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Abstract

In this paper we expand upon the theme of modified Fourier expansions and extend
the theory to a multivariate setting and to expansions in eigenfunctions of the Laplace–
Neumann operator. We pay detailed attention to expansions in ad-dimensional cube and
to an effective derivation of expansion coefficients there by means ofquadratures of highly
oscillatory integrals. Thus, we present asymptotic and Filon-type formulæfor an effec-
tive derivation of expansion coefficients and discuss their design and relative advantages.
Such methods are effective only for large indices, hence we introduceand analyse alter-
native quadrature schemes that require relatively modest number ofadditional function
evaluations.

1 Introduction

In this paper we revisit a theme that concerned us in two recent papers (Iserles & Nørsett
2006a, Iserles & Nørsett 2006b), namely rapidly-convergent expansion of smooth functions.

The point of departure in (Iserles & Nørsett 2006a) was themodified Fourier basis

H1 = {cosπnx : n ≥ 0} ∪ {sinπ(n− 1
2 )x : n ≥ 1}.

Given a smoothf in [−1, 1], which need not be periodic, we expand it in the form

f̂C
0 +

∞
∑

n=1

[f̂C
n cosπnx+ f̂S

n sinπ(n− 1
2 )x], (1.1)
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where

f̂C
n =

∫ 1

−1

f(x) cosπnxdx, f̂S
n =

∫ 1

−1

f(x) sin(n− 1
2 )xdx.

The main immediate advantage of (1.1), in comparison with the familiar Fourier expansion,
is that the coefficientŝfC

n andf̂S
n exhibitO

(

n−2
)

decay forn ≫ 1. This need be compared
to theO

(

n−1
)

decay of conventional Fourier coefficients fornon-periodicsmooth functions
and has two important consequences, one theoretical and theother computational. Firstly, for
analyticf the expansion (1.1) converges uniformly tof in [−1, 1]. (We refer the reader to
(Iserles & Nørsett 2006a) for considerably more detailed discussion of this issue, in particular
to the question of convergence of functions that exhibit weaker smoothness.) Secondly, the
more rapid decay of coefficients allows for the implementation of a range of highly effective
modern quadrature methods for rapidly oscillating integrals (Huybrechs & Vandewalle 2006,
Iserles & Nørsett 2005, Olver 2006b) in their computation. This means that for any prescribed
accuracy we can evaluatêfC

n andf̂S
n for n ≤ m in justO(m) operations – computational cost

that compares advantageously with them log2m cost of FFT.
The underlying reason for the more rapid decay of expansion coefficients of modified

Fourier has been identified in (Iserles & Nørsett 2006b): the functions in the basisH1 are
all eigenfunctions ofd2/dx2 and they obey zero Neumann boundary conditions at±1. (This
should be compared withsinπnx from the conventional Fourier basis: also an eigenfunction
of d2/dx2, but one that obeys zero Dirichlet boundary conditions at±1.) Zero boundary
conditions annihilate the leading term in the asymptotic expansion of expansion coefficients
in inverse powers ofn, thereby leading toO

(

n−2
)

decay.
An immediate consequence of this identification of more rapid decay with zero Neumann

boundary conditions is the construction of expansions thatconverge more rapidly than the
modified Fourier expansion. Specifically, the coefficients of expansion

∞
∑

n=0

f̂nun(x)

of a smooth functionf in the eigenfunctionsun of d2s/dx2s for somes ∈ N, equipped with
the high-order Neumann boundary conditions

u(i)
n (−1) = u(i)

n (1) = 0, i = s, s+ 1, . . . , 2s− 1,

exhibitO
(

n−s−1
)

decay forn≫ 1 (Iserles & Nørsett 2006b).
The identification of rapid decay with zero Neumann boundaryconditions allows an al-

ternative generalisation with arguably even greater significance. Thus, suppose thatΩ ∈ R
d

is a bounded, simply-connected domain with sufficiently smooth boundary. Letun be the
nth eigenfunction of the Laplace operator−∆ in Ω, equipped with zero Neumann boundary
conditions along∂Ω, and letλn be the corresponding eigenvalue,n ≥ 0. Given a sufficiently
smooth functionf , defined on the closure ofΩ, we consider the expansion

∞
∑

n=0

f̂nun(x), x ∈ Ω, (1.2)

where

f̂n =

∫

Ω

f(ξ)un(ξ)dV, n ≥ 0. (1.3)
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We note from general theory of partial differential equations that, without loss of generality,
λ0 = 0, λn > 0 for n ∈ N and, provided that we arrange eigenvalues so thatm < n implies
λm ≤ λn, theWeyl theoremholds:

λn ∼ meas(Ω)n
2
d , n≫ 1.

Moreover, the set{un : n ≥ 0} is dense inL(Ω) (Courant & Hilbert 1962). All this creates
grounds for a hope that the univariate theory of (Iserles & Nørsett 2006a) (and, indeed, of
(Iserles & Nørsett 2006b)) might be generalised to a multivariate setting. In this paper we
address this issue and argue that this hope is well grounded in reality. The univariate theory
can indeed be comprehensively scaled up! Having said so, themore demanding framework
calls upon substantially greater theoretical insight and algorithmic dexterity.

In Section 2 we introduce the multivariate theory. Thus, we determine the rate of decay of
expansion coefficients and derive their asymptotic expansion. The latter is critical to an effec-
tive computation of the expansion. Our narrative is valid also in the case when the Laplacian
is replaced by a polyharmonic operator and Neumann boundaryconditions are of suitably
high order but this is an approach that we do not pursue further in this paper.

The main obstacle in an implementation of the ideas of Section 2 is that we need to know
the Laplace–Neumann spectrumexplicitly in Ω. Even in a plane the set of domains where
such information is available is currently restricted justto rectangles, ellipses, annuli and three
types of triangles: equilateral, right triangle with two acute angles ofπ4 and right triangle with
acute angles ofπ6 and π

3 . The list is even shorter in higher dimensions.
Section 3 is concerned with thed-dimensional cube[−1, 1]d, d ≥ 1. This affords us an

opportunity to flesh out details on the results of Section 2 and prepare the groundwork for the
numerical work of Section 4. The case of the cube also highlights the crucial role played by
integrals that oscillate only in some of the variables. Notethat, on the face of it, stepping up
from [−1, 1] to [−1, 1]d by a Cartesian product is natural. Yet, it is neither necessarily easy
nor straightforward and we need to get many details right.

The centrepiece of this paper is Section 4, devoted to the numerical computation of expan-
sion coefficients using asymptotic and Filon-type techniques for highly oscillatory quadrature.
Our goal is made more complicated because, as we have alreadyobserved, a significant pro-
portion of expansion coefficients originate in integrals that oscillate only in some of their vari-
ables. This calls for a generalisation of an approach which we have dubbed “exotic quadra-
ture” in (Iserles & Nørsett 2006a) and which is explained in detail in Section 5.

We note in passing that the number of coefficients required toapproximate a function to
given accuracy in a cube (or, for that matter, in other multivariate domains) can be reduced
drastically once we observe that large coefficients assume the pattern of ahyperbolic cross
(Babenko 1960). This phenomenon occurs also in Fourier and Chebyshev approximations, but
it is less suitable for easy implementation in tandem with FFT techniques. Our asymptotics-
based approach to the computation of expansion coefficientsis just right for combination with
the hyperbolic cross, and this leads to very substantial savings. Thus, in[−1, 1]d, instead of
computingO

(

Nd
)

expansion coefficients (whereN represents required accuracy), we need
to compute justO

(

N(log2N)d−1
)

. We intend to examine this issue in considerably greater
detail in a future paper.

The approach of Sections 3 and 4 lends itself to other domainsin the plane where the
Laplace–Neumann eigenfunctions are known, yet this requires substantial further effort. In a
forthcoming paper we intend to discuss in great detail the case ofΩ ⊂ R

2 being an equilateral
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triangle and its exploitation in the approximation of functions in arbitrary bounded bivariate
polygonal domains. Another future paper will address acceleration techniques of expansions
in Laplace–Neumann eigenfunctions.

2 Multivariate theory

Let Ω ⊂ R
d be a simply-connected, bounded domain with piecewise-smooth boundary and

assume thatu ∈ L(Ω) is an eigenfunction of the Laplace–Neumann problem inΩ, that is

−∆u = λu, x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω. (2.1)

We assume further thatλ 6= 0 – as a matter of fact, in that caseλ > 0, but this is irrelevant to
the present argument. Givenf ∈ C∞[Ω], our concern is with〈f, u〉 =

∫

Ω
fudV . Replacing

u with −λ−1∆u and applying twice the Stokes theorem, we have

〈f, u〉 = − 1

λ

∫

Ω

f(x)∆u(x)dV = − 1

λ

∫

∂Ω

f(x)
∂u(x)

∂n
dS +

1

λ

∫

Ω

∇f(x) · ∇u(x)dV

= − 1

λ

∫

∂Ω

f(x)
∂u(x)

∂n
dS +

1

λ

∫

∂Ω

∂f(x)

∂n
u(x)dS − 1

λ

∫

Ω

u(x)∆f(x)dV.

Substituting the Neumann boundary conditions, we thus deduce that

〈f, u〉 =
1

λ

∫

∂Ω

∂f(x)

∂n
u(x)dS − 1

λ
〈∆f, u〉. (2.2)

We iterate (2.2),

〈f, u〉 =
1

λ

∫

∂Ω

∂f(x)

∂n
u(x)dS − 1

λ2

∫

∂Ω

∂∆f(x)

∂n
u(x)dS +

1

λ2
〈∆2f, u〉

= · · · = −
s
∑

m=0

1

(−λ)m+1

∫

∂Ω

∂∆mf(x)

∂n
u(x)dS +

1

(−λ)s+1
〈∆s+1f, u〉

for anys ∈ Z+. Lettings→ ∞, we obtain the asymptotic expansion

〈f, u〉 ∼ −
∞
∑

m=0

1

(−λ)m+1

∫

∂Ω

∂∆mf(x)

∂n
u(x)dS, λ≫ 1. (2.3)

This expansion converges only in the asymptotic sense of theWatson Lemma.Yet, this is
sufficient for the purposes of this paper since it demonstrates the pattern of dependence of
〈f, u〉 uponλ.

