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Abstract

In this article we propose a new class of finite volume schemes of arbitrary accuracy
in space and time for systems of hyperbolic balance laws with stiff source terms. The
new class of schemes is based on a three stage procedure. First, in order to achieve
high order accuracy in space, a nonlinear weighted essentially non-oscillatory recon-
struction procedure is applied to the cell averages at the current time level. Second,
the temporal evolution of the resulting reconstruction polynomials is computed lo-
cally inside each cell exploiting directly the full system of governing equations. In
previous ADER schemes, this was achieved via the Cauchy-Kovalewski procedure,
where the governing equation is repeatedly differentiated with respect to space and
time to construct a Taylor series expansion of the local solution. As the Cauchy-
Kovalewski procedure is based on Taylor series expansions, it is not able to handle
systems with stiff source terms since the Taylor series diverges for this case. There-
fore, in this article, we present a new strategy that replaces the Cauchy-Kovalewski
procedure for high order time interpolation: we present a special local space-time
discontinuous Galerkin (DG) finite element scheme that is able to handle arbitrarily
stiff source terms in a stable manner. The solution of this space-time DG method
can be proven to have several important robustness properties in the presence of
stiff source terms. This step is the only part of the entire algorithm which is lo-
cally implicit. The third and last step of the proposed ADER finite volume schemes
consists of the standard explicit space-time integration over each control volume,
using the local space-time DG solutions at the Gaussian integration points for the
intercell fluxes and for the space-time integral over the source term. We will show
numerical convergence studies for nonlinear systems in one space dimension with
both non-stiff and with very stiff source terms up to sixth order of accuracy in space
and time. The application of the new method to a large set of different test cases
is shown, in particular the stiff scalar model problem of LeVeque and Yee [34], the
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relaxation system of Jin and Xin [30] and the full compressible Euler equations with
stiff friction source terms.

Key words: hyperbolic balance laws, stiff source terms, finite volume schemes,
ADER approach, local space-time discontinuous Galerkin method, WENO
reconstruction

1 Introduction

In this paper, we are concerned with solving numerically one-dimensional hy-
perbolic systems of balance laws (SBL), namely:

∂

∂t
u +

∂

∂x
f (u) = S (u, x, t) , (1)

where u = u(x, t) is the conservative state, f(u) is the flux and S(u, x, t) is
the source term. The homogeneous system associated to (1) is the following
hyperbolic system of conservation laws (SCL):

∂

∂t
u +

∂

∂x
f (u) = 0. (2)

The definition of hyperbolicity only concerns system (2) above; it means that
the Jacobian matrix of f(u) with respect to u has real eigenvalues and a set
of associated eigenvectors which form a basis of �d, where d is the dimension
of vector u. Divergence-free system associated to (1) is the name we give to
the system

∂

∂t
u = S (u, x, t) , (3)

which is a system of ordinary differential equations (SODE) since it is assumed
that no derivative of u appears through the function S.

Coming from a wide range of different fields, a large number of physical models
can be cast in the SBL form (1). Fluid mechanics is particularly concerned,
since compressible fluid dynamics is usually modeled by the Euler system,
which is a hyperbolic SCL. In this case, the source term can model the presence
of other physical phenomena, such as gravity, geometrical reaction, friction,
chemical reaction, etc.

Email addresses: michael.dumbser@iag.uni-stuttgart.de (Michael
Dumbser), cedric.enaux@centraliens.net (Cedric Enaux),
toor@ing.unitn.it (Eleuterio F. Toro).
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We now restrict our analysis to source terms of the form S (u, x). Compared
with SCL, the presence of a source term generally has important consequences
on the behaviour of SBL solutions. First, SBL may have non trivial steady
solutions, namely solutions ũ(x) of the following system:

∂

∂x
f (ũ) = S (ũ, x) . (4)

This situation occurs for instance in the case of an isentropic Euler system
with gravity or geometrical reaction. Second, SBL may tend towards reduced
systems as we will explain now. At least two process are involved in SBL: a con-
servative process associated to the homogeneous part (2) with a characteristic
speed νf , and a dissipative/productive process associated to the divergence-
free part (3) with a characteristic speed νS. If the time derivative is scaled
according to the speed νf , the dimensionless form of SBL (1) reads as

∂

∂t̄
ū +

∂

∂x̄
f̄ (ū) =

1

ε
S̄ (ū, x̄) , (5)

where bars mean that variables are dimensionless and where ε ≡ νf
νS

is the
ratio between characteristic speeds. A very small ratio ε � 1 means that
the dissipative/productive process is too fast, compared with the conservative
process, to be fully observed. Such a source term is called stiff source term.
The presence of a stiff source term may make tending the original system
towards an asymptotic reduced system (see [9]), which can be of different
mathematical nature than the original one. This situation occurs for instance
in the case of an isentropic Euler system with large friction: the asymptotic
limit of the original hyperbolic system is the porous media equation (see [24]
and [25]), which is parabolic.

By integrating system (1) over a finite space-time control volume Qi one ob-
tains a finite volume formulation for the system of balance laws (1), which
usually takes the form

ūn+1
i = ūn

i − Δt

Δxi

(
fi+ 1

2
− fi− 1

2

)
+ ΔtS̄i. (6)

This is shown in more detail in the following section. We emphasize that
the exact solution of (1) also fulfills (6) exactly if all integrals are computed
exactly. The integration of (1) in space and time gives rise to a temporal
integral of the flux across the element boundaries fi+ 1

2
and to a space-time

integral S̄i of the source term inside Qi. In practice, to use the finite volume
formulation (6) as a numerical tool for real computations, one must replace the
integrals of the flux and the source by some suitable numerical approximations,
that is to say one must choose a concrete numerical scheme.

For SCL, only a numerical flux must be chosen. In this case, the required prop-
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erties are only the classical ones, namely consistency, stability and accuracy.
For SBL, a numerical flux and a numerical source must be chosen. Here, the
classical properties for each numerical term are also required, but additional
properties are needed for the global numerical scheme, that is to say for the
pair numerical flux and numerical source:

• the scheme should be well-balanced, which means that it is able to preserve
steady states numerically.
• the scheme should be robust, even on coarse grids if the source term is
stiff. A coarse grid is a grid whose size does not take into account the source
term. In other words, characteristic space step and characteristic time step
are based on the associated homogeneous SCL only.
• the scheme should be asymptotically-consistent (or asymptotic preserving)
if the source term is stiff, which means that it gives the correct asymptotic
behaviour even if the source term is underresolved.

In the last three decades, powerful numerical fluxes have been proposed to
solve hyperbolic SCL, for example the fluxes of Godunov [18], Osher [16,40]
and Roe [45] as well as the various HLL-type fluxes based on the approximate
Riemann solver of Harten, Lax and van Leer [23], see e.g. [14,15,53]. A naive
approach to solve SBL would consist of using one of these schemes for the
flux fi+ 1

2
and using a space-centered explicit scheme for the source S̄i. In

this case, the source part of method (6) becomes an explicit Euler scheme,
which may be unstable, especially in the stiff case. In order to counter that,
the numerical source is usually taken implicitly. Hence, the source part of
method (6) becomes an implicit Euler scheme, which is unconditionally stable.
Anyway, it is well-known that using a classical numerical flux and a space-
centered numerical source leads to spurious numerical results; more precisely,
the global scheme is neither well-balanced (see [3], [21], [19] for instance), nor
asymptotically-consistent (see [41], [7], [5] for instance). Consequently, several
interesting approaches have been proposed to overcome that, as we will see in
the following paragraph.

To solve SBL, very commonly used approaches are splitting schemes. A split-
ting approach (also called fractional step method) consists of solving iteratively
the associated SCL with a classical finite volume scheme, and then the asso-
ciated SODE with a classical numerical tool, like Runge-Kutta or predictor-
corrector methods. The accuracy of the global scheme depends on the number
and the order of these sub-steps; for example, a three sub-stage Strang split-
ting (see [47]) is second order accurate in time, but in the non stiff case only, as
pointed out in [27]. Although simple and robust, classical first order splittings
and Strang splittings lead to global schemes that are neither well-balanced,
nor asymptotically-consistent (see [35]) because the coupling between numeri-
cal flux and numerical source only occurs through the initial condition of each
sub-step. Better splitting schemes for particular SBL have been proposed (see
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[1], [7], [38], [8]), and are asymptotically-consistent because at least one of the
sub-steps takes into account both flux divergence and source term.

Another simple approach to solve SBL consists of upwinding the source at
the interfaces (USI schemes). In the original version of USI schemes (see [3],
[28]), a classical Riemann solver is first used to evaluate numerically the solu-
tion ui+ 1

2
of the homogeneous Riemann problem (without source term). This

solution is then used in a first order finite volume scheme as argument of the
flux, but also as argument of the source term in S̄i = 1

2
(S(ui− 1

2
)+S(ui+ 1

2
)), so

that the same numerical information - based on the homogeneous system only
- is given to the flux and the source term, which makes the scheme at least
approximately well-balanced. More recently, other USI scheme versions have
been proposed, which ensure that the scheme is also formally well-balanced
(see [43], [4]). The main drawback of these approaches is that the global scheme
must be explicit, thus problems may occur in the stiff case. In [5], a new ver-
sion of USI schemes, designed for stiff relaxation SBL, has been proposed.
The resulting scheme is robust, formally asymptotically-consistent and stable
under a classical CFL condition, but obtains only first order of accuracy.

In the well-balanced schemes (see [21], [33], [19]), the source term is seen as a
nonconservative product of a larger system. Due to the presence of this non-
conservative product, a particular path has to be chosen instead of the classi-
cal Rankine-Hugoniot relations. This path can be chosen in such a way that
the well-balanced property is formally imposed to the scheme. Well-balanced
schemes are very efficient to maintain steady-states under classical CFL con-
dition Δt � O (Δx) (see [19]), but are not designed to capture the good
asymptotic behaviour imposed by a stiff source term. More recently, a new
version of well-balanced schemes which is also asymptotically-consistent has
been proposed for a particular system (see [20]), but the resulting scheme
is only stable under a very restrictive parabolic CFL condition of the type
Δt � O (Δx2).

To solve SBL numerically, other approaches have been proposed. Sometimes,
the Riemann problem considered takes into account the source term presence
(generalized Riemann problem), but solving such a problem asks for addi-
tional hypothesis: see [32] for one possibility and [17] for an other. Both meth-
ods give well-balanced schemes, but are not robust enough to deal with stiff
source terms. Concerning stiff relaxation systems, another approach consists
of solving numerically the asymptotic reduced system instead of solving the
original SBL (see [2], [5]). In this case, numerical results can only be obtained
in the stiff case, thus some information is lost from the original SBL. In [37]
it was pointed out that a semi-discrete discontinuous Galerkin (DG) scheme,
i.e. only applying the DG space-discretization and remaining continuous in
time, is an asymptotically-consistent scheme for linear systems with stiff re-
laxation. However, since the main problem of stiff SBL is precisely the time
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discretization, this theoretical result given in [37] is only of very limited use
in practice. Another idea proposed in [6] to solve nonlinear SBL is to use a
combination of two tools. First, a relaxation scheme (see [31]) is used in order
to obtain a linear, but larger, SBL. Second, a well-balanced scheme designed
to capture the good asymptotic behaviour is applied on the larger system. The
global scheme has many good properties, but is only of first order of accuracy.
Finally, some asymptotically-consistent schemes have been derived from the
classical upwind flux (see [42], [29], [39]). In these cases, the numerical flux is
modified by the presence of the source term.
To our knowledge, a lot of tools to solve numerically SBL have been proposed
up to now. The best ones among those are well-balanced and asymptotically-
consistent, but none of them allows to reach arbitrary orders of accuracy in
space and time while being stable under classical CFL condition.

