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Abstract

A modulated Fourier expansion in time is used to show long-time near-

conservation of the harmonic actions associated with spatial Fourier modes

along the solutions of nonlinear wave equations with small initial data.

The result implies the long-time near-preservation of the Sobolev-type

norm that specifies the smallness condition on the initial data.

1 Introduction

We consider the one-dimensional semilinear wave equation (nonlinear Klein-
Gordon equation)

utt − uxx + ρu + g(u) = 0 (1)

for t > 0 and −π ≤ x ≤ π subject to periodic boundary conditions. We assume
ρ > 0 and a nonlinearity g that is a smooth real function with g(0) = g′(0) = 0.
We take small initial data: in appropriate Sobolev norms, the initial data u(·, 0)
and ∂tu(·, 0) is bounded by a small parameter ε, but is not restricted otherwise.
We are interested in studying the behaviour of the solutions over long times
t ≤ ε−N , with fixed, but arbitrary positive integer N . Under a non-resonance
condition that restricts the possible values of ρ to a set of full measure, we
show that for each Fourier mode, the harmonic action remains nearly constant
over such long times, as does the Sobolev-type norm specifying the smallness of
the initial data. The result slightly refines previous results by Bambusi [1] and
Bourgain [5], using entirely different techniques.

The main novelty in the present paper lies in the technique of proof via a
modulated Fourier expansion in time. This is a multiscale expansion that rep-
resents the solution as an asymptotic series of products of exponentials eiωjt

(with ωj the frequencies of the linear equation) multiplied with coefficient func-
tions that vary slowly in time. This approach was first used for showing long-
time almost-conservation properties in [10], in that case of numerical methods
for highly oscillatory Hamiltonian ordinary differential equations; also see [11,
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Ch. XIII] and further references therein. A modulated Fourier expansion ap-
pears similarly, and independently, in the work by Guzzo and Benettin [9] on
the spectral formulation of the Nekhoroshev theorem for quasi-integrable Hamil-
tonian systems. In the context of wave equations, the expansion constructed
here can be viewed as an extension to higher approximation order of a nonlinear
geometric optics expansion given by Joly, Métivier, and Rauch [12]. Multiscale
expansions and modulation equations have certainly been used in various types
and for various purposes in many places, also with nonlinear wave equations;
see, e.g., Whitham [15], Kalyakin [13], Kirrmann, Schneider, and Mielke [14],
Craig and Wayne [7]. Unlike all these works, we here construct a two-scale ex-
pansion to arbitrary order in ε and use the Lagrangian/Hamiltonian structure
of the modulation equations to infer long-time near-conservation and regularity
properties over times ε−N , beyond the time of validity ε−1 of the expansion.

In Section 2 we describe the technical framework and state the result on the
long-time near-conservation of harmonic actions (Theorem 2.2). Section 3 gives
the construction of the modulated Fourier expansion and proves the necessary
bounds of its coefficients and of the remainder term, which are collected in The-
orem 3.1. The expansion works with all frequencies in the system, without a
cutoff of high frequencies. While Section 3 is the technical core of this paper,
its conceptual heart is in Section 4. There, it is shown that the system deter-
mining the modulation functions has a Hamiltonian structure and a remarkable
invariance property, which yields the existence of almost-invariants close to the
harmonic actions (Theorems 4.1 and 4.3). Though the modulated Fourier ex-
pansion is constructed only as a short-time expansion (over time scale ε−1), its
almost-invariants can be patched together over very many short time intervals,
which finally gives the long-time near-conservation of actions over times ε−N

with N > 1 as stated in Section 2.
The approach to the long-time analysis of (1) via modulated Fourier expan-

sions does not use nonlinear coordinate transforms to a normal form, as is done
in Bambusi [1] (see also [2, 3, 4, 6] and references therein) and as is typical in
Hamiltonian perturbation theory. While normal form theory uses coordinate
transforms to take the equation to a simpler form from which essential proper-
ties can be read off, the present approach can be viewed as instead embedding
the original equation in a large system of modulation equations from which the
desired properties can be read off.

We consider equation (1) only with periodic boundary conditions, but it
appears that the problem with Dirichlet boundary conditions, as studied in [1, 5],
can be treated in the same way. Less general than [1], we do not treat problems
with an additional dependence on x in ρ and g, though such an extension could
be done without pain. As in these previous works, an extension of the results to
problems in more than one space dimension over time scales ε−N with N > 1
does not seem possible with the present techniques, mainly due to problems with
small denominators. See, however, Delort and Szeftel [8] for existence results
over time ε−2 for nonlinear wave equations with periodic boundary conditions
in higher dimension.

Corresponding to the authors’ research background, the present work was
originally motivated by numerical analysis, with the aim of understanding the
long-time behaviour of discretization schemes for the nonlinear wave equa-
tion (1). Since the approach via modulated Fourier expansions does not use
nonlinear coordinate transforms, it turns out to be applicable also to numerical
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discretizations of (1), as will be shown in a companion paper to the present
article.

2 Preparation and statement of result

In this section we describe basic concepts, introduce notation, formulate as-
sumptions, and state the result on the long-time near-conservation of actions.

2.1 Modulated Fourier expansion

The spatially 2π-periodic solutions to the linear wave equation ∂2
t u−∂2

xu+ρu = 0
are superpositions of plane waves e±iωjt±ijx, where j is an arbitrary integer and

ωj =
√

ρ + j2

are the frequencies of the equation. If the nonlinearity g is evaluated at a
superposition of plane waves, its Taylor expansion involves mixed products of
such waves. This can be taken as a motivation to look for an approximation
to the solution u(x, t) of the nonlinear problem in the form of a modulated
Fourier expansion, that is, a linear combination of products of plane waves
with coefficient functions that change slowly in time, or more precisely, their
derivatives with respect to the slow time τ = εt are bounded independently
of ε :

u(x, t) ≈ ũ(x, t) =
∑

‖k‖≤K

zk(x, εt) ei(k·ω)t =
∑

‖k‖≤K

∞∑

j=−∞

zk

j (εt) ei(k·ω)t+ijx. (2)

Here, the sum is over all

k = (k`)`≥0 with integers k` and ‖k‖ :=
∑

`≥0

|k`| ≤ K

(at most K of the k` are non-zero) and we write

k · ω =
∑

`≥0

k` ω` .

For K = 2N , we will obtain an expansion (2) with an approximation error
of size O(εN+1) in the same norm in which the initial data is assumed to be
bounded by ε, uniformly over times O(ε−1).

In the construction, a special role is played by the modulation functions zk

j

for k = ±〈j〉, with the notation (Kronecker delta)

〈j〉 := (δ|j|,`)`≥0 .

The function z
±〈j〉
j is multiplied with e±iωjt+ijx in (2). The z

±〈j〉
j will be deter-

mined from first-order differential equations, whereas the other zk

j are obtained

from equations of the form
(
ω2

j − (k ·ω)2
)
zk

j = . . . , where we need to divide by

ωj − |k · ω|. If this denominator is too small in absolute value (less than ε1/2,
say), then this corresponds to a situation where we cannot safely distinguish
the exponentials e±iωjt and e±i(k·ω)t and we just set zk

j = 0.
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2.2 Non-resonance condition

The effect of ignoring contributions from near-resonant indices (j,k) for which
|ωj ± k · ω| < ε1/2 (+ or −), should not spoil the O(εN+1) remainder term in
the modulated Fourier expansion. This requirement is fulfilled under a non-
resonance condition. With the abbreviations

|k| = (|k`|)`≥0 and ωσ|k| =
∏

`≥0

ω
σ|k`|
` (3)

and the set of near-resonant indices

Rε = {(j,k) : j ∈ Z and k 6= ±〈j〉, ‖k‖ ≤ 2N with |ωj ± k · ω| < ε1/2} , (4)

the non-resonance condition can be formulated as follows: there are σ > 0 and
a constant C0 such that

sup
(j,k)∈Rε

ωσ
j

ωσ|k|
ε‖k‖/2 ≤ C0 εN . (5)

For N = 1, this condition is always satisfied for arbitrary σ ≥ 0 and ρ in (1).
For N > 1, it imposes a restriction on the choice of ρ, and the possible values
of σ depend on N . The condition requires that a near-resonance can only appear
with at least two large frequencies among the ω` with k` 6= 0 (counted with their
multiplicity |k`|).