Note that this pattern is considerably more complicated than a naive look at (2.3) may
imply. It is not just theλ−1 that matters but also the asymptotic behaviour of the integral
∫

∂Ω
[df(x)/dn]u(x)dS. For largeλ the eigenfunctionu is highly oscillatory, and this implies

that the above integral is itself small – typically it can be also expanded in inverse powers of
λ and the leading term isO(λ−α), whereα > 0 depends upon critical points ofu (Wong
2001). This, incidentally, is precisely the reason why the annihilation of the leading term,
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−λ−1
∫

∂Ω
f(x)[du(x)/dn]dS is so important: sinceu oscillates rapidly, its normal derivative

is large and the integral behaves likeλβ for someβ > 0.
An illustration of both the importance and the limited utility of the asymptotic expansion

(2.3) is provided by perhaps the simplest multivariate example, the squareΩ = [−1, 1]2. In
that case, to which we return with considerably greater generality and detail in Section 3,
there are four kinds of eigenvalue–eigenfunction pairs, all conveniently labelled by a pair of
indices,

λ[0,0]
m,n = π2(m2 + n2), u[0,0]

m,n(x, y) = cos(πmx) cos(πny),

λ[0,1]
m,n = π2[m2 + (n− 1

2 )2], u[0,1]
m,n(x, y) = cos(πmx) sin[π(n− 1

2 )y],

λ[1,0]
m,n = π2[(m− 1

2 )2 + n2], u[1,0]
m,n(x, y) = sin[π(m− 1

2 )x] cos(πny),

λ[1,1]
m,n = π2[(m− 1

2 )2 + (n− 1
2 )2], u[1,1]

m,n(x, y) = sin[π(m− 1
2 )x] sin[π(n− 1

2 )y],

where the range ofm andn is, for the time being, not important. Concentrating for thetime
being just onu[1,1]

m,n , we note that each integral in (2.3) is a linear combination of four line
integrals along the faces of the square, for example

1
2

∫ 1

−1

g(x, 1) sinπ(m− 1
2 )xdx.

This integral itself can be expanded asymptotically in inverse powers ofm and it behaves like
O
(

m−2
)

for m≫ 1 (Iserles & Nørsett 2006a). Combining this with (2.3), it follows in short
order that

〈f, u[1,1]
m,n〉 ∼ O

(

1

m2n2

)

, m, n≫ 1.

For comparison, suppose that, in place of the Laplace–Neumann basis, we use the standard
Fourier basis (more specifically, in a square, a Cartesian products of Fourier bases). This
means the replacement ofu[1,1]

m,n with

v[1,1]
m,n (x, y) = sin(πmx) sin(πny)

and it is easy to use the technique of (Iserles & Nørsett 2006a) to demonstrate that

〈f, v[1,1]
m,n 〉 ∼ O

(

1

mn

)

, m, n≫ 1.

This underlies not just the speedup in convergence implicitin using Laplace–Neumann bases
in preference to Fourier bases but also the role of the asymptotic expansion (2.3) in elucidating
this phenomenon.

We cannot emphasise hard enough how important it is to consider the asymptotic be-
haviour of surface integrals in the determination of the overall decay of expansion coef-
ficients in (2.3). An extreme example is provided by lettingΩ be the bivariate unit disc,
Ω = {(x, y) : x2 +y2 < 1}. It is an elementary exercise to prove that the Laplace–Neumann
eigenfunctions are

ur,s(x, y) = Tr

(

y

(x2 + y2)
1
2

)

Jr(j
′
r,s(x

2 + y2)
1
2 ), r ∈ Z+, s ∈ N.
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HereTr is ther-degree Chebyshev polynomial,Jr is a Bessel function andj′r,s is thesth
positive zero ofJ′r. The corresponding eigenvalue is(j′r,s)

2. We deduce that
∫

∂Ω

g(x)ur,s(x)dS =
Jn(j′r,s)

2π

∫ π

−π

g(cos θ, sin θ) cos rθdθ. (2.4)

Provided thatg is analytic in an annulus surrounding the unit circle, it follows that the above
integral decays at anexponentialrate, i.e. ase−γr for someγ > 0. (It can also be approxi-
mated rapidly and precisely by means of FFT, but we do not pursue this route in this paper.)

The disc is, in a sense, an exceptional case because the integral in (2.4) has no critical
points. The unit cube, elaborated in some detail in Sections3–5, is more typical.

Be it as it may, the expansion (2.3) provides the theoreticalbackdrop to expansions in
Laplace–Neumann eigenfunctions and this is the right moment to introduce appropriate ter-
minology and notation. We denote the countable set of Laplace–Neumann eigenvalues byλn,
n ∈ Z+, whereλk ≤ λn for k < n (note that multiple eigenvalues are typical in this situ-
ation). A corresponding eigenfunction is denoted byun. Observe thatλ0 = 0 and, without
loss of generality,u0 ≡ 1. We recall from Section 1 the Weyl Theorem:

λn ∼ meas(Ω)n
2
d , n≫ 1, (2.5)

wheremeas(Ω) is the measure ofΩ.
Letting f̂n = 〈f, un〉 and ûn = 〈un, un〉, n ∈ Z+, we consider the expansion off in

terms of the (dense inL[Ω]) basis of eigenfunctions,

∞
∑

n=0

f̂n

û
1
2
n

un(x), x ∈ Ω. (2.6)

It is eminently possible to combine the current approach with that of (Iserles & Nørsett
2006b) and consider, in place of the Laplace operator, a polyharmonic one. As an exam-
ple – probably, the only realistic example in this setting – let u be an eigenfunction of the
biharmonic–Neumann problem,

∆2u = λu, x ∈ Ω, ∆u = ∆
∂u

∂n
= 0, x ∈ ∂Ω.

Proceeding as before, we apply the Stokes theorem four times, while substituting the zero
Neumann boundary conditions. Thus,

〈f, u〉 =
1

λ
〈f,∆2u〉 =

1

λ

(∫

∂Ω

f∆
∂u

∂n
−
∫

∂Ω

∂f

∂n
∆u+ 〈∆f,∆u〉

)

=
1

λ
〈∆f,∆u〉 =

1

λ

[∫

∂Ω

∆f
∂u

∂n
−
∫

∂Ω

(

∆
∂f

∂n

)

u+ 〈∆2f, u〉
]

.

This can be iterated and the outcome is an expansion similar to (2.6). Note, however, that
in the biharmonic case (2.5) is replaced byλn ∼ meas(Ω)n

4
d , hence we can expect more

rapid convergence – how rapid, needless to say, depends on critical points onun along∂Ω
and, as long as general theory is unavailable, need be examined on a case-by-case basis. We
do not pursue this route in this paper since the Dirichlet–Neumann case is difficult enough,
represents a raft of challenges and, clearly, its clarification must precede any elaboration of
the polyharmonic case.
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3 Eigenfunctions in thed-dimensional cube

In this section we discuss Laplace–Neumann bases in thed-dimensional cube[−1, 1]d and
present an asymptotic expansion of the corresponding expansion coefficients.

In principle, all we are doing is to generalise the univariate case, already considered in
great detail in (Iserles & Nørsett 2006a), by using Cartesian products. Having said so, this
generalisation is far from straightforward and is replete with fiddly details and special cases.
This underlies the importance of getting the notation and terminology right.

It is instructive to commence from the univariate case, bothto provide the starting point
to an inductive argument and to introduce requisite notation in a fairly transparent and gentle
manner. In the cased = 1 we have two families of eigenfunctions,

cosπnx, n ≥ 0 and sinπ(n− 1
2 )x, n ≥ 1

and the modified Fourier expansion off ∈ L[−1, 1] is

1
2 f̂

[0]
0 +

∞
∑

n=1

[f̂ [0]
n cosπnx+ f̂ [1]

n sinπ(n− 1
2 )x], (3.1)

where

f̂ [0]
n =

∫ 1

−1

f(x) cos(πnx)dx, f̂ [1]
n =

∫ 1

=1

f(x) sin[π(n− 1
2 )x]dx.

Our first observation is that a single integral,f̂ [0]
0 , is exceptional, both because it is non-

oscillatory and since it is scaled by12 . We say that it is ofgrade0 and designate remaining

integrals to be of grade 1. The coefficientsf̂ [0]
n andf̂ [1]

n have been expanded asymptotically
in (Iserles & Nørsett 2006a): for anyf ∈ C∞[−1, 1] it is true that

f̂ [0]
n ∼ (−1)n

∞
∑

m=0

(−1)m

(πn)2m+2
[f (2m+1)(1) − f (2m+1)(−1)],

f̂ [1]
n ∼ (−1)n−1

∞
∑

m=0

(−1)m

[π(n− 1
2 )]2m+2

[f (2m+1)(1) + f (2m+1)(−1)], n≫ 1.

To write (3.1) in a manner which is more convenient for multivariate work we let

µ[0]
n = n, µ[1]

n = n− 1
2 , c[j]n =







1
2 , n = 0, j = 0,
0, n = 0, j = 1,
1, n ≥ 1, j ∈ {0, 1},

and set
u[0]

n (x) = cosπnx, u[1]
n (x) = sinπ(n− 1

2 )x.

Therefore the expansion (3.1) can be written succinctly in the form

∞
∑

m=0

1
∑

j=0

c[j]m f̂ [j]
m u[j]

m (x), (3.2)
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where

f̂ [j]
n ∼ (−1)n+j

∞
∑

m=0

(−1)m

(πµ
[j]
n )2m+2

[f (2m+1)(1) − (−1)jf (2m+1)(−1)], n≫ 1. (3.3)

We next consider the multivariate cased ≥ 1: our aim is to generalise the expansion (3.2)
and the asymptotic formula (3.3). LetZ

d
2 be the set of all thed-tuples of binary numbers and

Z
d
+ the set ofd-tuples of nonnegative integers. We employ multi-index notation, in particular

|e| =

d
∑

k=1

ek, ∂m
x = ∂m1

x1
∂m2

x2
· · · ∂md

xd
.

For everyy ∈ [−1, 1]d andα ∈ Z
d
2 we define

Sα[f ](y) =
∑

e∈Z
d
2

(−1)|e|+e⊤αf((−1)e1y1, (−1)e2y2, . . . , (−1)edyd).

Theorem 1 The Laplace–Neumann eigenfunctions in[−1, 1]d are

u[α]
n (x) =

d
∏

j=1

u[αj ]
nj

(xj), nj ≥ αj , j = 1, . . . , d, α ∈ Z
d
2 (3.4)

and it is true that (in the Euclidean norm)‖u[α]
n ‖ = 1. Moreover, the expansion off ∈

C∞[−1, 1]d is
∑

n∈Z
d
+

∑

α∈Z
d
2

c[α]
n f̂ [α]

n u[α]
n (x), (3.5)

where

c[α]
n =

{

0, ∃j ∈ χ(n) such thatαj = 1,
2−#χ(n), otherwise,

whereχ(n) = {i : ni = 0} and#S is the number of terms in the setS, while

f̂ [α]
n =

∫

[−1,1]d
f(x)u[α]

n (x)dx1 · · · dxd.

Proof It is clear by inspection that (3.4) are the eigenfunctions,forming a Cartesian
product of univariate eigenfunctions. Moreover,

‖u[α]
n ‖2 =

d
∏

j=1

∫ 1

−1

u[αj ]
nj

2
(xj)dxj = 1,

because the univariate eigenfunctions are of unit norm. Theremainder of the theorem is an
immediate consequence of a Cartesian product of (3.2). 2

In line with the univariate setting, we say thatf̂ [α]
n is of graded − #χ(n). Intuitively

speaking, grades means that, forn1, . . . , nd ≫ 1, the eigenfunctionu[α]
n is oscillatory ins

variables.
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Theorem 2 Each coefficient̂f [α]
n has the asymptotic expansion

f̂ [α]
n ∼ (−1)|n|+|α|

∞
∑

m=0

(−1)m

π2m+2d

∑

|j|=m

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
, n1, . . . , nd ≫ 1.