The aim of this article is now to construct a method for SBL which is at
the same time asymptotically consistent and can reach any order of accuracy
in space and time under a standard CFL stability condition. The structure
of the paper is as follows: First, in section 2 we show the construction of
our arbitrary high order finite volume method for systems of balance laws. To
assure monotonicity of the numerical solution in the vicinity of discontinuities,
we briefly discuss the nonlinear WENO reconstruction operator in section 2.1,
which is necessary to obtain a high order polynomial data representation from
the cell averages before each time step. Then, the main building block of
our finite volume discretization is presented in the subsequent section 2.2,
namely a local space-time discontinuous Galerkin scheme used to evolve the
reconstruction polynomials in time taking into account simultaneously the flux
as well as the stiff source term. Numerical convergence studies are carried out
in section 3 for smooth non-stiff and very stiff test problems. Applications of
our scheme to various linear and nonlinear systems of balance laws with stiff
source terms are shown in section 4 and a summary with conclusions and an
outlook regarding future work is given in section 5.

2 An explicit arbitrary high order accurate finite volume scheme
for nonlinear hyperbolic systems with stiff source terms

The aim of this article is to find high order accurate non-oscillatory numerical
solutions for hyperbolic systems of balance laws for the vector of conserved
quantities u = u(x, t) of the form

⎧⎪⎨
⎪⎩

PDE: ∂
∂t

u + ∂
∂x

f(u) = S(u),

IC: u(x, 0) = u0(x),
(7)
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where f(u) is in general a nonlinear function of the state u and S(u) may be a
stiff nonlinear source term. To illustrate the general framework of the method
in the simplest possible way we restrict ourselves in the whole paper to one
space dimension. The extension to multiple space dimensions can be done and
will be the topic of future research.

The spatial computational domain Ω ⊂ � is covered completely by pairwise
disjoint spatial elements Qi =]xi− 1

2
; xi+ 1

2
[, with Δxi = xi+ 1

2
− xi− 1

2
and the

cell average of u(x, t) within Qi is defined at time tn as

ūn
i =

1

Δxi

x
i+ 1

2∫
x

i−1
2

u(x, tn)dx. (8)

We furthermore define the space-time element spanned by the spatial element
Qi and the time step Δt = tn+1 − tn as Qi = Qi×]tn; tn + Δt[. The associated
relative space and time coordinates 0 � ξ � 1 and 0 � τ � 1, within one
element Qi are given by the relations

x = xi− 1
2

+ ξ · Δxi, and t = tn + τ · Δt. (9)

In the following, the numerical solution of (7) valid inside each element Qi

will be denoted with ui(ξ, τ). A standard finite volume discretization of (7) is
given after integration of (7) over each space-time element Qi as follows:

ūn+1
i = ūn

i − Δt

Δxi

(
fi+ 1

2
− fi− 1

2

)
+ ΔtS̄i, (10)

with

fi+ 1
2

=

1∫
0

fh(ui(1, τ),ui+1(0, τ))dτ and S̄i =

1∫
0

1∫
0

S(ui(ξ, τ))dξdτ, (11)

where fh(ui(1, τ),ui+1(0, τ)) denotes a numerical flux function (Riemann solver)
that depends on the two arguments ui(1, τ) and ui+1(0, τ), which are the
boundary extrapolated data on the left and on the right side of the element
interface i + 1

2
. For an overview of Riemann solvers see [51]. For all computa-

tions shown in this paper we use the Rusanov flux, which is also often called
the local Lax-Friedrichs flux. The Rusanov flux is a special case of the HLL
flux, with a particularly simple wave speed estimate which is taken to be the
maximum of the absolute values of the left and right eigenvalues. For an ex-
plicit standard first order Godunov-type finite volume scheme, one would now
simply have to set ui(ξ, τ) = ūn

i and ui+1(ξ, τ) = ūn
i+1 for the arguments of

the numerical flux and inside the source term integral.
We emphasize that formula (10) together with (11) allows the construction of
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arbitrary high order accurate finite volume schemes, provided the representa-
tion of the numerical solution ui(ξ, τ) inside each element and as a consequence
the arguments of the numerical flux function and the source term are high or-
der accurate in space and time. Since (10) only computes the time update of
the cell averages ūn

i from time tn to time tn+1 we need to reconstruct higher
order polynomial data from these cell averages ūn to get better estimates for
the arguments of the flux function and the source term in the integrals ap-
pearing in (11).
Therefore, as described in detail in the subsequent sections, the necessary steps
to construct an arbitrary high order essentially non-oscillatory explicit one-
step finite volume scheme are the following: (I) Nonlinear (non-oscillatory)
reconstruction of spatial polynomials from the given cell averages at time tn.
(II) Local solution of the initial value problem (7) inside each element, where
the initial data is given by the spatial reconstruction polynomial at time tn.
(III) Numerical integration of the integrals in (11) and update of the cell
averages according to (10).

2.1 Nonlinear reconstruction technique

In this section we briefly discuss the proposed nonlinear weighted essentially
non-oscillatory (WENO) reconstruction procedure to reconstruct higher order
polynomial data within each spatial cell Qi at time tn from the given cell
averages ūn

i . This corresponds to step (I) as outlined at the end of the previous
section. We emphasize already at this point that the reconstruction procedure
is nonlinear and depends strongly on the input data ūn

i . Thus, the resulting
numerical scheme, even when applied to a completely linear PDE, will be
nonlinear and thus it will not be possible to give a closed expression of the
scheme.

The reconstruction procedure described here for the one-dimensional case fol-
lows directly from the guidelines given in [11] for general unstructured two-
and three-dimensional meshes. It reconstructs entire polynomials, as the orig-
inal ENO approach proposed by Harten et al. in [22]. However, we formally
write our method like a WENO scheme [26,36] with a particularly simple
choice for the linear weights. The most important difference of our approach
compared to classical WENO schemes is that standard WENO methods re-
construct point values at the Gaussian integration points instead of an entire
polynomial valid inside each element Qi.
Reconstruction is done for each element on a reconstruction stencil Ss

i , which
is given by the following union of the element Qi and its neighbors Qj ,

Ss
i =

i+s+k⋃
j=i+s−k

Qj , (12)
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where s is the stencil shift with respect to the central element Qi and k is
the spatial extension of the stencil to the left and the right. A central recon-
struction stencil is given by s = 0, an entirely left-sided stencil is given by
s = −k and an entirely right-sided stencil is given by s = k. In our approach,
we always will use the three fixed reconstruction stencils S0

i , S−k
i and Sk

i .
Given the cell average data ūn

i in all elements Qi we are looking for a spatial
reconstruction polynomial obtained from Ss

i at time tn of the form

ws
i (ξ, t

n) =
M∑
l=0

Ψl(ξ)ŵ
(i,s)
l (tn) := Ψl(ξ)ŵ

(i,s)
l (tn), (13)

where we use the rescaled Legendre polynomials for the spatial reconstruction
basis functions Ψl(ξ) such that the Ψl(ξ) form an orthogonal basis on the unit
interval I = [0; 1]. In the following, we will use standard tensor index notation,
implying summation over indices appearing twice. The number of polynomial
coefficients (degrees of freedom) is L = M +1, where M is the degree of the re-
construction polynomial. To compute the reconstruction polynomial wi(ξ, t

n)
valid for element Qi we require integral conservation for all elements Qj inside
the stencil Ss

i , i.e.

∫
Qj

ws
i (ξ, t

n)dξ =
∫
Qj

Ψl(ξ)dξ · ŵ(i,s)
l (tn) = ūn

j , ∀Qj ∈ Ss
i . (14)

Equation (14) yields a linear equation system of the form

Ajl · ŵ(i,s)
l (tn) = ūn

j (15)

for the unknown coefficients ŵ
(i,s)
l (tn) of the reconstruction polynomial on

stencil Ss
i . Since we choose k = M/2 for even M and k = (M + 1)/2 for

odd M , the number of elements in Ss
i may become larger than the number of

degrees of freedom L. In this case, we use a constrained least-squares technique
according to [11] to solve (15).

To obtain the final non-oscillatory reconstruction polynomials for each Qi at
time tn, we finally construct a data-dependent nonlinear combination of the
polynomials w0

i (ξ, t
n), w−k

i (ξ, tn) and wk
i (ξ, t

n) obtained from the central, left-
sided and right-sided stencils as follows:

wi(ξ, t
n) = ŵi

l(t
n)Ψl(ξ), (16)

with
ŵi

l(t
n) = ω0 ŵ

(i,0)
l (tn) + ω−k ŵ

(i,−k)
l (tn) + ωk ŵ

(i,k)
l (tn). (17)

The nonlinear weights ωs are given by the relations

ωs =
ω̃s

ω̃0 + ω̃−k + ω̃k
, ω̃s =

λs

(σs + ε)r . (18)
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In our particular formulation, the oscillation indicators σs are computed from

σs = Σlm ŵs
l (t

n)ŵs
m(tn), with Σlm =

M∑
α=1

1∫
0

∂αΨl (ξ)

∂ξα
· ∂αΨm (ξ)

∂ξα
dξ. (19)

Here, Σlm is the universal oscillation indicator matrix for the reference element
QE that does neither depend on the problem nor on the mesh, see [11]. The
parameters ε and r are constants for which we typically choose ε = 10−14

and r = 12. For the linear weights λs we choose λ−k = λk = 1 and a very
large linear weight λ0 on the central stencil, typically λ0 = 105. It has been
shown previously [26,36] that the numerical results are quite insensitive to the
WENO parameters ε and r and also with respect to the linear weight on the
central stencil λ0, see [11].
The proposed reconstruction usually uses the accurate and linearly stable
central stencil reconstruction in those regions of Ω where the solution is smooth
because of the large linear weight λ0. However, due to the strongly nonlinear
dependence of the weights ωs on the oscillation indicators σs, in the presence
of discontinuities the smoother left- or right-sided stencils are preferred, as
for standard ENO and WENO methods. For the nonlinear scalar case, the
reconstruction operator described above can be directly applied to the cell
averages ūn

i of the conserved quantity u. For nonlinear hyperbolic systems,
the reconstruction should be done in characteristic variables [22,12] in order
to avoid spurious oscillations that may appear when applying ENO or WENO
reconstruction operators component-wise to nonlinear hyperbolic systems.

The result of the reconstruction procedure is a non-oscillatory spatial polyno-
mial wi(ξ, t

n) defined at time tn inside each spatial element Qi. However, we
still need to compute the temporal evolution of these polynomials inside each
space-time element Qi in order to be able to compute the integrals appearing
in (11).