As we show next, condition (5) is implied, for sufficiently large σ, by the non-
resonance condition of Bambusi [1], which reads as follows: for every positive
integer r, there exist α = α(r) > 0 and c > 0 such that for all combinations of
signs,

|ωj ± ωk ± ω`1 ± . . . ± ω`r
| ≥ c L−α for j ≥ k ≥ L = `1 ≥ . . . ≥ `r ≥ 0, (6)

provided that the sum does not vanish because the terms cancel pairwise. In [1]
it is shown that for almost all (w.r.t. Lebesgue measure) ρ in a fixed interval of
positive numbers there is a c > 0 such that condition (6) holds with α = 16 r5.
It is also noted in [1] that an analogous condition is typically not satisfied for
wave equations in spatial dimension greater than 1.

Lemma 2.1 Under Bambusi’s non-resonance condition (6), the bound (5) holds
with σ = maxr+1<2N (2N − r − 1)α(r).

Proof. Consider (j,k) ∈ Rε, so that |ωj −|k ·ω|| < ε1/2. For k with ‖k‖ = r+1,
we write k · ω = ±ωm ± ω`1 ± . . . ± ω`r

with m ≥ L = `1 ≥ . . . ≥ `r ≥ 0. We
then have

ωj

ω|k|
≤

|k · ω| + ε1/2

ω|k|
≤

ωm + ω`1 + · · · + ω`r
+ ε1/2

ωmω`1 . . . ω`r

≤
C

L

where the constant C depends on a lower bound of ρ.
Now, under condition (6), a near-resonance |ωj ± k · ω| < ε1/2 can only

appear with cL−α < ε1/2, i.e., L−1 < c−1/αε1/(2α). We then have

ωσ
j

ωσ|k|
≤

Cσ

Lσ
≤ C0 εσ/(2α)

with C0 = (C/c1/α)σ. If σ is chosen so large that σ/(2α) ≥ N − 1
2 (r + 1), i.e.,

σ ≥ (2N − r − 1)α, then we obtain the bound (5). �
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With Bambusi’s value α(r) = 16 r5, the lemma yields σ = 29 already for
N = 2. (The corresponding quantity in [1] is s∗ = 4M α(2M) for M = N + 2,
which for N = 2 results in s∗ = 219.) However, it should be noted that condition
(5) may actually be satisfied with a much smaller exponent σ. This is suggested
by testing (5) numerically for various values of ε, ρ, and N .

2.3 Functional-analytic setting: Sobolev algebras

For a 2π-periodic function v ∈ L2(T) (with the circle T = R/2πZ), we denote
by (vj)j∈Z the sequence of Fourier coefficients of v(x) =

∑∞
−∞ vj eijx. We will

work with functions (or coefficient sequences) for which the weighted `2 norm

‖v‖s =
( ∞∑

j=−∞

ω2s
j |vj |

2
)1/2

is finite. We denote, for s ≥ 0, the Sobolev space

Hs = {v ∈ L2(T) : ‖v‖s < ∞} = {v : (−∂2
x + ρ)s/2v ∈ L2}.

For s > 1
2 , we have Hs ⊂ C(T) and Hs is a normed algebra:

‖vw‖s ≤ Cs ‖v‖s ‖w‖s . (7)

It is convenient to rescale the norm such that Cs = 1.

2.4 Condition of small initial data

We assume that the initial position and velocity have small norms in Hs+1 and
Hs, resp., for an s ≥ σ + 1 with σ of the non-resonance condition (5):

(
‖u(·, 0)‖2

s+1 + ‖∂tu(·, 0)‖2
s

)1/2

≤ ε. (8)

This is equivalent to requiring

∞∑

j=−∞

ω2s+1
j

(ωj

2
|uj(0)|2 +

1

2ωj
|∂tuj(0)|2

)
≤

1

2
ε2. (9)

2.5 Long-time near-conservation of harmonic actions

Along every real solution u(x, t) =
∑∞

j=−∞ uj(t) eijx to the linear wave equation

∂2
t u − ∂2

xu + ρu = 0, the actions (energy divided by frequency)

Ij(t) =
ωj

2
|uj(t)|

2 +
1

2ωj
|∂tuj(t)|

2

remain constant in time. For real solutions as considered here, we have u−j = uj

and hence I−j = Ij . For the nonlinear equation (1) with a smooth real non-
linearity satisfying g(0) = g′(0) = 0, and under conditions (5) and (8), we will
show that the actions Ij and in fact also their weighted sums

∞∑

j=−∞

ω2s+1
j Ij(t) = ‖u(·, t)‖2

s+1 + ‖∂tu(·, t)‖2
s ,

remain constant up to small deviations over long times.
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Theorem 2.2 Under the non-resonance condition (5) and assumption (8) on
the initial data with s ≥ σ + 1, the estimate

∞∑

`=0

ω2s+1
`

|I`(t) − I`(0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1

holds with a constant C which depends on s, N , and C0, but not on ε.

This result is closely related to results by Bambusi [1] and Bourgain [5]. In
particular, Bambusi shows that, under the non-resonance condition (6) and with
the same assumption on the initial data, there is the estimate |I`(t)−I`(0)|/ε2 ≤

Cε ω
−2(s+1)
` , which is close to the above bound. Theorem 2.2 implies, in par-

ticular, that the same norm that specifies the smallness condition on the initial
data, remains nearly constant along the solution over long times: for t ≤ ε−N+1,

‖u(·, t)‖2
s+1 + ‖∂tu(·, t)‖2

s = ‖u(·, 0)‖2
s+1 + ‖∂tu(·, 0)‖2

s + O(ε3) .

This could also be obtained as an immediate consequence of the theory of [1].
Theorem 2.2 can be further interpreted as saying that the solution (u(t), ∂tu(t))
stays close to an infinite-dimensional torus in the Hs+1/2 norm for long times.
This improves slightly on [1], where such an estimate is obtained only in weaker
norms.

We remark that for complex solutions of (1) with a complex differentiable
nonlinearity g, the statement of Theorem 2.2 remains valid with

I`(t) =
ω`

2
u−`(t)u`(t) +

1

2ω`
∂tu−`(t) ∂tu`(t),

with the same proof.
We emphasize that the main novelty of the present work is not in the result,

but in the technique of proof via invariance properties of the system of equations
that determine the coefficient functions in the modulated Fourier expansion (2).
This approach is completely different from the techniques in [1, 5] and turns
out to be applicable also to numerical discretizations of (1), since it involves no
transformations of coordinates.

2.6 Illustration of the near-conservation of actions

In this subsection we give numerical results that show long-time near-conser-
vation of actions even in situations that are not covered by Theorem 2.2: for
initial data that are not very smooth and, more remarkably, near-conservation
of the actions corresponding to high frequencies even for initial data that are
not small. At present we have no rigorous explanation of these phenomena.

We consider the nonlinear wave equation (1) with ρ = 1 and nonlinearity
g(u) = u2, subject to periodic boundary conditions. As initial data we choose

u(x, 0) = ε
(
1 −

x2

π2

)2

, ∂tu(x, 0) = 0 for − π ≤ x ≤ π. (10)

The 2π-periodic extension of u(x, 0) has a jump in the third derivative, so that
its Fourier coefficients uj(0) decay like j−4. This function therefore lies in Hs

with s ≤ 3.
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Figure 1: Near-conservation of actions; the first 32 actions I`(t) are plotted as
functions of time.

Figure 1 shows the first 32 functions I`(t) on the time interval [0, 1000] (they
are computed numerically with high precision). We have chosen a large ε = 0.5,
so that we are able to see oscillations at least in the low frequency modes. The
higher the frequency, the better the relative error of the corresponding action
is conserved. For ε smaller than 0.1 only horizontal straight lines could be ob-
served. Further experiments with this example have shown that the qualitative
behaviour of Fig. 1 is insensitive with respect to the value of ρ, as long as it is
not too small, and the good conservation holds on much longer time intervals.