(3.6)

Proof By induction ond. For d = 1 (3.6) coincides with (3.3). Assuming that it is
correct ford−1, we apply the asymptotic expansion to the firstd−1 coordinates: exchanging
summation and integration whenever necessary, we have

f̂ [α]
n ∼ (−1)|ñ|+|α̃|

∞
∑

m=0

(−1)m

π2m+2d−2

∑

|̃|=m

1

µ
[α1]
n1

2j1+2
· · ·µ[αd−1]

nd−1

2jd−1+2

×
∫ 1

−1

Sα̃[∂2̃+1
x f ](1, . . . , 1, xd)u

[αd]
nd

(xd)dxd, n1, . . . , nd−1 ≫ 1,

where

α̃ = [ α1 α2 · · · αd−1 ] and ̃ = [ j1 j2 · · · jd−1 ].

Applying (3.3) to the univariate integral in the last expansion, we obtain
∫ 1

−1

Sα̃[∂2̃+1
x f ](1, . . . , 1, xd)u

[αd]
nd

(xd)dxd

∼ (−1)nd+αd

∞
∑

jd=0

(−1)jd

(πµ
[αd]
nd )2jd+2

[∂2jd+1
xd

f(1, . . . , 1) − (−1)αd∂2jd+1
xd

f(1, . . . , 1,−1)].

Therefore,

f̂ [α]
n ∼ (−1)|n|+|α|

∞
∑

m=0

∞
∑

jd=0

(−1)m+jd

π2m+2jd+2d

∑

|̃|=m

1

µ
[α1]
n1

2j1+2
· · ·µ[αd−1]

nd−1

2jd−1+2
µ

[αd]
nd

2jd+2

× {Sα̃[∂2̃+1
x ∂2jd+1

xd
f ](1, . . . , 1) − (−1)αdSα̃[∂2̃+1

x ∂2jd+1
xd

f ](1, . . . , 1,−1)}.

However, it follows at once from the definition ofSα that

Sα[∂2j+1
x f ](y)

=
∑

ẽ∈Z
d−1

2

(−1)|ẽ|+ẽ⊤α̃∂2j+1
x f((−1)e1y1, . . . , (−1)ed−1yd−1, yd)

− (−1)αd

∑

ẽ∈Z
d−1

2

(−1)|ẽ|+ẽ⊤α̃∂2j+1
x f((−1)e1y1, . . . , (−1)ed−1yd−1,−yd)

= Sα̃[∂2̃+1
x ∂2jd+1

xd
f ](ỹ, yd) − (−1)αdSα̃[∂2̃+1

x ∂2jd+1
xd

f ](ỹ,−yd).

We conclude that

f̂ [α]
n ∼ (−1)|n|+|α|

∞
∑

m=0

∞
∑

jd=0

(−1)m+jd

π2m+2jd+2d

∑

|̃|=m

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
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= (−1)|n|+|α|
∞
∑

jd=0

∞
∑

m=jd

(−1)m

π2m+2d

∑

|̃|=m−jd

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2

= (−1)|n|+|α|
∞
∑

m=0

(−1)m

π2m+2d

m
∑

jd=0

∑

|̃|+jd=m

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2

= (−1)|n|+|α|
∞
∑

m=0

(−1)m

π2m+2d

∑

|j|=m

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
,

which is (3.6). 2

To illustrate the last two theorems we letd = 2 andf(x, y) = ex−2y. This very simple
function has the virtue of leading to explicit and exceedingly simple expressions which, with
some persistence, can be verified directly. Thus,

f̂ [0,0]
m,n =

∫ 1

−1

∫ 1

−1

ex−2y cos(πmx) cos(πny)dxdy =
2(−1)m+nγ[0,0]

(1 + π2m2)(4 + π2n2)
,

f̂ [0,1]
m,n =

∫ 1

−1

∫ 1

−1

ex−2y cos(πmx) sin[π(n− 1
2 )y]dxdy =

2(−1)m+n

(1 + π2m2)[4 + π2(n− 1
2 )2]

,

f̂ [1,0]
m,n =

∫ 1

−1

∫ 1

−1

ex−2y sin[π(m− 1
2 )x] cos(πny)dxdy =

2(−1)m+n−1γ[1,0]

[1 + π2(m− 1
2 )2](4 + π2n2)

,

f̂ [1,1]
m,n =

∫ 1

−1

∫ 1

−1

ex−2y sin[π(m− 1
2 )x] sin[π(n− 1

2 )y]dxdy

=
2(−1)m+n−1γ[1,1]

[1 + π2(m− 1
2 )2][4 + π2(n− 1

2 )2]

where

γ[0,0] = (e2 − 1)(e − e−3), γ[0,1] = (e2 − 1)(e + e−3),

γ[1,0] = (e2 + 1)(e − e−3), γ[1,1] = (e2 + 1)(e + e−3)

and the corresponding asymptotic expansions are

f̂ [0,0]
m,n ∼ 2(−1)m+nγ[0,0]

π4m2n2
− 2(−1)m+nγ[0,0]

π6

(

4

m2n4
+

1

m4n2

)

+ · · · ,

f̂ [0,1]
m,n ∼ 2(−1)m+nγ[0,1]

π4m2(n− 1
2 )2

− 2(−1)m+nγ[0,1]

π6

[

4

m2(n− 1
2 )4

+
1

m4(n− 1
2 )2

]

+ · · · ,

f̂ [1,0]
m,n ∼ 2(−1)m+n−1γ[1,0]

π4(m− 1
2 )2n2

− 2(−1)m+n−1γ[1,0]

π6

[

4

(m− 1
2 )2n4

+
1

(m− 1
2 )4n2

]

+ · · · ,

f̂ [1,1]
m,n ∼ 2(−1)m+n−1γ[1,1]

π4(m− 1
2 )2(n− 1

2 )2
− 2(−1)m+n−1γ[1,1]

π6

[

4

(m− 1
2 )2(n− 1

2 )4

+
1

(m− 1
2 )4(n− 1

2 )2

]

+ · · · .
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This is the place to discuss briefly issues of convergence. Ithas been proved in (Iserles
& Nørsett 2006a) that the univariate modified Fourier expansion of a Lipschitz function con-
verges uniformly in any closed subinterval of(−1, 1) where it is continuous. Moreover, if
f is analytic in an open complex domain inclusive of[−1, 1] then the expansion converges
at the endpoints: this is an example of superiority of modified over conventional Fourier ex-
pansions in this setting, since the latter fail to converge there unlessf is periodic. The speed
of convergence is also of interest. It has been proved in (Iserles & Nørsett 2006a) that an
N -term expansion converges at±1 asO

(

N−1
)

and it was conjectured there that, subject to
sufficient smoothness off , the convergence in(−1, 1) is at the rate ofO

(

N−2
)

(compare to
theO

(

n−1
)

rate of conventional Fourier!). This has been recently proved by Olver (2007).
The above rate of convergence can be generalised from[−1, 1] to thed-dimensional cube

[−1, 1]d at once by means of a Cartesian product. This is illustrated in Fig. 3.1. It is easy
to observe that the error is substantially larger on the boundary and, perhaps unsurprisingly,
it reaches its peak at(1,−1), the maximum off . DoublingN halves the error along the
boundary but it decreases it roughly by a factor of four inside the square, in line with the
theory in (Olver 2007).

4 Quadrature in the d-dimensional cube

Laplace–Neumann eigenfunctions oscillate rapidly, consequently modified Fourier coeffi-
cients are integrals with highly oscillatory kernels. Thisallows us to use in the current setting
powerful and affordableFilon-type techniques for highly oscillatory quadrature which have
been originally developed in (Iserles & Nørsett 2005). Thishas been accomplished in (Iserles
& Nørsett 2006a) for the univariate expansion and it is instructive to commence by discussing
the additional constraints imposed by current imperatives, as compared with standard highly
oscillatory quadrature.

Firstly, we need an efficient approach not just to evaluate a single highly oscillatory inte-
gral but a large number of coefficientŝf [α]

n : except forn = 0, all these are distinct oscillatory
integrals. All modern methods for highly oscillatory quadrature require the computation off
and its derivatives at a number of points – clearly, in the current situation we wish to avoid
repeated computation of function values for eachn within the relevant range. Instead, we will
compute function values and derivatives only once and recycle them repeatedly for eachn.

Secondly, not all integrands oscillate rapidly and not all oscillations are alike. Specifically,
we need to pay attention to the grades of eachf̂ [α]

n . Since the underlying eigenfunction
u

[α]
n oscillates in justs variables and is non-oscillatory in the remainingd − s, we need to

apply highly oscillatory quadrature techniques to justs variables and otherwise use classical
quadrature. Except that the imperative of reusing the same function and derivative information
for all n andα impose restrictions on the non-oscillatory quadrature. Classical quadrature, in
particular Gaussian quadrature, is not longer adequate. Weare instead compelled to develop
new non-oscillatory quadrature techniques, which we have dubbed “exotic quadrature” in
(Iserles & Nørsett 2006a).

Both above issues have been addressed comprehensively in a univariate setting in (Iserles
& Nørsett 2006a, Iserles & Nørsett 2006b) but in the multivariate case we are faced with
additional challenges which a naive Cartesian product falls short of solving.
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Figure 3.1: The absolute error in approximatingex−2y by the truncated expansion (3.5), with
n1, n2 ≤ N . In the top row we approximate in[−1, 1]2 with N = 20 andN = 40 respec-
tively, while the bottom row reports the same information inthe cube[− 9

10 ,
9
10 ]2.

4.1 Asymptotic methods

The obvious approach to the computation of the coefficientsf̂
[α]
n is to truncate the asymptotic

expansion (3.6). This results in theasymptotic method

A[α]
n,N = (−1)|n|+|α|

N−1
∑

m=0

(−1)m

π2m+2d

∑

|j|=m

Sα[∂2j+1
x f ](1)

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
, (4.1)

whereN ∈ N. It is well-defined forn1, . . . , nd ≥ 1 and makes sense whenn1, . . . , nd are
sufficiently large.
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n α A[α]
n,1 A[α]

n,2 A[α]
n,3 A[α]

n,4

[1, 1] [0, 0] 1.2387−01 5.3467−02 2.2000−02 8.9497−03

[1, 0] 9.0754−01 5.8271−01 3.2326−01 1.6631−01

[0, 1] 9.4931−01 1.5525+00 2.5182+00 4.0825+01

[1, 1] 5.5575+00 9.9012+00 1.6428+01 2.6753+01

[2, 3] [0, 0] 6.4873−04 3.5305−05 1.7440−06 8.2437−08

[1, 0] 1.9140−03 1.3024−04 7.8481−06 4.4273−07

[0, 1] 1.2215−03 8.8296−05 5.9558−06 3.9204−07

[1, 1] 3.4367−02 2.8864−04 2.1680−05 1.5393−06

[7, 4] [0, 0] 1.1929−05 3.0407−07 7.7062−09 1.9521−10

[1, 0] 1.8384−05 4.6957−07 1.1904−08 3.0155−10

[0, 1] 2.0581−05 6.8351−07 2.2688−08 7.4834−10

[1, 1] 3.1635−05 1.0519−06 3.4816−08 1.1519−09

[10, 10] [0, 0] 1.7659−07 7.5158−10 3.0824−12 1.2529−14

[1, 0] 2.6245−07 1.1278−09 4.6428−12 1.8897−14

[0, 1] 2.2041−07 1.0311−09 4.6721−12 2.1023−14

[1, 1] 3.2704−07 1.5423−09 7.0089−12 3.1568−14

Table 1: Absolute value of the errors,|A[α]
n,N − f̂

[α]
n |, committed by different asymptotic

methods, four differentns andf(x, y) = ex−2y.