2.2 The local space-time discontinuous Galerkin scheme

In previously published ADER finite volume schemes (see e.g. [11,12,50,54])
and also in the original ENO scheme of Harten et al. [22] the nonlinear recon-
struction step (I) as well as the numerical integration and update step (III) as
outlined at the end of section 2 are very similar compared with the new scheme
proposed in this article. The only main difference lies in the solution of the
local initial value problem (IVP) defined in step (II). In ADER finite volume
schemes and also in the original ENO approach the temporal evolution of the
reconstruction polynomial is computed using the so-called Cauchy-Kovalewski
or Lax-Wendroff procedure. This procedure constructs a local solution of the
IVP making the ansatz of a local time Taylor series expanded at time level tn,
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where then time derivatives are replaced by spatial derivatives differentiating
repeatedly the governing PDE with respect to space and time. The spatial
derivatives are obtained from the reconstruction polynomials at time tn.

It is a well known fact that methods based on Taylor series usually do not
work in the presence of stiff source terms. Therefore, we propose to replace
the Cauchy-Kovalewski procedure by a new local space-time DG scheme in
order to solve the local IVP in step (II). In our local space-time DG scheme,
the usual integration by parts is done only in time and not in space, which
establishes a distinct difference compared to the existing global space-time
DG schemes [55]. A comparison of the classical Cauchy-Kovalewski procedure
and the new local space-time DG scheme will be shown for a simple case to
illustrate the difference in the quality of the solution of the local IVP.

2.2.1 Linear scalar model equation

To illustrate the construction and the theoretical properties of our proposed
method, in this section we only consider the simple linear scalar model equa-
tion with the linear flux and source functions

f(u) = au and S(u) = −νu, a > 0, ν > 0, (20)

where the stiffness of the relaxation source term is determined by the param-
eter ν and where we suppose periodic boundary conditions for the moment.

The space of basis and test functions Vh of the local space-time DG scheme is
defined to be the space spanned by piecewise polynomials given by the space-
time tensor products of the scaled Legendre polynomials Ψi(ξ) and Ψj(τ) of
degree 0 � i, j � M , i.e.

Φk = Φk(ξ, τ) = Ψi(ξ) · Ψj(τ). (21)

In eqn. (21) the index k with 1 � k = k(i, j) � Nd is a mono-index ranging
from 1 to the number of degrees of freedom Nd = (M + 1)2, computed from
the index pair (i, j). As already defined above, 0 � ξ � 1 and 0 � τ � 1 are
the spatial and the temporal coordinates in the space-time reference element
QE = [0; 1]× [0; 1] ∈ �2. In the following, we will use the following two scalar
products of two functions f(ξ, τ) and g(ξ, τ),

〈f, g〉 =

1∫
0

1∫
0

f(ξ, τ) · g(ξ, τ)dξdτ, [f(ξ, τ), g(ξ, τ)] =

1∫
0

f(ξ, τ) · g(ξ, τ)dξ,

(22)
where the first one denotes the space-time scalar product over the space-time
reference element QE and the second one is the purely spatial scalar product
over the spatial reference element QE = [0; 1]. The local numerical solution ui
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of (7) inside each space-time control volume Qi is approximated within the
reference element QE using the basis functions Φk as follows:

ui = ui(ξ, τ) =
Nd∑
l=1

Φl (ξ, τ) · ûi
l := Φl (ξ, τ) ûi

l, (23)

where we again use the classical Einstein summation convention for tensor
calculus, which implies summation over all indices appearing twice.

The proposed local space-time discontinuous Galerkin finite element method
is now obtained by first rewriting the governing PDE (7) together with the
assumption (20) in terms of the variables in the reference element, i.e.

∂

∂τ
u + a∗ ∂

∂ξ
u = −ν∗u, (24)

with a∗ = Δtξx · a and ν∗ = Δt · ν.

Multiplication of the modified governing PDE with test functions Φk ∈ Vh

and integration over the reference element QE yields

〈
Φk,

∂

∂τ
ui

〉
+ a∗

〈
Φk,

∂

∂ξ
ui

〉
= −ν∗ 〈Φk, ui〉 . (25)

For the space-time discontinuous Galerkin scheme presented in [55] one would
now have to integrate both terms on the left hand side by parts in space and
time in order to introduce the information from the neighbor elements and to
shift the spatial derivative operator onto the test function. For our purposes,
however, the integration by parts in space is not required since we want to
keep a local formulation that does not need any information from the neighbor
elements but for which it is sufficient to provide an initial condition. Therefore,
we only use the integration by parts in time for the first term that contains
the time derivative, and obtain

[Φk(ξ, 1), ui(ξ, 1)] − [Φk(ξ, 0), wi(ξ, t
n)] −

〈
∂

∂τ
Φk, ui

〉
+

a∗
〈

Φk,
∂

∂ξ
ui

〉
= −ν∗ 〈Φk, ui〉 . (26)

The spatial scalar products appearing in (26) correspond to the fluxes in time
direction. Due to the causality principle the future has no influence on the
past, i.e. we can take the numerical solution inside the element itself for the
flux at relative time τ = 1, whereas the flux at relative time τ = 0 will be
completely defined by the initial condition wi(ξ, t

n) = Ψm(ξ)ŵi
m(tn). The ini-

tial condition is hence given by the reconstruction polynomials obtained from
the reconstruction operator applied to the cell averages at the current time tn.

12



We recall that the Ψm(ξ) are the reconstruction basis functions introduced in
section 2.1. Please note that due to the use of a discontinuous Galerkin approx-
imation, in general wi(ξ, t

n) 
= ui(ξ, 0
+), i.e. the reconstruction polynomials

at t = tn do not necessarily agree with the boundary extrapolated polynomial
ui(ξ, 0

+) of the space-time DG solution inside element Qi at τ = 0+. Inserting
the time fluxes and the ansatz for the numerical solution (23) into (26) yields

[Φk(ξ, 1), Φl(ξ, 1)] ûi
l − [Φk(ξ, 0), Ψm(ξ)] ŵi

m(tn)−〈
∂

∂τ
Φk, Φl

〉
ûi

l + a∗
〈

Φk,
∂

∂ξ
Φl

〉
ûi

l =−ν∗ 〈Φk, Φl〉 ûi
l. (27)

Introducing the element mass matrix Mkl = 〈Φk, Φl〉, the stiffness matrices

with respect to time Kτ
kl =

〈
∂
∂τ

Φk, Φl

〉
and space Kξ

kl =
〈
Φk,

∂
∂ξ

Φl

〉
as well

as the flux matrices F 0
km = [Φk(ξ, 0), Ψ(ξ)] and F 1

kl = [Φk(ξ, 1), Φl(ξ, 1)] for
relative time τ = 0 and τ = 1, respectively, we obtain the following equation
system for the unknowns ûi

l:

Ykl û
i
l = F 0

kmŵi
m(tn). (28)

The system has a unique solution if the system matrix

Ykl = F 1
kl − Kτ

kl + a∗Kξ
kl + ν∗Mkl (29)

is invertible. It will be shown in the following that this is always the case for
any value of ν. Therefore, the solution of (28) can be written as

ûi
l = Y −1

kl · F 0
kmŵi

m(tn). (30)

We note that the local space-time DG scheme (27) requires the solution of
the linear equation system (28) and thus is locally implicit. Due to the local
character of the method, the computation of the space-time degrees of freedom
ûi

l can be done independently for each cell Qi, without considering neighbor
elements. However, we emphasize that this is the only locally implicit part of
the entire algorithm. The resulting finite volume scheme (10) is completely
explicit.

2.2.2 Properties of the local space-time discontinuous Galerkin scheme

Well-posedness The mass matrix Mkl is diagonal since the functions Φk(ξ, τ)
form an orthogonal basis on the space-time reference element QE with respect
to the scalar product < ·, · >. Therefore, the system matrix Ykl is diagonally
dominant in the case ν → ∞ and thus the system (28) will be always well
posed, especially in the stiff limit.

13



Boundedness of the solution In the following we want to show via asymp-
totic analysis that the solution ui of (27) remains bounded in the limit ν → ∞.
Even more, we will show that the discrete solution of (27) tends to zero as
ν → ∞. We therefore write (27) with Φk ∈ Vh and ν∗ = 1/ε, where ε > 0 is a
small parameter and ν → ∞ for ε → 0, as follows:

[Φk(ξ, 1), ui(ξ, 1)]−[Φk(ξ, 0), wi(ξ, t
n)]−

〈
∂

∂τ
Φk, ui

〉
+a∗

〈
Φk,

∂

∂ξ
ui

〉
= −1

ε
〈Φk, ui〉 .

(31)
Furthermore, we write a series expansion for ui = ui(ξ, τ) in terms of the small

parameter ε with u
(0)
i ∈ Vh, u

(1)
i ∈ Vh, and u

(2)
i ∈ Vh as

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i + O(ε3). (32)

After inserting (32) into (31) we obtain the following equation system in terms
of powers of ε:

ε−1
〈
Φk, u

(0)
i

〉
+

ε0

([
Φk(ξ, 1), u

(0)
i (ξ, 1)

]
−
〈

∂

∂τ
Φk, u

(0)
i

〉
+ a∗

〈
Φk,

∂

∂ξ
u

(0)
i

〉)
+

ε0
(〈

Φk, u
(1)
i

〉
− [Φk(ξ, 0), wi(ξ, t

n)]
)

+

ε1
([

Φk(ξ, 1), u
(0)
i (ξ, 1)

])
+

ε1

(〈
Φk, u

(2)
i

〉
−
〈

∂

∂τ
Φk, u

(1)
i

〉
+ a∗

〈
Φk,

∂

∂ξ
u

(1)
i

〉)
+ O(ε2) = 0.

∀Φk ∈ Vh (33)

Since eqn. (33) must be fulfilled for any value of ε > 0, all coefficients after
the terms in ε must vanish. From the leading term ε−1 we therefore obtain

〈
Φk, u

(0)
i

〉
= 0 ∀Φk ∈ Vh ⇒ u

(0)
i = 0. (34)

Inserting (34) in (33) and considering the coefficients of the terms ε0 we obtain

〈
Φk, u

(1)
i

〉
− [Φk(ξ, 0), wi(ξ, t

n)] = 0, (35)

and from the term ε1 we get

〈
Φk, u

(2)
i

〉
−
〈

∂

∂τ
Φk, u

(1)
i

〉
+ a∗

〈
Φk,

∂

∂ξ
u

(1)
i

〉
= 0. (36)

Equations (35) and (36) connect u
(1)
i and u

(2)
i with the initial condition wi(ξ, t

n).
Since wi(ξ, t

n) does not depend explicitly on ε, from eqns. (34) - (36) and the
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ansatz (32) follows

lim
ε→0

ui(ξ, τ) = lim
ε→0

(
εu

(1)
i + ε2u

(2)
i + O(ε3)

)
= 0. (37)

From (37) follows the boundedness of ui(ξ, τ) in Qi in the stiff limit ε → 0.
This property is necessary to eliminate the stiffness from the numerical flux
in (11) in the limit ε → 0. For our model problem (20) the numerical flux
fh(ui(1, τ), ui+1(0, τ)) in (11) is a linear function of its two arguments ui(1, τ)
and ui+1(0, τ). Since (37) is valid independently for all elements Qi, we get
fi+ 1

2
→ 0 and fi− 1

2
→ 0 for ε → 0.

