that

(
A |= ¬forest≤h

)
or
(
A is (≤h)-inconsistent

)
or
(

there exists a node x that is h-good in A
)

.

We can thus consider three cases:
Case 1: A |= ¬forest≤h.

From Lemma 7.3 we know that forest≤h is a universal FO-formula. Hence, ¬forest≤h is an existential FO-
formula. In particular, this implies that the formula ¬forest≤h is preserved under extensions. We thus know
that B |= ¬forest≤h and hence, also B |= ϕh.

Case 2: A |= forest≤h, and A is (≤h)-inconsistent.
If B |= ¬forest≤h, then certainly B |= ϕh. On the other hand, if B |= forest≤h, then Lemma 7.10 tells us
that also B is (≤h)-inconsistent and hence B |= ϕh.

Case 3: A |= forest≤h, and A is not (≤h)-inconsistent.
Then we know that there exists a node x in A that is h-good in A. If B |= ¬forest≤h, then certainly
B |= ϕh. On the other hand, if B |= forest≤h, then we know from Lemma 7.9 that x is h-good in B or B is
(≤h)-inconsistent. Thus, B |= ϕh.

In summary, we hence obtain that ϕh is preserved under extensions on the class of all τ -structures.

It remains to show that every existential FO(τ)-sentence ψ that is equivalent to ϕh on the class T≤h is of
size at least Tower(h−1). For contradiction, let us assume that ϕh is equivalent on T≤h to an existential FO-
sentence ψ of size < Tower(h−1). Then, ψh has a number k < Tower(h−1) of existential quantifiers and
is w.l.o.g. of the form

∃z1 ∃z2 · · · ∃zk χ(z1, . . , zk)

where χ is a Boolean combination of atomic τ -formulas. (For this, note that transforming an existential
first-order formula into prenex normal form does not essentially increase the size of the formula.)
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Consider the structure T := T̃h(0) from Definition 7.2 and recall that the root node t of T is h-good in
T . Thus, T |= ϕh. Furthermore, T belongs to T≤h, and hence T |= ψ. Therefore, there are nodes a1, . . , ak
in T such that T |= χ(a1, . . , ak).

Since the root of T has Tower(h−1) children, and k < Tower(h−1), there must be (at least) one child
u of the root t of T such that none of the nodes a1, . . , ak belongs to the subtree Tu. Due to the definition of
T = T̃h(0) we know that there must be an i ∈ {0, . . ,Tower(h−1)−1} such that Tu corresponds to T̃h−1(i).
Along Definition 7.4 it is straightforward to see that u is (h−1)-good in T and RepTh−1(u) = i.

Let T −i be the structure obtained from T by deleting the entire subtree Tu. Then, each of the nodes
a1, . . , ak belong to T −i and thus, T −i |= χ(a1, . . , ak) (because χ is a Boolean combination of atomic
formulas). We hence have that T −i |= ψ. On the other hand, it is not difficult to see the following:

Claim 7.12. T −i 6|= ϕh.

Proof. First of all, T −i |= forest≤h, because T −i is an induced substructure of T (recall that forest≤h is a
universal formula and thus preserved under induced substructures).
Furthermore, along Definition 7.5 it is straightforward to see that T −i is not (≤h)-inconsistent.
Finally, there is no h-good node in T −i: To see this, note that due to the height of nodes, the root of
T −i is the only candidate for a h-good node. This root, however, does not have a (h−1)-good child v with
RepT

−i
h−1(v) = i, and thus the root of T −i cannot be h-good. In summary, we thus obtain that T −i 6|= ϕh.

Altogether, we now know that T −i |= ψ but T −i 6|= ϕh, contradicting our assumption that ψ is equivalent
to ϕh on T≤h. Thus, the proof of Theorem 7.1 finally is complete.