3 The modulated Fourier expansion

Our principal tool for the long-time analysis of the nonlinearly perturbed wave
equation is a short-time expansion constructed in this section.

3.1 Statement of result

We will prove the following result, where we use the abbreviation (3) and, for
k = (k`)`≥0 with integers k` and ‖k‖ =

∑
` |k`|, we set

[[k]] =





1

2
(‖k‖ + 1), k 6= 0

3

2
, k = 0.

(11)

Theorem 3.1 Consider the nonlinear wave equation (1) with frequencies ωj

satisfying the non-resonance condition (5), and with small initial data bounded
by (8) with s ≥ σ + 1. Then, the solution u admits an expansion (2),

u(x, t) =
∑

‖k‖≤2N

zk(x, εt) ei(k·ω)t + r(x, t), (12)

where the remainder is bounded by

‖r(·, t)‖s+1 + ‖∂tr(·, t)‖s ≤ C1 εN for 0 ≤ t ≤ ε−1. (13)
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On this time interval, the modulation functions zk are bounded by

∑

‖k‖≤2N

(
ω|k|

ε[[k]]
‖zk(·, εt)‖s

)2

≤ C2 . (14)

Bounds of the same type hold for any fixed number of derivatives of zk with
respect to the slow time τ = εt. Moreover, the modulation functions satisfy

z−k

−j = zk

j . The constants C1 and C2 are independent of ε, but depend on N , s,
on C0 of (5), and on bounds of derivatives of the nonlinearity g.

Apart from the relation z−k

−j = zk

j , the theorem and its proof remain un-
changed for complex solutions of (1) with a complex differentiable nonlinearity.

3.2 Formal modulation equations

Formally inserting the ansatz (2) into (1), equating terms with the same expo-
nential ei(k·ω)t+ijx and Taylor expansion of g lead to the condition

(
ω2

j − (k · ω)2
)
zk

j + 2iε(k · ω)żk

j + ε2z̈k

j (15)

+ Fj

∑

m

∑

k1+···+km=k

1

m!
g(m)(0) zk

1

. . . zk
m

= 0 .

Here, Fjv = vj denotes the jth Fourier coefficient of a function v ∈ L2(T),
and the dots (·) on zk

j (τ) symbolize derivatives with respect to τ = εt. From
this formal consideration, it becomes obvious that there will be three groups of
modulation functions zk

j : for k = ±〈j〉, the first term vanishes and the second

term with the time derivative żk

j can be viewed as the dominant term. For

k 6= ±〈j〉, the first term is dominant if |ωj ± k · ω| ≥ ε1/2. Else, we simply
set zk

j ≡ 0 and we will use the non-resonance condition (5) to ensure that the

defect in (15) is only of size O(εN+1) in an appropriate Sobolev-type norm.
In addition, the initial conditions ũ(·, 0) = u(·, 0) and ∂tũ(·, 0) = ∂tu(·, 0)

need to be taken care of. They will yield the initial conditions for the functions

z
±〈j〉
j :

∑

k

zk

j (0) = uj(0) ,
∑

k

(
i(k · ω)zk

j (0) + εżk

j (0)
)

= ∂tuj(0). (16)

3.3 Reverse Picard iteration

We now turn to an iterative construction of the functions zk
j such that after

4N iteration steps, the defect in equations (15) and (16) is of size O(εN+1) in
the Hs norm. The iteration procedure we employ can be viewed as a reverse
Picard iteration on (15) and (16): indicating by [·]n that the nth iterate of all
appearing variables zk

j is taken within the bracket, we set for k = ±〈j〉

±2iεωj

[
ż
±〈j〉
j

]n+1

= −
[
ε2z̈

±〈j〉
j + Fj

N∑

m=2

∑

k1+···+km=±〈j〉

g(m)(0)

m!
zk

1

. . . zk
m

]n
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and for k 6= ±〈j〉 and j with |ωj ± k · ω| ≥ ε1/2 we set

(
ω2

j − (k · ω)2
)[

zk

j

]n+1

= −
[
2iε(k · ω)żk

j + ε2z̈k

j

+ Fj

N∑

m=2

∑

k1+···+km=k

1

m!
g(m)(0) zk

1

. . . zk
m

]n

,

whereas we let zk

j = 0 for k 6= ±〈j〉 with |ωj ± k · ω| < ε1/2.
On the initial conditions we iterate by

[
z
〈j〉
j (0) + z

−〈j〉
j (0)

]n+1

=
[
uj(0) −

∑

k 6=±〈j〉

zk

j (0)
]n

iωj

[
z
〈j〉
j (0) − z

−〈j〉
j (0)

]n+1

=
[
∂tuj(0) −

∑

k 6=±〈j〉

i(k · ω)zk

j (0) − ε
∑

‖k‖≤K

żk

j (0)
]n

.

In all the above formulas, we tacitly assume ‖k‖ ≤ K = 2N and ‖ki‖ ≤ K. In
each iteration step, we thus have an initial value problem of first-order differen-

tial equations for z
±〈j〉
j (j ∈ Z) and algebraic equations for zk

j with k 6= ±〈j〉.

The starting iterates (n = 0) are chosen as zk
j = 0 for k 6= ±〈j〉, and

z
±〈j〉
j (τ) = z

±〈j〉
j (0) with z

±〈j〉
j (0) determined from the above formula with right-

hand sides u(0) and ∂tu(0).
For real initial data we have u−j(0) = uj(0) and ∂tu−j(0) = ∂tuj(0), and

we observe that the above iteration yields
[
z−k

−j

]n
=

[
zk

j

]n
for all iterates n and

all j,k and hence gives real approximations (2).

3.4 Inequalities for the frequencies

We collect a few inequalities involving the frequencies ω`, which are needed later
on. These inequalities only rely on the growth property ω` ∼ ` for large `, but
do not depend on any diophantine relations between the frequencies.

Lemma 3.2 For s > 1
2 ,

∑

‖k‖≤K

ω−2s|k| ≤ CK,s < ∞ , (17)

where we have used the short-hand notation (3). For s > 1
2 and m ≥ 2, we have

sup
‖k‖≤K

∑

k1+...+km=k

ω−2s(|k1|+···+|km|)

ω−2s|k|
≤ Cm,K,s < ∞ , (18)

where the sum is taken over (k1, . . . ,km) satisfying ‖ki‖ ≤ K. For s ≥ 1, we
further have

sup
‖k‖≤K

∑
`≥0 |k`|ω

2s+1
`

ω2s|k| (1 + |k · ω|)
≤ CK,s < ∞ . (19)
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Proof. We notice that

∑

0<‖k‖≤K

ω−2s|k| ≤ 2

K∑

q=1

( ∞∑

`=0

ω−2s
`

)q

.

The term ω−2sq1

`1
· · · ω−2sqm

`m
with 0 ≤ `1 < . . . < `m and q1 + . . . + qm = q

(qj > 0) appears exactly 2m times in the left-hand expression and
(

q
q1,...,qm

)

times in
( ∑∞

`=0 ω−2s
`

)q
(multinomial theorem). The estimate thus follows from

the bound

2m−1 ≤

(
q

q1, . . . , qm

)

which is obtained by induction on m. The statement of the first inequality (17)
is thus a consequence of the facts that ω` ∼ ` and

∑
`≥1 `−2s < ∞.

The second inequality (18) is proved as follows: whenever k1 + . . .+km = k

and ‖ki‖ ≤ K, there exist q (with 0 ≤ q ≤ mK) integers `1, . . . , `q ≥ 0 such
that

|k1| + · · · + |km| = |k| + 〈`1〉 + · · · + 〈`q〉 .

