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Abstract. We construct finite volume schemes of arbitrary order of accuracy in space and time
for solving nonlinear diffusion-reaction partial differential equations. The numerical schemes,
written in conservative form, result from extending the Godunov and the ADER frameworks,
both originally developed for approximating solutions to hyperbolic equations. The task is to
define numerical fluxes and numerical sources. In the ADER approach, numerical fluxes are
computed from solutions to the Derivative Riemann Problem (DRP) (or generalized Riemann
problem, or high-order Riemann problem), the Cauchy problem in which the initial conditions
either side of the interface are smooth functions, polynomials of arbitrary degree, for example.
We propose, and systematically asses, a general DRP solver for non-linear diffusion-reaction
equations and construct corresponding finite volume schemes of arbitrary order of accuracy.
Schemes of 1st to 10-th order of accuracy in space and time are implemented and systematically
assessed, with particular attention to their convergence rates. Numerical examples are also
given.
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1 Introduction

This paper deals with the construction of numerical schemes for solving nonlinear diffusion-
reaction partial differential equations. These arise in a large variety of of application areas,
such as flow in porous media; here several processes may take place, such as solute transport by
diffusion-dispersion-reaction mechanisms or heat transfer by conduction. Examples of relevant
works on the mathematical formulation of these problems are [11, 30, 31, 41, 44, 43]. A particu-
larly interesting case in porous media flow is the well-known Richards’ equation, formulated by
Lorenzo A. Richards in 1931, which represents groundwater flow in the unsaturated zone. See
for example [5, 7, 16, 23]. Many other physico-chemical processes can be modelled by means of
nonlinear diffusion-reaction equations, such as heat conduction in plasma [8, 9, 45], combustion
problems [4, 24, 47], liquid evaporation [29], population genetics [4, 28] and, of more recent
interest, image processing [22, 27], to name but a few. A great effort is being made in the
development of the mathematical theory of nonlinear diffusion equations and to obtain exact
solutions for special cases. Some results can be found in [11, 30, 31, 43, 44].
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Numerical methods for diffusion-reaction equations to obtain approximate solutions is also
a very active area nowadays. Finite element methods are probably the dominant numerical
approach to solve these parabolic equations. Their accuracy and mesh flexibility are two of
their main attractions. See for example [1, 2, 7, 14, 15], to quote but a few. Other numerical
approaches for parabolic equations include finite difference methods and finite volume methods
[16, 21, 22, 26, 27]. Discontinuous Galerkin (DG) finite element methods are also being developed
to solve these parabolic equations [18, 32, 42]. For hyperbolic equations it is the class of finite
volume schemes of the Godunov-type the one that dominates nowadays, with a visible increase
in the popularity of DG methods. Most of the current finite volume methods make use of the
Riemann problem as the building block [39], [25], a tendency that is also seen for DG methods.
Two related, but distinct, works are those of Titarev and Toro [35] and Gassner et al. [18]. In
the former, the authors studied ADER finite volume schemes for the linear advection-diffusion
equation using a simple DRP solver. In the latter, the authors also adopted the ADER approach
but in the frame of DG finite element methods; they constructed high-order methods for the
diffusion equation.

In this paper we set out to construct Godunov-type finite volume schemes for non-linear
diffusion-reaction equations. The classical Godunov method is understood as that in which
one uses the solution of the Riemann problem with piece-wise constant data, which we call here
the classical Riemann problem. In our first attempt using local solutions of classical Riemann
problem we found the Godunov approach to be too restrictive: a consistent scheme is found only
for a particular choice of the time step, effectively. A re-interpretation of the Godunov approach,
still using solutions of classical Riemann problems, following the WAF framework [36], [10] is
more productive. The well-known FTCS (Forward in Time Central in Space) finite difference
scheme is reproduced, in a finite volume setting.

Another way of constructing useful finite volume schemes of the Godunov type for diffusion-
reaction equations is provided by the ADER approach [40]. This is the main part of this paper.
The basic ingredient of the ADER approach is the so called Derivative Riemann Problem.
This is the Cauchy problem for the relevant PDEs with initial conditions consisting of piece-
wise smooth data, rather than piece-wise constant as for the classical Riemann problem. The
simplest case of piece-wise linear data reproduces the so called generalized Riemann problem, or
GRP [6]. A particular data reconstruction with slopes obtained by central differences yields a
useful Godunov scheme for the diffusion equation. It is consistent and conditionally stable, with
stability limit of 2, which is four times that of the classical FTCS scheme. Thus a basic ingredient
of useful finite volume Godunov-type schemes for diffusion is data reconstruction, as for the well-
established high order schemes for hyperbolic equations. As a consequence, one is also led to the
construction of schemes of high order of accuracy. In this paper we use ENO (essentially non-
oscillatory) reconstructions. For background on the ADER approach for hyperbolic problems
see for example [40], [33], [37], [38], [13]. In this paper, we extend the technique proposed in
[37, 38], to solve the DRP for non-linear diffusion-reaction equations. The DRP solvers are
systematically assessed against exact solutions. Use of these local DRP solutions leads to finite
volume numerical schemes of arbitrary order of accuracy in both space and time and for the
coupled diffusion-reaction processes. The schemes are systematically assessed, with particular
attention paid to a detailed study of convergence rates. Methods of up to 10-th order of accuracy
in space and time are developed, implemented and assessed.

The rest of this paper is structured as follows: in section 2 we discuss some mathematical
and numerical preliminaries regarding finite volume schemes for diffusion-reaction equations,
the Riemann problem and related Godunov methods. In section 3 we pose and solve the Deriva-
tive Riemann Problem for non-linear diffusion-reaction equations. In section 4 we assess the
approximate solvers for the DRP against reference solutions. In section 5 we construct ADER
numerical methods for diffusion-reaction equations. In section 6 we study the convergence rates
of the schemes. In section 7 we present some numerical examples, while conclusions are drawn
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in section 8.