8 Structures of bounded degree — elementary upper bounds
All the non-elementary lower bounds in previous sections depended heavily on the fact that we considered
classes of structures of unbounded degree. On classes of structures of bounded degree, the picture looks
entirely different as we can prove elementary upper bounds as counterparts of the theorems 4.2, 5.2, 6.1,
and 7.1. Throughout the remainder of this section we let τ be a fixed finite relational vocabulary, and we let
d be a fixed natural number. We write Dd to denote the class of all τ -structures whose Gaifman graph has
degree at most d. By an easy adaption of the model theoretic proof of Gaifman’s theorem given in [7], one
obtains the following elementary upper bound, which we set out to prove next.

Lemma 8.1. Let τ be a finite relational vocabulary, let d ∈ N, and let Dd be the class of all τ -structures
whose Gaifman graph has degree ≤ d. Then there is a 2-fold exponential function f : N → N such that
for all structures A,B ∈ Dd and all m ∈ N the following is true: If A and B satisfy the same basic local
FO(τ)-sentences of length ≤ f(m), then A ≡m B, i.e., A and B satisfy the same FO(τ)-sentences of
quantifier rank ≤ m.

Proof. The proof is an adaption of the proof of Lemma 2.5.2 in the textbook [7]. In fact, the present proof
is formulated in such a way that it will be convenient for the reader to read this proof and the original proof
in [7] in parallel. We use exactly the same notation as [7]. In contrast to the proof in [7], however, we use
the following:

(i) ∼= instead of ≡g(j). I.e., we let Ij be the set of all partial isomorphisms a 7→ b from A to B such that
length(a) = length(b) ≤ m−j and

(SA(7j , a), a) ∼= (SB(7j , b), b)

(The notation of [7] is as follows: SA(7j , a) denotes the induced substructure ofA on the 7j-neighbourhood
of a. Furthermore, A ∼= B means that A is isomorphic to B.)

(ii) For every a ∈ A and every j ≤ m we let ψja(x) be a FO(τ)-formula which specifies the isomorphism
type of the 7j-neighbourhood of a. Precisely, we want that for every structure C ∈ Dd and every c ∈ C
we have

C |= ψja(c) ⇐⇒ (SC(7j , c), c) ∼= (SA(7j , a), a)
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Note that sinceA ∈ Dd, the 7j-neighbourhood of a consists of at most 1+d+d2+· · ·+d7j ≤ (d+1)7j

vertices. Thus, the isomorphism type of the 7j-neighbourhood of a can be described by a FO(τ)-
formula ψja(x) of size polynomial in (d+1)7j . Since d is fixed and j never gets larger thanm, we thus
have that there is a 2-fold exponential function f̃ : N → N such that ||ψja(x)|| ≤ f̃(m), for all a ∈ A
and all j ≤ m.

We start with a number m ∈ N and two structures A,B ∈ Dd which satisfy the same basic local sentences
of size ≤ f(m), where f is a suitable 2-fold exponential function (the precise choice of which will be
determined later).

Following the proof in [7], we suppose 0 ≤ j < m, and a 7→ b ∈ Ij+1. Due to our particular choice
of Ij+1 (as specified in item (i) above), instead of equation (1) from [7], in our setting the assumption
a 7→ b ∈ Ij+1 means that

(1) (SA(7j+1, a), a) ∼= (SB(7j+1, b), b)

Our aim now is to show that for every a ∈ A there exists a b ∈ B such that aa 7→ bb ∈ Ij , i.e.,

(SA(7j , aa), aa) ∼= (SB(7j , bb), bb).

We follow the case distinction of [7]:

Case 1. a ∈ SA(2 · 7j , a).
Then, of course, S(7j , a) ⊆ S(7j+1, a). Due to (1) we therefore know that there must be a b ∈ SB(2 · 7j , b)
such that (SA(7j , aa), aa) ∼= (SB(7j , bb), bb).

Case 2. a 6∈ SA(2 · 7j , a), i.e., SA(7j , a) ∩ SA(7j , a) = ∅.
Choose e ∈ N to be the largest possible number for which the following is true:

(∗) there are e elements x1, . . , xe in SA(2 · 7j , a) of pairwise distance > 4 · 7j whose 7j-neighbourhoods
(in A) are all isomorphic to (SA(7j , a), a).