Lemma 3 Let n̄ = min{n1, . . . , nd}. Then

A[α]
n,N ∼ f̂ [α]

n + O
(

n̄−2(N+d)
)

, n̄≫ 1. (4.2)

Proof Follows immediately by comparing (3.6) and (4.1). 2

Before contemplating further the method (4.1), it is important to observe that its imple-
mentation islinear in the number of coefficients, once we precompute∂2n+1

x f , 0 ≤ |n| ≤
N − 1, at the2d vertices of the cube. This fulfils our first goal, yet (4.1) clearly falls short of
delivering useful approximation for terms of grades≤ d−1 and, indeed, for small̄n. Without
disregarding this important issue, we defer its discussionfor the time being.

Both advantages and disadvantages of the asymptotic method(4.1) are apparent from
Table 1. Its performance is poor for ‘small’ns: it either diverges or converges very slowly
and incurs unacceptably large error. Yet, that very ‘smallness’, which depends on the function
f , is deceptive. Asymptotic behaviour kicks in for fairly moderate values of̄n. Thus,n̄ = 2
is already within convergent regime, albeit perhaps too slow for our needs.

Having said so, the lesson of recent work on highly oscillatory quadrature and modified
Fourier expansions is that the great virtue of an asymptoticexpansion is often not as a numer-
ical methodper se,but as a theoretical device underlying and underpinning more effective
numerical methods. This is the subject of the next subsection.
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4.2 Filon-type methods

Letψ be a sufficiently smooth function defined in[−1, 1]d and such that

∂2m+1
x ψ((−1)e) = ∂2m+1

x f((−1)e), |m| ≤ N − 1, e ∈ Z
d
+. (4.3)

In other words, the odd derivatives ofψ andf of degree≤ 2N − 1 match at all the corners
of the cube. This results in2d

∑N−1
j=0

(

d+2j
d−1

)

≈ 22d−1Nd/d! conditions. Our underlying
assumption is that the expansion coefficients corresponding to the functionψ,

Q[α]
n,N = ψ̂[α]

n , (4.4)

can be calculated explicitly. This is certainly the case when ψ is ad-variable polynomial, an
approach which we adopt herewith. (Note that interesting non-polynomial choices ofψ, in
a different context, have been recently discussed in (Olver2006a), but we do not follow this
route in the current paper.)

The approximation (4.4) is an elementary example of aFilon-type method(Iserles &
Nørsett 2005) and it is usual to augment (4.3) with additional interpolation conditions. Thus,
in full generality, we chooses ≥ 2d quadrature pointsck in [−1, 1]d, the first2d of which are
the vertices. In addition, we chooses index sets

Dk = {ik,1, ik,2, . . . , ik,mk
}, k = 1, . . . , s,

whereik,j ∈ Z
d
+. For each1 ≤ k ≤ 2d we stipulate that

{i ∈ Z+ : |i| ≤ N − 1} ⊆ Dk.

We choose a polynomialψ that satisfies the interpolation conditions

∂
ik,j

x ψ(ck) = ∂
ik,j

x f(ck), j = 1, . . . ,mk, k = 1, . . . , s, (4.5)

and note that (4.3) is a subset of (4.5). The corresponding Filon-type method is defined by
(4.4).

Lemma 4 Given a Filon-type method (4.4) and subject to the interpolation conditions (4.5),
it is true that

Q[α]
n,N ∼ f̂ [α]

n + O
(

n̄−2(N+d)
)

, n̄≫ 1.

Proof Follows at once by lettingψ−f in place off in the asymptotic formula (4.1) and
using the interpolation condition (4.3). 2

Note that (4.5) representsm⋆ =
∑s

k=1mk interpolation conditions. Choosing a suitable
d-variate polynomialψ with the right number of degrees of freedom is one of the main chal-
lenges in the design of Filon-type methods for modified Fourier expansions in a cube. Note
further that the relationship between the numberm⋆ of interpolations conditions and the num-
ber of degrees of freedomr⋆, say, in the polynomial basis is in general unclear. Clearly, we
requirer⋆ ≥ m⋆, but for general conditions (4.5) we might requirer⋆ to be larger (possibly,
much larger) thanm⋆. There are two possible obstacles to our construction and wemust
discuss them both.
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Firstly – and this phenomenon occurs already ford = 1 – (4.3) is a so-calledBirkhoff–
Hermite interpolation problem(Lorenz, Jetter & Riemenschneider 1983): we interpolate to
non-consecutive derivatives and we cannot take it for granted that this can be done with
r⋆ = m⋆. Secondly, multivariate polynomial interpolation (even Lagrangian interpolation,
to say nothing of the Birkhoff–Hermite kind) need not exist for a particular configuration of
interpolation points and conditions (4.5) in a multivariate setting.

A comparison of Lemma 3 and 4 allows for an alternative interpretation of Filon-type
methods in the current setting, which we have already considered in the univariate case in
(Iserles & Nørsett 2006a) and which we will find very useful indeed in the next subsection.
Thus,

Q[α]
n,N = A[α]

n,N + O
(

n̄−2(N+d)
)

(4.6)

= A[α]
n,N +

(−1)|n|+|α]+N

π2(N+d)

∑

|j|=N

E [α]
j [f ]

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
+ O

(

n̄−2(N+d+1)
)

and, comparing with (3.6), we interpretE [α]
j [f ] as an approximation toSα[∂2j+1

x f ](1). There-
fore, we abandon altogether the interpretation of the Filon-type method as the integral where
f has been replaced by an interpolating polynomialψ, subject to the conditions (4.5). Instead,
we seek coefficientsσ[α]

j (k, j), where|j| = N , j = 1, . . . ,mk, k = 1, . . . , s, so that

E [α]
j [g] =

s
∑

k=1

mk
∑

l=1

σ
[α]
j (k, l)∂

ik,l

x g(ck) = Sα[∂2j+1
x g](1) (4.7)

is correct for all polynomials in a given basis of cardinality m⋆. In place of interpolation,
followed by quadrature, we reduce the problem at hand to the approximation of derivatives by
finite differences. We will pursue this further in the sequel.

To illustrate this ind = 2, considerN = 1 and three configurations of quadrature points
ck, all with multiplicity mk ≡ 1:

(a)

s s

s s

s

s

s

s

(b)

s s

s s

s

s

s

s

s

s s

s
(c)

s s

s s

s

s

s

s

s s

s s

Thus, for (a) we haves = 8 and the quadrature points are(±1,±1), (±1, 0) and(0,±1). For
both (b) and (c) there ares = 12 points, namely(±1,±1), (±r,±2r) and(±2r,±r) for (b)
and(±1,±1), (±1,±r) and(±r,±1) for (c). Herer ∈ (0, 1

2 ) is a parameter: we have used
r = 1

3 in our examples.
Let us consider (a) first, explaining our procedure in some detail. The interpolation con-

ditions (4.5) reduce to

∂x∂yψ(ck) = ∂x∂yf(ck), k = 1, . . . , 8.
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In other words, lettingΨ = ψxy andF = fxy, we reduce the problem to the bivariate
Lagrangian interpolation

Ψ(ck) = F (ck), k = 1, . . . , 8.

We have eight degrees of freedom, hence we take

Ψ(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
y + a8xy

2.

Lengthy, yet straightforward, computer algebra results inthe method

Q[0,0]
m,n = A[0,0]

m,n ,

Q[0,1]
m,n = A[0,1]

m,n +
2(−1)m+n

π6m2(n− 1
2 )4

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

+1

+1

−1

−1

−2+2

0

0

fxy,

Q[1,0]
m,n = A[1,0]

m,n +
2(−1)m+n

π6(m− 1
2 )4n2

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

+1

−1

−1

+1

00

−2

+2

fxy,

Q[1,1]
m,n = A[1,1]

m,n − 2(−1)m+n

π6(m− 1
2 )2(n− 1

2 )4

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

+1

+1

+1

+1

−2−2

0

0

fxy

− 2(−1)m+n

(m− 1
2 )4(n− 1

2 )2

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

+1

+1

+1
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00
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fxy.
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Likewise, for (b) and (c) we have twelve degrees of freedom and in both cases choose

Ψ(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3

+ a11x
3 + a12xy

3.

Note that the underlying interpolation problems have a unique solution – this was also the case
for (a) but not if the inner square in the stencil corresponding to (b) is not slanted.

The outcome are the methods

Q[0,0]
m,n = A[0,0]

m,n + 18
13
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Q[0,1]
m,n = A[0,1]

m,n +
2(−1)m+n
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Q[1,0]
m,n = A[1,0]

m,n − 6
41
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Q[1,1]
m,n = the same as in case (a).

Finally, in case (c) we have

Q[0,0]
m,n = A[0,0]
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+ 4
3
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n α Method (a) Method (b) Method (c)

[1, 1] [0, 0] 1.2387−01 1.4931−02 5.4150−03

[1, 0] 8.4921−02 9.2728−03 7.4304−02

[0, 1] 3.8306−01 3.2903−02 1.3309−01

[1, 1] 1.1586+00 1.1586+00 1.3190+00

[2, 3] [0, 0] 6.4873−04 1.5634−03 1.2678−04

[1, 0] 8.7572−04 6.8660−04 5.3409−04

[0, 1] 1.1945−03 6.2396−04 4.8653−04

[1, 1] 1.5549−03 1.5549−03 1.5203−03

[7, 4] [0, 0] 1.1929−05 1.7825−05 3.3349−06

[1, 0] 1.3234−05 1.2591−05 1.1881−05

[0, 1] 1.7236−05 7.6216−06 5.4031−06

[1, 1] 1.8892−05 1.8892−05 1.8530−05

[10, 10] [0, 0] 1.7659−07 3.7784−08 7.7300−08

[1, 0] 1.5408−07 1.3313−07 1.1536−07

[0, 1] 2.2221−07 1.0698−07 8.0162−08

[1, 1] 1.8429−07 1.8429−07 1.8088−07

Table 2: Absolute value of the errors committed by the Filon-type methods (a), (b) and (c),
four differentns andf(x, y) = ex−2y.

With enough persistence, it is possible to derive this kind of schemes for larger number
of quadrature points and for higher derivatives. Yet, it is quite clear that this brute-force ap-
proach rapidly leads to unacceptable complexity, to say nothing of the cased ≥ 3. Moreover,
as apparent from Table 2 and comparison with Table 1, the three above schemes represent
fairly modest improvement in comparison with the basic asymptotic methodA[α]

n,1, hence the
imperative of using more interpolation points is much more than just a matter of idle quest for
generality. This motivates the work of the next subsection,where, building upon the interpre-
tation (4.6), we construct Filon-type methods for large number of points, higher derivatives
and arbitrary dimensions in a structured manner.

