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Abstract

In this paper we expand upon the theme of modified Fourier expansishextend
the theory to a multivariate setting and to expansions in eigenfunctions ofajhlade—
Neumann operator. We pay detailed attention to expansiong-dimensional cube and
to an effective derivation of expansion coefficients there by meagsaufratures of highly
oscillatory integrals. Thus, we present asymptotic and Filon-type forrfaran effec-
tive derivation of expansion coefficients and discuss their designedative advantages.
Such methods are effective only for large indices, hence we introgludenalyse alter-
native quadrature schemes that require relatively modest numlzetditfonal function
evaluations.

1 Introduction

In this paper we revisit a theme that concerned us in two tegapers (Iserles & Narsett
2006, Iserles & Ngrsett 200§, namely rapidly-convergent expansion of smooth funaion
The point of departure in (Iserles & Ngrsett 26DP@as themodified Fourier basis

Hy = {cosmnz : n >0} U {sinw(n—§)z : n>1}.

Given a smootly in [—1, 1], which need not be periodic, we expand it in the form

7§+ Z[ff cosTnx + f2 sinm(n — 1)), (1.1)

n=1



where L L
fe = /_1 f(z) cos mnadz, 5= /_1 f(z)sin(n — 1)zdz.

The main immediate advantage of (1.1), in comparison wighfémiliar Fourier expansion,
is that the coeﬁicientﬁf andff exhibitO(n*Q) decay forn > 1. This need be compared
to the(’)(n*l) decay of conventional Fourier coefficients fayn-periodicsmooth functions
and has two important consequences, one theoretical amdhtbiecomputational. Firstly, for
analytic f the expansion (1.1) converges uniformly ftan [—1,1]. (We refer the reader to
(Iserles & Ngrsett 200§ for considerably more detailed discussion of this issugairticular
to the question of convergence of functions that exhibitkeeamoothness.) Secondly, the
more rapid decay of coefficients allows for the implementatf a range of highly effective
modern quadrature methods for rapidly oscillating integgduybrechs & Vandewalle 2006,
Iserles & Ngrsett 2005, Olver 2006in their computation. This means that for any prescribed
accuracy we can evaluaf§ andf,f for n < minjustO(m) operations — computational cost
that compares advantageously with théog., m cost of FFT.

The underlying reason for the more rapid decay of expansi&fficients of modified
Fourier has been identified in (Iserles & Ngrsett 2008he functions in the basis(, are
all eigenfunctions ofi?/dx? and they obey zero Neumann boundary conditionslat(This
should be compared wittin 7nz from the conventional Fourier basis: also an eigenfunction
of d2/dx?, but one that obeys zero Dirichlet boundary conditions-at) Zero boundary
conditions annihilate the leading term in the asymptoticagsion of expansion coefficients
in inverse powers of;, thereby leading t@® (n~2) decay.

An immediate consequence of this identification of moredal@icay with zero Neumann
boundary conditions is the construction of expansions ¢baverge more rapidly than the
modified Fourier expansion. Specifically, the coefficieritexpansion

> fntn(@)
n=0

of a smooth functiory in the eigenfunctions,, of d>¢/dz2* for somes € N, equipped with
the high-order Neumann boundary conditions
ul?(=1) = (1) = 0, i=s,s+1,...,2s — 1,

n

exhibit O(n=*"") decay forn > 1 (Iserles & Norsett 2008).

The identification of rapid decay with zero Neumann boundanyditions allows an al-
ternative generalisation with arguably even greater figmice. Thus, suppose tHate R?
is a bounded, simply-connected domain with sufficiently sthdboundary. Let:,, be the
nth eigenfunction of the Laplace operaten\ in 2, equipped with zero Neumann boundary
conditions alon@(?, and let\,, be the corresponding eigenvalue> 0. Given a sufficiently
smooth functionf, defined on the closure 6f, we consider the expansion

Z fnun(m)7 x €, (1.2)
n=0

where

fo = / FEun©)aV,  n>0. (1.3)
Q



We note from general theory of partial differential equasidhat, without loss of generality,
Ao =0, A\, > 0forn € Nand, provided that we arrange eigenvalues sorthat n implies
Am < Ay, theWeyl theorenmolds:

Ap ~ meaS(Q)n%, n> 1.
Moreover, the sefu,, : n > 0} is dense irl.(©2) (Courant & Hilbert 1962). All this creates
grounds for a hope that the univariate theory of (Iserles &d#t 200@) (and, indeed, of
(Iserles & Ngrsett 200§) might be generalised to a multivariate setting. In thipgrawe
address this issue and argue that this hope is well groumdesdlity. The univariate theory
can indeed be comprehensively scaled up! Having said sontine demanding framework
calls upon substantially greater theoretical insight dgdr&¢hmic dexterity.

In Section 2 we introduce the multivariate theory. Thus, w&thine the rate of decay of
expansion coefficients and derive their asymptotic expemdihe latter is critical to an effec-
tive computation of the expansion. Our narrative is valgbah the case when the Laplacian
is replaced by a polyharmonic operator and Neumann bounttargiitions are of suitably
high order but this is an approach that we do not pursue fuithi@is paper.

The main obstacle in an implementation of the ideas of Se@iis that we need to know
the Laplace—Neumann spectrerplicitly in 2. Even in a plane the set of domains where
such information is available is currently restricted jiastectangles, ellipses, annuli and three
types of triangles: equilateral, right triangle with twaigg angles of; and right triangle with
acute angles of and?. The listis even shorter in higher dimensions.

Section 3 is concerned with thedimensional cubé-1,1]¢, d > 1. This affords us an
opportunity to flesh out details on the results of Section@@epare the groundwork for the
numerical work of Section 4. The case of the cube also higtdithe crucial role played by
integrals that oscillate only in some of the variables. Nbt, on the face of it, stepping up
from [—1,1] to [-1,1]¢ by a Cartesian product is natural. Yet, it is neither necégszasy
nor straightforward and we need to get many details right.

The centrepiece of this paper is Section 4, devoted to theerinal computation of expan-
sion coefficients using asymptotic and Filon-type techegjior highly oscillatory quadrature.
Our goal is made more complicated because, as we have albbadyved, a significant pro-
portion of expansion coefficients originate in integrakstthscillate only in some of their vari-
ables. This calls for a generalisation of an approach whiethave dubbed “exotic quadra-
ture” in (Iserles & Ngrsett 20@§ and which is explained in detail in Section 5.

We note in passing that the number of coefficients requirepfoximate a function to
given accuracy in a cube (or, for that matter, in other maitate domains) can be reduced
drastically once we observe that large coefficients asshm@attern of ayperbolic cross
(Babenko 1960). This phenomenon occurs also in Fourier fiethgShev approximations, but
it is less suitable for easy implementation in tandem witii féchniques. Our asymptotics-
based approach to the computation of expansion coeffidejust right for combination with
the hyperbolic cross, and this leads to very substantiahgay Thus, inf—1, 1]¢, instead of
computingO(N d) expansion coefficients (wher€ represents required accuracy), we need
to compute just (N (log, N)4~!). We intend to examine this issue in considerably greater
detail in a future paper.

The approach of Sections 3 and 4 lends itself to other doniaitise plane where the
Laplace—Neumann eigenfunctions are known, yet this requubstantial further effort. In a
forthcoming paper we intend to discuss in great detail tise c&) c R? being an equilateral



triangle and its exploitation in the approximation of funas in arbitrary bounded bivariate
polygonal domains. Another future paper will address aredibn techniques of expansions
in Laplace—Neumann eigenfunctions.

2 Multivariate theory

Let Q ¢ R? be a simply-connected, bounded domain with piecewise-gmomundary and
assume that € L(Q) is an eigenfunction of the Laplace—Neumann problef,ithat is

Ou
on

We assume further that#£ 0 — as a matter of fact, in that cade> 0, but this is irrelevant to
the present argument. Givghe C>°[Q], our concern is withf, u) = [, fudV. Replacing
u with —\~!Av and applying twice the Stokes theorem, we have

:—7/f )Au(z)dV = —= /f a“ Jag+ 1 /Vf (z)dV

f@ %y as+ 5 [ o) ()dS;—XjQ u(z)Af(z)aV.

Q on

—Au = Au, =€, =0, xe€d. (2.1)

)‘89

Substituting the Neumann boundary conditions, we thus dethat

o1 of(x) 1
o) =5 [ LB s - S(arw. 22)

We iterate (2.2),

L[ of(@) | [ 0Af(@) e
<f,u,>:X/8Q i u(m)dS—p/m ) @)dS + 15 (A7)

- Z (—A)m /em Bn( )u(cc)dS+ (CA)sH (A f )

m=0

foranys € Z, . Lettings — oo, we obtain the asymptotic expansion

(oo}

m=0

This expansion converges only in the asymptotic sense oi\son Lemmalet, this is
sufficient for the purposes of this paper since it demoresdrétie pattern of dependence of
(f, u) uponA.

Note that this pattern is considerably more complicated thanaive look at (2.3) may
imply. It is not just thex—! that matters but also the asymptotic behaviour of the iategr
Jooldf(x)/dn]u(x)dS. For large) the eigenfunction is highly oscillatory, and this implies
that the above integral is itself small — typically it can b&oeexpanded in inverse powers of
A and the leading term i©® (A~ %), wherea > 0 depends upon critical points af (Wong
2001). This, incidentally, is precisely the reason why thaikilation of the leading term,



A7 [o, f(x)[du(z) /dn]dS is so important: since oscillates rapidly, its normal derivative
is large and the integral behaves liké for some3 > 0.