Note that e must be of size e ≤ |a| ≤ m− (j + 1) ≤ m+1.
From (1) we immediately obtain that this e is also the largest possible number for which

(∗∗) there are e elements x1, . . , xe in SB(2 · 7j , b) of pairwise distance > 4 · 7j whose 7j-neighbourhoods
(in B) are all isomorphic to (SA(7j , a), a).

Now consider the following basic local sentence

χ := ∃x1 · · · ∃xe∃xe+1

( ∧

1≤`<k≤e+1

dist(x`, xk) > 4 · 7j ∧
e+1∧

`=1

ψja(x`)
)

I.e., χ expresses that there are e+1 elements of pairwise distance > 4 · 7j whose 7j-neighbourhoods are all
isomorphic to (SA(7j , a), a).

Since e, j ≤ m+1 and since ||ψja(x)|| ≤ f̃(m), for a 2-fold exponential function f̃ (cf., item (ii) at the
beginning of this proof), we know that ||χ|| ≤ f(m), for a suitable 2-fold exponential function f : N→ N.

From the lemma’s assumption we know that A and B satisfy the same basic local sentences of length
≤ f(m). Thus we have

A |= χ ⇐⇒ B |= χ

Case 2.1. A 6|= χ (and B 6|= χ).
Then, due to (∗), all elements a′ inA whose 7j-neighbourhood is isomorphic to (SA(7j , a), a) must belong
to SA(6 · 7j , a). (To see this, note that if a′ was an element in A which is outside SA(6 · 7j , a), then this a′

together with the e elements from (∗) would witness that A |= χ.)
In particular, we conclude that a itself must belong to SA(6 · 7j , a) and hence SA(7j , a) ⊆ SA(7j+1, a).
We then obtain from (1) that there is a b ∈ SB(6 · 7j , b) with (SA(7j , aa), aa) ∼= (SB(7j , bb), bb).
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Case 2.2. A |= χ (and B |= χ).
Due to B |= χ, together with (∗∗), we know that there must be a b in B with b 6∈ SB(2 · 7j , b) such that
(SB(7j , b), b) ∼= (SA(7j , a), a). In particular, SB(7j , b) ∩ SB(7j , b) = ∅ and, since we are in Case 2, we
also have SA(7j , a)∩SB(7j , a) = ∅. Furthermore, from (1) we obtain that (SB(7j , b), b) ∼= (SA(7j , a), a).
In total we thus conclude that (SB(7j , bb), bb) ∼= (SA(7j , aa), aa). This completes the proof of Lemma 8.1

Theorem 8.2. There is a 4-fold exponential function g : N→ N such that for every FO(τ)-sentence ϕ there
is a sentence ψ of size ≤ g(||ϕ||) with the following properties: ψ is a Boolean combination of basic local
sentences and ψ is equivalent to ϕ on all structures in Dd.

Proof. Let m be the quantifier rank of the given sentence ϕ. For sure, m ≤ ||ϕ||. We use Lemma 8.1 and
note that there are at most M = 2O(f(m)) different basic local sentences χ1, . . . , χM of size ≤ f(m) each.
For each I ⊆ {1, . . ,M} we let ψI be the following sentence

ψI :=
∧

i∈I
χi ∧

∧

i∈{1,. . ,M}\I
¬χi .

Furthermore, we let J be the collection of all I ⊆ {1, . . ,M} for which there exists a structure AI ∈ Dd

such that AI |= ψI and AI |= ϕ. Finally, we choose

ψ :=
∨

I∈J
ψI .

Using Lemma 8.1 it is straightforward to see that ψ is equivalent to ϕ for all structures in Dd.
Furthermore, for each I ⊆ {1, . . ,M} we have ||ψI || = O(M · f(m)) = 2O(f(m)). Since |J | ≤ 2M

we thus have ||ψ|| = 22f(m)
. Recall from Lemma 8.1 that f is 2-fold exponential in m. Thus, ||ψ|| is 4-fold

exponential in m.