Boundedness of the source term integral Even more important for the
robustness of the finite volume scheme (10) is the boundedness of the source
space-time integral S̄i defined in (11). For the linear scalar model equation
(20) the source space-time integral reads with 1/ε = ν∗ = Δt ν together with
the asymptotic ansatz (32) and eqn. (34) as

S̄i = −ν 〈1, ui(ξ, τ)〉 = −Δt−1 1

ε
〈1, ui(ξ, τ)〉 = − 1

Δt

〈
1, u

(1)
i + ε1u

(2)
i + O(ε2)

〉
.

(38)
Using (35) and the conservation property (14) of the reconstruction operator,
i.e. [1, wi(ξ, t

n)] = ūn
i , we finally obtain

S̄i = − 1

Δt
([1, wi(ξ, t

n)] + O(ε)) = − 1

Δt
(ūn

i + O(ε)) , (39)

and in the stiff limit ε → 0 we have

lim
ε→0

S̄i = − ūn
i

Δt
. (40)

Inserting (37) and (40) into (10) and (11), we obtain the following finite volume
scheme in the stiff limit:

lim
ε→0

ūn+1
i = ūn

i +
Δt

Δx
lim
ε→0

(
fi+ 1

2
− fi− 1

2

)
+ Δt lim

ε→0
S̄i = 0. (41)

This means that for any bounded initial condition ūn
i and for any bounded

Δt (e.g. bounded by the standard CFL condition) our finite volume scheme
of any order of accuracy captures the stiff limit of (7) with (20) exactly.

2.2.3 Comparison of the Cauchy-Kovalewski procedure with the local space-
time DG scheme for a linear scalar ODE

As mentioned already before, in the original ENO approach of Harten et al.
[22] and also for ADER finite volume schemes [11,12,50,52], the time-accurate
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temporal evolution of the reconstruction polynomials wi(ξ, t
n) is predicted

inside each element within one time step using the Cauchy-Kovalewski proce-
dure, where the local solution is computed inside each element via a temporal
Taylor series in which the time derivatives are replaced by space derivatives
using repeated differentiation of the governing partial differential equation
(7). As an initial condition for this procedure, the reconstruction polynomials
wi(ξ, t

n) at time t = tn are taken. In other words, we are looking for a local
solution ui(ξ, τ) of the initial value problem for (7) inside each space-time
element Qi, where the initial condition is given by the reconstruction polyno-
mials, i.e. u(x(ξ), 0) = wi(ξ, t

n).
Neglecting convection for the moment, i.e. setting a = 0, the PDE (7) with
(20) reduces to the simple linear ordinary differential equation

∂

∂t
u = −νu, t ∈ �+

0 , (42)

whose solution is given by

u(t, ν) = u(0)e−νt. (43)

For very large values of ν, the solution (43) tends to the discontinuous limit
solution

lim
ν→∞u(t, ν) =

⎧⎪⎨
⎪⎩

u(0) if t = 0,

0 if t > 0.
(44)

It is obvious that a Taylor series expanded at time t = 0 is not able to ap-
proximate such a discontinuous solution as given by (44). For this reason, the
Cauchy-Kovalewski method can not be applied in this case to construct a local
solution to (7) since it is based essentially on the applicability of the Taylor
series expansion in time. In order to construct a polynomial approximation
to (43) that is at the same time high order accurate and is able to capture
the stiff limit (44), we have propose the new local space-time discontinuous
Galerkin scheme (28) applied to (7) locally inside each element. The solution
ui(ξ, τ) of this local space-time DG scheme applied to all elements Qi is used
in the finite volume scheme (10) to compute the numerical fluxes at the ele-
ment interfaces and to compute the space-time integral of the source term in
(11).
scheme is able to capture the limit (44) correctly. The correct behaviour of the
local space-time DG scheme in the stiff limit ν → ∞ compared to the diver-
gence of the classical Cauchy-Kovalewski procedure, which is normally used
in ADER finite volume and ADER discontinuous Galerkin schemes [10,13,49],
is illustrated in Fig. 1. We show the numerical solutions obtained with sixth
order schemes (basis polynomials Φk of maximal degree five) applied to (42)
for increasing values of ν with the initial condition u(0) = 1. This figure
shows very clearly that the Cauchy-Kovalewski procedure already fails for the
small value of ν = 3. For very large values of ν, the solution of the Cauchy-
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Fig. 1. Exact solution and sixth order numerical solutions of (42) using the
Cauchy-Kovalewski procedure based on a temporal Taylor series expansion and the
new local space-time DG scheme for ν = 3 (top left), ν = 10, (top right), ν = 100
(bottom left) and ν = 1000 (bottom right).

Kovalewski procedure is only correct in a very small interval [0; δ] (0 < δ � 1)
and diverges quickly in the remaining interval ]δ; 1], whereas our new local
space-time DG scheme apparently converges to the correct solution (44) of
(42) for ν → ∞ in the interval ]δ; 1]. We note furthermore that the local
space-time DG scheme produces an almost continuous solution at τ = 0 for
small values of ν and exhibits an increasing jump at τ = 0 for increasing ν in
order to capture correctly the discontinuous behaviour of (43). Note that in
all cases shown u(0) = 1.

2.2.4 General linear hyperbolic systems with stiff source terms

The extension of the proposed local space-time discontinuous Galerkin scheme
to general linear hyperbolic systems is straightforward. We consider linear
systems of the form

∂

∂t
up + Apq

∂

∂x
uq = −Epquq, (45)
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where up is the vector of state of n unknowns, Apq is a n × n matrix with
real eigenvalues and with a complete set of eigenvectors. The n × n matrix
Epq must be positive definite. We then rewrite the system (45) in reference
coordinates ξ and τ and obtain

∂

∂t
uq + A∗

pq

∂

∂x
uq = −E∗

pquq, (46)

with A∗
pq = Δtξx · Apq and E∗

pq = Δt · Epq. The same steps as described in
Section 2.2.1 can be applied and we finally obtain the equation system(

δpq(F
1
kl − Kτ

kl) + A∗
pqK

ξ
kl + E∗

pqMkl

)
ûi

ql = δpr F 0
kmŵi

rm(tn). (47)

Here, δpq is the classical Kronecker symbol. The combination of the indices
k,l,m for the degrees of freedom with the indices p and q for the variables can
be interpreted as sub-array syntax. Using the sub-array syntax we denote the
system matrix

Ypqkl = δpq(F
1
kl − Kτ

kl) + A∗
pqK

ξ
kl + E∗

pqMkl, (48)

and formally write the solution of (47) as

ûi
ql = Y −1

pqkl · δpr F 0
kmŵi

rm(tn). (49)

Eqn. (47) is a local linear equation system that can be solved for each element
Qi independently and thus also leads to a locally implicit scheme for ui(ξ, τ)
and does not need any information from the neighboring elements.

2.2.5 General nonlinear hyperbolic systems with stiff source terms

For the construction of the space-time DG scheme for general nonlinear hy-
perbolic systems of conservation laws with source terms of the form (7), we
also first re-write the system (7) in coordinates of the reference element as
follows:

∂

∂τ
u +

∂

∂ξ
f∗(u) = S∗(u), (50)

with the modified flux and source function f∗ = f∗(u) = Δtξxf(u) and
S∗ = S∗(u) = ΔtS(u). We then multiply with the test functions Φk(ξ, τ),
integrate over QE and subsequently integrate the first term containing the
time derivative by parts, as in the linear case, in order to obtain

[Φk(ξ, 1),u(ξ, 1)]− [Φk(ξ, 0),u(ξ, 0)]−
〈

∂

∂τ
Φk,u

〉
+

〈
Φk,

∂

∂ξ
f∗
〉

= 〈Φk,S
∗〉 .

(51)
Inserting the numerical fluxes in τ direction as well as the ansatz for the numer-
ical solution (23) into (51) yields the following nonlinear system of equations
for the unknowns ûi

l
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[Φk(ξ, 1), Φl(ξ, 1)] ûi
l − [Φk(ξ, 0), Ψm(ξ)] ŵi

m(tn)−〈
∂

∂τ
Φk, Φl

〉
ûi

l +

〈
Φk,

∂

∂ξ
f∗(Φl û

i
l)

〉
−
〈

Φk,S
∗(Φl û

i
l)

〉
= 0. (52)

The necessity to solve the local nonlinear system of equations (52) adds further
complications to our algorithm compared to the case of linear systems. Due
to the locally implicit character of the local space-time DG scheme, the use of
a Newton algorithm or other strategies for finding roots of nonlinear equation
systems becomes necessary. In this paper, we apply the following strategy:
To compute the solution of (52) we first linearize the nonlinear system (50)
with respect to the initial condition given by wi(ξ, tn), then we solve the re-
sulting linear equation system (47) exactly using Gauss-Jordan elimination

and obtain as result a first guess û
(i,1)
l of the solution ûi

l of (52). Linearizing

about û
(i,1)
l Φl(ξ, 1) and solving the resulting linear system again exactly yields

the second guess values û
(i,2)
l . This procedure is usually repeated for a total

number of three times. The third guess values û
(i,3)
l are then the starting point

of a standard multivariate Newton method for nonlinear systems of equations
as described e.g. in chapter 9.7 of [44]. We remark that for the solution of (52)
the initial guess used as input for the Newton method remains very crucial
even for so-called globally convergence Newton methods as described in [44].
We note that for nonlinear systems with stiff source terms, most of the com-
putational time of our algorithm is spent in the solution of (52). Since the
authors are not experts in the field of efficiently solving nonlinear systems of
equations, there may be other, much more efficient techniques to solve (52).
However, the main scope of this article is not to solve (52) efficiently but to
validate the general approach.

We finally would like to point out that for the special case f(u) = 0 the scheme
(52) automatically reduces to a standard discontinuous Galerkin method for
the nonlinear system of first order ordinary differential equations (ODE)

∂

∂t
u = S(u). (53)

At this point, we would like to summarize again the necessary steps for our
proposed explicit arbitrary high order accurate finite volume schemes for hy-
perbolic systems with stiff source terms:

(I) Compute the degrees of freedom ŵi
l(t

n) of the weighted essentially non-
oscillatory (WENO) reconstruction polynomials wi(ξ, t

n) at time tn from
the given cell averages ūn

i of the finite volume scheme using (15)-(19).
(II) Compute the solution ûi

l of the local space-time discontinuous Galerkin
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method (52), where the initial condition is given by the reconstructed
degrees of freedom wi

l(ξ, t
n) at time tn.

(III) Use the solution ui(ξ, τ) = Φl(ξ, τ)ûi
l to compute the arguments for

the source term and the numerical flux in (11) that are needed for the
explicit finite volume scheme (10). The integrals appearing in eqn. (11)
are computed using classical Gaussian quadrature formulae, see e.g. [48]
for details. Update the cell averages according to (10) to the new time
tn+1 and restart with step (I).