An illustration of both the importance and the limited wyilof the asymptotic expansion
(2.3) is provided by perhaps the simplest multivariate gxanthe squar€ = [—1,1])%. In
that case, to which we return with considerably greater iggitye and detail in Section 3,
there are four kinds of eigenvalue—eigenfunction pailsca@iveniently labelled by a pair of
indices,

A =72 (m? + n?), N (x,y) = cos(mmaz) cos(ny),

A =72 m® + (n = 3)%], uly il (@, y) = cos(mma) sinfr(n — 3)y],
AR = m2[(m = 3)? +n?], uly (@, y) = sinfr(m — 3)a] cos(mny),
M =alm =5+ (=51, uple,y) =sinfr(m - 3)a]sinfr(n - 3)y),

where the range aof andn is, for the time being, not important. Concentrating for tinee
being just orml};ﬁl], we note that each integral in (2.3) is a linear combinatibfoar line

integrals along the faces of the square, for example

1
%/ g(z, 1)sinm(m — $)zda.
-1
This integral itself can be expanded asymptotically in isegpowers ofn and it behaves like
O(m~2) for m > 1 (Iserles & Norsett 2069. Combining this with (2.3), it follows in short
order that

1
1,1

< 3u£n,72> No<m2n2) ’ m,n>> 1.
For comparison, suppose that, in place of the Laplace—Nenrhasis, we use the standard
Fourier basis (more specifically, in a square, a Cartesiadyats of Fourier bases). This

means the replacement@%,’}ﬂ with
1)7[,11’7}1] (z,y) = sin(mmax) sin(mny)

and it is easy to use the technique of (Iserles & Ngrsett 20@demonstrate that

<f,v£};}}>~0<1>, m,n > 1.
’ mn

This underlies not just the speedup in convergence impticising Laplace—Neumann bases
in preference to Fourier bases but also the role of the astiojgixpansion (2.3) in elucidating
this phenomenon.

We cannot emphasise hard enough how important it is to censliet asymptotic be-
haviour of surface integrals in the determination of theralledecay of expansion coef-
ficients in (2.3). An extreme example is provided by lettingoe the bivariate unit disc,
Q= {(z,y) : 22 +y* < 1}. Itis an elementary exercise to prove that the Laplace—@umm
eigenfunctions are

Y

W) Jr(j;’s(x2+y2)§), TEZ+7 s € N.

ur,s(xvy) = Tr <



Here T, is ther-degree Chebyshev polynomidl, is a Bessel function ang. , is the sth
positive zero off;.. The corresponding eigenvalue(j§ , ). We deduce that

Inihs) (7
/ g(x)u, s(x)dS = (JT’S)/ g(cos 0, sin 6) cos rodo. (2.4)
oQ 2

—T

Provided thay is analytic in an annulus surrounding the unit circle, itdels that the above
integral decays at aexponentiakate, i.e. ag~"" for somey > 0. (It can also be approxi-
mated rapidly and precisely by means of FFT, but we do notguiisis route in this paper.)

The disc is, in a sense, an exceptional case because thealnte@2.4) has no critical
points. The unit cube, elaborated in some detail in SecBe#s is more typical.

Be it as it may, the expansion (2.3) provides the theoreteakdrop to expansions in
Laplace—Neumann eigenfunctions and this is the right moneeimtroduce appropriate ter-
minology and notation. We denote the countable set of Laplideumann eigenvalues By,

n € Z,, where), < A\, for k& < n (note that multiple eigenvalues are typical in this situ-
ation). A corresponding eigenfunction is denoteduly Observe thah, = 0 and, without
loss of generalityy, = 1. We recall from Section 1 the Weyl Theorem:

An ~ meas(Q)n%, n>1, (2.5)

wheremeas(£2) is the measure db.
Letting f,, = (f,u,) andd,, = (u,,u,), n € Z,, we consider the expansion ¢fin
terms of the (dense ih[2]) basis of eigenfunctions,

> Lzun(m), x € Q. (2.6)
n=0 {M?L
It is eminently possible to combine the current approackn wiat of (Iserles & Narsett
2006h) and consider, in place of the Laplace operator, a polyhaitnone. As an exam-
ple — probably, the only realistic example in this settinget«d be an eigenfunction of the
biharmonic—Neumann problem,

@
on

Proceeding as before, we apply the Stokes theorem four tiwlgite substituting the zero
Neumann boundary conditions. Thus,

1 1

o =t = 5 ([ gagto [ Sawranan)

A<Af,Au>=iUmA gZ—/aQ (A?i) +<A2f,u>}.

This can be iterated and the outcome is an expansion similg2.6). Note, however, that
in the biharmonic case (2.5) is replaced by ~ meas(Q)n%, hence we can expect more
rapid convergence — how rapid, needless to say, dependsticalguoints onu,, alongof)
and, as long as general theory is unavailable, need be egdroma case-by-case basis. We
do not pursue this route in this paper since the DirichletsiNa@nn case is difficult enough,
represents a raft of challenges and, clearly, its clariicamnust precede any elaboration of
the polyharmonic case.

A%y =Xu, xeqQ, Au=A— =0, x €.

u_ [ of

[ = >



3 Eigenfunctions in thed-dimensional cube

In this section we discuss Laplace-Neumann bases id-tlimensional cubé—1,1]? and
present an asymptotic expansion of the corresponding sigranoefficients.

In principle, all we are doing is to generalise the univariease, already considered in
great detail in (Iserles & Ngrsett 2086 by using Cartesian products. Having said so, this
generalisation is far from straightforward and is repleitiiddly details and special cases.
This underlies the importance of getting the notation anaitgology right.

It is instructive to commence from the univariate case, othrovide the starting point
to an inductive argument and to introduce requisite natdtiaa fairly transparent and gentle
manner. In the cas¢ = 1 we have two families of eigenfunctions,

cosmnr, n >0 and sinm(n — %){L, n>1

and the modified Fourier expansion p& L[—1,1] is

N[

i cosmnzx + fll sinw(n — D)a], (3.1)

where
1 1
flor = /_1 f(z) cos(mna)dz, = /:1 f(z)sin[r(n — 3)z]dz.

Our first observation is that a single integrﬂ?], is exceptional, both because it is non-
oscillatory and since it is scaled @/ We say that it is ofjrade0 and designate remaining

integrals to be of grade 1. The coefficierﬁg] and f,[}] have been expanded asymptotically
in (Iserles & Narsett 2009: for any f € C>°[—1, 1] itis true that

ﬁhemziﬂfwmw>wmmm

2m+2

f ~ n 1 Z - 2m+2 [f(2m+1)(1) + f(2m+1)(,]_)}7 n> 1.

m= O

To write (3.1) in a manner which is more convenient for maltiate work we let

3 n=0,7=0,
p=n, gl =n—g,  ql=q0,  n=0j=1,
L, n=1,je{0,1},
and set
ul(z) = cos mnz, ulll(z) = sinw(n — 1.

Therefore the expansion (3.1) can be written succincthjpénform

) 1
SN i), (3.2)

m=0 j=0



where

fl~ (1 )"“ii(_,l)m [FEmHD(1) — (1) fEmHD(])], > 1. (3.3)

iz (i 22

We next consider the multivariate cage> 1: our aim is to generalise the expansion (3.2)
and the asymptotic formula (3.3). LEQ be the set of all thé-tuples of binary numbers and
Z(fr the set ofd-tuples of nonnegative integers. We employ multi-indexation, in particular

d
_ m o__ gmi Qma mq
el = ew, I =amore .o,

For everyy € [~1,1]? anda € Z4 we define

Salfly) = Y (~D)lelFe e f(—1) 1, (=), ., (<) ya).

ec’s

Theorem 1 The Laplace—-Neumann eigenfunctions-in, 1]¢ are

d
H uled) (a nj>oj, j=1,...,d  a€cZj (3.4)
and it is true that (in the Euclidean normiu!®’|| = 1. Moreover, the expansion ¢f €
C>°[-1,1]%is
Yo D el fu (@), (3.5)
nEZd acZd
where
o _ J 0, 3j € x(n) such thai; = 1,
fn T\ 2-#x(m), otherwise,

wherex(n) = {i : n; = 0} and#S is the number of terms in the s&f while

fled :/[ | f@)uld (z)day - dzg.
—1,1]4

Proof It is clear by inspection that (3.4) are the eigenfunctidosming a Cartesian
product of univariate eigenfunctions. Moreover,

| = H / 2j)da; =1,

because the univariate eigenfunctions are of unit norm. réhminder of the theorem is an
immediate consequence of a Cartesian product of (3.2). O

In line with the univariate setting, we say thﬁ,[f‘] is of graded — #x(n). Intuitively

speaking, grade means that, fony,...,ng > 1, the elgenfunctlom["‘] is oscillatory ins
variables.