By similar techniques we can prove an elementary upper bound for the Feferman-Vaught theorem strat-
ified by formula length. Furthermore, there are elementary decision algorithms for the first-order theories
of classes of trees of bounded arity, in particular for the class of binary trees. This can be proved by ob-
serving that there is an elementary upper bound on the number of binary labelled trees of a given height,
and then using Hanf’s theorem (see [7, 19]) to obtain a normal form for first-order formulas based on the
isomorphism types of neighbourhoods. The size of formulas in this normal form is elementary in the size
of the original formulas, and the complexity of the translation into the normal form is also elementary. The
satisfiability of formulas in this normal form can then be decided by automata theoretic techniques.

Refining the methods of [1], one also obtains an elementary upper bound for the following variant of the
Łoś-Tarski Theorem.

Theorem 8.3. 1. There is a 5-fold exponential function f such that any formula ϕ of length m that is
preserved under extensions on the class of acyclic structures in Dd is equivalent, on this class, to an
existential first-order formula of length at most f(m).

2. There is a 3-fold exponential function g such that any formula ϕ of length m that is preserved under
extensions on the class of acyclic structures in D2 is equivalent, on this class, to an existential first-
order formula of length at most g(m).

Let us mention that in all the above cases for structures of bounded degree we can prove at least 2-fold
exponential lower bounds.

The aim, in the rest of this section is to give a proof of Theorem 8.3.
For simplicity, we assume a vocabulary τ consisting of one binary relation E and any number of unary

relations. The results generalise without any great difficulty to vocabularies consisting of any number of
binary relations. Moreover, we assume that E is interpeted as a symmetric relation. This will allow us to
elide the distinction between the structure and its underlying Gaifman graph.
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Let F be the class of acyclic τ -structures, and let S be the subclass of F consisting of structures where
each element has degree at most 2. Thus, structures in F are coloured forests while structures in S can be
seen as disjoint unions of strings. We also write Fd for the subclass of F where each element has degree at
most d+ 1. In particular, F2 can be seen as the class of disjoint unions of coloured binary trees.

Let ϕ be a formula closed under extensions on S. We say that A is a minimal model of ϕ if A |= ϕ
and every proper induced substructure A′ of A is such that A′ 6|= ϕ. It is well-known that on any class C of
finite structures that is closed under taking substructures, a formula ϕ that is closed under extensions on C

is equivalent over C to an existential formula if, and only if, ϕ has finitely many minimal models in C. For
our purposes, we will need the following strengthening of this fact.

Lemma 8.4. Let C be a class of finite τ -structures that is closed under substructures and ϕ be a τ -sentence
that is preserved under extensions on C. If there is an integer N such that all minimal models of ϕ have at
mostN elements, then there is an existential sentence ψ that is equivalent to ϕ on C and such that the length
of ψ is O(N |ϕ|), where |ϕ| denotes the length of ϕ.

Proof. Let x1, . . . , xk be an enumeration of all variables that appear in ϕ and suppose, without loss of
generality, that no variable in ϕ is bound in more than one place. Let y1, . . . , yN be a collection of N new
variables distinct from x1, . . . , xk. We construct from the sentence ϕ a new quantifier-free formula ϕ∗ with
free variables y1, . . . , yN . More generally, let σ be a function from {1, . . . , k} to {1, . . . , N} and ψ be a
formula with free variables among x1, . . . , xk. We define the formula (ψ)∗σ by induction as follows.