At the end of this section we would like to add a very important remark
concerning systems of balance laws: In order to obtain a correct coupling
of the flux and the source term inside the local space-time DG scheme (52)
together with the finite volume discretization (10), numerical schemes of order
of accuracy of at least two must be used, which means that the polynomial
degree of the basis and test functions Φk must be at least one. This is due
to the fact that the first order version of the local space-time DG scheme,
i.e. the one with polynomial degree zero for the basis and test functions Φk,
does not couple source and flux in the local solution ui(ξ, τ) because the term
<Φk,

∂
∂ξ

f∗(Φlû
i
l)> in (52) vanishes in this case.

3 Numerical convergence studies

To assess the convergence behaviour of our method numerically, we solve the
following nonlinear hyperbolic system with source terms, for which a non-
trivial exact reference solution is known by construction:

∂

∂t
u +

∂

∂x

(
1

2
v2
)

= −ν (u − ue) +
∂

∂t
ue +

∂

∂x

(
1

2
v2

e

)
,

∂

∂t
v +

∂

∂x

(
1

2
u2
)

= −ν (v − ve) +
∂

∂t
ve +

∂

∂x

(
1

2
u2

e

)
. (54)

It is easy to see that any differentiable function pair ue(x, t), ve(x, t) satis-
fies eqn. (54). For our convergence studies, we choose the following smooth
reference solution:

ue(x, t) = U0 + Au sin (kx − ωt) , ve(x, t) = V0 + Av cos (kx − ωt) . (55)

In particular, we choose the following parameters for the reference solution
used in the numerical convergence studies: U0 = 4, V0 = 6, Au = 0.1, Av = 0.3,
k = ω = 2π. Equation (54) is solved on the computational domain Ω = [0; 1]
with periodic boundary conditions. The Courant number is set in the following
test cases to CFL = 0.5.

First, we assess the capability of our scheme to maintain the balance between
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the nonlinear advection operator on the left hand side and the source terms on
the right hand side in the non-stiff case for ν = 10. The initial conditions for
u and v are in this case u(x, 0) = ue(x, 0) and v(x, 0) = ve(x, 0). We compute
the problem for half a period, i.e. up to the final output time t = 0.5. The
numerical convergence results obtained for the variable v with the proposed
ADER finite volume schemes from second to sixth order of accuracy in space
and time are shown in Table 1, where NG denotes the number of grid cells
used to discretize the domain Ω. The errors and the associated convergence
rates between two successive grid refinements are shown in L1, L2 and L∞

norm. The error norms are computed numerically according to

‖w − ve‖p =

⎛
⎝ 1∫

0

[w(x, t) − ve(x, t)]p dx

⎞
⎠

1
p

, (56)

using Gaussian quadrature rules of appropriate order. We emphasize that the
norms are computed comparing the second component of the reconstructed
solution against the exact reference solution ve. As an approximation for the
infinity norm, we take the maximum of the error obtained in any of the Gaus-
sian integration points.
The results presented in Table 1 show clearly that the method converges with
the designed order of accuracy. They furthermore indicate the capability of
the method to maintain a good balance between the source terms on the right
hand side of the governing equation and the nonlinear convection on the left
hand side, respectively.

Second, we assess the accuracy and the robustness of the proposed schemes in
the presence of a very stiff source term. Therefore, we choose in this second
test case ν = 108. Since we know that the stiff relaxation source term in the
governing equation (54) will cause the solution to relax to the equilibrium
given by the reference solution ue, ve from any initial condition, we choose
a constant initial condition u(x, 0) = 10, v(x, 0) = 2, which is far from the
equilibrium ue, ve and as a consequence in the first time steps the source is very
stiff. Once the equilibrium u = ue, v = ve has been reached, the scheme must
be able to maintain it. The numerical convergence rates obtained for variable v
with ADER finite volume schemes from second to sixth order for this very stiff
case (ν = 108) are shown in Table 2. From the results we can clearly conclude
that the method is at the same time able to treat stiff source terms robustly
and maintains an excellent balance between flux divergence and source term
at the designed order of accuracy in space and time. To our knowledge, this
is the first finite volume scheme ever presented in the research literature on
stiff source terms that achieves arbitrary high order of accuracy in space and
time. This is, of course, only valid for sufficiently smooth solutions.
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Table 1
Numerical convergence rates for the non-stiff case (ν = 10) obtained with ADER
finite volume schemes from second to sixth order of accuracy in space and time.

NG L1 L2 L∞ OL1 OL2 OL∞

ADER-FV O2, (M = 1). ν = 10
8 3.1079E-02 3.3731E-02 5.3694E-02
16 6.4558E-03 7.8656E-03 1.5286E-02 2.3 2.1 1.8
32 1.1027E-03 1.5591E-03 4.6096E-03 2.5 2.3 1.7
64 1.9859E-04 3.2959E-04 1.1626E-03 2.5 2.2 2.0
128 2.8261E-05 5.5964E-05 2.8027E-04 2.8 2.6 2.1

ADER-FV O3, (M = 2). ν = 10
8 4.0967E-03 5.3548E-03 1.0574E-02
16 5.4254E-04 7.0971E-04 1.4511E-03 2.9 2.9 2.9
32 6.9171E-05 8.9516E-05 1.8292E-04 3.0 3.0 3.0
64 8.6332E-06 1.1171E-05 2.2846E-05 3.0 3.0 3.0
128 1.0816E-06 1.3965E-06 2.8546E-06 3.0 3.0 3.0

ADER-FV O4, (M = 3). ν = 10
4 1.5831E-02 2.0495E-02 4.1219E-02
8 1.1568E-03 1.3030E-03 2.2840E-03 3.8 4.0 4.2
16 6.8436E-05 7.6848E-05 1.3577E-04 4.1 4.1 4.1
32 4.1739E-06 4.6990E-06 8.8561E-06 4.0 4.0 3.9
64 2.5792E-07 2.9389E-07 5.4790E-07 4.0 4.0 4.0

ADER-FV O5, (M = 4). ν = 10
4 1.3054E-02 1.5158E-02 2.4062E-02
8 4.9450E-04 6.3210E-04 1.2255E-03 4.7 4.6 4.3
16 1.6178E-05 2.1234E-05 4.3206E-05 4.9 4.9 4.8
20 5.3607E-06 7.0209E-06 1.4525E-05 4.9 5.0 4.9
32 5.3921E-07 6.8677E-07 1.4518E-06 4.9 4.9 4.9

ADER-FV O6, (M = 5). ν = 10
4 8.3790E-03 9.9571E-03 2.2749E-02
8 1.6979E-04 2.0617E-04 5.0498E-04 5.6 5.6 5.5
12 1.5335E-05 1.8985E-05 4.7928E-05 5.9 5.9 5.8
16 2.7810E-06 3.4639E-06 9.0072E-06 5.9 5.9 5.8
20 7.5279E-07 9.5828E-07 2.5537E-06 5.9 5.8 5.6
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Table 2
Numerical convergence rates for the very stiff case (ν = 108) obtained with ADER
finite volume schemes from second to sixth order of accuracy in space and time.

NG L1 L2 L∞ OL1 OL2 OL∞

ADER-FV O2, (M = 1). ν = 108

8 2.9784E-02 3.0049E-02 3.4246E-02
16 6.3522E-03 7.2830E-03 1.1337E-02 2.2 2.0 1.6
32 5.2567E-04 8.5936E-04 1.7792E-03 3.6 3.1 2.7
64 1.2096E-04 2.1170E-04 4.3802E-04 2.1 2.0 2.0
128 1.5717E-05 3.8232E-05 1.0892E-04 2.9 2.5 2.0

ADER-FV O3, (M = 2). ν = 108

8 3.5814E-03 5.0870E-03 9.2163E-03
16 4.5652E-04 6.7004E-04 1.2552E-03 3.0 2.9 2.9
32 5.7309E-05 8.4607E-05 1.6027E-04 3.0 3.0 3.0
64 7.1382E-06 1.0613E-05 2.0140E-05 3.0 3.0 3.0
128 8.9658E-07 1.3275E-06 2.5379E-06 3.0 3.0 3.0

ADER-FV O4, (M = 3). ν = 108

4 1.4142E-02 1.9636E-02 3.8569E-02
8 1.0485E-03 1.2385E-03 2.3951E-03 3.8 4.0 4.0
16 6.4253E-05 7.5030E-05 1.4553E-04 4.0 4.0 4.0
32 3.9752E-06 4.6373E-06 9.0331E-06 4.0 4.0 4.0
64 2.4920E-07 2.8917E-07 5.5709E-07 4.0 4.0 4.0

ADER-FV O5, (M = 4). ν = 108

4 1.3054E-02 1.5158E-02 2.4062E-02
8 4.9450E-04 6.3210E-04 1.2255E-03 4.7 4.6 4.3
16 1.6179E-05 2.1235E-05 4.3216E-05 4.9 4.9 4.8
32 5.3935E-07 6.8713E-07 1.4690E-06 4.9 4.9 4.9
64 2.0147E-08 2.5747E-08 6.4216E-08 4.7 4.7 4.5

ADER-FV O6, (M = 5). ν = 108

4 8.3790E-03 9.9571E-03 2.2749E-02
8 1.6980E-04 2.0617E-04 5.0498E-04 5.6 5.6 5.5
12 1.5336E-05 1.8986E-05 4.7918E-05 5.9 5.9 5.8
16 2.7812E-06 3.4641E-06 8.9977E-06 5.9 5.9 5.8
20 7.5301E-07 9.5840E-07 2.5566E-06 5.9 5.8 5.6
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4 Applications

4.1 Model system with linear flux and nonlinear source term

We consider the following class of linear advection systems with non linear
relaxation: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂tu + ∂

∂xv = 0,

∂
∂tv + ∂

∂xu = −1
ε

v
α(u)

,

(57)

where ε is a positive parameter and α(u) is any given function which satisfies
α(u) > 0 ∀u in the domain of interest and does not depend on ε. System
(57) can be seen as a dimensionless system where ε is the ratio between the
characteristic time of the relaxation process over the characteristic time of
the pure advection process. If the relaxation process is much faster than the
advection process, namely if ε � 1 which corresponds to the stiff case, it is
possible to obtain the asymptotic limit of the system. An asymptotic expansion
of the relaxating variable formally reads as

v = v0 + εv1 + O
(
ε2
)
, (58)

where v0 and v1 are unknown functions of x and t. Here we recall that ex-
pansion (58) should not be interpreted as a convergent mathematical series,
but as a truncated formal expansion. Injecting (58) into system (57), we find

iteratively that v0 = 0 and v1 = −α(u) ∂
∂xu for an arbitrary small value of ε.

Thus, as ε → 0, variable v is given by the following equation:

v = −εα(u)
∂

∂x
u + O

(
ε2
)
, (59)

and the asymptotic limit of system (57) reads as

∂

∂t
u = ε

∂

∂x

[
α(u)

∂

∂x
u

]
+ O

(
ε2
)
, (60)

which is a non linear diffusion equation.