Theorem 2 Each coefficienfr[f‘] has the asymptotic expansion

. il Sal02 1 f1(1)
flad o (—1)Inl+led Z W2m+2d Z P e ni,...,ng > 1.
|d|l=m ,Unl © Hng
(3.6)

Proof By induction ond. Ford = 1 (3.6) coincides with (3.3). Assuming that it is
correct ford — 1, we apply the asymptotic expansion to the fitst1 coordinates: exchanging
summation and integration whenever necessary, we have

2 1
[ +
fna] |n| . Z 2m+2d 2 Z 2j1+2 2jq-1+2
T [a1] [oa—1]
m=0 Gl=m Hny' Crlng 4
1
x/ Sg,[@i’“f]( L xg)u [ad](xd)da:d7 Ny g1 > 1,
-1
where
a=[a1 o - ag_1 | and =[5 J2 - Ja-1 |

Applying (3.3) to the univariate integral in the last expianswe obtain
1
/ SaloFT (A, .., 1, zg)ultd (zg)dzg
—1
> —1)Ja )
o (_1)rataa ( pia+1 — (=)@t p(L 1, 1),
( ) jdzz:o (Wu,[r;‘fid])2jd+2[ Tdq f( ) ( ) aajd f( ’ y )]

Therefore,

. m+]d 1
o o (—1)Inl+led Z Z Z _ ‘
n 7r2m+2]d+2d ]231+2 ) [ad71}23471+2 [ad]2]d+2

m=0 jq=0 131= mMnl “Hng_y ng

X {Sal0Z 1O f](1, . 1) = (1) Sal07 O A(1, . 1, - 1))

However, it follows at once from the definition &6f, that

Sal02 f1(y)
= 3 (n)lelreTagH L p((—1)eyy L (— 1)y, ya)
eczd™!
— (=0 Y (—1)EIFET Q2 F(—1)eyr, . (— 1) g, —ya)
eczi~t

Sa[0Z 02N F1(G, ya) — (1) 8a[027 T 0T F1(G, —ya).

We conclude that
I)’L+_]d 82‘7+1f]< )

Flog |n|+\0‘|
fn Z Z 7-l-2m+2]d+2d Z [ ]2]1+2 [ova ]21d+2
o

m=0 jq=0 |3|=m Hoy ng




10

: ‘ [ad]
Ja=0m=ja |7|l=m—ja /lnl ng

it Sal02 1 1)(1)
l 1+ lz 71—2m+2d Z Z [ ]2j1+2 [ad]2jd+2

Ja=01j|+ja= m,L"Tll Hng

nltlal N~ v (D)™ Sal0Z7 1 f1(1)
l)l e Z Z 7-1-27n-|-2d Z [ ]2j1+2 2jq+2
. .M

plni+al Z Sal077 11 f1(1)
7r2m+2d (2212 (0q)29a+2"
[7]=m Hny e

which is (3.6). O

To illustrate the last two theorems we lét= 2 and f(z,y) = e*~2¥. This very simple
function has the virtue of leading to explicit and exceetlirsimple expressions which, with
some persistence, can be verified directly. Thus,

2(—1)"mFn4[0.0]
(14 72m?2)(4 + 72n2)’
2(—1)mtn
(Lt w2+ 720~ 3P
2(71)m+n71 [1,0]

il = l/mt/‘ " sinfr %>x}““(””y)dxdy"[ T r2m— DA+ 72n2)

[1 1= / / “=sin[r(m — 1)) sin[r(n — 1)y]dady

1,1]

[00] _/ / T 2Ucos(7rm:c) cos(mny)dzdy =

[0 0= / / “72 cos(mma) sinfr(n — 3)y]dedy =

)ern 1,.)/[

~ T P

where

YOO = (&~ 1)e—e?), AU = (- 1)(cted),
AT = (@ +1)(e—e?), AT =(P+1)(e+e?)

and the corresponding asymptotic expansions are

G L S L S
mim?2n?2 76 m2nt  min? ’
Fo 2(=ymEny 0l g(—pyming (0] [ 4 1 } .
m4m?2(n — %)2 76 m2(n — %)4 m#(n — %)2 ’
] T N
mn w(m — 1)n2 76 (m—23)2nt " (m— 1)in? ’

21,1 2(—1)min—lyL1] 2(—1)mtn—lyL1] { 4
Y i §P 17 T
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This is the place to discuss briefly issues of convergenckadtbeen proved in (Iserles
& Ngrsett 2006) that the univariate modified Fourier expansion of a Lipschinction con-
verges uniformly in any closed subinterval @f1, 1) where it is continuous. Moreover, if
f is analytic in an open complex domain inclusive[efl, 1] then the expansion converges
at the endpoints: this is an example of superiority of modifiger conventional Fourier ex-
pansions in this setting, since the latter fail to convelgad unlesy is periodic. The speed
of convergence is also of interest. It has been proved inlés& Ngrsett 2008) that an
N-term expansion convergesat asO(N ') and it was conjectured there that, subject to
sufficient smoothness df, the convergence i1, 1) is at the rate 0® (N*Q) (compare to
the(’)(nfl) rate of conventional Fourier!). This has been recently eddvy Olver (2007).

The above rate of convergence can be generalised [frdn | to thed-dimensional cube
[—1,1]¢ at once by means of a Cartesian product. This is illustratefeig. 3.1. It is easy
to observe that the error is substantially larger on the Bagnand, perhaps unsurprisingly,
it reaches its peak 4dfl, —1), the maximum off. Doubling N halves the error along the
boundary but it decreases it roughly by a factor of four iadide square, in line with the
theory in (Olver 2007).

4 Quadrature in the d-dimensional cube

Laplace-Neumann eigenfunctions oscillate rapidly, cqueatly modified Fourier coeffi-
cients are integrals with highly oscillatory kernels. Tail®ws us to use in the current setting
powerful and affordabl&ilon-typetechniques for highly oscillatory quadrature which have
been originally developed in (Iserles & Ngrsett 2005). Tds been accomplished in (Iserles
& Ngrsett 200@) for the univariate expansion and it is instructive to comoeeby discussing
the additional constraints imposed by current imperatigessompared with standard highly
oscillatory quadrature.

Firstly, we need an efficient approach not just to evaluaiegleshighly oscillatory inte-
gral but a large number of coeﬁicierﬁé"‘]: except forn = 0, all these are distinct oscillatory
integrals. All modern methods for highly oscillatory quatdire require the computation éf
and its derivatives at a number of points — clearly, in theenirsituation we wish to avoid
repeated computation of function values for eachithin the relevant range. Instead, we will
compute function values and derivatives only once and tedfiem repeatedly for eaah

Secondly, not all integrands oscillate rapidly and not adlibations are alike. Specifically,
we need to pay attention to the gradef eachf,[f"]. Since the underlying eigenfunction
u[,f‘] oscillates in justs variables and is non-oscillatory in the remainihg- s, we need to
apply highly oscillatory quadrature techniques to justriables and otherwise use classical
quadrature. Except that the imperative of reusing the sam&ibn and derivative information
for all n anda impose restrictions on the non-oscillatory quadraturassital quadrature, in
particular Gaussian quadrature, is not longer adequatear@/mstead compelled to develop
new non-oscillatory quadrature techniques, which we haugbdd “exotic quadrature” in
(Iserles & Ngrsett 2008.

Both above issues have been addressed comprehensivelyivaaate setting in (Iserles
& Ngrsett 2006, Iserles & Ngrsett 200§ but in the multivariate case we are faced with
additional challenges which a naive Cartesian product &ibrt of solving.
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Figure 3.1: The absolute error in approximatiig?¥ by the truncated expansion (3.5), with
ni,n2 < N. In the top row we approximate in-1, 1]> with N = 20 and N = 40 respec-
tively, while the bottom row reports the same informatiorthia cubg—-%, %]2.

10 10
4.1 Asymptotic methods

The obvious approach to the computation of the coeﬁiciﬁﬁlsis to truncate the asymptotic
expansion (3.6). This results in thgymptotic method

N-1 m 2j+1
@l _ _qynllel N (51 Sal03711 £1(1)
.An,N - ( 1) Z 7.[-2'm—i-2d Z [041]23‘1+2:’3 [ad]2jd+27 (41)
m=0 [dl=m Hny C g
whereN € N. Itis well-defined forny,...,ngy > 1 and makes sense when, ..., ny are

sufficiently large.
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n a‘ Al Al Al Al
[1,1] [0,0] | 1.2387_o1 5.3467_02 2.2000_g> 8.9497 3
[1,0] | 9.0754_¢; 5.8271_g; 3.2326_0; 1.6631_¢;
0,1] | 94931 o1  1.5525,09 2.5182,09 4.0825,0;
[1,1] | 5557500 9.9012,09 1.6428,01 2.6753,01
[2,3] [0,0] | 64873 ;s 3.5305_g5 1.7440_05 8.2437_og
[1,0] | 1.9140_03 1.3024_qs 7.8481_o5 4.4273_¢;
0,1] | 1.2215_03 8.8296_05 5.9558_0¢  3.9204_¢7
[1,1] | 3.4367_02 2.8864_0s 2.1680_g5 1.5393_0g
[7.4]  [0,0] | 1.1920_¢5 3.0407_o7 7.7062_g9 1.9521_19
[1,0] | 1.8384_05 4.6957_q; 1.1904_¢5 3.0155_1
0,1] | 2.0581_05 6.8351_q7; 2.2688_05 7.4834_1,
[1,1] | 3.1635_05 1.0519_g 3.4816_0s 1.1519_gg
[10,10] [0,0] | 1.7659_o; 7.5158_10 3.0824_15 1.2529_1,
[1,0] | 2.6245_o7 1.1278 o9 4.6428_15 1.8897_14
0,1] | 2.2041_o7 1.0311_q9 4.6721_15 2.1023_14
[1,1] | 3.2704_o7 1.5423_g9 7.0089_15 3.1568_14

Table 1. Absolute value of the errortsAEff]N — A,[{"]|, committed by different asymptotic
methods, four differenks andf (z,y) = e*~2¥.