Conversely, for any choice of non-negative integers `1, . . . , `q with q ≤ mK, the
number of (k1, . . . ,km) satisfying k1 + . . . +km = k and the above equation, is
bounded by a constant Mm,K . Therefore,

∑

k1+...+km=k

ω−2s(|k1|+···+|km|)

ω−2s|k|
≤ Mm,K

mK∑

q=0

∑

`1,...,`q≥0

ω−2s(〈`1〉+···+〈`q〉)

= Mm,K

mK∑

q=0

∞∑

`1=0

ω−2s
`1

· · ·
∞∑

`q=0

ω−2s
`q

≤ Cm,K,s ,

which proves (18).
For the proof of (19) we split the set of k with ‖k‖ ≤ K into two sets:

for those k with |kL| = 1 and k` = 0 for all ` 6= L with ω` ≥ ω
1/2
L , we have∑

`≥0 |k`|ω
2s+1
` ≤ ω2s+1

L +Kω
s+1/2
L but ω2s|k| ≥ cKω2s

L with cK = min(1, ρ2sK)

and |k ·ω| ≥ ωL −Kω
1/2
L , and hence the quotient of (19) is uniformly bounded

on this subset of k. On the complementary subset, we have
∑

`≥0 |k`|ω
2s+1
` ≤

Kω2s+1
L for the largest integer L for which kL 6= 0, but here the product in the

denominator is bounded from below as ω2s|k| =
∏

`≥0 ω
2s|k`|
` ≥ cK

(
ω

1/2
L

)2s
·ω2s

L ,
and hence the quotient is uniformly bounded on this subset for s ≥ 1. This
proves (19). �

3.5 Rescaling and estimation of the nonlinear terms

Since we aim for (14), for the following analysis it is convenient to work with
rescaled functions

ckj =
ω|k|

ε[[k]]
zk

j , ck(x) =
∞∑

j=−∞

ckj eijx =
ω|k|

ε[[k]]
zk(x) (20)
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where we use the notation (11) and (3). The superscripts k are in

K = {k = (k`)`≥0 with integers k` : ‖k‖ ≤ K = 2N},

and we will work in the Hilbert space

Hs := (Hs)K = {c = (ck)k∈K : ck ∈ Hs}

with norm ‖|c‖|
2
s =

∑

k∈K

‖ck‖2
s =

∑

k∈K

∞∑

j=−∞

ω2s
j |ckj |

2.

We now express the nonlinearity in (15),

vk(z) =

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

zk
1

. . . zk
m

,

with ‖ki‖ ≤ K in the sum, in rescaled variables as the map f = (fk)k∈K : Hs →
Hs given by

fk(c) =
ω|k|

ε[[k]]

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

ε[[k1]]+···+[[km]]

ω|k1|+···+|km|
ck

1

. . . ck
m

.

Using the triangle inequality, the inequality (
∑N

m=1 am)2 ≤ N
∑N

m=1 a2
m, and

the Cauchy-Schwarz inequality, we obtain

‖|f(c)‖|
2
s =

∑

‖k‖≤K

‖fk(c)‖2
s

≤
∑

‖k‖≤K

N

N∑

m=2

(g(m)(0)

m!

)2 ∑

k1+···+km=k

(
ε[[k1]]+···+[[km]]

ε[[k]]

ω−(|k1|+···+|km|)

ω−|k|

)2

×
∑

k1+···+km=k

‖ck
1

. . . ck
m

‖2
s .

Since Hs is a normed algebra, and since we have the bound (18) (with 1 in place
of s there) and the obvious lower estimate [[k1]] + · · ·+ [[km]] ≥ m−1

2 + [[k]], this
is further estimated as

∑

‖k‖≤K

‖fk(c)‖2
s

≤ N

N∑

m=2

(g(m)(0)

m!

)2

εm−1 Cm,K,1

∑

‖k‖≤K

∑

k1+···+km=k

‖ck
1

‖2
s . . . ‖ck

m

‖2
s

≤ N

N∑

m=2

(g(m)(0)

m!

)2

εm−1 Cm,K,1

( ∑

‖k‖≤K

‖ck‖2
s

)m

= ε P (‖|c‖|
2
s) (21)

where the polynomial P (µ) = N
∑N

m=2

(
g(m)(0)

m!

)2

Cm,K,1 εm−2 µm has coeffi-

cients bounded independently of ε.

11



For k = ±〈j〉 we note that if m ≥ 2 and k1 + · · · + km = ±〈j〉, then
necessarily [[k1]] + · · · + [[km]] ≥ 5/2. Hence, for the restriction to this case the
bound improves to a factor ε3 instead of ε:

∞∑

j=−∞

‖f±〈j〉(c)‖2
s ≤ ε3 P1(‖|c‖|

2
s), (22)

where P1 is another polynomial with coefficients bounded independently of ε.
Since Hs is a normed algebra and the map f is an absolutely convergent sum

of polynomials in the functions ck, we also obtain that f is arbitrarily differen-
tiable with correspondingly bounded derivatives on bounded subsets of Hs.

Instead of (20), we could also have worked with a different rescaling:

ĉkj =
ωs|k|

ε[[k]]
zk

j , ĉk(x) =

∞∑

j=−∞

ĉkj eijx =
ωs|k|

ε[[k]]
zk(x) , (23)

considered in the space H1 = (H1)K with norm ‖|ĉ‖|
2
1 =

∑
‖k‖≤K ‖ĉk‖2

1. For f̂k

defined in the same way as fk above, but with ωs|k| in place of ω|k|, we then
have the bounds

∑

‖k‖≤K

‖f̂k(ĉ)‖2
1 ≤ εP (‖|ĉ‖|21)

∞∑

j=−∞

‖f̂±〈j〉(ĉ)‖2
1 ≤ ε3 P1(‖|ĉ‖|

2
1) .

(24)

3.6 Abstract reformulation of the iteration

For c = (ckj ) ∈ Hs with ckj = 0 for all k 6= ±〈j〉 with |ωj ±k ·ω| < ε1/2, we split
the components of c corresponding to k = ±〈j〉 and k 6= ±〈j〉 and collect them
in a = (ak

j ) ∈ Hs and b = (bkj ) ∈ Hs, respectively:

ak

j = ckj if k = ±〈j〉, and 0 else

bkj = ckj if |ωj ± k · ω| ≥ ε1/2, and 0 else.
(25)

We then have a+b = c and ‖|a‖|2s +‖|b‖|2s = ‖|c‖|2s. We define the multiplication
operator on Hs,

(Ω−1c)kj =
1

ωj + |k · ω|
ckj for c ∈ Hs,

and note in particular that (Ω−1c)
±〈j〉
j = 1

2ωj
c
±〈j〉
j . In terms of a and b, the

iteration of Subsection 3.3 written in the scaled variables (20) then becomes of
the form

ȧ(n+1) = Aa(n) + Ω−1F(a(n),b(n))

b(n+1) = Bb(n) + Ω−1G(a(n),b(n)),
(26)

with the linear differential operators A and B given by

(Aa)
±〈j〉
j = ±

iε

2ωj
ä
±〈j〉
j , (Bb)kj =

−2iε(k · ω)

ω2
j − (k · ω)2

ḃkj −
ε2

ω2
j − (k · ω)2

b̈kj ,

12



for
∣∣ωj − |k · ω|

∣∣ ≥ ε1/2, and nonlinear maps F and G given by

(
F(a,b)

)±〈j〉

j
= ±iε−1f

±〈j〉
j (a + b)

(
G(a,b)

)k

j
= −

ε1/2

ωj − |k · ω|
ε−1/2fk

j (a + b) .

In view of (21) – (22), F and G are arbitrarily differentiable maps, bounded
in Hs by O(ε1/2) and O(1), respectively, with all derivatives bounded in the
same way on bounded subsets of Hs. The loss of a factor ε1/2 in the bound for
G results from the condition |ωj ± k · ω| ≥ ε1/2 in (25). We further note the
bounds

‖|(Aa)(τ)‖|s ≤ Cε ‖|ä(τ)‖|s ,

‖|(Bb)(τ)‖|s ≤ Cε1/2‖|ḃ(τ)‖|s + Cε3/2‖|b̈(τ)‖|s .
(27)

The initial value for a(n+1) is determined by an equation of the form

a(n+1)(0) = v + Pb(n)(0) + Q
(
ȧ(n)(0) + ḃ(n)(0)

)
(28)

where the nonzero components v
±〈j〉
j of v are given by

v
±〈j〉
j =

ωj

ε

(1

2
uj(0) ±

1

2
(iωj)

−1∂tuj(0)
)

so that v is bounded in Hs by the assumption on the initial values, and with
the operators P and Q given by

(Pb)
±〈j〉
j = −

1

2ε

∑

k 6=±〈j〉

ε[[k]]

ω|k|
(ωj ± k · ω)bkj

(Qc)
±〈j〉
j = ±

i

2

∑

‖k‖≤K

ε[[k]]

ω|k|
ckj ,

for which we have the bounds, using (17) with 1 in the role of s there,

‖|Pb‖|s ≤ C ‖|Ωb‖|s , ‖|Qc‖|s ≤ Cε ‖|c‖|s .