Example 1: α(u) = 1. We consider first the linear case α(u) = 1. According
to (60), as ε → 0, system (57) reduces to the well-known heat equation:

∂

∂t
u = ε

∂2

∂x2 u, (61)

where ε plays the role of a (small) diffusion coefficient. Suppose that the do-
main of interest is x ∈ R and that an initial condition u(x, 0) = u0(x) is given.
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Then an analytical solution of equation (61) is known, namely the following
Green function:

u(x, t) =
1√
4πεt

+∞∫
−∞

u0(ξ)e
−(x− ξ)2

4εt dξ. (62)

We now solve the system (57) up to the final output time t = 50 in the
computational domain Ω = [−1

2
; 1

2
] with α(u) = 1 using ADER-FV schemes

from second to fifth order of accuracy on 100 cells. The local space-time DG
scheme for linear systems can be directly applied according to (47). We take
a stiffness parameter of ε = 10−4 and as initial condition we choose

u0(x) =

{
1000 if x � 0,
1 if x > 0.

(63)

The boundary conditions are chosen to be transmissive. The analytical solu-
tion of the heat equation (61) with the initial condition (63) is given in terms
of the error function erf(x) at t = 50 with ε = 10−4 as

u(x, 50) =
1001

2
− 999

2
· erf(5

√
2x), (64)

against which the numerical solutions will be compared. The Courant number
is set in all computations to CFL = Δt/Δx = 0.9. The final output time t = 50
is quite large and is reached with the chosen combination of mesh and Courant
number after 5556 iterations. Hence, we expect that the low order schemes will
add more spurious numerical diffusion in this test case compared to the high
order schemes since we compute a large number of time steps. This conjecture
is indeed confirmed by our numerical results that are depicted in Fig. 2. We
can see that generally all the schemes capture the exact reference solution (64)
quite well. However, the higher order schemes produce better results than the
lower order methods. This means that even in the diffusion limit of the stiff
system (57) higher order schemes may produce better results than lower order
methods. We finally would like to emphasize that our numerical results have
been obtained using a standard explicit one-step high order finite volume
scheme, where we only use a particular procedure in order to predict the local
time-evolution of the reconstructed polynomials. This is achieved via our new
local space-time discontinuous Galerkin scheme proposed in this article. The
rest of the finite volume scheme is standard.

Example 2: α(u) = u(1 − u). We now consider a special non linear case,
namely α(u) = u(1− u). Hypothesis α(u) > 0 is valid if and only if u ∈ ]0; 1[.
In this region, according to (60), as ε → 0, system (57) reduces to the following
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Fig. 2. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes
of second to fifth order of accuracy in space and time for the model system with
linear flux and stiff linear source (ε = 10−4) at time t = 50.

non linear diffusion equation:

∂

∂t
u = ε

∂

∂x

[
u(1 − u)

∂

∂x
u

]
. (65)

Suppose that the domain of interest is Ω = [−0.5; 0.5] for a given L > 0, and

that Neumann boundary conditions
(

∂
∂xu

)
(−0.5, t) =

(
∂
∂xu

)
(0.5, t) = 0 are

imposed ∀t > 0. Then, for the initial condition we use

u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1− if x � 0, where 1− = lim
δ→0

1 − δ,

0+ if x > 0, where 0+ = lim
δ→0

δ,
(66)

where for small δ > 0, an analytical solution of equation (65) is known, namely:

u(x, t) = min(1, max(0,
1

2

(
1 − x√

εt

)
)). (67)

We solve this test problem for δ = 10−6 with ADER-FV schemes of second,
third and fifth order of accuracy using 100 cells in the computational domain
Ω up to time t = 10 with ε = 10−3 and a Courant number of CFL = 0.25.
The numerical results and the exact reference solution for the stiff limit are
depicted in Fig. 3. We note that all methods agree very well with the reference
solution and that even in this case, with discontinuities in the first derivative
of the solution, we can clearly see an improvement with increasing order of
accuracy.
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Fig. 3. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes
of second, third and fifth order of accuracy in space and time for the model system
with linear flux and stiff nonlinear source (ε = 10−3) at time t = 10.

4.2 Model system with nonlinear flux and linear source term

We now consider the following class of non linear advection systems with linear
relaxation: ⎧⎪⎪⎨

⎪⎪⎩
∂
∂tu + ∂

∂xv = 0,

∂
∂tv + ∂

∂xf(u) = −1
ε v,

(68)

where ε is a positive parameter and f(u) is any given function which satisfies
f ′(u) ≥ 0 ∀u in the domain of interest and does not depend on ε. Injecting
asymptotic expansion (58) into system (68), we find iteratively that v0 = 0

and v1 = −f ′(u) ∂
∂x

u for an arbitrary small value of ε. Thus, as ε → 0, variable
v is given by the following equation:

v = −εf ′(u)
∂

∂x
u + O

(
ε2
)
, (69)

and the asymptotic limit of system (68) reads as

∂

∂t
u = ε

∂

∂x

[
f ′(u)

∂

∂x
u

]
+ O

(
ε2
)

, (70)

which is a non linear diffusion equation. Note that in the previous section, we
had α(u) > 0, while here we have f ′(u) ≥ 0.
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Fig. 4. Exact and numerical solutions obtained on 100 cells using ADER-FV schemes
of second, third and fifth order of accuracy in space and time for the model system
with nonlinear flux and stiff linear source (ε = 10−3) at time t = 10.

Example 3: f ′(u) = u(1 − u). We consider the special non linear case
f ′(u) = u(1 − u), which leads to f(u) = 1

2
u2 − 1

3
u3. The hypothesis f ′(u) > 0

is verified if and only if u ∈ [0; 1]. In this region, according to (70), as ε → 0,
system (68) reduces to the non linear diffusion equation (65). Suppose that
the domain of interest is x ∈ [−0.5; 0.5] for a given L > 0, and that Neumann

boundary conditions
(

∂
∂xu

)
(−0.5, t) =

(
∂
∂xu

)
(0.5, t) = 0 are imposed ∀t >

0. Then, an analytical solution of equation (65) is (67), which is compatible
with the initial condition:

u(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1− if x � 0, where 1− = lim
δ→0

1 − δ,

0+ if x > 0, where 0+ = lim
δ→0

δ,
(71)

We solve this test problem for δ = 10−4 with ADER-FV schemes of second,
third and fifth order of accuracy using 100 cells in the computational domain
Ω up to time t = 10 with ε = 10−3 and a Courant number of CFL = 0.25.
The numerical results and the exact reference solution for the stiff limit are
depicted in Fig. 4. As in the previous test problem, all methods agree again
very well with the reference solution and an improvement with increasing order
of accuracy is also visible.
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4.3 Euler equations with stiff friction

In this section we apply our method to the Euler equations of compressible
gas dynamics with stiff friction. The full Euler system with friction reads as
(7) with the vector of conservative variables u, the flux f(u) and the (stiff)
source term S(u) as

u =

⎛
⎜⎝

ρ
ρu
ρE

⎞
⎟⎠ , f(u) =

⎛
⎜⎝

ρu
ρu2 + p

u(ρE + p)

⎞
⎟⎠ , S(u) = −ν

⎛
⎜⎝

0
ρu
ρu2

⎞
⎟⎠ . (72)

The system still needs to be closed by an equation of state (EOS) of the form
p = p(u). For the following numerical calculations we consider a computational
domain Ω = [0; 1] with the Dirichlet boundary conditions u(0, t) = u(0, 0) and
u(1, t) = u(1, 0) and the initial condition

u(x, 0) =

{
(1.65, 0, 5.039849068) if x � 0.25,
(0.01, 0, 0.003962233) if x > 0.25.

(73)

For the stiffness parameter ν we take

ν(x, t) =

{
0 if x � 0.25,
1500 if x > 0.25,

(74)

which means that we solve the Euler equations without any friction in the left
quarter of Ω (x ∈ [0; 0.25]) and with stiff friction in the region x ∈ [0.25; 1].
This setup corresponds to an interface of an inviscid compressible gas with
a porous medium into which the gas may penetrate. For all the following
computations we set the Courant number to CFL = 0.9.

Isentropic Euler system with stiff friction Under the assumption that
the flow is completely isentropic, we can write the equation of state as

p(u) = kργ . (75)

In this case, the pressure does not depend on the total energy ρE and thus
the energy equation in (7) and (72) can be omitted. We set k = 1 and γ = 1.4.
We solve (7) with (72) and the EOS (75) up to t = 2.0 using 100 cells and
ADER-FV schemes from second to fourth order of accuracy. The reference so-
lution is computed with a second order ADER-FV scheme on 10000 cells. The
results are depicted in Fig. 5a. We clearly see that on a fixed grid the diffusion
limit of the Euler equations is captured better by the higher order schemes.
Although the results of the second order method are still of acceptable accu-
racy, we nevertheless observe that the second order method adds too much
numerical diffusion. A very similar testcase has previously been proposed by
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Fig. 5. Reference solution and numerical solutions at time t = 2 obtained on 100
cells using ADER-FV schemes of second, third and fourth order of accuracy in space
and time for the Euler system with stiff friction. a) Isentropic Euler system (left)
and b) Full Euler system with ideal gas EOS (right).

Bouchut et al. [5]. Unfortunately they did not specify all parameters of their
test problem. Especially, the initial and boundary conditions were not given,
so it was not possible to compute exactly the same test case. However, the
results are qualitatively similar compared to ours.

Full Euler system with stiff friction Using the ideal gas law, the equation
of state reads as

p(u) = (γ − 1)(ρE − 1

2
ρu2), (76)

where γ = 1.4. In this case, we must consider the full Euler system including
the energy equation. In the initial condition (73) the total energy ρE is chosen
such that the pressure according to (76) is equal to the pressure obtained in
the isentropic case from eqn. (75). We therefore expect the results to be very
similar to the previous ones. Hence, we solve (7) with (72) and the EOS (76)
up to t = 2.0 using the initial condition (73). The computational domain
is discretized with 100 cells using ADER-FV schemes from second to fourth
order of accuracy. The reference solution is computed again with a second
order ADER-FV scheme on 10000 cells. The results are depicted in Fig. 5b.
Similar to the isentropic case, we observe that also the diffusion limit of the
full Euler equations is captured better by the higher order schemes.

We finally would like to remark that even some first order numerical methods
designed for stiff systems of balance laws may encounter problems with this
test case for the full Euler equations since they may produce negative values
for the total energy ρE.
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4.4 The relaxation system of Jin and Xin

The relaxation system of Jin and Xin [30] reads as follows:

⎧⎪⎪⎨
⎪⎪⎩

∂
∂tu + ∂

∂xv = 0,

∂
∂t

v + A ∂
∂x

u = −1
ε (v − f(u)) ,

(77)

where f(u) is a given function, ε is a positive arbitrary small parameter and
A is a constant matrix. The advection part of this system is linear, while the
relaxation part is not linear in general, due to the presence of f(u). It is easy
to check that the asymptotic limit of system (77) is:

∂

∂t
u +

∂

∂x
f(u) = ε

∂

∂x

[(
A − J2(u)

) ∂

∂x
u

]
, (78)

where J = ∂f
∂u

. System (78) is a hyperbolic system of conservation laws with
non linear diffusion if and only if:

A ≥ J2(u) ∀u. (79)

We now apply our proposed ADER finite volume schemes for hyperbolic sys-
tems with stiff source terms to the relaxation system of Jin and Xin with the
following definitions of the vector u and the flux function f(u) appearing in
the source term:

u = (ρ, ρu, ρE) , f(u) =
(
ρu, ρu2 + p, u(ρE + p)

)
, (80)

with the equation of state that closes the system,

p = (γ − 1)
(
ρE − 1

2
ρu2

)
. (81)

With this choice eqn. (77) converges to the compressible Euler equations in
the stiff limit. The stiffness parameter ν = 1/ε is set in all the following test
cases to ν = 1012, which leads to a very stiff source term. The matrix A is
chosen to be the simple diagonal matrix A = diag(am, am, am), which is kept
constant in space and time.