• If ψ is atomic, then (ψ)∗σ is ψ[xi/yσ(i)], i.e. the formula obtained by replacing all occurrences of variables
xi by yσ(i).
• If ψ is ¬ψ′, (ψ)∗σ is ¬(ψ′)∗σ and similarly if ψ is ψ1 ∧ ψ2 then (ψ)∗σ is (ψ1)∗σ ∧ (ψ2)∗σ.
• If ψ is ∃xiψ′, (ψ)∗σ is

∨
1≤j≤N (ψ′)∗σ[i7→j] where σ[i 7→ j] is the function σ′ that agrees with σ on all

values except i and σ′(i) = j.

Now, for the sentence ϕ, let ϕ̂ denote the sentence by existentially quantifying the variables y1, . . . , yN
in the formula (ϕ)∗σ for an arbitrary σ (since ϕ has no free variables, the choice of σ does not make a
difference). It is easily seen that A |= ϕ̂ if, and only if, A contains a substructure generated by at most N
elements which satisfies ϕ. However, as ϕ is preserved under extensions and all its minimal models have at
most N elements, this is equivalent to the statement that A |= ϕ. We conclude that ϕ̂ is equivalent to ϕ.

For a bound on the length of ϕ̂, note that the only length increasing step in the inductive translation is
the one for the quantifier, which increases the size of the formula by a factor of N . Since the number of
quantifiers is bounded by the length of ϕ, the result follows.

Thus, to establish upper bounds on the length of existential formulas, it suffices to establish upper bounds
on the sizes of minimal models.

LetA and B be structures and a, b be tuples of at most m elements fromA and B respectively. We write
(A, a) ≡m (B, b) to denote that the first-order quantifier-rank m-type of a inA is the same as the first-order
m-type of b in B. The equivalence relation ≡m is characterized by Ehrenfeucht-Fraïssé games (see, for
instance, [7]). These can be used to show that the relation is a congruence with respect to disjoint union
with a multiplicity threshold of m. A precise statement of this property is given in the following lemma. We
write A⊕B to denote the disjoint union of the structures A and B and nA to denote the disjoint union of n
copies of A (see [7, Prop. 2.3.10] for a proof).

Lemma 8.5. Let A1, A2, B1, and B2 be structures, and let m, n and n′ be integers.

1. If A1 ≡m B1 and A2 ≡m B2 then A1 ⊕A2 ≡m B1 ⊕ B2.
2. If n, n′ ≥ m and A ≡m B then nA ≡m n′B.

We will use a slightly more general version of this lemma, which is established by a similar game based
proof. To state it, we first require some notation. Given two structures A and B and a tuple of elements
c ∈ A ∩ B, we write A ⊕c B to denote the structure obtained from the disjoint union of A and B by
identifying the two copies of c. If A is a structure and a a tuple of elements, we write

⊕n
a A to denote the

structure obtained from the disjoint union of n copies of A by identifying all distinct copies of a.
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Lemma 8.6. If (A, ac) ≡m (A′, a′c′) and (B, bc) ≡m (B′, b′c′) then (A⊕c B, abc) ≡m (A′ ⊕c′ B′, a′b
′
c′).

Lemma 8.7. If n, n′ ≥ m and (A, a) ≡m (B, b) then
⊕n

a A ≡m
⊕n′

b
B.

8.1 Strings
The Hanf type of radius r of a structure A is the multiset of isomorphism types of r-neighbourhoods of
elements in A. We say that two structures A and B are Hanf equivalent with radius r and threshold q,
written A 'r,q B, if, for every a ∈ A, either the number of occurrences of the isomorphism type of NAr (a)
in the Hanf type of A is the same as that in the Hanf type of B, or it is at least q, and conversely for every
element b ∈ B. This allows us to state Hanf’s locality theorem (see [19, Theo. 4.24] for a proof).

Theorem 8.8 (Hanf Locality). For every vocabulary τ and every m there are r ≤ 3m and q ≤ m such that
for any pair of τ -structures A and B if A 'r,q B then A ≡m B.

This theorem immediately gives us upper bounds on the index of the equivalence relation ≡m on the
classes of structures S and Fd.

Corollary 8.9. For any fixed vocabulary τ , the index of≡m on S is bounded by a 3-fold exponential function
in m.