The starting iterate is a(0) = v and b(0) = 0.

3.7 Bounds of the modulation functions

The iterates a(n) and b(n) and, by differentiation of the iteration equations (26),
also their derivatives with respect to the slow time τ = εt are thus bounded in
Hs for 0 ≤ τ ≤ 1 and n ≤ 4N : more precisely, the 4N -th iterates satisfy, with
constants depending on N ,

‖|a(4N)(0)‖|s ≤ C , ‖|Ωȧ(4N)‖|s ≤ Cε1/2 , ‖|Ωb(4N)‖|s ≤ C . (29)

We also obtain the bound ‖|Ωḃ(4N)‖|s ≤ C and similarly for higher derivatives
with respect to τ = εt. For zk

j = ε[[k]]ω−|k| ckj with (ckj ) = c = c(4N) =

a(4N) + b(4N), the bounds for a and b together yield the bound (14).

13



Using (22) and (26) we also obtain the bound, for b = b(4N),

( ∑

‖k‖=1

‖Ωbk‖2
s

)1/2

≤ Cε3/2 . (30)

The bounds (29) imply ‖|c(τ) − a(0)‖|s+1 ≤ C for c = c(4N) and a = a(4N),
and hence give a bound of the expansion (2) in the Hs+1 norm:

‖ũ(·, t)‖2
s+1 =

∞∑

j=−∞

ω
2(s+1)
j

∣∣∣
∑

‖k‖≤K

zk

j (εt)ei(k·ω)t
∣∣∣
2

≤

∞∑

j=−∞

ω
2(s+1)
j

( ε

ωj

(
|a

〈j〉
j (0)| + |a

−〈j〉
j (0)|

)

+
∑

‖k‖≤K

ε[[k]]

ω|k|
|ckj (εt) − ak

j (0)|
)2

≤ 4ε2‖|a(0)‖|
2
s + CK,1 ε2

∞∑

j=−∞

ω
2(s+1)
j

∑

‖k‖≤K

|ckj (εt) − ak

j (0)|2

= 4ε2‖|a(0)‖|
2
s + CK,1 ε2‖|c(εt) − a(0)‖|

2
s+1 ,

where we noted ak
j = 0 for k 6= ±〈j〉 and where we used the Cauchy-Schwarz

inequality and (17) in the last inequality. So we have

‖ũ(·, t)‖s+1 ≤ Cε for t ≤ ε−1. (31)

With the alternative scaling (23) we obtain, again for τ = εt ≤ 1,

‖|â(4N)(0)‖|1 ≤ C , ‖|Ω ˙̂a
(4N)

‖|1 ≤ Cε1/2 , ‖|Ωb̂(4N)‖|1 ≤ C . (32)

The bounds for â follow trivially from (29) and ‖|â‖|1 = ‖|a‖|s, those for b̂ are

obtained from the rescaled iteration (26) for b̂(n) and the bounds (24), without

consideration of the starting values for â(n). We also obtain, for b̂ = b̂(4N),
( ∑

‖k‖=1

‖Ωb̂k‖2
1

)1/2

≤ Cε3/2 . (33)

In addition to these bounds, we also obtain that the map

Bε ⊂ Hs+1 × Hs → H1 : (u(·, 0), ∂tu(·, 0)) 7→ ĉ(0)

(with Bε the ball of radius ε centered at 0) is Lipschitz continuous with a
Lipschitz constant proportional to ε−1: at t = 0,

‖|â2 − â1‖|
2
1 + ‖|Ω(b̂2 − b̂1)‖|

2
1 ≤

C

ε2

(
‖u2 − u1‖

2
s+1 + ‖∂tu2 − ∂tu1‖

2
s

)
. (34)

3.8 Defects

We consider the defect d = (dk
j ) in (15),

dk

j =
(
ω2

j − (k · ω)2
)
zk

j + 2iε(k · ω)żk

j + ε2z̈k

j (35)

+ Fj

N∑

m=2

1

m!
g(m)(0)

∑

k1+···+km=k

zk
1

. . . zk
m

.
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This is to be considered for ‖k‖ ≤ NK, where we set zk

j = 0 for ‖k‖ > K = 2N .
The approximation ũ given by (2) inserted into the wave equation (1) yields the
defect

δ = ∂2
t ũ − ∂2

xũ + ρũ + g(ũ) (36)

with
δ(x, t) =

∑

‖k‖≤NK

dk(x, εt) ei(k·ω)t + RN+1(ũ(x, t)), (37)

where RN+1 is the remainder term of the Taylor expansion of g after N terms.
By (31), we have ‖RN+1(ũ)‖s+1 ≤ CεN+1. We need to bound

∥∥∥
∑

‖k‖≤NK

dk(·, εt) ei(k·ω)t
∥∥∥

2

s
=

∞∑

j=−∞

ω2s
j

∣∣∣
∑

‖k‖≤NK

dk

j (εt) ei(k·ω)t
∣∣∣
2

≤ CNK,1

∞∑

j=−∞

∑

‖k‖≤NK

ω2s
j

∣∣∣ω|k| dk

j (εt)
∣∣∣
2

= CNK,1

∑

‖k‖≤NK

∥∥∥ω|k| dk(·, εt)
∥∥∥

2

s
. (38)

For the inequality we have used (17) with 1 in place of s and the Cauchy-Schwarz
inequality. In the next three subsections we estimate the right-hand side of (38)
by Cε2(N+1), separately for truncated modes ‖k‖ > K and near-resonant modes
(j,k) ∈ Rε, where zk

j = 0 in both cases, and for non-resonant modes with zk

j

constructed above.

3.9 Defect in the truncated modes

For ‖k‖ > K we have zk
j = 0, and the defect reads

dk

j = Fj

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

zk
1

. . . zk
m

= ε[[k]] ω−|k| fk

j

with ‖|f‖|2s ≤ Cs ε by (29) and (21), used with NK in place of K. We then have

∑

‖k‖>K

∞∑

j=−∞

ω2s
j

∣∣ω|k| dk

j

∣∣2 =
∑

‖k‖>K

∞∑

j=−∞

ω2s
j

∣∣fk

j

∣∣2 ε2[[k]]

and hence, since 2[[k]] = ‖k‖ + 1 ≥ K + 2 = 2(N + 1),

∑

‖k‖>K

∞∑

j=−∞

ω2s
j

∣∣ω|k| dk

j

∣∣2 ≤ Csε
2(N+1). (39)

3.10 Defect in the near-resonant modes

For (j,k) in the set Rε of near-resonances defined by (4) we have set zk

j = 0.
The defect corresponding to the near-resonant modes is thus

dk

j = Fj

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

zk
1

. . . zk
m

= ε[[k]] ω−s|k| f̂k

j
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with ‖|̂f‖|21 ≤ C1ε by (32) and (24). We then have

∑

(j,k)∈Rε

ω2s
j

∣∣ω|k| dk

j

∣∣2 =
∑

(j,k)∈Rε

ω
2(s−1)
j

ω2(s−1)|k|
ε2[[k]] ω2

j |f̂
k

j |
2

≤ C1 sup
(j,k)∈Rε

ω
2(s−1)
j ε2[[k]]+1

ω2(s−1)|k|
.