Lemma 3 Letnn = min{ny,...,nq}. Then
A ~ fled 4 O(ﬁ‘2<N+d)) . o> (4.2)
Proof Follows immediately by comparing (3.6) and (4.1). O

Before contemplating further the method (4.1), it is impattto observe that its imple-
mentation idinear in the number of coefficients, once we precompif*1f, 0 < |n| <
N — 1, at the2¢ vertices of the cube. This fulfils our first goal, yet (4.1)asly falls short of
delivering useful approximation for terms of grades — 1 and, indeed, for smail. Without
disregarding this important issue, we defer its discus&othe time being.

Both advantages and disadvantages of the asymptotic médhbdare apparent from
Table 1. Its performance is poor for ‘smatts: it either diverges or converges very slowly
and incurs unacceptably large error. Yet, that very ‘sneskry which depends on the function
f, is deceptive. Asymptotic behaviour kicks in for fairly mesdte values ofi. Thus,n = 2
is already within convergent regime, albeit perhaps tow $tw our needs.

Having said so, the lesson of recent work on highly oscithatpuadrature and modified
Fourier expansions is that the great virtue of an asympésgdansion is often not as a numer-
ical methodper se,but as a theoretical device underlying and underpinningenediective
numerical methods. This is the subject of the next subsectio
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4.2 Filon-type methods

Let ) be a sufficiently smooth function defined(in1, 1]¢ and such that
o e((-1)%) = 3 f((-1)°),  Im| <N -1, eeZi. (4.3)

In other words, the odd derivatives gfand f of degree< 2V — 1 match at all the corners
of the cube. This results ia? S (47%/) ~ 224~ N/d! conditions. Our underlying
assumption is that the expansion coefficients correspgrtdithe functiony,

o (4.4)

can be calculated explicitly. This is certainly the case nvit@s ad-variable polynomial, an
approach which we adopt herewith. (Note that interesting-malynomial choices of), in
a different context, have been recently discussed in ((Q1066), but we do not follow this
route in the current paper.)

The approximation (4.4) is an elementary example dfilan-type methodIserles &
Ngrsett 2005) and it is usual to augment (4.3) with addifiamtarpolation conditions. Thus,
in full generality, we choose > 27 quadrature pointg;, in [—1, 1]¢, the first2? of which are
the vertices. In addition, we chooséndex sets

Dy = {Th1:%h25- - Uy }s k=1,...,s,
whereiy, ; € Zi. For eachl < k < 27 we stipulate that
{t€Z4 : il <N -1} C Dy
We choose a polynomiat that satisfies the interpolation conditions
Oip(er) = 0% fley),  j=1,....ms k=1,...,s (4.5)

and note that (4.3) is a subset of (4.5). The corresponditogpfype method is defined by
(4.4).

Lemma 4 Given a Filon-type method (4.4) and subject to the interfiotaconditions (4.5),
it is true that R
Qe ~ flol +O(ﬁ‘2<N+d))7 n> 1.

Proof Follows at once by letting — f in place off in the asymptotic formula (4.1) and
using the interpolation condition (4.3). |

Note that (4.5) represents* = >_;_, my, interpolation conditions. Choosing a suitable
d-variate polynomial) with the right number of degrees of freedom is one of the mhai-c
lenges in the design of Filon-type methods for modified Feruekpansions in a cube. Note
further that the relationship between the numbérof interpolations conditions and the num-
ber of degrees of freedont, say, in the polynomial basis is in general unclear. Cleavly
requirer* > m*, but for general conditions (4.5) we might requireto be larger (possibly,
much larger) thann*. There are two possible obstacles to our construction andhus
discuss them both.
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Firstly — and this phenomenon occurs alreadydor 1 — (4.3) is a so-calle@irkhoff—
Hermite interpolation problenfLorenz, Jetter & Riemenschneider 1983): we interpolate to
non-consecutive derivatives and we cannot take it for gchthat this can be done with
r* = m*. Secondly, multivariate polynomial interpolation (eveagtangian interpolation,
to say nothing of the Birkhoff~Hermite kind) need not exist & particular configuration of
interpolation points and conditions (4.5) in a multivagiaetting.

A comparison of Lemma 3 and 4 allows for an alternative imetigdion of Filon-type
methods in the current setting, which we have already censitlin the univariate case in
(Iserles & Ngrsett 200§ and which we will find very useful indeed in the next subsmtti
Thus,

Qlel, = Al 4 O(ﬁ—2<N+d>> (4.6)
(o]
_ el (SL)mitledtN Y __9(N+d+1)
= An,N + 71_2(N+cl) ot MLLQI]2j1+2 o M[T‘L)fid]de+2 + O(n )

and, comparing with (3.6), we interp@f"] [f] as an approximation t6,,[02+1 f](1). There-
fore, we abandon altogether the interpretation of the Fiyge method as the integral where
f has been replaced by an interpolating polynontiadubject to the conditions (4.5). Instead,

we seek coefficientsg[.a](k,j), where|j|=N,j=1,...,my, k=1,...,s, sothat
s myg . )
elg) = 303 ol (k100 gler) = Sald2 T g)(1) @.7)
k=11=1

is correct for all polynomials in a given basis of cardinalit*. In place of interpolation,
followed by quadrature, we reduce the problem at hand togpeoaimation of derivatives by
finite differences. We will pursue this further in the sequel

To illustrate this ind = 2, considerN = 1 and three configurations of quadrature points
¢, all with multiplicity my, = 1:

(@) (b) ()

Thus, for (a) we have = 8 and the quadrature points grel, £1), (+1,0) and(0, £1). For
both (b) and (c) there are= 12 points, namely(+1, £1), (+r, £2r) and(+2r, +r) for (b)
and(+1,=+1), (+1,£r) and(+r, £1) for (c). Herer € (0, 3) is a parameter: we have used
r = % in our examples.

Let us consider (a) first, explaining our procedure in sontaiderhe interpolation con-

ditions (4.5) reduce to

020 (ck) = 0.0, f (ck), k=1,...,8.
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In other words, lettingl = ., and F' = f,,, we reduce the problem to the bivariate
Lagrangian interpolation
U(cg) = Fleg), k=1,...,8
We have eight degrees of freedom, hence we take
U(z,y) = a1 + azx + azy + agx® + aszy + agy® + arx? + agry?.
Lengthy, yet straightforward, computer algebra resulthémethod

ons - AL

m,n’

2(_1)m+n
[0.1] — l0.1]
O = At = (42) (-2) o

2(_1)m+n
(10 — 40 L ==
ot =i+ s (o)

ol = A -
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Likewise, for (b) and (c) we have twelve degrees of freedothiarboth cases choose

\IJ(x, y) = a1+ a2T + asy + a4x2 + asry + a6y2 + a7x3 + agxzy + agxy2 + a10y3
+ a11x3 + algxy3.

Note that the underlying interpolation problems have au@igplution — this was also the case
for (a) but not if the inner square in the stencil correspogdo (b) is not slanted.

The outcome are the methods

35 (D)™ E

0,0] _ 4[0,0 -
Qo = AN+ 35

mom2n4 @@

fxy

fmya

18 (*1)m+n
T 13 16m4n2 @

~

2(_1)m+n
[0.1] — gl0.1]
Qm,n m,n + ﬂﬁmz(n _ %)

(©)
(30)
e (G

4 2

fxya

L r6ma(n — %)
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g L G~
- b ) T T

2(—1 m—+n
+ % fmy7
7T6(m7 5)41712

QLY = the same as in case (a).

Finally, in case (c) we have

000 = ALY +

m6m2n4

4(_1)m+n e

mOmn2

4(—1 m—4+n °
LAy

O
e Jay
O
®
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[1,0] _ 4[1,0] ‘gi
Qm,n Am,n + 3 7r6(m - %)2

o
e Jay
O
®
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n « ‘ Method (&) Method (b) Method (c)

[1,1]  [0,0] [ 1.2387_¢; 1.4931 g3 5.4150_03
[1,0] | 8.4921 g9 9.2728 (3  7.4304_qo

[0,1] | 3.8306_01 3.2903_p2  1.3309_¢1

[1,1] | 1.1586,00 1.1586,00 1.319000

[2,3] [0,0] | 6.4873_g4 1.5634_03 1.2678_04
[1,0] | 8.7572_g4 6.8660_gs 5.3409_04

[0,1] | 1.1945_3 6.2396_04 4.8653_04

[1,1] | 1.5549 o3  1.5549 3  1.5203_o3

[7,4] [0,0] | 1.1929 o5 1.7825_¢5 3.3349 g
[1,0] | 1.3234_05 1.2591_g5 1.1881_g;

[0,1] | 1.7236_¢5 7.6216_¢s 5.4031_gg

[1,1] | 1.8892_p5 1.8892_g5 1.8530_¢5

[10,10] [0,0] | 1.7659_o7  3.7784_gs  7.7300_0s
[1,0] | 1.5408_¢; 1.3313_¢7 1.1536_¢7

[0,1] | 2.2221 ¢y  1.0698_¢;  8.0162_og

[1,1] | 1.8429_o; 1.8429_¢;  1.8088_g7

Table 2: Absolute value of the errors committed by the Filgme methods (a), (b) and (c),
four differentns andf (z, y) = e*~2v.