4.3 Extended Filon methods on a tartan grid

The methods (a)–(c) from the last subsection, while delivering but a minor improvement in
comparison with the asymptotic methodA[α]

n,1, are fairly cumbersome to construct. Had we
followed along the same path and attempted to design more effective methods, whether using
higher derivatives or more points or both, this would have resulted in unacceptable complexity
– and all this just in two variables and only for expansion terms of graded.

In the current subsection we develop an alternative approach which cuts across all the
problems of the last paragraph. Thus, it allows fairly transparent and automatic construction
of methods with arbitrary number of derivatives and large number of points, for alld ≥ 1 and
(although we defer that issue to the next subsection) relevant to terms of all grades.
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Our first ingredient is the interpretation (4.6) of a Filon-type method as “an asymptotic
method plus an approximation to the next expansion term”. This we generalise in the follow-
ing manner. Suppose that we have evaluated the functionf or its derivatives in some gridR
in [−1, 1]d – note that we do not assume that the same derivatives are evaluated at each point
of the grid. We denote the set of all these function and derivative values byF and suppose
thatF contains all derivative values necessary for the construction of the asymptotic method
A[α]

n,N . An extended Filon methodis

Q[α]
n,N,M = A[α]

n,N + (−1)|n|+|α|
N+M−1
∑

m=N

(−1)m

π2(m+d)

∑

|j|=m

E [α]
j [f ]

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
, (4.8)

where (compare with (4.7))

E [α]
j [f ] =

∑

c∈R

∑

i∈Π(c)

σ
[α]
j (k, l)∂i

xf(c) ≈ Sα[∂2j+1
x f ](1), N ≤ |j| ≤ N +M − 1,

(4.9)
andΠ(c) is the set of all the derivatives off evaluated atc ∈ R – in other words,

i ∈ Π(c) ⇒ ∂i
xf(c) ∈ F .

Our next ingredient is the sort of gridR that we find particularly advantageous in struc-
tured use of Cartesian products in[−1, 1]d: a tartan grid. Let the pointsr1 < r2 < · · · <
rν = 1 be given, wherer1 > 0. Then

R = {(ri1(−1)e1 , ri2(−1)e2 , . . . , rid
(−1)ed) : e ∈ Z

d
2, i1, . . . , id ∈ {1, 2, . . . , ν}}.

(4.10)
For example (in this subsection the narrative applies to general d ≥ 1 but examples, for
obvious reasons, are ford = 2), lettingν = 4, we might have the grid
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s s

s s
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s s

s s

s s
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s
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s
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We commence our discussion from the caseN = 1 andΠ(c) = 1 for all c ∈ R: in other
words, we evaluate just the cross-derivative∂1

xf at every grid point.
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Proposition 5 Givens ∈ {0, 1, . . . , ν}, there exist coefficientsa[0,s]
k , a

[1,s]
k such that

ν
∑

k=1

a
[0,s]
k sinh rkθ = θ2s sinh θ + O

(

θ2ν+1
)

, (4.11)

ν
∑

k=1

a
[1,s]
k cosh rkθ = θ2s cosh θ + O

(

θ2ν
)

. (4.12)

Proof We prove our assertion just for (4.11), since the proof of (4.12) is identical. Com-
paring the Taylor expansions

ν
∑

k=1

a
[0,s]
k sinh rkθ =

∞
∑

m=0

1

(2m+ 1)!

[

ν
∑

k=1

a
[0,s]
k r2m+1

k

]

θ2m+1,

θ2s sinh θ =
∞
∑

m=s

1

(2m− 2s+ 1)!
θ2m+1,

we deduce that (4.11) is equivalent to the Vandermonde linear algebraic system

ν
∑

k=1

a
[0,s]
k r2m+1

k =

{

0, m = 0, . . . , s− 1,
(2m+1)!

(2m−2s+1)! , m = s, . . . , ν − 1.

The system being nonsingular, the assertion of the proposition follows. 2

Note that we trivially havea[i,0]
k = 0 for k = 1, . . . , ν − 1, i = 0, 1 anda[i,0]

ν = 1.
Moreover,a[i,s] = 0 for s ≥ ν.

Theorem 6 The sum

ν
∑

k1=1

ν
∑

k2=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,sj ]
kj



Sα[∂1
xf ](rk1

, rk2
, . . . , rkd

) (4.13)

coincides withSα[∂2s+1
x f ](1) for all functionsf which are polynomials of degree2ν + 1 in

all their variables.

Proof We adopt the language ofshift anddifferentialoperatorsEx and∂x respectively
and recall that for an analytic functionf it is formally true that

f(y1, y2, . . . , yd) = Ey1

x1
Ey2

x2
· · ·Eyd

xd
f(0) = ey1∂x1 ey2∂x2 · · · eyd∂xd f(0).

Since

Sα[∂2s+1
x f ](y) =

∑

e∈Z
d
2

(−1)|e|+e⊤α∂2s1

x1
· · · ∂2sd

xd
E(−1)e1y1

x1
· · ·E(−1)edyd

xd
g(0),
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whereg(x) = ∂1
xf(x), it is true that

ν
∑

k1=1

ν
∑

k2=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,sj ]
kj



Sα[∂2s+1
x f ](rk1

, rk2
, . . . , rkd

)

=

ν
∑

k1=1

ν
∑

k2=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,sj ]
kj





∑

e∈Z
d
2

(−1)|e|+e⊤α∂2s1

x1
∂2s2

x2
· · · ∂2sd

xd

× E
(−1)e1rk1
x1 E

(−1)e2rk2
x2 · · ·E(−1)edrkd

xd g(0).

Note, however, that, by easy induction,

∑

e∈Z
d
2

(−1)|e|+e⊤αe(−1)e1rk1
∂x1

+···+(−1)edrkd
∂xd

=
∑

e∈Z
d−1

2

(−1)|e|+e⊤αe(−1)e1rk1
∂x1

+···+(−1)ed−1rkd−1
∂xd−1 [erkd

∂xd − (−1)αde−rkd
∂xd ]

· · · =

d
∏

j=1

[erkj
∂xj − (−1)αj e−rkj

∂xj ].

Consequently,

ν
∑

k1=1

ν
∑

k2=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,sj ]
kj



Sα[∂1
xf ](rk1

, rk2
, . . . , rkd

)

=

ν
∑

k1=1

ν
∑

k2=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,sj ]
kj

∂2sj
xj





d
∏

j=1

[erkj
∂xj − (−1)αj e−rkj

∂xj ]g(0)

=
d
∏

j=1

{

∂2sj
xj

ν
∑

k=1

a
[αj ,sj ]
k [erk∂xj − (−1)αj e−rk∂xj ]

}

g(0)

Note further that forαj = 0

ν
∑

k=1

a
[αj ,sj ]
k [erk∂xj − (−1)αj e−rk∂xj ] = 2

ν
∑

k=1

a
[αj ,sj ]
k sinh(rk∂xj

),

while αj = 1 yields

ν
∑

k=1

a
[αj ,sj ]
k [erk∂xj − (−1)αj e−rk∂xj ] = 2

ν
∑

k=1

a
[αj ,sj ]
k cosh(rk∂xj

).

Likewise,

Sα[∂2s+1
x f ](1) =

d
∏

j−1

∂2sj
xj

[e∂xj − (−1)αj e−∂xj ]g(0)
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and again we can replace the term in square brackets with either 2 sinh ∂xj
or 2 cosh ∂xj

,
depending onαj being 0 or 1, respectively. Comparison of the two expressions, in tandem
with (4.11), (4.12) andg = ∂x1

· · · ∂xd
f , prove the theorem. 2

Our first concrete example of an extended Filon method is

Q[α]
n,1,2,ν = A[α]

n,1 −
(−1)|n|+|α|

π2(d+1)

∑

|j|=1

1

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
(4.14)

×
ν
∑

k1=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,jk]
kj



Sα[∂1
xf ](rk1

, . . . , rkd
).

In the same vain we let

Q[α]
n,1,3,ν = Q[α]

n,1,2,ν +
(−1)|n|+|α|

π2(d+2)

∑

|j|=2

1

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
(4.15)

×
ν
∑

k1=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,jk]
kj



Sα[∂1
xf ](rk1

, . . . , rkd
)

and so on, up toQ[α]
n,1,ν,ν . In general,Q[α]

n,N,M,ν uses the firstN odd derivatives on the tartan
grid to approximate the nextM −N odd derivatives at the vertices. In other words, it updates
the asymptotic methodA[α]

n,N with a finite-difference of the remaining terms inA[α]
n,M .

It is important to quantify the computational cost and suitable means of implementation
of extended Filon methods like (4.14) and (4.15):

1. We commence by computing∂x1
∂x2

· · · ∂xd
f on the tartan grid: altogether,(2ν)d

derivative evaluations.

2. Next, we precompute quantities of the form

σ
[α]
j =

(−1)m+|α|

π2m+2d
Sα[∂2j+1

x f ](1), m = 0, . . . , N − 1, α ∈ Z
d
2

and

σ
[α]
j =

(−1)m+|α|

π2m+2d

ν
∑

k1=1

· · ·
ν
∑

kd=1





d
∏

j=1

a
[αj ,jk]
kj



Sα[∂1
xf ](rk1

, . . . , rkd
)

for m = N, . . . ,M − 1 andα ∈ Z
d
2.

3. Finally, for everyn ∈ N
d of interest, we form the linear combination

Q[α]
n,N,M,ν = (−1)|n|

M
∑

m=0

∑

|j|=m

σ
[α]
j

µ
[α1]
n1

2j1+2
· · ·µ[αd]

nd

2jd+2
.
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n α Q[α]
n,1,2,3 Q[α]

n,1,3,3 Q[α]
n,1,2,4 Q[α]

n,2,3,3 Q̃[α]
n,2,3,3

[1, 1] [0, 0] 5.0405−02 4.7641−03 5.3270−02 4.2553−03 2.0422−02

[1, 0] 5.6043−01 1.4023−01 5.8154−01 2.2828−01 3.1139−01

[0, 1] 1.3929+00 1.4166−01 1.5393+00 2.1693+00 2.1694+00

[1, 1] 9.0370+00 3.2836+00 9.8311+00 1.4573+01 1.4566+01

[2, 3] [0, 0] 2.5611−04 3.7868−06 3.4693−05 4.8262−06 1.1911−06

[1, 0] 9.9682−05 7.1106−06 1.2863−04 6.6283−06 6.0393−06

[0, 1] 2.3085−04 2.7402−05 8.2995−05 5.0529−07 3.5428−07

[1, 1] 1.2645−04 6.1027−06 2.7600−04 7.8830−06 7.8300−06

[7, 4] [0, 0] 6.3459−08 1.5005−07 2.8844−07 7.9156−08 1.1813−10

[1, 0] 9.1392−08 2.3913−07 4.4550−07 1.2014−07 5.1403−11

[0, 1] 6.7342−07 9.3961−07 5.7105−07 3.7894−08 3.7881−08

[1, 1] 1.0304−06 1.4448−06 8.8030−07 5.7017−08 5.7370−08

[10, 10] [0, 0] 3.3656−09 1.9034−08 1.6589−08 1.8096−09 4.3265−11

[1, 0] 1.5307−08 4.9295−08 4.1323−08 1.7826−09 2.7506−11

[0, 1] 5.7149−08 7.4508−08 1.5752−08 1.2754−09 2.2044−10

[1, 1] 1.0861−07 1.4674−07 4.2167−08 6.6095−10 6.6534−10

Table 3: Absolute value of the errors committed by extended Filon methods for five different
ns andf(x, y) = ex−2y.