Condition (5) is formulated such that the supremum is bounded by C2
0 ε2(N+1),

and hence ∑

(j,k)∈Rε

ω2s
j

∣∣ω|k| dk

j

∣∣2 ≤ Cε2(N+1). (40)

3.11 Defect in the non-resonant modes

The scaled defect (35), as it appears in (38), reads as follows in terms of c =
a + b = a(4N) + b(4N) defined in the iteration (26), which corresponds to the
rescaling (20):

ω|k|dk

j =
(
ω2

j −(k·ω)2
)
ε[[k]] ckj +2i(k·ω)ε1+[[k]] ċkj + ε2+[[k]] c̈kj +ε[[k]] fk

j (c). (41)

Expressing, for the cases k = ±〈j〉 and
∣∣ωj − |k ·ω|

∣∣ > ε1/2, the nonlinearity in
terms of the functions F and G of the iteration (26), we find

ωjd
±〈j〉
j = ±2iωj ε2

([
ȧ
±〈j〉
j

](4N)
−

[
ȧ
±〈j〉
j

](4N+1)
)

(42)

ω|k|dk

j =
(
ω2

j − (k · ω)2
)
ε[[k]]

([
bkj

](4N)
−

[
bkj

](4N+1)
)

(43)

with the second formula again valid for
∣∣ωj − |k · ω|

∣∣ > ε1/2. This suggests to

reconsider the iteration (26) in the transformed variables ã and b̃ given as

ã
±〈j〉
j = (αa)

±〈j〉
j := ±iε2 a

±〈j〉
j

b̃kj = (βb)kj :=
(
ω2

j − (k · ω)2
)
ε[[k]] bkj .

(We do not include the factor 2ωj in ãk

j , because we can bound Ωȧ and a in
Hs, but not Ωa.) In these variables the iteration (26) becomes

˙̃a
(n+1)

= Aã(n) + Ω−1F̃(ã(n), b̃(n)),

b̃(n+1) = Bb̃(n) + G̃(ã(n), b̃(n)),
(44)

with the transformed nonlinearities

F̃(ã, b̃) = αF(α−1ã, β−1
b̃) , G̃(ã, b̃) = βΩ−1G(α−1ã, β−1

b̃) .

(In the definition of G̃ we have now included the factor Ω−1, which therefore

in the iteration no longer appears in front of G̃.) We note that

F̃(ã, b̃) + G̃(ã, b̃) = Ef(α−1ã + β−1b̃) with (Ef)kj = ε[[k]] fk

j .
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The iteration (28) for the initial values becomes

ã(n+1)(0) = αv + P̃ b̃(n)(0) + Q ˙̃a
(n)

(0) + Q̃
˙̃
b

(n)

(0)

with P̃ = αPβ−1, Q̃ = αQβ−1 bounded by

‖|P̃ b̃‖|s ≤ Cε1/2‖|b̃‖|s , ‖|Q̃b̃‖|s ≤ Cε3/2‖|b̃‖|s . (45)

With the aim of estimating the differences [∆ ˙̃a](4N) := [ ˙̃a](4N+1) − [ ˙̃a](4N),

[∆b̃](4N) := [b̃](4N+1) − [b̃](4N), and [∆ã](4N)(0) := [ã](4N+1)(0) − [ã](4N)(0),

we first have to determine suitable Lipschitz bounds for the functions F̃ and G̃.
By repeating the computation of Subsection 3.5 for the partial derivatives of
fk(c) we find that, in an Hs-neighbourhood of 0 where the bounds (29) hold,

the derivatives of F̃ with respect to ã, b̃ and of G̃ with respect to b̃ are bounded
in Hs by O(ε1/2), whereas that of G̃ with respect to ã is bounded only by O(1).
We thus have from (44)

‖|Ω[∆ ˙̃a](n+1)‖|s ≤ Cε1/2‖|[∆ã](n)‖|s + Cε1/2‖|[∆b̃](n)‖|s

+ Cε‖|Ω[∆¨̃a](n)‖|s

‖|[∆b̃](n+1)‖|s ≤ C‖|[∆ã](n)‖|s + Cε1/2‖|[∆b̃](n)‖|s

+ Cε1/2‖|[∆
˙̃
b](n)‖|s + Cε3/2‖|[∆

¨̃
b](n)‖|s

‖|[∆ã(0)](n+1)‖|s ≤ Cε1/2‖|[∆b̃](n)(0)‖|s + Cε‖|[∆ ˙̃a](n)(0)‖|s

+ Cε3/2‖|[∆
˙̃
b](n)(0)‖|s,

where we have used the estimates (27) for the operators A and B, and (45) for

P̃ and Q̃. The presence of first and second derivatives in the right-hand side
prevent a direct treatment of these inequalities. However, differentiation of (44)
with respect to τ leads to the same estimates, where for all appearing functions
the derivative is raised by one. Using the estimates (29) for higher derivatives
with respect to τ , this procedure can be repeated so that similar estimates for
higher derivatives are obtained. Let now

ηn := max`=0,...,2(4N−n) sup0≤τ≤1 ‖|Ω[∆ã(`+1)](n)(τ)‖|s

µn := max`=0,...,2(4N−n) sup0≤τ≤1 ‖|[∆b̃(`)](n)(τ)‖|s

νn := ‖|[∆ã](n)(0)‖|s,

where [∆ã(`+1)](n) denotes the (` + 1)th derivative of the nth iterate. Noticing

that ‖|[∆ã](n)(τ)‖|s ≤ ‖|[∆ã](n)(0)‖|s + sup0<σ<τ ‖|[∆
˙̃a](n)(σ)‖|s, we obtain




νn+1

ηn+1

µn+1


 ≤ C




0 ε ε1/2

ε1/2 ε1/2 ε1/2

1 1 ε1/2







νn

ηn

µn


 .

In the scaled variables (ε−1/4νn, ε−1/4ηn, µn), the iteration matrix has norm
O(ε1/4) in the maximum norm, which implies that

max
(
ε−1/4ν4N , ε−1/4η4N , µ4N

)
≤ CNεN max

(
ε−1/4ν0, ε

−1/4η0, µ0

)
.
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Recalling [ã](0)(τ) = αv and [b̃](0)(τ) = 0, we have for n = 0

[ȧ](1) − [ȧ](0) = [Ω−1F(a,b)](0), [b](1) − [b](0) = [G(a,b)](0),

and [a](1)(0) − [a](0)(0) = 0. All derivatives of these differences vanish iden-
tically. Using the bounds F = O(ε5/2) and G = O(ε2), we thus obtain
η0 = O(ε5/2), µ0 = O(ε2), and ν0 = 0, so that η4N , µ4N , and ν4N are all
of size O(εN+2).

With (42)-(43), these bounds yield the desired bound for the defect,

( ∑

‖k‖≤K

‖ω|k|dk(·, τ)‖2
s

)1/2

≤ CεN+1 for τ ≤ 1, (46)

where we recall that here the sum is over non-resonant modes (j,k) 6∈ Rε.
With the alternative scaling ĉkj = ωs|k|zk

j we obtain in the same way

( ∑

‖k‖≤K

‖ωs|k|dk(·, τ)‖2
1

)1/2

≤ CεN+1 for τ ≤ 1 . (47)

For the defect in the initial conditions (16) we obtain from ν4N ≤ CεN+2 that

∞∑

j=−∞

ω2s
j

∣∣∣ωj

∑

‖k‖≤K

zk

j (0) − ωj uj(0)
∣∣∣
2

≤ C ε2(N+1) (48)

∞∑

j=−∞

ω2s
j

∣∣∣
∑

‖k‖≤K

(
i(k · ω)zk

j (0) + εżk

j (0)
)
− ∂tuj(0)

∣∣∣
2

≤ C ε2(N+1) . (49)

3.12 Defect in the wave equation

We estimate the defect δ of (36). By (39), (40), and (46), we now have

∥∥∥
∑

‖k‖≤NK

dk(·, εt) ei(k·ω)t
∥∥∥

s
≤ CεN+1 for t ≤ ε−1 ,

so that indeed, by (37) and (38),

‖δ(·, t)‖s ≤ CεN+1 for t ≤ ε−1. (50)

We also note that, by (48)–(49), the deviations in the initial values are bounded
by

‖ũ(·, 0) − u(·, 0)‖s+1 + ‖∂tũ(·, 0) − ∂tu(·, 0)‖s ≤ C εN+1. (51)

3.13 Remainder term of the modulated Fourier expansion

Using the well-posedness of the nonlinear wave equation in Hs+1 ×Hs, we now
conclude from a small defect to a small error by a standard argument: we rewrite
(1) and (36) in terms of the Fourier coefficients as

∂2
t uj + ω2

j uj + Fjg(u) = 0

∂2
t ũj + ω2

j ũj + Fjg(ũ) = δj

18



and subtract the equations. With the variation-of-constants formula, the error
rj = uj − ũj satisfies

(
rj(t)

ω−1
j ṙj(t)

)
=

(
cos(ωjt) sin(ωjt)

− sin(ωjt) cos(ωjt)

) (
rj(0)

ω−1
j ṙj(0)

)

−

∫ t

0

ω−1
j

(
sin(ωj(t − θ))
cos(ωj(t − θ))

) (
Fjg(u(·, θ)) −Fjg(ũ(·, θ)) + δj(·, θ)

)
dθ .