Proof. There are at most n = s(2r+1) isomorphism types of r-neighbourhoods among structures in S,
where s = 2|τ | is a bound on the number of different atomic types of a single element. Thus, this number
is bounded by a 2-fold exponential function f(m). Now, by Theorem 8.8, the number of ≡m-classes is at
most (m+ 1)f(m).

Corollary 8.10. For any fixed vocabulary τ and any fixed d, the index of ≡m on Fd is bounded by a 4-fold
exponential function in m.

Proof. The proof is analogous to that of Corollary 8.9 except now the r-neighbourhood of an element may
have as many asO(dr) elements and therefore the number of isomorphism types of neighbourhood of radius
r is 2-fold exponential in r.

Theorem 8.8 is used in [1] to establish the following lemma.

Lemma 8.11. For every vocabulary τ and everym > 0 there is a p such that ifA is a connected τ -structure
in S with |A| > p, then there is a disjoint extension B of A and a proper substructure A′ of A such that
A′ ≡m B.

In particular, it is shown that if r and q are obtained as in Theorem 8.8, then taking p = nl(q+ l), where
l = 2r(n+ 1) + 1 and n is the number of distinct isomorphism types of 2r-neighbourhoods in S, suffices.
In particular, this implies that no minimal model of ϕ in S can contain a path longer than p.

Theorem 8.12. If ϕ is a formula of length m that is preserved under extensions on S, then ϕ is equivalent
over S to an existential formula whose length is bounded by a 3-fold exponential function in m.

Proof. Let q be the quantifier rank of ϕ and τ its vocabulary. For any r, there are at most n = s(4r+1)

isomorphism types of 2r-neighbourhoods among structures in S, where s = 2|τ | is a bound on the number
of different atomic types of a single element. Taking r ≤ 3q and and p = nl(q+ l), where l = 2r(n+1)+1,
we have p = O(r2n3+qrn2). Putting in the bounds on r and n gives us p = O(32qs3(4·3q+1)). This provides
an upper bound on the length of the longest path in a minimal model of ϕ. Since both q and |τ | are at most
m (we can safely ignore any symbols in τ that do not appear in ϕ), we have that p is at most 22f(m)

for some
polynomial function f and sufficiently large values of m.

Now, let g be a polynomial such that the index of ≡m is at most 222g(m)

on S (such a g exists by

Lemma 8.9) and suppose A is any model of ϕ in S with more than N = m(222g(m)

)(22f(m)
) elements. If

A contains a path longer than 22f(m)
, then A is not minimal. Suppose then that there is no path longer than
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22f(m)
. Since A is a disjoint union of strings, this means that it consists of more than m(222g(m)

) disjoint
components. By the choice of g, this means that there is a set of more than m components that are pairwise
≡m-equivalent. Let A′ be the structure obtained by removing one of these components. By Lemmas 8.5
and 8.7 we have that A′ ≡m A. Thus, we have a substructure of A which must also be a model of ϕ, and
thus A is not minimal.

We have shown that any minimal model of ϕ in S has at most N elements. Combining this with
Lemma 8.4 establishes the result

8.2 Forests
In [1] an upper bound was also obtained on the size of minimal models of a sentence ϕ preserved under
extensions on the class F of acyclic structures. That bound was obtained as a function of the number of ≡m
types, where m is the quantifier rank of ϕ. As we have noted, this number is not bounded by any elementary
function of m. However, when we fix the degree d and consider the class of structures Fd, we obtain tighter
bounds as we now explore.

For a structure A ∈ Fd and a distinguished element a of A, define the ≡m-type of (A, a) to be the set
of all formulas ϕ(x) of length at most m such that A |= ϕ[a]. As noted in Corollary 8.10 the number of
types is bounded by a 4-fold exponential function of m. Let θ1, . . . , θn be an enumeration of all types. We
refer to a as the distinguished element of (A, a). We define a new vocabulary τ ′ which consists of the binary
relation E and a unary relation Ti for each θi.