With enough persistence, it is possible to derive this kihdoahemes for larger number
of quadrature points and for higher derivatives. Yet, ituite)clear that this brute-force ap-
proach rapidly leads to unacceptable complexity, to salgingtof the case > 3. Moreover,
as apparent from Table 2 and comparison with Table 1, the thbeve schemes represent

fairly modest improvement in comparison with the basic gstatic methodA[:f]l, hence the
imperative of using more interpolation points is much mbtjust a matter of idle quest for
generality. This motivates the work of the next subsectidmere, building upon the interpre-
tation (4.6), we construct Filon-type methods for large bemof points, higher derivatives

and arbitrary dimensions in a structured manner.

4.3 Extended Filon methods on a tartan grid

The methods (a)—(c) from the last subsection, while detigebut a minor improvement in
comparison with the asymptotic methatff] , are fairly cumbersome to construct. Had we
followed along the same path and attempted to design maeetiz# methods, whether using
higher derivatives or more points or both, this would hagaitted in unacceptable complexity
—and all this just in two variables and only for expansiomzof gradel.

In the current subsection we develop an alternative approddgch cuts across all the
problems of the last paragraph. Thus, it allows fairly tgarent and automatic construction
of methods with arbitrary number of derivatives and largmbar of points, for al > 1 and
(although we defer that issue to the next subsection) retdégaerms of all grades.
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Our first ingredient is the interpretation (4.6) of a Filgpé method as “an asymptotic
method plus an approximation to the next expansion termis We generalise in the follow-
ing manner. Suppose that we have evaluated the fungtmmits derivatives in some grid
n [-1,1]¢ — note that we do not assume that the same derivatives areae@lat each point
of the grid. We denote the set of all these function and devvasalues byF and suppose
that F contains all derivative values necessary for the constmuctf the asymptotic method

A[O‘] An extended Filon methoid

o o] RS £
Qi = Ay + (—1)ImIFled Z —2(mtd) Z 22 [oj2iate (4.8)
m=N |d|=m Hnq T g
where (compare with (4.7))
=30 > ok Doif(e) ~ Sal0F (1), N <[ N+ M-,

ceRi€ll(ce) (4 9)

andII(c) is the set of all the derivatives gfevaluated at € R — in other words,
icTl(c) = It f(c) € F.

Our next ingredient is the sort of gri that we find particularly advantageous in struc-
tured use of Cartesian productsinl, 1]%: atartan grid. Let the pointsr; < ry < --- <
r, = 1 be given, where, > 0. Then

R = {(ri,(—1)%, 7, (=1)%2,.. .73, (—1)%) : € €23, i1,. .. ig €{1,2,...,v}}.
(4.10)
For example (in this subsection the narrative applies teeggn > 1 but examples, for
obvious reasons, are fdr= 2), lettingv = 4, we might have the grid

We commence our discussion from the case- 1 andIl(c) = 1 for all ¢ € R: in other
words, we evaluate just the cross-derivaéijef at every grid point.
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Proposition 5 Givens € {0, 1,..., v}, there exist coefficients "), al*) such that
Z al* sinh 70 = 6% sinh @ + O (62 1) , (4.11)
Z al* coshry = 62 cosh 6 + O (6%) . (4.12)
k=1

Proof We prove our assertion just for (4.11), since the proof dfZ}is identical. Com-
paring the Taylor expansions

Zak_ sinhr.0 = Z (QT

0o
1
92s,~ he — 9%n+1
S mz::s (2m — 25+ 1)! ’

Z [0,s] 2m+1‘| 92m+1

k=1

we deduce that (4.11) is equivalent to the Vandermonderlmlgabraic system

0, m=20,...,s—1,

Z a[o ° 2m+1 (2m+1)! _ 1

m7 m=s,...,Vv— L.
The system being nonsingular, the assertion of the prapoditllows. O
Note that we trivially haves!”) = 0 for k = 1,...,v —1,i = 0,1 andal"® = 1,

Moreover,als! = 0 for s > v.

Theorem 6 The sum
v v v d
Z Z Z H ag,sg] alf](rkurkz,...,rkd) (4.13)
k1:1 k}2:1 k}d:1 ':

coincides withS,, [0251 f](1) for all functions f which are polynomials of degré® + 1 in
all their variables.

Proof We adopt the language ehift anddifferential operatorst,, andd,. respectively
and recall that for an analytic functighit is formally true that

fr,y2, ... ya) = ELEY? - -~E§’jf(0) — Y10s; gY20s, ._,eydazdf(o).
Since

T e e
Sal0Z 1 f](y) = D (—1)lelte egan . gRap( DT gD v g(0),

ecZd
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whereg(x) = 91 f(x), itis true that

d

Z Z Z H [aJ7SJ a2s+1f](’rk17rk'27"'7rkd)

k1:1 kQ:l kdzl -:
v v v d [ ] .
Qj,85 e|l+e an2s) 92s 2s
— Z Z Z Hakj Z(_l)l I 921922 ... g2
ki=1ko=1 kq=1 \j=1 ecZd
% Ei;l)qr;ﬂ] E‘g(cgl)ezm2 -~«E£;1)edmdg(0).
Note, however, that, by easy induction,

E (71)|e|+e—rae(71)€17‘k1011+"'+(71)ed'rl«dazd

ecZd
— Z (71)|e|+eTae(_1)elrklawl+“'+(_1)6d71r’“d—161d71[e""kdazd B (,1)0%6*7“1«(18”]
eczi™!
d
o= H[erkjamj _ (_1)(,”677“)@].61].}'
Jj=1
Consequently,
v v d
2. 2. Z [Tai ™" | Saloaf)res s 7,)
k1=1ko=1 a=1 J=1
v v v d d
) 8 i =T O,
= Z Z Z H O‘J 51]6257 H T —(=1)Me ™ 119(0)
ki1=1ko=1 kg=1 \j=1 =1

d v
=11 {5 Do e — (—1)%”6”]}9(0)
j=1 k=1

Note further that fory; = 0

Z G/L:ijsj] [e'rkazj _ (_1)%67”31]] —9 Z agfaj’sj] sinh(rkawj),
k=1

k=1
while o;; = 1 yields

v

ZaLozj,s]'][erkamj . (_1>aje—rk8 _ 2Za[a] ,55] cosh ’I”ka )
k=1

Likewise,
d

Saldzs ™ f1(1) = [T 02 [e™ — (=1)™1e™™]g(0)

j—1
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and again we can replace the term in square brackets witar@itinh 9., or 2 cosh 9.,
depending ony; being 0 or 1, respectively. Comparison of the two expresslcmtandem
with (4.11), (4.12) and = 9,, - - - 0., f, prove the theorem. O

Our first concrete example of an extended Filon method is

—1)Inl+le

o (=1) 1

Qn L2y = An1 — 2(d+1) Z (0] 212 [vq) 20at2 (4.14)
l3|=1 Hny © Hng
X Z Z Ha[a] - alf](Tkl""7de)'
ki1=1 kq=1 \j=1
In the same vain we let
[n|+|ex|
(o] ( 1) 1
Qn 1,3,v Qn 1,2,v 71'2(d+2) Z [a1]251+2 [(xd]2jd+2 (415)
l7]=2 © Bng

X Z Z Ha[a”’“] O F1(Thys e Thy)

ki=1  kq=1 \j=1

and so on, up t@n 1.0, IN general Qn ~.az,, Uses the firstv odd derivatives on the tartan
gridto approxmate the next/ — N odd derivatives at the vertices. In other words, it updates
the asymptotic method[“] with a finite-difference of the remaining termsﬁf‘ M-

It is important to quantlfy the computational cost and dulganeans of |mplementation
of extended Filon methods like (4.14) and (4.15):

1. We commence by computing,, d,., - -- 9,,f on the tartan grid: altogethe(2v)?
derivative evaluations.

2. Next, we precompute quantities of the form

a[a]_ﬂg [52j+1f}(1) m=0 N-1 «acZl
i 2m+2d oV ’ Tt ’ 2

and

o 1 m+|al Y v d o
G_’[i ] - (7T22n+2d Z Z H JJk a .ﬂ(mﬂ?' -,de)

k}lzl k}dzl
form=N,...,M —1anda € Z2.
3. Finally, for everyn € N of interest, we form the linear combination

M (o]
(o] In| J
Qn N,M,v 1) " Z Z [ ]2J1+2 [ad]de+2 '

m=0 |j|=m Mnl * Hng




25

n « ‘ 95]123 QL?]LS& 95]1,2,4 QE’?]233 QE?]ZSS
5.0405_go 4.7641_g3 5.3270_g2 4.2553_g3 2.0422_q9
5.6043_g1 1.4023_91 5.8154_p1 2.2828_51 3.1139_¢;