The Taylor expansion of the nonlinearity g at 0 and the fact that Hs is a normed
algebra, yield the Lipschitz bound

‖g(v) − g(w)‖s ≤ Cε ‖v − w‖s for v, w ∈ Hs with ‖v‖s ≤ Mε, ‖w‖s ≤ Mε.

Comparing the solution u with 0, this Lipschitz bound and the Gronwall in-
equality give ‖u(·, t)‖s+1 ≤ Mε for t ≤ ε−1. Comparing u and ũ gives, together
with (50) and (51),

‖ũ(·, t) − u(·, t)‖s+1 + ‖∂tũ(·, t) − ∂tu(·, t)‖s ≤ C(1 + t)εN+1 for t ≤ ε−1.
(52)

This completes the proof of Theorem 3.1.

3.14 Remark

The analysis of the modulated Fourier expansion could be done more neatly
in weighted Wiener algebras W s = {v ∈ C(T) :

∑∞
−∞ ωs

j |vj | < ∞}. Unfortu-

nately, this `1 framework is not suited for the analysis of the almost-invariants
studied in the next section, which are quadratic quantities and therefore require
an `2-based framework.

4 Almost-invariants

We now show that the system of equations determining the modulation functions
has almost-invariants close to the actions. The arguments are modelled after
those of [11, Ch. XIII] for finite-dimensional oscillatory Hamiltonian systems.

4.1 The extended potential

Corresponding to the modulation functions zk(x, εt) we introduce

y = (yk)‖k‖≤K with yk(x, t) = zk(x, εt) ei(k·ω)t (53)

and denote the Fourier coefficients of yk(x, t) by yk

j (t). By construction, the

functions yk satisfy

∂2
t yk − ∂2

xyk + ρyk +

N∑

m=2

g(m)(0)

m!

∑

k1+···+km=k

yk
1

. . . yk
m

= ek , (54)

where the defects ek(x, t) = dk(x, εt) ei(k·ω)t are bounded by CεN+1 in Hs, see
(40) and (46). In (1), the nonlinearity g(u) is the gradient of the potential
U(u) =

∫ u

0
g(v) dv. The sum in (54) is recognized as the functional gradient
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∇−k U(y) with respect to y−k of the extended potential U : H1 → R defined,
for y = (yk)k∈K ∈ H1, by

U(y) =

N∑

m=2

U (m+1)(0)

(m + 1)!

∑

k1+···+km+1=0

1

2π

∫ π

−π

yk
1

. . . yk
m+1

dx , (55)

where we note that by Parseval’s formula,

1

2π

∫ π

−π

yk
1

. . . yk
m+1

dx =
∑

j1+···+jm+1=0

yk
1

j1 . . . yk
m+1

jm+1
.

Hence, the modulation system (54) can be rewritten as

∂2
t yk − ∂2

xyk + ρyk + ∇−k U(y) = ek, (56)

or equivalently in terms of the Fourier coefficients,

∂2
t yk

j + ω2
j yk

j + ∇−k

−j U(y) = ek

j ,

where ∇−k

−j U is the partial derivative of U with respect to y−k

−j .

4.2 Invariance under group actions

The key to the existence of almost-invariants for the system (56) is, in the spirit
of Noether’s theorem, the invariance of the extended potential under continuous
group actions : for an arbitrary real sequence µ = (µ`)`≥0 and for θ ∈ R, let

Sµ(θ)y =
(
ei(k·µ)θyk

)

‖k‖≤K
. (57)

Since the sum in the definition of U is over k1 + · · · + km+1 = 0, we have

U(Sµ(θ)y) = U(y) for θ ∈ R.

Differentiating this relation with respect to θ yields

0 =
d

dθ

∣∣∣
θ=0

U(Sµ(θ)y) =
∑

‖k‖≤K

i(k · µ)
1

2π

∫ π

−π

yk ∇k U(y) dx . (58)

In fact, the full Lagrangian of the system (56) without the perturbations ek,

L(y, ∂ty) =
1

2

∑

‖k‖≤K

1

2π

∫ π

−π

(
∂ty

−k∂ty
k − ∂xy

−k∂xy
k − ρy−kyk

)
dx − U(y),

is invariant under the action of the one-parameter groups Sµ(θ).

4.3 Almost-invariants of the modulation system

We now multiply (56) with i(k · µ)y−k, integrate over [−π, π], and sum over k

with ‖k‖ ≤ K. Thanks to (58) and a partial integration, we obtain

∑

‖k‖≤K

i(k · µ)
1

2π

∫ π

−π

(
y−k ∂2

t yk + ∂xy−k ∂xyk + ρy−k yk

)
dx

=
∑

‖k‖≤K

i(k · µ)
1

2π

∫ π

−π

y−k ek dx .
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Since the second and third terms under the left-hand integral cancel in the sum,
the left-hand side simplifies to

∑

‖k‖≤K

i(k · µ)
1

2π

∫ π

−π

y−k ∂2
t yk dx = −

d

dt
Jµ(y, ∂ty)

with

Jµ(y, ∂ty) = −
∑

‖k‖≤K

i(k · µ)
1

2π

∫ π

−π

y−k ∂ty
k dx

= −
∑

‖k‖≤K

i(k · µ)

∞∑

j=−∞

y−k

−j ∂ty
k

j , (59)

where the last equality holds by Parseval’s formula. This yields

d

dt
Jµ(y, ∂ty) = −

∑

‖k‖≤K

i(k · µ)

∞∑

j=−∞

y−k

−j ek

j . (60)

Recalling the O(εN+1)-bound of e = (ek) on the right-hand side, we see that
Jµ is almost conserved.

In the following it will be more convenient to consider the almost-invariant
Jµ for µ = 〈`〉 = (0, . . . , 0, 1, 0, 0, . . . ) with the only entry at the `th position as
a function of the modulation sequence z(εt) rather than of y(t) defined by (53).
We write

J`(z, ż) = J〈`〉(y, ∂ty).

By (60) we have

ε
d

dτ
J`(z, ż) = −

∑

‖k‖≤K

i k`

∞∑

j=−∞

z−k

−j dk

j . (61)

Theorem 4.1 Under the conditions of Theorem 3.1,

∑

`≥0

ω2s+1
`

∣∣∣
d

dτ
J`(z(τ), ż(τ))

∣∣∣ ≤ C εN+1 for τ ≤ 1.

Proof. From the rescaling (23) we have

zk

j =
ε[[k]]

ωs|k|
ĉkj =

ε

ωs
j

âk

j +
ε[[k]]

ωs|k|
b̂kj (62)

with the estimates ‖|â‖|1 ≤ C and ‖|Ωb̂‖|1 ≤ C by (32). For the defect, split as
d = p + q into the diagonal and non-diagonal parts, we note that

‖|p‖|
2
s +

∑

‖k‖≤K

‖ωs|k|qk‖2
0 =

∑

‖k‖≤K

‖ωs|k|dk‖2
0,

which is bounded by (CεN+1)2 by (47). The result now follows from Lemma 4.2
below. Notice that resonant indices need not be considered in the sum (61),
because z−k

−j = 0 for (j,k) ∈ Rε by definition. �
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Lemma 4.2 For c = a+b ∈ Hs+1 and r = p+q ∈ Hs split into diagonal and
non-diagonal parts as in (25), we have the estimate

∑

`≥0

ω2s+1
`

∣∣∣∣
∑

‖k‖≤K

k`

∞∑

j=−∞

c−k

−j rk

j

∣∣∣∣ ≤ ‖|a‖|s+1‖|p‖|s

+
( ∑

‖k‖≤K

‖ωs|k|(1 + |k · ω|)bk‖2
0

)1/2( ∑

‖k‖≤K

‖ωs|k|qk‖2
0

)1/2

.