Let A be a connected τ ′-structure that is acyclic and with degree at most 2. We construct from A a τ -
structure Ã as follows: each element a ∈ Awith Ti(a) is replaced by a structure Ta of type θi. Moreover, for
the binary relationE, (b, c) ∈ EÃ if, and only if, either b and c are in the same structure Ta and (b, c) ∈ ETa

or b is the distinguished element of Ta, c is the distinguished element of Ta′ and (a, a′) ∈ EA. We call
Ã a τ -companion of A. The structure Ã is not uniquely determined by A as there are, in general, many
structures of type θi. However, we can establish the following.

Lemma 8.13. If Ã and Ã′ are two τ -companions of A, then Ã ≡m Ã′.

Proof. The proof is by induction on the length l of A. Indeed if l = 1 then by definition Ã and Ã′ are two
trees from the same ≡m equivalence class.

Suppose now that A is of length l + 1 and a is one of its endpoints. Let B be the structure induced
by A \ {a}. Then, we have Ã = B̃ ⊕a T for some τ -companion B̃ of B and some tree T. Similarly,
Ã′ = B̃′ ⊕a T′. B̃ ≡m B̃′ by induction hypothesis and T ≡m T′ by definition of τ -companions. Thus, we
get the desired result by Lemma 8.6.

This now allows us to establish the following.

Lemma 8.14. Let A and B be connected, acyclic structures of degree at most 2 with the property that for
each element there is a unique i such that Ti holds, and let m be an integer. If A ≡m B then Ã ≡m B̃.

Proof. Let T1, . . . ,Tn be a system of unique representatives of the ≡m equivalence classes of τ -trees. Let
Ã′ and B̃′ be the τ companions of A and B that are obtained using only trees from this list. Then, by
Lemma 8.13, Ã ≡m Ã′ and B̃ ≡m B̃′. But now, a straightforward Ehrenfeucht-Fraı̈ssé game shows that
Ã′ ≡m B̃′, which establishes the result.

We are now ready to use this machinery to establish an upper bound on the size of minimal models. For
the remainder of this section, fix a first-order sentence ϕ that is preserved under extensions on Fd and let m
be the length of ϕ.

Lemma 8.15. There is a 4-fold exponential function f such that no minimal model of ϕ contains a path
longer than f(m).
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Proof. Let τ ′ be the vocabulary, as above, obtained by taking a unary relation for each ≡m type of τ -tree
and let p be the bound obtained from Theorem 8.12 for the vocabulary τ ′. Then, we can show, using
Lemma 8.14, that p bounds the length of any minimal model of ϕ in Fd (this argument is essentially the
same as in [1, Lemma 3.5]).

To estimate p, note that |τ ′| is bounded by a 4-fold exponential function of m, by Corollary 8.10. Also,
from the proof of Theorem 8.12 that p = O(32ms3(3m+1)). Note that, since in the τ ′ structures we construct,
each element has a unique unary relation in τ ′ that it belongs to, we can take s = |τ ′|. Together, these facts
yield the desired result.

Lemma 8.16. There is a 4-fold exponential function h such that no minimal model of ϕ has more than h(m)
connected components.

Proof. Let t be a 4-fold exponential function such that the number of ≡m types in Fd is bounded by t(m)
and supposeA has more thanm(t(m)) components. Since there are at most t(m) types, there must be some
type that occurs more than m times among the components. Let A′ be the structure obtained by deleting
one of these components. It is an easy application of Lemma 8.5 to show that A′ ≡m A.

Theorem 8.17. There is a 5-fold exponential function t such that any formula ϕ of lengthm that is preserved
under extensions on Fd is equivalent to an existential formula of length at most t(m).

Proof. Putting together Lemmas 8.15, and 8.16, we know that any minimal model ofϕ has at most h(m)((d+
1)f(m)) elements. Together with Lemma 8.4, this gives us the desired result
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