The overall cost islinear in the number of coefficientŝf [α]
n that we wish to approximate in

this manner.
Note, additionally, that in the special caseN = 1,M = 2 we deduce froma[α,0] = 0 that

only points along the perimeter of the grid feature with nonzero coefficients. Thus, in place
of (2ν)d function evaluations, it suffices to compute the derivativeof f at just(2ν)d − [2(ν −
1)]d ≈ d2dνd−1 points at the intersection of the boundary with the tartan grid.

To flesh out numbers, letν = 3 and

r1 =

√

495 − 66
√

15

33
, r2 =

√

495 + 66
√

15

33
, r3 = 1

(the reason for this choice will be apparent in the next section). Easy calculation confirms that

a[0,1] = [− 99
10

100−49
√

15√
495−66

√
15

− 99
10

100+49
√

15√
495+66

√
15

60 ],

a[1,1] = [−21 + 23
2

√
15 −21 − 23

2

√
15 42 ]

a[0,2] = [− 3267
2

5−3
√

15√
495−66

√
15

− 3267
2

5+3
√

15√
495+66

√
15

495 ]

a[1,2] = [− 99
2 + 297

10

√
15 − 99

2 − 297
10

√
15 99 ].

It is apparent from the three leftmost columns in Table 3 that, while the performance for
n̄ ≤ 2 is still unacceptably poor, the performance of extended Filon definitely leads to smaller
error for larger̄ns.



26

Another, most unwelcome, observation is that the errors inQ[α]
n,1,2,3 andQ[α]

n,1,3,3 are
roughly similar, at least for the reported values ofn. A probable reason is that the magni-
tude of the coefficients ofa[α,j] increases fairly rapidly withj. Thus, methods really ‘take
off’ only for fairly large n̄ – for example, the errors ofQ[0,0]

[20,20],1,3,3 andQ[0,0]
[20,20],1,2,4 are

1.1867−09 and1.2941−13 – the latter is fairly respectable.
Indeed, a significant downside of our approach is that the approximation of derivatives

is a notoriously ill-conditioned problem. An effective design of extended Filon methods for
significantly larger values ofν might well abandon altogether the goal of maximising order
of approximation in (4.11) and (4.12). A more suitable approach is probably to choose least-
norm vectorsa[α,j] consistent with lower order, or perhaps just to give up on extended Filon,
reconcile ourselves to compute higher derivatives and use an asymptotic method. We do not
pursue this issue further in this paper but might return to itin future publications.

Extended Filon methods (4.14) and (4.15) are both based on computing only the cross-
derivative∂x1

· · · ∂xd
f on the tartan grid. An obvious – yet unnecessary – next step isto

compute thereboth∂x1
· · · ∂xd

f and∂x1
· · · ∂xi−1

∂3
xi
∂xi+1

· · · ∂xd
f for all i = 1, . . . , d. This,

however is an overkill and represents poor use of computational resources.
Recall from the asymptotic expansion (3.6) that asymptoticorder is determined exclu-

sively by derivatives at the vertices. Thus, the sole purpose of using derivative values else-
where in the cube is to approximate higher derivatives at thevertices. In principle, thus, we
could have computed intermediate derivatives just at the vertices. Our approach strikes a mid-
dle course, since it leads to far simpler and more transparent expressions for generald: We
compute

1. The cross-derivative∂1
xf on the tartan gridR – this requires(2ν)d function evaluations;

2. The next derivative,∂1+2ei
x f , i = 1, . . . , d, whereei ∈ R

d is theith unit vector, on the
boundary ofR: altogether,2d[νd − (ν − 1)d] function evaluations;

3. The derivative∂
1+2ei1

+···+2eir
x f , 1 ≤ i1 < · · · < ir ≤ d, 1 ≤ r ≤ d, at the2d vertices

– altogether
(

d
2

)

2d values.

Givens ∈ {0, 1, . . . , ν+1}, we consider coefficientsa[0,s]
k , a

[1,s]
k , k = 1, . . . , ν, ã[0,s] and

ã[1,s] such that
ν
∑

k=1

a
[0,s]
k sinh rkθ + ã[0,s]θ2 sinh θ = θ2s sinh θ + O

(

θ2ν+3
)

, (4.16)

ν
∑

k=1

a
[1,s]
k cosh rkθ + ã[1,s]θ2 cosh θ = θ2s cosh θ + O

(

θ2ν+2
)

. (4.17)

Note that existence and uniqueness of such coefficients are an open problem. Proceeding
like in the proof of Proposition 5, it is easy to show that (4.16), for example, is equivalent to

ν
∑

k=1

a
[0,s]
k r2m+1

k + (2m)(2m+ 1)ã[0,s] =

{

0, m = 0, . . . , s− 1,
(2m+1)!

(2m−2s+1)! , m = s, . . . , ν.

Is this linear system always nonsingular? We do not know. Hadwe replaced(2m)(2m + 1)
by 2m, it would have been easy to prove so by a limiting argument on Vandermonde matrices.
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We have confirmed non-singularity for smallνs and ‘interesting’ (in the sense of the next
subsection) values ofr1, . . . , rν−1 and this is as much as we can say at present juncture of
time.

Proceeding similarly to the proof of Theorem 6, we let

G[i,s]
j =

ν
∑

k=1

a
[i,s]
k [erk∂xj − (−1)ie−rk∂xj ] + ã[i,s]∂2

xj
[e∂xj − (−1)ie−∂xj ],

wherei ∈ {0, 1} and recall thatg = ∂1
xf . We now observe that, by virtue of (4.16) and (4.17),

it is true that

G[α]
j =

d
∏

j=1

G[αj ,sj ]
j [g](0) = Sα[∂2s+1

x f ](1) (4.18)

for all polynomialsf of degree2ν + 4 in each of their coordinates.
It is important to realise what (4.18) means. We demonstratethis for d = 2, noting that

the general case is just a matter of more complicated notation. Thus, in two variables

G[α]
j =

2
∏

j=1

G[αj ,sj ]
j [g](0) =

ν
∑

k1=1

ν
∑

k2=1

a
[α1,s1]
k1

a
[α2,s2]
k2

[erk1
∂x1 − (−1)α1e−rk1

∂x1 ]

× [erk2
∂x2 − (−1)α2e−rk2

∂x2 ]∂[1,1]
x f(0, 0)

+ ã[α1,s1]
d
∑

k2=1

a
[α2,s2]
k2

[e∂x1 − (−1)α1e−∂x1 ]

× [erk2
∂x2 − (−1)α2e−rk2

∂x2 ]∂[3,1]
x f(0, 0)

+ ã[α2,s2]
d
∑

k1=1

a
[α1,s1]
k1

[e∂x2 − (−1)α2e−∂x2 ]

× [erk1
∂x1 − (−1)α1e−rk1

∂x1 ]∂[1,3]
x f(0, 0)

+ ã[α1,s1]ã[α2,s2][e∂x1 − (−1)α1e−∂x1 ][e∂x2 − (−1)α2e−∂x2 ]∂[3,3]
x f(0, 0)

=

ν
∑

k1=1

ν
∑

k2=1

a
[α1,s1]
k1

a
[α2,s2]
k2

Sα[fx1x2
](rk1

, rk2
)

+ ã[α1,s1]
d
∑

k2=1

a
[α2,s2]
k2

Sα[fx1x1x1x2
](1, rk2

)

+ ã[α2,s2]
d
∑

k1=1

a
[α1,s1]
k1

Sα[fx1x2x2x2
](rk1

, 1)

+ ã[α1,s1]ã[α2,s2]Sα[fx1x1x1x2x2x2
](1, 1).

A generalisation for alld = 3 is straightforward and it is clear how the derivative information
specified above is used.

We now define the extended Filon methodQ[α]
n,2,M,ν , where3 ≤ M ≤ ν + 1, as fol-

lows: commence from the asymptotic expansionA[α]
n,M , retain eachSα[∂2j+1

x f ] which we
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can compute with available data (i.e.,j = 0, j = ei andj = ei1 + ej2 for j1 < j2) and

replace each remainingSα[∂2j+1
x f ] with G[α]

j
.

For example, ford = 2, lettingM = 3, we can use exact terms for all choices ofj, except
for j = [0, 2] andj = [2, 0]. Moreover,

a[α,0] = eν , ã[α,0] = 0, a[α,1] = 0, ã[α,1] = 1,

therefore

G[α]
0,2 =

ν
∑

k=1

a
[α2,2]
k Sα[∂x1

∂x2
f ](1, rk) + ã[α2,2]Sα[∂x1

∂3
x2
f ](1, 1),

G[α]
2,0 =

ν
∑

k=1

a
[α1,2]
k Sα[∂x1

∂x2
f ](rk, 1) + ã[α1,2]Sα[∂3

x1
∂x1

f ](1, 1).

Table 3 displays in its two rightmost columns the error committed byQ[α]
n,2,3,3 for the

functionf(x, y) = ex−2y, where we have used at the first instance

r1 = 0.25880489112795273420, r2 = 0.71973603716981453919, r3 = 1.

This choice is designed to maximise, in the spirit of Subsection 5.3, the order of underlying
exotic quadrature. Our other choice, denotedQ̃[α]

n,2,3,3, corresponds to the fairly arbitrarily
chosenr = [13 ,

2
3 , 1] and it displays considerably better behaviour for largen̄. However, it

would have led in Section 5 to worse exotic quadrature. In general, the numbers follow the
pattern that we have already identified for other extended Filon methods: poor performance
for n̄ = 1, rapid improvement for increasinḡn.

5 Exotic quadrature

5.1 The 0-grade coefficient

While extended Filon methods are exceedingly effective for moderately largēn, they are fairly
ineffective for small̄n ≥ 1 and, like asymptotic methods, cannot be used forn̄ = 0. The main
idea ofexotic quadrature(Iserles & Nørsett 2006b) is to reuse the derivatives off that have
been already computed for the implementation of Filon-typemethods, to evaluate quadrature
formulæ for non-oscillatory integrals. This ultimately leads to non-classical quadrature meth-
ods which use both function and derivative values. Althoughreminiscent of the more familiar
Gauss–Turan methods(Davis & Rabinowitz 1984), they are of an altogether different kind
and present us with novel challenges.

We commence our analysis from the single grade-0 term,

f̂
[0]
0 =

∫ 1

−1

∫ 1

−1

· · ·
∫ 1

−1

f(x)dx1dx2 · · · dxd.