1.3929,00 1.4166_g1 1.5393,00 2.1693100 2.1694 400
9.0370400 3.2836400 9.8311.00 14573401 1.4566401

2,3] 0] | 25611 g1 3.7868 05 3.4693 05 4.8262 05 1.1911 gg

0] | 9.9682_05 7.1106_05 1.2863_0s 6.6283_0 6.0393_0g

1] | 2.3085_ 00 2.7402_05 8.2995_05 5.0529_g7  3.5428_o7

1.2645_04  6.1027_o5 2.7600_0s 7.8830_gg  7.8300_og

[7,4] 0] | 6.3459_o5 1.5005_o7 2.8844_; 7.9156_0s 1.1813_1o

0] | 9.1392_0s  2.3913_¢7 4.4550_¢7 1.2014_¢7 5.1403_1;

1] | 6.7342_ 07 9.3961_g7  5.7105_07 3.7894_0s  3.7881_os

1] | 1.0304_05 1.4448_¢5 8.8030_o7 5.7017_gs  5.7370_os

[10,10] [0,0] | 3.3656_g9 1.0034_os 1.6589_os 1.8096_o9 4.3265_1

1.5307_p8  4.9295_ps 4.1323_pg 1.7826_g9 2.7506_11
5.7149_os  7.4508_ps 1.5752_p3 1.2754_g9 2.2044_;9
1.0861_¢7 1.4674_¢7 4.2167_ps 6.6095_19 6.6534_1¢

— O O R OO = OO — OO
== O O == OO =0 O == OO

Table 3: Absolute value of the errors committed by extendehfnethods for five different
ns andf(z,y) = e*~2v.

The overall cost idinear in the number of coefficientﬁ,[{"] that we wish to approximate in
this manner.

Note, additionally, that in the special ca¥e= 1, M = 2 we deduce frona[*°! = 0 that
only points along the perimeter of the grid feature with remozcoefficients. Thus, in place
of (2v)? function evaluations, it suffices to compute the derivatig at just(2v)? — [2(v —
1)]¢ ~ d2¢v9=1 points at the intersection of the boundary with the tartag. gr

To flesh out numbers, let= 3 and

495 — 66v/15 495 + 66/15
" 33 R 33 S

(the reason for this choice will be apparent in the next sagtiEasy calculation confirms that

a0l — [_@ 100—49v15 99 10044915 60]

L 10 /495-66v15 10 \/495+66v15 '
al=[-21+ 215 —21- 2815 42]
a[o’g]i[_w 5—3v15 _ 3267 _ 5+315 495]

- 2 \/195-66v15 2 /19516615
al? =[-% + B7T/T5 - 2T /15 99].

It is apparent from the three leftmost columns in Table 3, thvile the performance for
n < 2is still unacceptably poor, the performance of extendearHiefinitely leads to smaller
error for largems.
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Another, most unwelcome, observation is that the errorQBff‘r]1 2.3 and QL 133 are
roughly similar, at least for the reported valuesrof A probable reason is that the magni-
tude of the coefficients af!*7! increases fairly rapidly witty. Thus, methods really ‘take
off’ only for fairly large n — for example, the errors c@{goo]zo] 135 and 9%36?]20],1,2,4 are
1.1867_g9 and1.2941_,3 — the latter is fairly respectable.

Indeed, a significant downside of our approach is that thecpation of derivatives
is a notoriously ill-conditioned problem. An effective dgs of extended Filon methods for
significantly larger values af might well abandon altogether the goal of maximising order
of approximation in (4.11) and (4.12). A more suitable ajggtois probably to choose least-
norm vectorsz[*7] consistent with lower order, or perhaps just to give up oemdéd Filon,
reconcile ourselves to compute higher derivatives and nsesgmptotic method. We do not
pursue this issue further in this paper but might return to ftiture publications.

Extended Filon methods (4.14) and (4.15) are both based mpuwting only the cross-
derivatived,, --- 05, f on the tartan grid. An obvious — yet unnecessary — next stép is
compute therbothd,, - - - 0, f andd,, -«-611_18%8@“ < Op, fforalli =1,...,d. This,
however is an overkill and represents poor use of computalti@sources.

Recall from the asymptotic expansion (3.6) that asymptotater is determined exclu-
sively by derivatives at the vertices. Thus, the sole pugpafsusing derivative values else-
where in the cube is to approximate higher derivatives avéngces. In principle, thus, we
could have computed intermediate derivatives just at théces. Our approach strikes a mid-
dle course, since it leads to far simpler and more transpasgaressions for generdl We
compute

1. The cross-derivativé’ f on the tartan grid? — this require$2v)¢ function evaluations;

2. The next derivativejlt2¢i f i = 1,....d, wheree; € R? is theith unit vector, on the
boundary ofR: altogether2?¢[v? — (v — 1)?] function evaluations;

1+Qe71+ +2e,r

3. The derivative),,
— altogether()2¢ values.

J1<idy <<, <d, 1 <r<d, atthe2? vertices
f

Givens € {0,1,...,v+1}, we consider coefficients. ) al"*) k = 1,...,v,a®* and
alt*! such that

Z ay *sinh o0 + al®*16? sinh 6 = 6%° sinh 6 + (9(92"+3) , (4.16)
Z ag’s] coshrid + @162 cosh 6 = 62 cosh 6 + (9(02”+2) . (4.17)
k=1

Note that existence and uniqueness of such coefficientsaspen problem. Proceeding
like in the proof of Proposition 5, it is easy to show that @,Xor example, is equivalent to

0 m=20,...,s—1,

Zao‘;l 2mtl 4 (2m)(2m + 1)al®) :{ 2m+1)!

m, m=Ss8,...,UV.

Is this linear system always nonsingular? We do not know. Weadeplaced2m)(2m + 1)
by 2m, it would have been easy to prove so by a limiting argumentamérmonde matrices.
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We have confirmed non-singularity for smai and ‘interesting’ (in the sense of the next
subsection) values ofy,...,r,_; and this is as much as we can say at present juncture of
time.

Proceeding similarly to the proof of Theorem 6, we let

g[i,s] _ Zagj,s][erkamj 7( 1)7,e—rk6 ]+azs]82 [ mv - (71)1’6—8@]]’

J
k=1

wherei € {0, 1} and recall thay = 91 f. We now observe that, by virtue of (4.16) and (4.17),

it is true that
d

Gl = T 6 1)(0) = Sald2e+ £1(1) (4.18)
j=1
for all polynomialsf of degree2v + 4 in each of their coordinates.

It is important to realise what (4.18) means. We demonsthasefor d = 2, noting that
the general case is just a matter of more complicated natafious, in two variables

g[a] H g [es 57] Z Z [al s1] [042 52][ Ty 0oy (—1)“16_7"‘16"'1]

k1=1ko=1
X [em2%2 — (—1)2e" 22210011 £(0,0)

d
oq s1] Z [az,s2] ( 1)0‘167811}
x [e o (—1)*ze 221901 £(0,0)

+ a()éz ,82] Z aahbl Oy __ (71)042678’”2}
k1=1

x e fn — (=1)em O]9l £ (0,0)
T &[a1,51]~[a2,52][ ey _ (_l)alefazl][eazz _ (_l)azefazg]ag’ﬁ]f(O?O)

Z Z aal ,51] .LG;Q sz]S [fmlmZ](rk?17rk2)

k1=1ko=1
d

+aa1781 Z 0‘2752 fz1301$15172](1 ’I"k2)

d
042752 Z 1751 fz1m2172172}(’rk1’ 1)
k1=

+ d[ahsl]a[(w QQ]S [fwlwlfvlwzmzmz](l 1)

A generalisation for alll = 3 is straightforward and it is clear how the derivative infation
specified above is used.

We now define the extended Filon meth@ﬂf2 M. Where3 < M < v +1, as fol-
lows: commence from the asymptotic expans;d),Lj‘M, retain eachS,[02+! f] which we
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can compute with available data (i.g.= 0, 7 = e; andj = e;, + e;, for j; < j2) and
replace each remaining}, [02 1 f] with g}"].

For example, forl = 2, letting M = 3, we can use exact terms for all choiceg péxcept
for j = [0,2] andj = [2,0]. Moreover,

alv0 — e, glos0l — 0, alwll — 0, glool] — 1,

therefore

é‘Q—Z (022G [0, 0y £1(1,75) + 30720 [0, 02, £](1,1),
£°:}—Za[”2 0 Oy F1(ris 1) + 601254 (03,0, £](1,1).

Table 3 displays in its two rightmost columns the error cottedi by Qn 23,3 for the
function f(x,y) = e*~2Y, where we have used at the first instance

r1 = 0.25880489112795273420, ro = 0.71973603716981453919, r3 = 1.

