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Abstract. 
The theory of computability is a mathematical abstraction that has proved to be very 
handy in explaining and foreseeing many facts about the computers, as we know them 
today. Yet, existing computers are objects embedded in our physical word and as such 
have to behave according to the laws of physics. This observation has had stunning 
consequences for our understanding of computations. For instance, it allowed proposing 
universal quantum computer and hence extending Turing-Church Thesis. Physics of 
computation has become a very active field of research, not only limited to quantum 
computing but also including other branches of physics like statistical mechanics. So far, 
not much has been known about possible links between models of computations and 
relativistic effects. In the paper we fill this gap, by the discussing role of a relativistic 
time factor in computations. At first we limit our consideration to the Turing Machine 
and show that in suitably chosen reference frames NPP = . We also discuss how this 
result can be obtained in the more general framework. Towards the end of the paper we 
outline an idea for a new, energy based, computational complexity measure and touch 
upon the halting problem. 
 
 

1. Introduction 
In 1936 Alan Turing published his seminal paper “On computable numbers with an 
application to the entscheidnungsproblem” ([1]) and introduced the notion of computable 
function. Although at the time of publication there were no digital computers as we know 
them today, the paper described a computer model which underlies all present designs. The 
Turing machine is a generally accepted model in computability theory and the foundation of 
all the classical computational complexity theory. 
It is not the most efficient model of computation; however it is highly regarded for the fact the 
ability to simulate more feasible models. Actually, even stronger assertion, known as Church-
Turing Thesis, exists: Every ‘function which would naturally be regarded as computable’ can 
be computed by the universal Turing machine. 
Any problem, that can described in the finite number of bits and in a way  compatible with the 
Turing machine, can be presented to the machine for consideration. It is hoped that after a 
finite number of steps the machine should produce the answer. There is however no guarantee 
for that and the machine can loop on the problem forever. Information whether the machine 
will eventually stop is often difficult to obtain forehand and is know as the halting problem. 
This problem was central to Turing’s considerations, who in the true mathematical spirit was 
mainly concerned with showing possibility of the existence of finite solutions (the machine 
stops after finite number of steps) than their efficiency. 
The latter problem was addressed by his successors by linking complexity of algorithm 
required to solve a given problem to the size of the input in bits. 
In general there are two main measures of complexity. The first is space complexity which 
describes memory requirements of the algorithm, the second time complexity which describes 
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the number of computational steps needed to tackle a problem. In this paper we will be mainly 
concerned with the latter.  
The questions (and initial answers) on efficiency can be traced back at least to the 1950’s and 
John von Neumann [2]. Further quest for answers stimulated research, which resulted in 
modern computational complexity theory and a whole zoo of computational complexity 
classes (for most recent treatment see [3]).  
For the sake of our presentation we describe polynomial-time algorithms, a notion was first 
introduced in [4] and [5]. If the solution of a problem requires polynomial number of steps in 
relation to the size of an input, then the problem falls into this category. Polynomial-time 
algorithms are considered “good” or tractable (also see Feasibility Thesis by Stephen Cook 
[6]). In contrast exponential-time algorithms are infeasible and, hence often called intractable.  
We informally describe two classes that are subject to the fundamental question in 
computational complexity.  The notion of polynomial-time underlies definition of the class P, 
which in computational complexity is defined in terms of Turing machine and refers to 
decision problems that can be solved by deterministic algorithm in polynomial time. In 
contrast, the class NP, groups decision problems that require more powerful, nondeterministic 
machines in order to be solved in the polynomial time. Best know solutions for such problems 
on the Turing Machine have algorithms with exponential time complexity. 
Although both classes seem distinct, still today it is not known whether they really are. 
The P versus NP problem is central to modern computer science and mathematics and as such 
is one of seven problems included in the Millennium Grand Challenge in Mathematics 
announced by the Clay Mathematics Institute, see [7]. Finding feasible NP-solver (e.g. by 
constructive proof that NPP = ) would transform computer science as we know it, for 
instance allowing jump progress in artificial intelligence. It would also change mathematics 
since such a result would enhance techniques for formal proofs and automated theorem 
proving.  
However, the problem’s importance stems not only from the theoretical considerations, but 
also from related practical applications. Many of NP class problems have numerous industrial 
and business applications in virtually every field that quantitative methods are used.  A very 
good example is modern cryptography which is largely based on the assumption that NPP ≠ . 
For the present state of art on  P versus NP problem the interested reader is referred to a 
recent paper by Steven Cook ([8]) who actually first outline the problem over 30 year ago. 
  So far, we have been concerned with mathematical theory of computation, neglecting the 
physical aspects of the process. This concern is nicely expressed in the following quote 
“Though the truths of logic and pure mathematics are objective and independent of any 
contingent facts or laws of nature, our knowledge of these truths depends entirely on our 
knowledge of the laws of physics.” by David Deutsch, Artur Ekert and Rossella Lupacchini in 
[9].  
In fact such way of reasoning has proven quite seminal over the years. The most notable field 
is quantum information and quantum computing, which were first discussed in their full 
extent by David Deutsch in [10]. Many people consider it to be a great change in computation 
theory with Turing's universal Turing machine being replaced by Deutsch's universal quantum 
computer.  
So far the results closest to practical applications have been achieved in quantum 
cryptography with some fielded solution already available (for detail see [11], [12], [13]).  It 
should be noted that quantum computing inspired links between other branches of physics and 
computational complexity; a very good instance being statistical mechanics, see [14]. As a 
result,  various concepts taken straight from physics toolbox, like phase transition and the 
study of threshold phenomena, were applied in the field of computability.    