Shock tube problems We consider initial value problems for (77) where
the initial condition for u has the form

u(x, 0) =

{
(ρL, (ρu)L, (ρE)L) if x � xc,
(ρR, (ρu)R, (ρE)R) if x > xc.

(82)
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Table 3
Initial states left and right, simulation end times and initial position xc of the
discontinuity for the 1D shock tube problems computed with the relaxation system
of Jin and Xin.
Case ρL uL pL ρR uR pR tend xc

1 1.0 0.75 1.0 0.125 0.0 0.1 0.20 0.5
2 1.0 -2.0 0.4 1.0 2.0 0.4 0.15 0.5
3 0.445 0.698 3.528 0.5 0.0 0.571 0.14 0.5
4 5.99924 19.5975 460.895 5.99242 -6.19633 46.0950 0.035 0.4
5 1.0 0.0 1000. 1.0 0.0 0.01 0.012 0.5
6 1.0 -19.59745 1000. 1.0 -19.59745 0.01 0.012 0.8

The initial condition for v is simply v(x, 0) = 0. For the Euler equations of
compressible gas dynamics the exact solution of those Riemann problems can
be computed analytically and will serve in the following for validation of our
numerical method when applied to the relaxation system of Jin and Xin. We
compute the solution of the initial value problem (77) and (82) using second to
fourth order ADER-FV schemes for six different cases of shock tube problems.
All initial conditions as well as the final output times tend and the initial
position of the discontinuity xc are listed in Table 3. The values am defining
the matrix A are given for each test case in Table 4. For all computations we
use a constant Courant number of CFL = 0.75. The exact solution and the
numerical solutions obtained by our proposed method are shown for all six
shock tube problems in Figures 6-8, where also the number of mesh cells is
indicated. For most of the test cases we note an excellent agreement with the
exact solution and most of the numerical solutions are monotone, thanks to the
nonlinear WENO reconstruction procedure. We note that the reconstruction
is done in the characteristic variables of the compressible Euler equations and
not in the characteristic variables of the advection operator of the relaxation
system of Jin and Xin. This is necessary to suppress unphysical oscillations.
Using this particular characteristic reconstruction, small spurious oscillations
are only visible for shock tube problems number two and four. We note that
these test cases can be even difficult to compute with standard high order finite
volume schemes for the compressible Euler equations. Much more numerical
difficulties arise in the relaxation system of Jin and Xin due to the very stiff
source term. However, the numerical results confirm that our method produces
essentially non-oscillatory results, maintains high accuracy even for hyperbolic
systems with stiff source terms and has the correct behaviour in the stiff limit.

Table 4
Entries am of the diagonal matrix A for the 1D shock tube problems.

Case 1 2 3 4 5 6
am 7 12 12 900 1500 9000
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Fig. 6. Exact and numerical solutions for shock tube problems number one (left)
and two (right), obtained with the relaxation system of Jin and Xin on 100 cells.
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Fig. 7. Exact and numerical solutions for shock tube problems number three (left)
and four (right), obtained with the relaxation system of Jin and Xin on 100 cells.
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Fig. 8. Exact and numerical solutions for shock tube problems number five (left)
and six (right), obtained with the relaxation system of Jin and Xin on 200 cells.
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Fig. 9. Reference solution and numerical solutions at t = 1.8 for the shock-density
interaction test case obtained with the relaxation system of Jin and Xin on 400 cells
using ADER-FV schemes of second, third and fourth order of accuracy.

Shock-density interaction We now consider a test problem proposed orig-
inally by Shu and Osher [46] for the compressible Euler equations in the more
general framework of the stiff relaxation system of Jin and Xin (77) in order to
emphasize the advantages of high order methods. The computational domain
is Ω = [−5; 5] and the initial condition for u is given by

(ρ, u, p) (x, 0) =

{
(3.8571, 2.6294, 10.333) if x < −4,
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4,

(83)

Furthermore we set v(x, 0) = 0. This leads to a shock wave with Mach num-
ber M = 3 running into the sinusoidal density fluctuation. The interaction
of the shock with the density fluctuation generates sound waves and high-
frequency entropy fluctuations that are very difficult to capture with low order
schemes on coarse meshes. In Fig. 9 we show the numerical results obtained
with ADER-FV schemes from second to fourth order of accuracy on 400 cells
at the final output time t = 1.8. We choose am = 25 and a Courant number
of CFL = 0.75.
One can clearly see that the second order method is not at all able to resolve
the high frequency entropy waves. The third order scheme already resolves
the whole frequency content but is still too dissipative since the amplitudes of
the entropy waves are not yet captured, see Fig. 9 on the left. Only the fourth
order scheme is able to resolve the whole solution quite well on this relatively
coarse mesh, see Fig. 9 on the right. The reference solution was computed
using a second order TVD finite volume scheme for the compressible Euler
equations on 10000 cells.
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4.5 The scalar model problem of LeVeque and Yee

The model problem proposed by LeVeque and Yee [34] is a scalar linear ad-
vection problem with a non linear reaction source term, which can be stiff.
The governing PDE reads as

∂

∂t
u +

∂

∂x
u = −νu (u − 1)

(
u − 1

2

)
, (84)

where ν is a given positive coefficient. The computational domain is Ω =
[0; 1] with transmissive boundary conditions. The following initial condition is
considered:

u(x, 0) =

{
1 if x � 0.3,
0 if x > 0.3.

(85)

With this particular initial condition, the source term is zero. Thus, an ana-
lytical solution of problem (84)-(85) is known, namely: u(x, t) = u(x − t, 0).
which means that the initial profile of u is advected with constant speed 1.
LeVeque and Yee have pointed out that neither a Mac Cormack predictor-
corrector method, nor a Strang splitting method give the physically correct
advection speed in the stiff case. We further note that also a standard ADER
finite volume scheme [54,50] using the usual Cauchy-Kovalewski procedure
instead of our local space-time discontinuous Galerkin scheme to compute
ui(ξ, τ) from the reconstructed polynomials wi(ξ, t

n) will produce the wrong
advection speed. We now solve the above mentioned test problem up to t = 0.3
using 100 cells and a Courant number of CFL = 0.75. Following LeVeque and
Yee we take the following values for the stiffness parameter: ν = 1, ν = 10,
ν = 100, ν = 1000. The numerical results obtained with our new ADER-FV
schemes from second to sixth order of accuracy are depicted in Fig. 10 for
the non-stiff as well as for the stiff case. We note an excellent agreement with
the exact solution in all cases. In particular, the advection speed of a = 1 is
captured correctly. Furthermore, we can clearly see that our numerical solu-
tion is essentially non-oscillatory and that the resolution of the discontinuity
is improved in the non-stiff case when using higher order schemes. For the
stiff case, we observe less numerical diffusion than in the non-stiff case. This
is due to the reaction source term, which has two stable equilibrium solutions
at u = 0 and at u = 1. Any numerical dissipation generated by the numerical
scheme will lead to a smearing of the discontinuity and will subsequently lead
to intermediate values of u that do not correspond to either of the stable equi-
libria. The stiff reaction source term will immediately try to push the solution
back towards the closest equilibrium, which in the end leads to a generally
sharper profile for the stiff case compared to the non-stiff case.
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Fig. 10. Exact solution and numerical solutions for the model problem of LeVeque
and Yee at t = 0.3 using 100 cells for the non-stiff case (top row) and the stiff case
(bottom row). ν = 1 (top left), ν = 10, (top right), ν = 100 (bottom left), ν = 1000,
(bottom right).

5 Summary and conclusions

In this article we have developed a new unsplit explicit essentially non-oscillatory
one-step finite volume scheme of arbitrary high order of accuracy in space and
time for nonlinear hyperbolic systems with stiff source terms. In continuity
with previous work of the authors on schemes of arbitrary high order of accu-
racy in space and time, we call our new method also ADER (arbitrary high
order derivatives) finite volume scheme. The essentially non-oscillatory char-
acter of the method is obtained via a special nonlinear WENO reconstruction
procedure that produces entire reconstruction polynomials in terms of orthog-
onal basis functions, instead of point values that are generated usually by
standard WENO schemes. The spatial reconstruction polynomials obtained
from the particular WENO reconstruction operator are used as initial con-
ditions for a local space-time discontinuous Galerkin scheme which solves an
initial value problem for the governing PDE locally inside each element with-
out considering the neighboring elements. The local space-time DG scheme
leads in general to a local system of nonlinear equations that has to be solved
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individually for each element. In this article, we use a standard globally con-
vergent Newton algorithm [44] to solve the problem in the nonlinear case.
As initial guess we solve an associated linear problem after linearization of
the governing PDE. In the case of a purely linear governing PDE, the linear
equation system resulting from the local space-time DG scheme can be solved
exactly. We emphasize that the local space-time DG scheme is the only locally
implicit part appearing in the proposed ADER-FV schemes. The Newton al-
gorithm only has to iterate over the space-time degrees of freedom inside one
element and does not have to consider the degrees of freedom in the neigh-
boring elements. The resulting ADER finite volume scheme, built upon the
solution of the local space-time DG scheme, is then completely explicit. Com-
pared to previous ADER-FV schemes for hyperbolic systems with non-stiff
source terms, the new local space-time DG scheme has replaced the usual
Cauchy-Kovalewski procedure, which is not able to treat stiff problems. The
rest of the scheme remains the same.