This choice is designed to maximise, in the spirit of Subeads.3, the order of underlying
exotic quadrature. Our other choice, denoé&jf]z)?)ﬁ, corresponds to the fairly arbitrarily
chosenr = [§, i, 1] and it displays considerabyly better behaviour for lamgeHowever, it

would have led in Section 5 to worse exotic quadrature. Ireggnthe numbers follow the
pattern that we have already identified for other extendémhFethods: poor performance

for n = 1, rapid improvement for increasing

5 Exotic quadrature

5.1 The O-grade coefficient

While extended Filon methods are exceedingly effective fodenately large, they are fairly
ineffective for smalln > 1 and, like asymptotic methods, cannot be usedifer 0. The main
idea ofexotic quadraturdlserles & Ngrsett 2004 is to reuse the derivatives gfthat have
been already computed for the implementation of Filon-tythods, to evaluate quadrature
formulee for non-oscillatory integrals. This ultimatehatis to non-classical quadrature meth-
ods which use both function and derivative values. Althorgghiniscent of the more familiar
Gauss—Turan method®avis & Rabinowitz 1984), they are of an altogether differkind
and present us with novel challenges.

We commence our analysis from the single grade-0 term,

:/_11/_11.../_11f(;c)dx1dx2~-~dmd

It is an easy exercise to prove by repeated integration kg zeat

=12 i =10+ 1) - [ afaa
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FOT = 1) + £ 1) 4 F(-1, 1)+ f(-1, 1))
—/ o1 [fa (x1,1) + fo, (x1, —1)]dzy

-1

1
-/ alfoa(10) + fon(~1,20)

1 1
—|—/ / xla:gfwlwz(xl,xg)dxldxg.
—1J—-1

To generalise this construction to dllwe letz be a vector of integers of length such that

i1 < dg < o+ < i, 1 < i; andi,, < d. We denote by (i) the vector of lengthi — m
consisting of the remaining componentsbf2, . .., d], in natural order. Giver: € [—1,1]¢
ande € Z2', we letzx; . be a vector if—1,1]¢ where

(@ie) = €, | =1i; forsomej € {1,...,m},
/LT (<)%, l = o;(4) forsomej € {1,...,d — m}.
We extend this in a natural way to the empty sequeneg). Thus, for example, id = 4

®[1,2,34),0 = [T1, T2, T3, T4), T[2.4) er,e0] = (1), @2, (—1)2, 24]
and

L, [er,e2,e3,e4] — [(_1)617 (_1)627 (_1)637 (_1)64]'
Finally, we define the operator

Pi [f](ib) = Tiy t Ly, Z fﬂﬁil T Tipy, (wi,e) =2 %, S1 [Bif](wl)

eeZ;{—m
(Note that the operata$ acts only on thel — m coordinatesc; complementary t@.) Thus,

d=1: PO = Py f) () — /_1 Puylf](z)dz,

. 1 1
a=2: U= Pl - [ Pl ade [ Polflena)dr,

1 1
+/ / P[laQ][f](x17x2)dI1dx2.
—1J-1

A pattern emerges and it is confirmed in the following proposi

Proposition 7 For everyd > 1 itis true that
0] d 1,1 1
P S [ ] Plfeds e, de, 60)
m=0 i€Ugm Y 171 -1

whereUy, ., is the set of all strictly monotone sequences of lemgtiom {1, 2,...,d} and a
O-fold integral is defined as the function itself.
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Proof By induction ond > 1. The assertion is certainly true fdr= 1, 2. Integrating
by parts inz4, we have

1 1
f([)O] :/ / [f(x]_“..,lﬂd,]_,l)+f(.’171,...7.'1?d,17—1)]d$]_"'dxd,]_

/ / [/ Tqfe, $1,-~-,$d)d$d}dxl"'dxd—1
1
ZId_l[f(-,...,~,1)—|—f(-,...,~,—1)]—1d_1 l:/lxdfwd(.’“""xd)dxd s

wherel,,[g] = go] for anm-variate functiory.

Let fu(z1,...,2q-1) = f(x1,...,24-1,%1). Giveni € Uy_q ,, it is easy to confirm
from the definition ofP; that

Pilf+] + Pilf-] = Pilf].

Therefore, by the induction assumption,

Lo alfy] + Laalf Z Z / / Pilfl(x)dw;, -+ dwg,,.  (5.2)
m=0 1€U4—1,m
Next, let f(zy,. .., 24 1) = [ \zaf(@1,...,xq)dzq. Since for every € Uy_1 1

1
/ / Pilf](x)da;, -+ - day,,
-1

1
= / / Tiy  Tiy Tdfus oz, wa(@a)dsy - day,, dzg
—1

—1

1 1
:/ / Palf)(ws)das, - - das, . daa,
—1 —1

wherez = [iq, @2, ..., 4m_1,d], and using again the induction assumption, we have
B d
—lglf] = Z(*l)m Z / / Pilfl(z)dzi, -+ - dwy,,
m=1 1€Uq—1,m—1
d
=> (-nm > / / Pilf](z)dwy, - day,,_ dzg. (5.3)
m=1 1€Ug—1,m—1

Recalling the definition ot/, ,,, as the set of all strictly monotone length-sequences from
{1,2,...,d}, itis clear that

Ud—l,m U {i t1e Ud—l,m—l} = Ud,m

form =1,...,d — 1, with obvious corrections fot = 0 andm = d. Putting together (5.2)
and (5.3), we thus deduce that

A0 = T(f) = Laca[fo] + Taca[f=] — o [f)
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indeed equals (5.1) and the proof is complete. i

The identity (5.1) replaces a singlevariate integral wit2? integrals over different faces
of thed-dimensional cube. This may seem as a poor bargain: Not soeRéer that we wish
to recycle derivative values that we have already calcdlatéhe context of extended Filon
method: values of,.,...., On a tartan grid and perhaps higher derivatives at the ‘esttic
Clearly, this is not sufficient information for the compubat of lower-grade coefficients and
we are compelled to calculafeand its lower derivatives as well. Our intention, howevetpi
keep these calculations to an absolute minimum, while ptegggeneral and usable theory,
applicable to all grades. Paradoxically, tifeintegrals in (5.1) provide a better organising
principle for the task in hand than a single integral.

We wish to approximate:-fold integrals of the generic form

1 1
J[h] :/ / 1 Tl g, (X1, T )day - - dagy,.
-1 -1

Assuming thay is analytic in|z| < 1 and

oo oo h-
My, ..., xm) = Z Z 4'3:’,
Jj1=0 jWL:OJ'

whereh; = 921(0), we readily verify that

J1=1 Im
= = (271) -+ - (2m)
— 9om .. . a hos
L 2 e ) g T D1
—9gm i 2J1 92 i 2J2 o2z | ... i 2jm §2im h(0)
o @ DU || A 2+ 2 (2 + 1)
1 J2 JIm
" (0, coshd, —sinh0,.
=2" H < . 8J2 . ) harzs--2,m (0)-
j=1 T
Let us assume that
- 0 cosh § — sinh 6 _
> prsinhrd =~ £ O(67). (5.4)
k=1

Then, recalling the proof of Theorem 6,

v v H mn
Z Z Z Hpkj Sollayay -z |(Thys -3 Tk, )
j=1

k1=1ko=1 km=1

coincides with7 [h] for all polynomialsh of degreep in each variable.
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With greater generality, consideére Uy ,,. Examining (5.1) we observe th&j therein
acts in any coordinate which tin iy, o, ..., i, while, by our analysisSy above acts on
the coordinates i. Altogether, we have an operatSrthat acts in alll coordinates and the
quadrature

R—Z Z Hm S [0 1(ri ) (5.5)

ki=1 km=1

/ / Pilf](x)da;, - - dx;,,

for all polynomialsf of order< p in each variable. Here; , is obtained frome by replacing
eachx;, with r;; and filling-in thed — m remaining coordinates with ones. Moreover, in
B(i) € Z3 we place 0 in theith coordinate if there exists = &, 1 otherwise. We adopt the
convention thaR ) = S1[f](1). Combining (5.5) with (5.1), we thus approximate

coincides with

d

~ > (=)™ Y R (5.6)

m=0 7,6 Ud,wt

Note that (5.6) uses derivatives, ., ..., 0N anm-dimensional tartan grid. For example,
for d = 3, we need to computg at the vertices (a O-dimensional grid),,, f., and f.,
on lines (1-dimensional gridsYy, .., fz,zs and f.,., on squares (2-dimensional grids) and
far 2025 ONthe full 3-dimensional cube — except that the last (and eqeensive) computation
is anyway required for the implementation of extended Fitathods.

As an example, il = 2 we approximate

E%O] ~ Sy fI( Z Pry Sj0,1)[far | (7hy 5 1 Z PryS[1,0) [faa) (1, 7hy)
kl 1 k‘g 1
+ Z Z pklkaS[O,O] [lel‘g](/rk17rk2)'
k?1:1 k?2:1

The approximation (5.5) can be generalised easily to catethg situation when higher
(odd) derivatives are available at the vertices. The idédeistical to the route that led from
(4.112), say, to (4.16): In place of (5.4), we seggk. .., p, andp so that

0 cosh @ — sinh 6

Zpk sinhr,d + p6?sinh § = 7

k=1

+0((07). (5.7)

Exotic quadrature (5.6) is, as a matter of fact, more geramrathere is nothing to prevent
us from applying it tcanyf[ , simply by replacingf with fH i un‘f]]( ;). Of course, this
makes little sense whenax n; is large, but provides an eff|C|ent approach for smalk n;s.