When it comes to foundational issues in modern physics, often some of Richard Feynman’s 
ideas, usually in the form of cute quotes, are applicable. This has happened so often that his 
sayings won him the status of the “Oscar Wilde of Physics”, as was nicely summarized by 
Vladko Vedral [15]. Feynman had his share in fostering a quantum computer, [16]. However, 
it was not the only contribution to the field that he made. He was discussing computers’ 
miniaturization and density of information storage in the late 1950s, see [17]. At the time his 
ideas were considered interesting but rather purely theoretical speculations, although he get a 
little more practical by stating his famous challenge “Why cannot we write the entire 24 
volumes of the Encyclopaedia Britannica on the head of a pin?” (see [17]). 
Since then we have witnessed about 50 years of phenomenon known as Moore’s law. The 
computing power and capacity of computer memory has been doubled roughly every 18 
month, resulting in continuous exponential growth. Since Moore’s law is not a law of nature, 
this prompted questions about the limits of the exponential grow. Computers are physical 
systems, hence their limits arise from the laws of physics. Some of the studies go as far as 
investigating term logic for physically realizable models of information, [18]. 
As the physical boundaries of computations one usually considers: a) energy limits on speed 
of computation, b) entropy limits on memory space, c) size limits on parallelization. An 
excellent discussion of these issues is contained in Seth Lloyd’s article [19]. It should be 
noted that such limits are usually studied with the help of quantum mechanics applied to an 
ultimate machine possible only in some Gedankenexperiment (thought experiment).   
  So far, the time in computational complexity has been predominantly considered in the 
Newtonian way and relativistic effects connected with time have been largely neglected. On 
the popular level the topic was briefly discussed by Roger Penrose in “Shadows of the Mind” 
([20]), where he considered the Gödel universe with close time-like lines and argued that 
causal violations would help to tackle the halting problem. However, it was David Deutsch 
that first considered using universal quantum computer in such conditions. In [21] he 
investigated nature of quantum mechanic near closed time-like lines and discussed possibility 
of removing paradoxical constrains  imposed by such space-times. While discussing novel 
quantum mechanical effects, he also elaborated on possibilities for further enhancing quantum 
computers, if operated under such conditions. More recent research results on quantum 
computers near  closed timelike curves, can be found in [22]. We came across Deutsch’s and 
his followers works while polishing the final draft of this paper. It was an interesting 
experience to read Deutsch work and compare our ideas.  
Their results are interesting and deep, however, we feel that one does not need to go that far 
as quantum computers, to see whole range of interesting effect resulting from non-Newtonian 
perception of time. The advantage of such an approach stems from the fact that we do not 
need to use universal quantum computer as model of computation. The argument can still be 
carried our for the Turing Machine, which makes the our presentation palatable also to 
researchers supporting more traditional approach to the theory of computability.  
 In the following sections we are going to discuss consequence of time related relativistic 
effects on our understanding of models of computations.  
 
 
2. Time factor and computability 
“The theory of computation has traditionally been studied almost entirely in the abstract, as a topic in pure 
mathematics. This is to miss the point of it. Computers are physical objects, and computations are physical 
processes. What computers can or cannot compute is determined by the laws of physics alone, and not by pure 
mathematics.” – attributed to David Deutsch. 
 
So far, in computational complexity time has been very much Newtonian. Let’s see what 
changes can be introduced by Einstein, even if we restricted our consideration only to the 



Turing Machine. Taking the above quote seriously, in this section, we ask a question: what 
impact on the process of computation effects from the theory of relativity can have?   
 