It is an easy exercise to prove by repeated integration by parts that

d = 1 : f̂
[0]
0 = f(1) + f(−1) −

∫ 1

−1

xfx(x)dx,
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d = 2 : f̂
[0,0]
0 = [f(1, 1) + f(1,−1) + f(−1, 1) + f(−1,−1)]

−
∫ 1

−1

x1[fx1
(x1, 1) + fx1

(x1,−1)]dx1

−
∫ 1

−1

x2[fx2
(1, x2) + fx2

(−1, x2)]dx2

+

∫ 1

−1

∫ 1

−1

x1x2fx1x2
(x1, x2)dx1dx2.

To generalise this construction to alld, we leti be a vector of integers of lengthm such that
i1 < i2 < · · · < im, 1 ≤ i1 andim ≤ d. We denote byσ(i) the vector of lengthd − m
consisting of the remaining components of[1, 2, . . . , d], in natural order. Givenx ∈ [−1, 1]d

ande ∈ Z
m
2 , we letxi,e be a vector in[−1, 1]d where

(xi,e)l =

{

xl, l = ij for somej ∈ {1, . . . ,m},
(−1)ej , l = σj(i) for somej ∈ {1, . . . , d−m}.

We extend this in a natural way to the empty sequencei = ∅. Thus, for example, ind = 4

x[1,2,3,4],∅ = [x1, x2, x3, x4], x[2,4],[e1,e2] = [(−1)e1 , x2, (−1)e2 , x4]

and
x∅,[e1,e2,e3,e4] = [(−1)e1 , (−1)e2 , (−1)e3 , (−1)e4 ].

Finally, we define the operator

Pi[f ](x) = xi1 · · ·xim

∑

e∈Z
d−m

2

fxi1
xi2

···xim
(xi,e) = xi1 · · ·xim

S1[∂1
xf ](xi).

(Note that the operatorS acts only on thed−m coordinatesxi complementary toi.) Thus,

d = 1 : f̂
[0]
0 = P∅[f ](x) −

∫ 1

−1

P[1][f ](x)dx,

d = 2 : f̂
[0,0]
0 = P∅[f ](x1, x2) −

∫ 1

−1

P[1][f ](x1, x2)dx1 −
∫ 1

−1

P[2][f ](x1, x2)dx2

+

∫ 1

−1

∫ 1

−1

P[1,2][f ](x1, x2)dx1dx2.

A pattern emerges and it is confirmed in the following proposition.

Proposition 7 For everyd ≥ 1 it is true that

f̂
[0]
0 =

d
∑

m=0

(−1)m
∑

i∈Ud,m

∫ 1

−1

∫ 1

−1

· · ·
∫ 1

−1

Pi[f ](x)dxi1dxi2 · · · dxim
, (5.1)

whereUd,m is the set of all strictly monotone sequences of lengthm from{1, 2, . . . , d} and a
0-fold integral is defined as the function itself.
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Proof By induction ond ≥ 1. The assertion is certainly true ford = 1, 2. Integrating
by parts inxd, we have

f̂
[0]
0 =

∫ 1

−1

· · ·
∫ 1

−1

[f(x1, . . . , xd−1, 1) + f(x1, . . . , xd−1,−1)]dx1 · · · dxd−1

−
∫ 1

−1

· · ·
∫ 1

−1

[∫ 1

−1

xdfxd
(x1, . . . , xd)dxd

]

dx1 · · · dxd−1

= Id−1[f( · , . . . , · , 1) + f( · , . . . , · ,−1)] − Id−1

[∫ 1

−1

xdfxd
( · , . . . , · , xd)dxd

]

,

whereIm[g] = ĝ
[0]
0 for anm-variate functiong.

Let f±(x1, . . . , xd−1) = f(x1, . . . , xd−1,±1). Giveni ∈ Ud−1,m it is easy to confirm
from the definition ofPi that

Pi[f+] + Pi[f−] = Pi[f ].

Therefore, by the induction assumption,

Id−1[f+] + Id−1[f−] =

d−1
∑

m=0

(−1)m
∑

i∈Ud−1,m

∫ 1

−1

· · ·
∫ 1

−1

Pi[f ](x)dxi1 · · · dxim
. (5.2)

Next, letf̃(x1, . . . , xd−1) =
∫ 1

−1
xdf(x1, . . . , xd)dxd. Since for everyi ∈ Ud−1,m−1

∫ 1

−1

· · ·
∫ 1

−1

Pi[f̃ ](x)dxi1 · · · dxim−1

=

∫ 1

−1

· · ·
∫ 1

−1

xi1 · · ·xim−1
xdfxi1

···xim−1
xd

(xı̃)dxi1 · · · dxim−1
dxd

=

∫ 1

−1

· · ·
∫ 1

−1

Pı̃[f ](xı̃)dxi1 · · · dxim−1
dxd,

whereı̃ = [i1, i2, . . . , im−1, d], and using again the induction assumption, we have

−Id−1[f̃ ] =

d
∑

m=1

(−1)m
∑

i∈Ud−1,m−1

∫ 1

−1

· · ·
∫ 1

−1

Pi[f̃ ](x)dxi1 · · · dxim−1

=

d
∑

m=1

(−1)m
∑

i∈Ud−1,m−1

∫ 1

−1

· · ·
∫ 1

−1

Pı̃[f ](x)dxi1 · · · dxim−1
dxd. (5.3)

Recalling the definition ofUd,m as the set of all strictly monotone length-m sequences from
{1, 2, . . . , d}, it is clear that

Ud−1,m ∪ {ı̃ : i ∈ Ud−1,m−1} = Ud,m

for m = 1, . . . , d− 1, with obvious corrections form = 0 andm = d. Putting together (5.2)
and (5.3), we thus deduce that

f̂
[0]
0 = Id[f ] = Id−1[f+] + Id−1[f−] − Id−1[f̃ ]
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indeed equals (5.1) and the proof is complete. 2

The identity (5.1) replaces a singled-variate integral with2d integrals over different faces
of thed-dimensional cube. This may seem as a poor bargain: Not so! Remember that we wish
to recycle derivative values that we have already calculated in the context of extended Filon
method: values offx1x2···xd

on a tartan grid and perhaps higher derivatives at the vertices.
Clearly, this is not sufficient information for the computation of lower-grade coefficients and
we are compelled to calculatef and its lower derivatives as well. Our intention, however, is to
keep these calculations to an absolute minimum, while presenting general and usable theory,
applicable to all grades. Paradoxically, the2d integrals in (5.1) provide a better organising
principle for the task in hand than a single integral.

We wish to approximatem-fold integrals of the generic form

J [h] =

∫ 1

−1

· · ·
∫ 1

−1

x1 · · ·xmhx1···xm
(x1, . . . , xm)dx1 · · · dxm.

Assuming thatg is analytic in|z| ≤ 1 and

h(x1, . . . , xm) =
∞
∑

j1=0

· · ·
∞
∑

jm=0

hj

j!
xj ,

wherehj = ∂j
xh(0), we readily verify that

J [h] =
∞
∑

j1=1

· · ·
∞
∑

jm=1

hj

(j1 − 1)! · · · (jm − 1)!

∫ 1

−1

· · ·
∫ 1

−1

xjdx1 · · · dxm

= 2m

∞
∑

j1=0

· · ·
∞
∑

jm=0

(2j1) · · · (2jm)

(2j1 + 1)! · · · (2jm + 1)!
hj

= 2m





∞
∑

j1=0

2j1
(2j1 + 1)!

∂2j1
x1









∞
∑

j2=0

2j2
(2j2 + 1)!

∂2j2
x2



 · · ·





∞
∑

jm=0

2jm
(2jm + 1)!

∂2jm
xm



h(0)

= 2m

m
∏

j=1

(

∂xj
cosh ∂xj

− sinh ∂xj

∂2
xj

)

hx1x2···xm
(0).

Let us assume that

ν
∑

k=1

pk sinh rkθ =
θ cosh θ − sinh θ

θ2
+ O

(

θp̄+1
)

. (5.4)

Then, recalling the proof of Theorem 6,

ν
∑

k1=1

ν
∑

k2=1

· · ·
µ
∑

km=1





m
∏

j=1

pkj



S0[hx1x2···xm
](rk1

, . . . , rkm
)

coincides withJ [h] for all polynomialsh of degreēp in each variable.
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With greater generality, consideri ∈ Ud,m. Examining (5.1) we observe thatS1 therein
acts in any coordinate which isnot in i1, i2, . . . , im while, by our analysis,S0 above acts on
the coordinates ini. Altogether, we have an operatorS that acts in alld coordinates and the
quadrature

Ri =
ν
∑

k1=1

· · ·
ν
∑

km=1





m
∏

j=1

pkj



Sβ(i)[∂
1
xf ](ri,k) (5.5)

coincides with
∫ 1

−1

· · ·
∫ 1

−1

Pi[f ](x)dxi1 · · · dxim

for all polynomialsf of order≤ p̄ in each variable. Hereri,k is obtained fromx by replacing
eachxij

with rkj
and filling-in thed − m remaining coordinates with ones. Moreover, in

β(i) ∈ Z
d
2 we place 0 in thekth coordinate if there existsij = k, 1 otherwise. We adopt the

convention thatR[0] = S1[f ](1). Combining (5.5) with (5.1), we thus approximate

f̂
[0]
0 ≈

d
∑

m=0

(−1)m
∑

i∈Ud,m

Ri. (5.6)

Note that (5.6) uses derivativesfxi1
xi2

···xim
on anm-dimensional tartan grid. For example,

for d = 3, we need to computef at the vertices (a 0-dimensional grid),fx1
, fx2

andfx2

on lines (1-dimensional grids),fx1x2
, fx1x3

andfx2x3
on squares (2-dimensional grids) and

fx1x2x3
on the full 3-dimensional cube – except that the last (and most expensive) computation

is anyway required for the implementation of extended Filonmethods.
As an example, ind = 2 we approximate

f̂
[0,0]
0,0 ≈ S[1,1][f ](1, 1) −

ν
∑

k1=1

pk1
S[0,1][fx1

](rk1
, 1) −

ν
∑

k2=1

pk2
S[1,0][fx2

](1, rk2
)

+
ν
∑

k1=1

ν
∑

k2=1

pk1
pk2

S[0,0][fx1x2
](rk1

, rk2
).

The approximation (5.5) can be generalised easily to cater for the situation when higher
(odd) derivatives are available at the vertices. The idea isidentical to the route that led from
(4.11), say, to (4.16): In place of (5.4), we seekp1, . . . , pν andp̃ so that

ν
∑

k=1

pk sinh rkθ + p̃ θ2 sinh θ =
θ cosh θ − sinh θ

θ2
+ O

(

θp̄+1
)

. (5.7)

Exotic quadrature (5.6) is, as a matter of fact, more generaland there is nothing to prevent
us from applying it toanyf̂ [α]

n , simply by replacingf with f
∏d

j=1 u
[αj ]
nj (xj). Of course, this

makes little sense whenmaxnj is large, but provides an efficient approach for smallmaxnjs.