Proof. In the expression to be estimated we treat the terms with k = ±〈j〉
separately (notice that for k = ±〈j〉 we have k` = 0 for ` 6= j) and bound it by

∞∑

j=−∞

ω2s+1
j

∣∣∣a−〈j〉
−j p

〈j〉
j + a

〈j〉
−jp

−〈j〉
j

∣∣∣

+

∞∑

j=−∞

∑

k 6=±〈j〉

∑
`≥0 |k`|ω

2s+1
`

ω2s|k|(1 + |k · ω|)
ωs|k|(1 + |k · ω|)|b−k

−j |ω
s|k||qk

j |.

By (19) and the Cauchy–Schwarz inequality the stated estimate follows. �

4.4 Relationship of almost-invariants and actions

We now show that the almost-invariant J` of the modulated Fourier expansion
is close to the corresponding harmonic actions of the solution of the nonlinear
wave equation,

J` = I` + I−` = 2I` for ` ≥ 1, J0 = I0

where for u, v ∈ L2(T) with Fourier coefficients uj , vj ,

Ij(u, v) =
ωj

2
|uj |

2 +
1

2ωj
|vj |

2 .

Theorem 4.3 Under the conditions of Theorem 3.1, along the solution u(t) =
u(·, t) of Eq. (1) and the associated modulation sequence z(εt), it holds that

J`

(
z(εt), ż(εt)

)
= J`

(
u(t), ∂tu(t)

)
+ γ`(t) ε3

for t ≤ ε−1 and for all ` ≥ 0, with
∑

`≥0 ω2s+1
` γ`(t) ≤ C.

Proof. Inserting in (59) the functions yk

j (t) = zk

j (εt)ei(k·ω)t, we have1

J`(z, ż) = −
∑

‖k‖≤K

ik`

∞∑

j=−∞

z−k

−j

(
i(k · ω)zk

j + εżk

j

)

=
∑

‖k‖≤K

k`

∞∑

j=−∞

(
(k · ω)|zk

j |
2 − iε z−k

−j żk

j

)
. (63)

1The second equation is the only place in this paper where we use the relationship z
−k

−j
= z

k

j

that is valid only for real solutions of (1).
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Using (62) and the bounds (32)-(33), an application of Lemma 4.2 shows that
(63) is of the form

J` = ω`

(
|z

〈`〉
` |2 + |z

−〈`〉
` |2

)
+ ω`

(
|z

〈`〉
−` |

2 + |z
−〈`〉
−` |2

)
+ O`(ε

3)

where O`(ε
3) stands for a term α` ε3 with

∑
`≥0 ω2s+1

` α` ≤ C (only one of
the two terms is present for ` = 0). In terms of the Fourier coefficients of the
modulated Fourier expansion ũj(t) =

∑
‖k‖≤K zk

j (εt) ei(k·ω)t,

J` =
ω`

4

(∣∣ũ` + (iω`)
−1∂tũ`

∣∣2 +
∣∣ũ` − (iω`)

−1∂tũ`

∣∣2
)

+
ω`

4

(∣∣ũ−` + (iω`)
−1∂tũ−`

∣∣2 +
∣∣ũ−` − (iω`)

−1∂tũ−`

∣∣2
)

+ O`(ε
3)

= J`(ũ, ∂tũ) + O`(ε
3)

= J`(u, ∂tu) + O`(ε
3),

where we have used ũ`(t) = z
〈`〉
` (εt)eiω`t +z

−〈`〉
` (εt)e−iω`t +O`(ε

3) , which again
follows from the bounds (32)-(33). The last equality is a consequence of the
remainder bound of Theorem 3.1. �

4.5 From short to long time intervals

We apply Theorem 4.1 repeatedly on intervals of length ε−1, for modulated
Fourier expansions corresponding to different starting values (u(tn), ∂tu(tn)) at

tn = nε−1

along the solution u(t) = u(·, t) of (1). As long as u satisfies the smallness
condition (8) (with 2ε in place of ε), Theorem 3.1 gives a modulated Fourier
expansion ũn(t) that corresponds to starting values (u(tn), ∂tu(tn)). We denote
the sequence of modulation functions of this expansion by zn(εt). We now show
that

∞∑

`=0

ω2s+1
`

∣∣∣J`(zn(1), żn(1)) − J`(zn+1(0), żn+1(0))
∣∣∣ ≤ CεN+1. (64)

This bound is obtained as follows: Theorem 3.1 shows that

(
‖ũn(ε−1) − u(tn+1)‖

2
s+1 + ‖∂tũ

n(ε−1) − ∂tu(tn+1)‖
2
s

)1/2

≤ CεN .

By the Lipschitz continuity (34) of Section 3.7, by the decomposition (62), and
by Lemma 4.2, this bound yields (64).

The bound (64) and Theorem 4.1 now yield

∞∑

`=0

ω2s+1
`

∣∣∣J`(zn+1(0), żn+1(0)) − J`(zn(0), żn(0))
∣∣∣ ≤ CεN+1

and hence, for τ ≤ 1,

∞∑

`=0

ω2s+1
`

∣∣∣J`(zn(τ), żn(τ)) − J`(z0(0), ż0(0))
∣∣∣ ≤ C n εN+1,
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which is smaller than Cε3 for n ≤ ε−N+2, i.e., for tn = nε−1 ≤ ε−N+1. By
Theorem 4.3 and Theorem 3.1, this implies

∞∑

`=0

ω2s+1
`

∣∣∣J`

(
u(t), ∂tu(t)

)
− J`

(
u(0), ∂tu(0)

)∣∣∣ ≤ Cε3 for t ≤ ε−N+1.

This is the estimate of Theorem 2.2. It also shows that the smallness condition
(8) remains indeed satisfied (with 2ε instead of ε, say) at t0, t1, t2, . . . up to
times t ≤ ε−N+1, so that the construction of the modulated Fourier expansions
on each of the subintervals of length ε−1 is indeed feasible with bounds that
hold uniformly in n. The proof of Theorem 2.2 is thus complete.
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[4] B. Bambusi, J.M. Delort, B. Grébert, J. Szeftel, Almost global existence for
Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data
on Zoll manifolds. Preprint 2005.

[5] J. Bourgain, Construction of approximative and almost periodic solutions
of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6
(1996), 201–230.

[6] J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and
PDE. J. Anal. Math. 80 (2000), 1–35.

[7] W. Craig and C.E. Wayne, Newton’s method and periodic solutions of
nonlinear wave equations. Comm. Pure Appl. Math. 46 (1993), 1409–1498.

[8] J.-M. Delort and J. Szeftel, Long-time existence for small data nonlinear
Klein-Gordon equations on tori and spheres. Int. Math. Res. Not. 2004, no.
37, 1897–1966.

[9] M. Guzzo and G. Benettin, A spectral formulation of the Nekhoroshev
theorem and its relevance for numerical and experimental data analysis.
Discrete Dyn. Syst., Ser. B, 1 (2001), 1–28.

24



[10] E. Hairer and C. Lubich, Long-time energy conservation of numerical meth-
ods for oscillatory differential equations. SIAM J. Numer. Anal. 38 (2000),
414–441.

[11] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integra-
tion. Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer Series in Computational Mathematics 31, 2nd ed., 2006.

[12] J.-L. Joly, G. Métivier and J. Rauch, Coherent nonlinear waves and the
Wiener algebra. Ann. Inst. Fourier 44 (1994), 167–196.

[13] L.A. Kalyakin, Long-wave asymptotics. Integrable equations as the asymp-
totic limit of nonlinear systems. Russian Math. Surveys 44 (1989), 3–42.

[14] P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equa-
tions for extended systems with cubic nonlinearities. Proc. Roy. Soc. Edin-
burgh Sect. A 122 (1992), 85–91.

[15] G.B. Whitham, Linear and Nonlinear Waves. Wiley-Interscience, New
York, 1974.

25