2.1 Twin paradox  
 
We start from the famous Gedankenexperiment in special relativity known as the Twin 
paradox, for instance see [23]. In the original formulation, the experiment concerns a pair of 
twins. One of them (twin A) stays on the Earth, while the other (twin B) undertakes a long 
journey with a rocket at almost the speed of light (velocity v ).  The journey ends up on the 
Earth and when siblings compare the time that they measure (e.g. their age), they find that the 
measurements different. To be more precise, let AT  be time of the journey as measured by 
twin A and BT  the time measured by B respectively. Then they will find that 

BA TT > .                (2.1.1) 
 
This can be written as 
                            BA TT γ= ,               (2.1.2) 
 
where γ  is time dilatation factor and is described by the formula 
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In our case we propose to replace twins by two identical Turing machines, AM  and BM   
respectively. The machines are given exactly the same problem for computation. Let’s further 
assume that it takes AT  to complete execution of the program and both machines are started 
exactly at the moment in time, when BM  starts its space journey.  In such a case, when BM  
returns to the Earth, it is still busy computing, but AM  has just obtained the result. This 
allows BM  to learn outcomes from AM , instead of continuing computations on its own. 
So, in principle it is possible that one machine can obtain result of computations before 
actually finishing them. The point is that the time complexity measure is not something 
absolute and should be connected with the frame of reference. Now, it is the time to examine 
what speedup in computations can result from this observation. 
 
2.2 Collapsing NP to P  
“Everything should be made as simple as possible, but not simpler.” – Albert Einstein. 
 
   In this section we are still in the realm of special relativity and Gedankenexperiment as 
outlined in the preceding section. 
Now, assume that we set up thought experiment in the same way as described in the preceding 
section. We have two identical machines and send one of them into outer space. However, 
this time our machines are fed two different programs. 
Travelling machine BM  is now computing the problem B with time complexity described by 
the function ( ) y

B nnf = , where y  is some constant natural number. Under such condition one 
can quite comfortably place problem B into polynomial-time and tractable domain. If proper 
care is taken in the specific description of the problem B, it can easily fall into class P.  
Earth bound machine AM  is assigned different task. It tackle the problem A with time 
complexity described by the function ( ) n

A xnf = , where x  is some constant natural number. 



Hence problem A is an exponential-time and intractable. Problem A, if properly defined, can 
belong to class NP. 
The equation (2.1.3) relates times registered by A and B by time dilatation factor γ .  The 
value of  γ  depends only on v , the relative velocity of A and B. It does not depend on any 
other parameters; especially it is independent of n  (number of bits in the input).  In principle, 
time dilatation can be made arbitrarily large as relative velocity v  approaches the speed of 
light c . Note that for any finite n , exist γ  such that 

( ) ( )nfnf BA γ= .              (2.2.1) 
This can be written as 

( ) ( )nfnf BA =
γ
1 .               (2.2.2) 

So, time-complexity of both problems can be the same in suitably chosen reference frames. In 
other words problems from NP class can be solved in the polynomial time! 
It means that in principle exponential time speedup in computations is possible. This results in 
exponential reduction between NP and P, so NP can be collapsed to P. So, with the proper 
choice of reference frames NPP = . 
 
2.3 Beyond the twin paradox 
 
   Conclusions of the previous sections are strong, however they are applicable only to a very 
special case of twin paradox. Sceptics would point out that it is only one case from special 
relativity. Also one would claim that the provided example is not particularly useful, since it 
provides us with the relative “slowdown” of BM , not a “speedup” of AM . 
Let’s start from the last problem. Can it be doctored? Well, AM  and BM  are not inertial 
observers, so dilatation effect is not reciprocal, see [23]. Hence, some other example should 
be found, such that travelling machine BM  will “record” more time steps than  the Earth 
bound machine AM .  According to our best knowledge, finding such motion is not possible 
on the grounds of the special theory relativity. However, author is very keen to be proven 
wrong on that point.  
So what about general relativity then? The answer is that in some metrics such results are 
possible. One example would be a Gödel universe, as proposed by Roger Penrose and David 
Deutsch for tackling the halting problem, see [20], [21]. 
This is a good news, since large scale physics of our universe, as we perceive it today, is 
described rather by general relativity theorem than its special case. The last sentence would 
obviously provoke reaction from all research communities convinced that general relativity is 
not good enough. Dealing with this problem is beyond the scope of the paper, although we 
used the theory of relativity to demonstrate our reasoning. Our main point is that the effects 
from the theory describing time metric (say the string theory if needed) have to be taken into 
account while considering realistic models of computation. These effects are not negligible, 
because they might cause NP collapse to P with suitable choice of reference frames. 
 
3. Discussion, conclusions and further research 
“Good mathematicians see analogies between theories, the very best see analogies between analogies”– Stefan 
Banach. 
 