In Table 4 we report the errors committed by (5.6), as appliedno just tof̂ [0]
0 but also to

other values ofn. Clearly, formaxnj ≤ 1 the results are excellent. However, already for
the relatively ‘small’n = [2, 3] the error exceeds by far that of even the simplest extended
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n α ν = 3 ν = 4

[0, 0] [0, 0] 2.2608−07 6.5700−12

[1, 0] [0, 0] 9.7521−05 2.8998−09

[1, 0] 2.7895−08 1.3225−12

[1, 1] [0, 0] 3.5210−07 8.3656−09

[1, 0] 1.1722−04 3.7876−08

[0, 1] 6.2893−05 1.8871−09

[1, 1] 1.3636−06 1.0923−10

[2, 3] [0, 0] 4.2482−03 2.8663−03

Table 4: Absolute value of the errors committed by the exoticquadrature (5.6) for four differ-
entns andf(x, y) = ex−2y.

Filon: the onset of asymptotic behaviour, underlying Filon-type methods, is very rapid indeed!
Indeed, given that̂f [0,0]

2,3 ≈ −9.0748−03, performance is hardly better than just setting this
coefficient to zero.

Note that forν = 3 we have used the values ofr1, r2, r3 that have been already mentioned
in the previous section, and which result, consistently with (5.4), in

p =
[

11
350

150−13
√

15√
495−66

√
15

11
350

150+13
√

15√
495+66

√
15

1
21

]

.

The reason for this choice, as well as our choice ofr andp for ν = 4, will become clear in
Subsection 5.3.

Another pleasing feature apparent from Tables 3–4 is that extended Filon and exotic
quadrature are in a sense complementary: when one is good, the other is bad andvice
versa. This is fairly obvious from their distinct organising principles, since we have opti-
mised extended Filon for oscillatory integrals and designed exotic quadrature to do well in
non-oscillatory setting.

5.2 Higher-grade terms

To illustrate our methodology, consider the bivariate integral

f̂ [α]
n =

∫ 1

−1

∫ 1

−1

f(x1, x2)u
[α1]
n1

(x1)u
[α2]
n2

(x2)dx1dx2,

where we assume thatn2 ≥ 1 is large enough (so thatu[α2]
n2 oscillates rapidly) whilen1 ≥ 0 is

small. The obvious idea is to combine our two techniques: extended Filon for thex2 variable,
exotic quadrature forx1. Thus, lettingF (x1, x2) = f(x1, x2)u

[α1]
n1 (x1), we have

f̂ [α]
n =

∫ 1

−1

[∫ 1

−1

F (x1, x2)dx1

]

u[α2]
n2

(x2)dx2 =

∫ 1

−1

[F (1, x2) + F (−1, x2)]u
[α2]
n2

(x2)dx2

−
∫ 1

−1

[∫ 1

−1

x1Fx1
(x1, x2)dx1

]

u[α2]
n2

(x2)dx2.
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The obvious idea is to apply an extended Filon method in the single variablex2 and exotic
quadrature in the other variable. For example, we useQ[α2]

n,1,2,ν on the second component,

∫ 1

−1

h(x)u[α2]
n2

(x)dx ≈ (−1)n2+α2

(πµ
[α2]
n2 )2

S[α2][∂xh](1) − (−1)n2+α2

(πµ
[α2]
n2 )4

ν
∑

k2=1

a
[α2,1]
k2

S[α2][∂xh](rk2
),

while the two non-oscillatory terms are

F (1, x2) + F (−1, x2) = S[1][F ](1),
∫ 1

−1

x1Fx1
(x1, x2)dx1 ≈

ν
∑

k1=1

pk1
S[1][∂x1

F ](rk1
).

To combine these two, we note that the operatorS obeys a ‘multiplication’ rule which we have
already used in the construction of quadrature formula (5.5): let i ∈ Ud,m, j ∈ Ud,d−m so
that the two vectors together comprise all of{1, 2, . . . , d} (in other words, they are a partition
of {1, 2, . . . , d}). Moreover, letγ ∈ Z

m
2 , δ ∈ Z

d−m
+ , ǫ ∈ Z

m
+ andκ ∈ Z

d−m
+ . Then

Sγ [∂ǫ1
xi1

· · · ∂ǫm
xim

Sδ[∂κ1

xj1
· · · ∂κd−m

xjd−m
f ](xj1 , . . . , xjd−m

)](xi1 , . . . , im) = Sδ[∂ω
x f ](x), (5.8)

whereδ ∈ Z
d
+ is concatenation of the vectorsγ andδ in the natural order imposed by the

concatenation ofi andj, while ω ∈ Z
d
+ is the concatenation ofǫ andκ in the same order:

For example, lettingd = 5 and

i = [1, 3], j = [2, 4, 5], γ = [0, 1], δ = [1, 0, 1], ǫ = [0, 2], κ = [3, 1, 2],

we have

S[0,1][∂x3
S[1,0,1][∂

3
x2
∂x4

∂2
x5
f ](x2, x3, x5)](x1, x3) = S[0,1,1,0,1][∂

3
x2
∂2

x3
∂x4

∂2
x5
f ](x).

Using (5.8), we combine exotic quadrature with extended Filon and the outcome is

f̂ [α]
n ≈ (−1)n2+α2

(πµ
[α2]
n2 )2

[

S[1,α2][∂x2
F ](1, 1) −

ν
∑

k1=1

pk1
S[0,α2][∂x1

∂x2
F ](rk1

, 1)

]

− (−1)n2+α2

(πµ
[α2]
n2 )4

[

ν
∑

k2=1

a
[α2,1]
k2

S[1,α2][∂x2
F ](1, rk2

) (5.9)

−
ν
∑

k1=1

ν
∑

k2=1

pk1
a
[α2,1]
k2

S[0,α2][∂x1
∂x2

F ](rk1
, rk2

)

]

.

If F = f (i.e., in the casen1 = 0) we are recycling the very same function and derivative
values that we have already used in ‘pure’ extended Filon andexotic quadratures. If, however,
F = fu

[α1]
n1 for n1 ≥ 1 then extra values are required:f on the tartan grid along the boundary

andfx2
on the bivariate tartan grid.

The generalisation to arbitraryd ≥ 1 is easy in principle, although notation rapidly be-
comes complicated. Givenn ∈ Z

d
+, we separate coordinates into ‘slow’ and ‘fast’: a good
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n α ν = 3 ν = 4

[0, 5] [0, 0] 1.1595−05 3.4146−05

[0, 1] 1.7025−04 5.8883−05

[0, 10] [0, 0] 2.3932−06 4.6557−07

[0, 1] 1.1273−05 2.6272−07

Table 5: Absolute value of the errors committed by a combination of extended Filon and
exotic quadrature for two different values ofn andf(x, y) = ex−2y.

strategy is to choose thresholdn⋆ ≥ 1 and let eachnk ≤ n⋆ − 1 be ‘slow’, ‘fast’ otherwise.
This partitions{1, 2, . . . , d} into Is ∪ If and we set

F (x) = f(x)
∏

i∈Is

u[αi]
ni

(xi).

Then

f̂ [α]
n =

∫ 1

−1

· · ·
∫ 1

−1

[

∫ 1

−1

· · ·
∫ 1

−1

F (x)
∏

i∈Is

dxi

]

∏

i∈If

u[αi]
ni

(xi)dxi.

The idea is to discretise the integrals within square brackets with exotic quadrature and the
integrals with respect to the ‘fast’ variables using extended Filon.

It is possible to describe this procedure explicitly and with full generality, but it rapidly
leads to fairly complicated and opaque expressions. It is probably much more helpful to state
it in words. Thus, we replace the inner non-oscillatory integral with a formula identical to
(5.6), except that we act only on ‘slow’ variables: the ‘fast’ variables are retained intact. This
results in an oscillatory integral in ‘fast’ variables, which we discretise with the extended Filon
methodQ[α]

n,N,M,ν . Since both methods can be expressed in terms of the action ofoperatorsS
on tartan grid extending over faces of[−1, 1]d of different dimensions, we use identity (5.8)
to simplify the resulting method in a manner similar to (5.9).

In Table 5 we used a combination of extended Filon and exotic quadrature – actually, the
scheme (5.9) – for two different values ofn with n1 = 0. (Thus,F = f .) Note that for
n = [0, 5] takingν = 4 does not lead to much advantage (if at all) overν = 3: this is in all
likelihood caused by the fact that the conditioning of vectors a[α,1] deteriorates rapidly with
ν.

In our experience, if̄n is small, it is probably preferable to treat the entire integrand asF
and employd-variate exotic quadrature (similar to (5.6)), rather thanmixing it with extended
Filon. The reason is that, as we have already mentioned, the vectorsa[α,k] might have large
norms and this contributes significantly to error for lown̄. Of course, mixed quadrature is
unavoidable when̄n = 0 (and we cannot use ‘full’ extended Filon), whilemaxnk ≫ 1
(hence the integrand oscillates rapidly).

5.3 Optimal coefficientsr

We use the freedom that we have in the choice ofr1 < r2 < · · · < rν−1 to maximise the
orderp̄ in (5.4).
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Our first observation is that, similarly to the proof of Proposition 5, p̄ is odd and (5.4) is
equivalent to the linear conditions

ν
∑

k=1

pkr
2m+1
k =

1

2m+ 3
, m = 0, 1, . . . ,

p̄− 3

2
. (5.10)

We identify the right-hand side of (5.10) with themth moment of the Borel measuredζ(x) =
1
2x

1
2 dx, x ∈ [0, 1] – in other words,

1
2

∫ 1

0

xm+
1
2 dx =

1

2m+ 3
, m ∈ Z+.

Lemma 8 Let ζν,1 < ζν,2 < · · · < ζν,ν−1 be the zeros of the orthogonal polynomial of
degreeν − 1 with respect to the measure(1 − x)dζ(x), setζν = 1 and letb1, b2, . . . , bν be
the weights of theν-point Radau quadrature with this measure. Then

rk =
√

ζν,k, pk =
bk

√

ζν,k

, k = 1, 2, . . . , ν.

Moreover, in that casēp = 4ν − 2

Proof Recall that a Radau quadrature with the nodesc1 < c2 < . . . < cν = 1 is

∫ 1

0

g(x)dζ(x) ≈
ν
∑

k=1

bkg(ζν,k),

whereζν,ks have been defined above and we can obtain the weightsb1, . . . , bν by requiring
that the formula is exact forg(x) = xi−1, i = 1, . . . , ν: this results in a nonsingular Vander-
monde system. Moreover, the method is of order2ν − 1, i.e. exact for all polynomialsg of
order≤ 2ν − 2 (Davis & Rabinowitz 1984). The lemma follows at once from (5.10). 2

It is easy to identify the orthogonal polynomial in the statement of the lemma with the

Jacobi polynomialP
(1, 1

2
)

ν−1 , shifted to the interval[0, 1]. Note that, because of orthogonality,
the coefficientsr1, . . . , rν−1 indeed reside in(0, 1), as required.

We have not managed to present optimal configuration of quadrature nodes for (5.7), a
formula occurring when we incorporate higher derivatives,in terms of orthogonality condi-
tions. Although it is possible to derive optimalrks for smallν by brute force, the general
problem is open. It is just one of a long list of issues pertaining to the theory and computation
with modified Fourier series in a cube that require much further attention.
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