In Table 4 we report the errors committed by (5.6), as appi@glst tof([)o] but also to
other values of. Clearly, formaxn; < 1 the results are excellent. However, already for
the relatively ‘small'n = [2, 3] the error exceeds by far that of even the simplest extended
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v=3 v=4
2.2608_g7 6.5700_12

9.7521_05  2.8998_g9
2.7805_ 05 1.3225_1o

S
Q

S Forol oS
=) ) SN )

1,1] 3.5210 07  8.3656_9
0] | 1172204 3.7876_os
1] | 6.2893_05 1.8871_g0
1] | 1.3636_05  1.0923_10
2,3] [0,0] | 4.2482_o3 2.8663_03

Table 4: Absolute value of the errors committed by the exatiadrature (5.6) for four differ-
entns andf(z,y) = e* %Y,

Filon: the onset of asymptotic behaviour, underlying Fitgpe methods, is very rapid indeed!
Indeed, given thaf} ;" ~ —9.0748_qs, performance is hardly better than just setting this
coefficient to zero.

Note that forr = 3 we have used the values«f, r5, 3 that have been already mentioned
in the previous section, and which result, consistentiy\{st4), in

[ 11 150-13v15 11 _150+13V15 L}
P=1 350 /i05—66v15 390 \/295166v15 2!

The reason for this choice, as well as our choice ahdp for v = 4, will become clear in
Subsection 5.3.

Another pleasing feature apparent from Tables 3—4 is thtneled Filon and exotic
quadrature are in a sense complementary: when one is goedytlhler is bad andice
versa. This is fairly obvious from their distinct organising priptes, since we have opti-
mised extended Filon for oscillatory integrals and desigexotic quadrature to do well in
non-oscillatory setting.

5.2 Higher-grade terms

To illustrate our methodology, consider the bivariate ginéd
R 1 1
fv[za] = / / f(l'h l'g)ug'?](1’1)U£§X22](1'2)d$1dx27
—1J-1

where we assume that > 1 is large enough (so tha{f‘j] oscillates rapidly) whilex; > 0is
small. The obvious idea is to combine our two techniquesraded Filon for the:; variable,

[a1]

exotic quadrature fat,. Thus, lettingF'(x1, z2) = f(z1, z2)un," (x1), we have

1 1 1
flod = / [/ F(xl,m)dm} ULgZ](l"z)d@ =/ [F'(1,z2) —|—F(—1,x2)]u£:’;](x2)d$2

-1 —1 -1

1 1
—/ {/ xlFl.l(xl,xg)da:l} ugff](xg)d@.

—1 -1
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The obvious idea is to apply an extended Filon method in thgleivariabler, and exotic
quadrature in the other variable. For example, we@%fé],w on the second component,

- (_1)n2+a2 nz-‘roéz (a2,
/ h(@)ulg?) (@) de ~ Sy [0:h](1) - Z a*> 18 0 [0:1) (7).
(Tpiny) Tr/“L'VLQ ko=1
while the two non-oscillatory terms are

F(l, CL‘Q) + F(—l xg) = 8[1] [F](l),

1
/ 21 Fy, (21, 22)day = Z PkIS[l] [0, F](7k, )-

-1 k=1

To combine these two, we note that the oper&tobeys a ‘multiplication’ rule which we have
already used in the construction of quadrature formul@)(3é8¢ € Uy, § € Ug.a—m SO
that the two vectors together comprise alfaf2, ..., d} (in other words, they are a partition
of {1,2,...,d}). Moreover, lety € Z3', 8 € Z{ ™, e € I andk € Z% ™. Then

Sy105, - 0ur Ss105) - Ot [l wju )@ vim) = Ssl0g f](), (5.8)

whered € Z‘fr is concatenation of the vectofsandé in the natural order imposed by the

concatenation of andj, while w € Zi is the concatenation af andx in the same order:
For example, letting = 5 and

—[13, j=[245, ~=[01], 6=[101], e=[02, k=[312],
we have
S10,1)[025S[1,0,1) [3523143§5f]($2, r3,25)|(21,73) = Sjo,1,1,0,1] [352333314325f]($)~

Using (5.8), we combine exotic quadrature with extendedr=ind the outcome is

~ —1)netaz
fr,[-,,o‘] ~ % 8[1 as] [asz] 1 1 Z kaS[O az][ailasz](’rkl, >‘|
(w ns )2 =
’ﬂ2+042 [a
[a21 Z a1y )0, F) (1,7, (5.9)
7T:“’"2 ko=1
_ Z Z Pk (I[O‘?J]Soa2][8z1812F](7"k177“k2)] .
k1=1ko=1

If = f (i.e., in the case; = 0) we are recycling the very same function and derivative
values that we have already used in ‘pure’ extended Filoreantic quadratures. If, however,
F= fuﬁ?ll] forny > 1 then extra values are requireflon the tartan grid along the boundary
and f,, on the bivariate tartan grid.

The generalisation to arbitragy > 1 is easy in principle, although notation rapidly be-
comes complicated. Given € Zi, we separate coordinates into ‘slow’ and ‘fast’: a good
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n «a ‘ v=3 v=14
[0,5] [0,0] | 1.1595_o5 3.4146_5
0,1] | 1.7025_05 5.8883_5
[0,10] [0,0] | 2.3932_05 4.6557_o7
0,1] | 1.1273_05  2.6272_o7

Table 5: Absolute value of the errors committed by a comimnadf extended Filon and
exotic quadrature for two different valuesmfand f (x, y) = e*~2Y.

strategy is to choose threshold > 1 and let eacln;, < n* — 1 be ‘slow’, ‘fast’ otherwise.
This partitions{1,2,...,d} into Iy U Iy and we set

F(a) = f(@) [ ] uli ().

1€l

fled =/_11--~/_11 V_11~--/_11 F(z) dei] I ule () da.

i€l i€lp

Then

The idea is to discretise the integrals within square bitackéth exotic quadrature and the
integrals with respect to the ‘fast’ variables using exsshéilon.

It is possible to describe this procedure explicitly andhwiitll generality, but it rapidly
leads to fairly complicated and opaque expressions. ltdbadsly much more helpful to state
it in words. Thus, we replace the inner non-oscillatory gné with a formula identical to
(5.6), except that we act only on ‘slow’ variables: the ‘fagiriables are retained intact. This
results in an oscillatory integral in ‘fast’ variables, whiwe discretise with the extended Filon
methon[:f]M ., Since both methods can be expressed in terms of the actapecétorss
on tartan grid extending over faces[efl, 1]¢ of different dimensions, we use identity (5.8)
to simplify the resulting method in a manner similar to (5.9)

In Table 5 we used a combination of extended Filon and exeiddrature — actually, the
scheme (5.9) — for two different values afwith n; = 0. (Thus,F = f.) Note that for
n = [0, 5] takingr = 4 does not lead to much advantage (if at all) over 3: this is in all
likelihood caused by the fact that the conditioning of vesw@*-!! deteriorates rapidly with
V.

In our experience, ifi is small, it is probably preferable to treat the entire inéegl asF
and employd-variate exotic quadrature (similar to (5.6)), rather thairing it with extended
Filon. The reason is that, as we have already mentioned gttersa** might have large
norms and this contributes significantly to error for law Of course, mixed quadrature is
unavoidable whem = 0 (and we cannot use ‘full’ extended Filon), whileaxn;, > 1
(hence the integrand oscillates rapidly).

5.3 Optimal coefficientsr

We use the freedom that we have in the choice0k r, < --- < r,_1 to maximise the
orderp in (5.4).
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Our first observation is that, similarly to the proof of Prgjtion 5,p is odd and (5.4) is
equivalent to the linear conditions

v / 1 Z_)
amtl = =0,1,...,—. 5.10
kz:lpkrk 2m + 37 m P I ( )

We identify the right-hand side of (5.10) with theth moment of the Borel measude (x) =
1x3dz, z € 0,1] - in other words,

1 ! +ld 1 7
1 mTy = — c .
2 /0 * T m +3 " +
Lemma8 Let(,1 < (2 < -+ < (-1 be the zeros of the orthogonal polynomial of

degreer — 1 with respect to the measufé — x)d{(z), set(, = 1 and letb;, bs,...,b, be
the weights of the-point Radau quadrature with this measure. Then

by E=1,2

Ty = Cl/k’a Pk = 3 5 Ly ey
, \/ka

Moreover, in that casg = 4v — 2

V.

Proof Recall that a Radau quadrature with the nades ¢, < ... <c¢, =1is

1 v
| s@ic@ = S ngtc.n)
k=1

where(, s have been defined above and we can obtain the welights. , b,, by requiring
that the formula is exact foy(x) = 2i~1,i = 1,...,v: this results in a nonsingular Vander-
monde system. Moreover, the method is of orzier— 1, i.e. exact for all polynomialg of
order< 2v — 2 (Davis & Rabinowitz 1984). The lemma follows at once fronil(®. O

It is easy to identify the orthogonal polynomial in the staémt of the lemma with the
Jacobi polynomiaP(Vl_’%), shifted to the interval0, 1]. Note that, because of orthogonality,
the coefficients, ..., r,_; indeed reside i1f0, 1), as required.

We have not managed to present optimal configuration of qinadr nodes for (5.7), a
formula occurring when we incorporate higher derivativaserms of orthogonality condi-
tions. Although it is possible to derive optimals for smallv by brute force, the general
problem is open. Itis just one of a long list of issues peitajiio the theory and computation
with modified Fourier series in a cube that require much rrtitention.
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