Computers are physical systems, so in describing them we cannot neglect the laws of physics, 
even those resulting from relativity theory. The point is that the time complexity measure is 
not something absolute and should be connected with the frame of reference. Having shown 
that given proper choice of reference frames it is possible to have NPP = , we call on 



seasoned relativists to help in finding more examples of this kind. The motivation for this call 
comes from the awareness of complexity of problems tackled in general relativity and the 
knowledge that many of them require years of dedicated studies. 
Being positive about the existence of possible solutions does not however answer questions 
on their feasibility. At this point we try to address some of them. Probably the majority of 
objections would relate to the “energy bill”. So far, we discussed some Gedankenexperiment 
involving accelerating large bodies to relativistic velocities. Such activity is obviously very 
energy consuming. However, it should be pointed out that actual computing device can be 
made very small as recent developments show. This is especially true when it comes to 
specialized machines, not general purpose computers. One of the leading and often very well 
funded applications is the special-purpose hardware for attacking cryptographic systems. Such 
devices are often relatively simple, but have to perform countless iterations of the same 
simple routine. Such parameters are very handy for the proposed agenda. Simple machine 
means minimal mass that has to be accelerated. Assume scenario that a machine is sent in to 
outer space and we do not need to retrieve it as long as it communicates results of the 
computations. It is not very difficult to visualize applications, whether in cryptography or 
automated theorem proving, that such one-time machines can be used. In such a scenario the 
program is hardwired into the physical structure of a machine, machine is sent to outer space, 
computations are performed, result sent back to us and we can forget about a machine, if we 
wish.    
It should be mentioned that obtaining relativistic effects in computational complexity does not 
place any particular requirements on the model of computation. Hence, in principle also 
universal quantum computer can benefit from this enhancement (e.g., [21], [22]), making 
computation one of the fields where long awaited meeting between quantum and relativistic 
worlds takes place ☺. 
Actually, one can easily imagine computing machine consisting with small number of 
particles, for instance heavy-ion system ([19]) or the plasma that “computes itself” ([24]).  In 
such case it might happen that there will be no need to send our machine for relativistic 
journey to outer space, since achieving proper conditions might be feasible on the Earth with 
help of powerful accelerators. 
 As we mentioned above in order to have exponential reduction between NP and P, one has to 
introduce relativistic effects. It seems that the energy required to do that might be increasing 
exponentially with the required level of such effects. This will be certainly the case, should it 
be required to accelerate particles to relativistic velocities.  
Taking this fact into account results in two observations: 

1. Although NPP =  (with suitable choice of reference frames), nonetheless obtaining 
solution for the problem from the NP class might require much more, in fact even 
exponentially more, energy in comparison to solving problems from P. As we have 
shown, once relativistic effects come to play, the time-complexity, or the number of 
steps, ceases to be a good measure for algorithm performance. Hence, we see the need 
for a new measure which links algorithmic complexity with the energy required to 
complete it. Although the role of thermodynamics in computation is quite well studied 
(e.g., [19], [14]), in the relativistic setup the author would be very cautious using a 
simple measure linking the number of steps and energy cost of bit flipping. So, we 
think that interplay between energy and information in computation, should be re-
examined taking relativistic effects in to account. A proper design of the postulated 
measure is left as an open problem. 

2. So far we were mainly concerned with complexity measures, however it seems that it 
might also be possible to address the halting problem. In order to see it, consider the 
twin paradox as described in Section 2.1. Machine AM  is left on the Earth, running 



the algorithm about we wish to know whether it terminates. The observer undertakes a 
relativistic journey. From the equations (2.1.2) and (2.1.3) it follows that he can delay 
the time of return almost to infinity (in machine AM  frame of reference). Obviously in 
order to check whether  AM  has stopped he has to return after a finite time. In 
principle, however,  AT  can be as long as he wishes possibly limited only by the 
lifespan of the Universe. This opens theoretical possibilities for probabilistic testing, 
with the reasoning that links  AT , with the probability that  AM  would ever stop. 
Assuming the finite lifespan of the Universe, checking AM  just before the end of it 
would be a good indicator. If AM  is still running, with very high probability it will not 
stop, at least in this Universe. There is one more thing that should be taken into 
account in this joyful Gedankenexperiment – the energy bill. The energy required to 
experience infinite time dilatation will be infinite, too. However, observer’s return just 
before the Great End, will require very high, but always a finite amount of energy. To 
on a  more serious note, we observe that an exponentially growing energy is required 
to attack the halting problem “by twin paradox” while increasing the probability of 
getting the right answer. The other solutions, for instance ones resulting from the 
general theory of relativity, might however have a more handy energy profile.  

We conclude with reference to “Programming the Universe: A Quantum Computer Scientist 
Takes On the Cosmos”, a recent book by Seth Lloyd [25]. In the book he postulates the 
Universe that is a large computationally universal machine, where everything that surrounds 
us is the result of quantum computation, a long interplay between information and energy. 
Even if he is right, taking into account likely energy requirements, it might be required that 
one has to use such a machine at “100% processor’s capacity” to properly tackle the halting 
problem. However, there is hope that we can do better than that. 
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