We have shown via asymptotic analysis that the new local space-time DG
scheme is able to capture correctly the stiff limit in the case of a linear scalar
PDE with stiff source term. Subsequently, the boundedness of the space-time
integral of the source term S̄i has been demonstrated in the stiff limit. From
this result, it has been deduced that the resulting ADER finite volume scheme
is also consistent with the stiff limit for any bounded time step Δt.
Numerical convergence studies for our proposed method have been carried
out up to sixth order of accuracy in space and time for a nonlinear hyperbolic
system with source terms. A non-stiff case and also a very stiff case have been
considered. The ADER-FV schemes then have been applied to several stiff
linear and nonlinear model systems for which an analytical reference solution
is available. In all the cases our schemes were able to capture very well the stiff
limit of these equations and to maintain also the monotonicity of the solution,
even using schemes of very high order of accuracy. Usually, the results obtained
with the higher order schemes were better than the results obtained with the
lower order methods, even for test problems with discontinuities in the state or
in the derivatives. We emphasize that for our explicit one-step finite volume
method even for very stiff problems the time step is only restricted by the
standard CFL stability condition and not by the stiffness of the source term.
We then have shown an application of ADER-FV schemes of up to fourth order
of accuracy to the isentropic and the full Euler equations with stiff friction,
where a reference solution has been computed on a very fine mesh. As in the
previous cases of the model systems, the ADER-FV schemes also captured the
stiff diffusion limit of the Euler equations correctly. Again, the higher order
schemes produced better results with less numerical diffusion than the low
order schemes.
Subsequently we have applied our new algorithm to a very interesting stiff
system of hyperbolic balance laws, namely the stiff relaxation system of Jin
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and Xin [30], which rewrites a nonlinear hyperbolic system as an enlarged
linear hyperbolic system with stiff source terms. For the application of our
high order algorithm we have chosen the relaxation system corresponding to
the compressible one-dimensional Euler equations. We have computed a large
number of one-dimensional shock tube problems, for which exact reference
solutions are known. For the relaxation system of Jin and Xin, a particularly
large value has been chosen for the stiffness parameter in order to minimize the
dissipation induced by the right hand side of the limit equation for u. We were
able to show the benefit of very high order numerical methods even for the stiff
relaxation system of Jin and Xin on the standard shock-density interaction
test problem proposed originally by Shu and Osher for the compressible Euler
equations [46]. To our knowledge, up to now no numerical method of accuracy
greater than two in space and time has been applied yet to the stiff relaxation
system of Jin and Xin.
The most difficult test case treated in this article is the stiff nonlinear scalar
test problem propose by LeVeque and Yee [34]. It was shown in [34] that robust
standard schemes such as the Mac Cormack scheme or the Strang splitting
produce oscillatory results for small values of the stiffness parameter and that
these methods do not obtain the correct speed of the discontinuity in the
very stiff case. However, in this article, for all values of the stiffness parameter
studied by LeVeque and Yee, our new ADER-FV schemes were able to produce
monotone results with the correct speed of the discontinuity, even in the very
stiff case.

At this point, we would like to summarize the advantages and the disadvan-
tages of our proposed ADER-FV scheme for hyperbolic systems with stiff
source terms. Among the clear advantages of our scheme is the fact that it
can reach any desired order of accuracy greater or equal two in space and time
simultaneously. To our knowledge, this has not yet been achieved by any other
numerical method for hyperbolic systems with stiff source terms. Furthermore,
the unsplit finite volume discretization (10) mimics the underlying physics of
the governing equation since it is based directly on an integral formulation of
the governing PDE (7). The same is true for the (also unsplit) local space-time
DG scheme, which directly solves a weak formulation of the local initial value
problem (7) in space-time. The underlying L2-projection of the local space-
time DG scheme that leads to the Galerkin orthogonality property guarantees
the optimality of the numerical solution ui(ξ, τ) in L2-norm. Since the local
space-time DG scheme can be solved individually for each element Qi we sup-
pose that it is easier to solve than a globally implicit scheme that must take
into account all Qi ∈ Ω. Numerical evidence has shown that our scheme seems
also to be consistent with the stiff limit of the governing PDE. A final advan-
tage is the explicit one-step character of our finite volume discretization that
is based on the solution ui(ξ, τ) of the local space-time DG method. However,
a first disadvantage of our proposed method is the high computational effort
associated with the Newton algorithm that has to be used in the case of non-
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linear systems. Compared to the rest of the algorithm, the Newton solver is by
far the most expensive part of the scheme. Future work has to be done to make
the Newton algorithm for the nonlinear case more efficient and robust. Other,
more advanced, techniques can be tried in the future. Seen from a theoretical
point of view, another disadvantage of our scheme may be the fact that the
first order version of the method does not work since it does not provide the
correct coupling of source terms and fluxes which only comes in via a higher
order discretization in space and time.

Further extensions and applications of the proposed ADER-FV schemes for
stiff problems will concern the extension to multiple space dimensions and the
application to two-fluid flow. Of particular interest will be the application to
colliding plasma flows with stiff friction and very stiff temperature relaxation.
Further applications may also involve chemically reacting flows and kinetic
models for compressible gas dynamics. Last but not least, we would like to
mention that for the special case f(u) = 0 our local space-time DG scheme
reduces to a solver of stiff nonlinear systems of ordinary differential equations
(ODE) allowing the development of irregular solutions in time.
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[12] M. Dumbser, M. Käser, V.A. Titarev, and E.F. Toro. Quadrature-free
non-oscillatory finite volume schemes on unstructured meshes for nonlinear
hyperbolic systems. Journal of Computational Physics. submitted to.

[13] M. Dumbser and C.D. Munz. Building blocks for arbitrary high order
discontinuous Galerkin schemes. Journal of Scientific Computing, 27:215–230,
2006.

[14] B. Einfeldt. On godunov-type methods for gas dynamics. SIAM Journal on
Numerical Analysis, 25:294–318, 1988.

[15] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjgreen. On godunov-type methods
near low densities. Journal of Computational Physics, 92:273–295, 1991.

[16] B. Engquist and S. Osher. One sided difference approximations for nonlinear
conservation laws. Mathematics of Computation, 36:321–351, 1981.

[17] J. Glimm, G. Marshall, and B. Plohr. A generalized Riemann problem for quasi-
one-dimensional gas flows. Advances in Applied Mathematics, 5:1–30, 1984.

[18] S.K. Godunov. Finite difference methods for the computation of discontinuous
solutions of the equations of fluid dynamics. Mat. Sb., 47:271–306, 1959.

[19] L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic
systems of conservation laws with source terms. Computers and Mathematics
with Applications, 39:135–159, 2000.

40



[20] L. Gosse and G. Toscani. Asymptotic-preserving and well-balanced schemes for
radiative transfer and the Rosseland approximation. Numerische Mathematik,
98(2):223–250, 2004.

[21] J.M. Greenberg and A.Y. LeRoux. A well-balanced scheme for the numerical
processing of source terms in hyperbolic equations. SIAM Journal on Numerical
Analysis, 33(1):1–16, 1996.

[22] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order
essentially non-oscillatory schemes, III. Journal of Computational Physics,
71:231–303, 1987.

[23] A. Harten, P.D. Lax, and B. van Leer. On upstream differencing and godunov-
type schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–61,
1983.

[24] L. Hsiao and T.P. Liu. Convergence to nonlinear diffusion waves for solutions
of a system of hyperbolic conservation laws with damping. Communications in
Mathematical Physics, 143:599–605, 1992.

[25] F. Huang, P. Marcati, and R. Pan. Convergence to the Barenblatt solution
for the compressible Euler equations with damping and vacuum. Archive for
Rational Mechanics and Analysis, 176:1–24, 2005.

[26] G.-S. Jiang and C.W. Shu. Efficient implementation of weighted ENO schemes.
Journal of Computational Physics, pages 202–228, 1996.

[27] S. Jin. Runge-Kutta methods for hyperbolic conservation laws with stiff
relaxation terms. Journal of Computational Physics, 122(1):51–67, 1995.

[28] S. Jin. A steady-state capturing method for hyperbolic systems with geometrical
source terms. Mathematical Modelling and Numerical Analysis, 35(4):631–645,
2001.

[29] S. Jin and C.D. Levermore. Numerical schemes for hyperbolic conservation laws
with stiff relaxation terms. Journal of Computational Physics, 126(2):449–467,
1996.

[30] S. Jin and Z. Xin. The relaxation schemes for systems of conservation laws in
arbitrary space dimensions. Comm. Pure Appl. Math., 48:235–276, 1995.

[31] S. Jin and Z. Xin. The relaxation schemes for systems of conservation
laws in arbitrary space dimensions. Communications on Pure and Applied
Mathematics, 48:235–277, 1995.

[32] P. LeFloch and P.A. Raviart. An asymptotic expansion for the solution of
the generalized Riemann problem. part i: General theory. Annales de l’Institut
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A Reconstruction basis functions

The rescaled Legendre polynomials, which constitute an orthogonal basis on
the unit interval I = [0; 1], are given up to polynomial degree M = 5 by:

Ψ0(ξ)= 1

Ψ1(ξ)= 2 ξ − 1

Ψ2(ξ)= 6 ξ2 − 6 ξ + 1 (A.1)

Ψ3(ξ)= 20 ξ3 − 30 ξ2 + 12 ξ − 1

Ψ4(ξ)= 70 ξ4 − 140 ξ3 + 90 ξ2 − 20 ξ + 1

Ψ5(ξ)= 252 ξ5 − 630 ξ4 + 560 ξ3 − 210 ξ2 + 30 ξ − 1

B Mass-, flux- and stiffness matrices for the local space-time DG
method for the linear case

For polynomial degree M = 1, the mass matrix of the local space-time Dis-
continuous Galerkin scheme is

Mkl =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

9

⎞
⎟⎟⎟⎠ , (B.1)

the flux matrices for τ = 0 and τ = 1 are

F 0
kl =

⎛
⎜⎜⎜⎝

1 0
0 1

3−1 0
0 −1

3

⎞
⎟⎟⎟⎠ , F 1

kl =

⎛
⎜⎜⎜⎝

1 0 1 0
0 1

3
0 1

3

1 0 1 0
0 1

3
0 1

3

⎞
⎟⎟⎟⎠ , (B.2)

and the temporal and spatial stiffness matrices are given by

Kτ
kl =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
2 0 0 0
0 2

3
0 0

⎞
⎟⎟⎟⎠ , Kξ

kl =

⎛
⎜⎜⎜⎝

0 2 0 0
0 0 0 0
0 0 0 2

3

0 0 0 0

⎞
⎟⎟⎟⎠ . (B.3)
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For polynomial degree M = 2, the mass matrix of the local space-time Dis-
continuous Galerkin scheme is

Mkl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1

3
0 0 0 0 0 0 0

0 0 1
5

0 0 0 0 0 0
0 0 0 1

3
0 0 0 0 0

0 0 0 0 1
9

0 0 0 0
0 0 0 0 0 1

15
0 0 0

0 0 0 0 0 0 1
5

0 0
0 0 0 0 0 0 0 1

15
0

0 0 0 0 0 0 0 0 1
25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.4)

the flux matrices for τ = 0 and τ = 1 are

F 0
kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1

3
0

0 0 1
5−1 0 0

0 −1
3

0
0 0 −1

5

1 0 0
0 1

3
0

0 0 1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F 1
kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0
0 1

3
0 0 1

3
0 0 1

3
0

0 0 1
5

0 0 1
5

0 0 1
5

1 0 0 1 0 0 1 0 0
0 1

3
0 0 1

3
0 0 1

3
0

0 0 1
5

0 0 1
5

0 0 1
5

1 0 0 1 0 0 1 0 0
0 1

3
0 0 1

3
0 0 1

3
0

0 0 1
5

0 0 1
5

0 0 1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.5)

and the temporal and spatial stiffness matrices are given by

Kτ
kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 2

3
0 0 0 0 0 0 0

0 0 2
5

0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2

3
0 0 0 0

0 0 0 0 0 2
5

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Kξ
kl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 2

3
0 0 0 0

0 0 0 0 0 2
3

0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2

5
0

0 0 0 0 0 0 0 0 2
5

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.6)
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