2 Preliminaries

We construct high-order finite volume schemes for the class of diffusion-reaction equations

∂tq(x, t) = ∂x(α(x, t, q(x, t))∂xq(x, t)) + s(x, t, q(x, t)) , (1)

in which q(x, t) is the dependent variable (unknown); x, t are the spatial and temporal indepen-
dent variables; α(x, t, q(x, t)) is a prescribed function, the diffusion coefficient; and s(x, t, q(x, t))
is a source (or forcing, or reaction) term. We allow for explicit dependency of the functions α

and s on the independent variables x and t, although for convenience, in the rest of this paper
shall often omit their explicit presence. The linear version of (1) with constant coefficients is

∂tq = α̂∂(2)
x q + βq , (2)

where α̂ is a constant diffusion coefficient and β is a constant reaction coefficient of dimensions
reciprocal of time. This model diffusion-reaction equation will be extensively used in developing
and testing ideas regarding numerical methods for the more general case (1).

2.1 The Finite Volume Framework

To start with, we consider the control volume V = [xi− 1
2
, xi+ 1

2
]× [tn, tn+1] in the x-t half-plane,

of dimensions
∆x = xi+ 1

2
− xi− 1

2
, ∆t = tn+1 − tn . (3)

Integration of equation (1) in space and time in the control volume V yields the exact relation

qn+1
i = qn

i +
∆t

∆x
[gi+ 1

2
− gi− 1

2
] + ∆tsi , (4)

where

qn
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn)dx , (5)

is the spatial integral average of q at time tn,

gi+ 1
2

= − 1

∆t

∫ ∆t

0
α(q(xi+ 1

2
, t))∂xq(xi+ 1

2
, t)dt (6)

is the temporal integral average at the interface x = xi+1/2, and

si =
1

∆x∆t

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn
s(q(x, t))dxdt (7)

is the volume integral of the source term.

Finite volume schemes of the form (4) to solve (1) can be constructed by specifying approxima-
tions g̃i+ 1

2
and s̃i to gi+ 1

2
and si in (6) and (7), which allow the updating of the approximate cell

average q̃n
i to the new approximate cell average q̃n+1

i . By dropping the tildes we can interpret
(4) as a one-step finite volume numerical scheme to solve (1) approximately. Strictly speaking
the averages {q0

i } should be evaluated by exact integration of the appropriate initial conditions,
as in (5). We call gi+ 1

2
the numerical flux and si the numerical source of the finite volume

scheme. In this numerical context ∆x is the volume or length of the cell, xi− 1
2

and xi+ 1
2

are the

cell interfaces, xi = 1
2(xi− 1

2
+ xi+ 1

2
) is the cell centre and ∆t is the time step.

In constructing approximate fluxes gi+1/2 and approximate sources si, it is convenient to in-
terpret (5)-(7) in local coordinates, with x representing x − xi+1/2 and t representing t − tn, so
that the interface xi+1/2 is located at 0 and tn corresponds to 0.
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2.2 The Riemann Problem and Godunov-type Methods

One may speculate as to whether the Godunov approach [19] might be productive in constructing
finite volume schemes for diffusion equations. Here we discuss the Riemann problem, numerical
fluxes and related numerical methods.

2.2.1 The Classical Riemann Problem

The classical (in the sense of having piece-wise constant data) Riemann problem is the Cauchy
problem

∂tq = α̂∂
(2)
x q ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL if x < 0 ,

qR if x > 0 ,























(8)

where x and t denote local coordinates; x = 0 corresponds to the interface and t = 0 corresponds
to the global time tn (time level n). Fig. 1a depicts the piece-wise constant initial conditions,
with a discontinuity at the origin. Fig. 1b shows profiles q(x, tk), k = 1, 2, 3 of the solution of
the Riemann problem at times 0 < t1 < t2 < t3, the solution is smooth for t > 0. Fig. 1c shows
a contour plot of the solution q(x, t) in the vicinity of the origin. For the linear equation (2) it
is possible to obtain the solution of the Riemann problem (8) analytically, as seen below.

Proposition 1: The exact solution of the classical Riemann problem (8) is

q(x, t) =
1

2
(qL + qR) +

1

2
(qR − qL)erf

(

x

2
√

α̂t

)

, t > 0 . (9)

Proof: As well known (see for example [46]) the solution of problem (8) can be expressed as

q(x, t) =
qL

2
√

α̂πt

∫ 0

−∞
e−

(x−ξ)2

4α̂t dξ +
qR

2
√

α̂πt

∫ ∞

0
e−

(x−ξ)2

4α̂t dξ . (10)

Using the substitution η = x−ξ

2
√

α̂t
we have dη = − dξ

2
√

α̂t
, from which

q(x, t) =
qL√
π

∫ ∞

x

2
√

α̂t

e−η2
dη +

qR√
π

∫ x

2
√

α̂t

−∞
e−η2

dη . (11)

We rearrange (11) as

q(x, t) =
qL√
π

[

∫ ∞

0
e−η2

dη −
∫ x

2
√

α̂t

0
e−η2

dη

]

+
qR√
π

[

∫ 0

−∞
e−η2

dη +

∫ x

2
√

α̂t

0
e−η2

dη

]

, (12)

where
∫ ∞

0
e−η2

dη =

∫ 0

−∞
e−η2

dη =

√
π

2
. (13)

From (12) and (13) it follows

q(x, t) =
qL + qR

2
+

qR − qL√
π

∫ x

2
√

α̂t

0
e−η2

dη , (14)

which reproduces the sought expression (10), as claimed.

Corollary 1: The spatial gradient of the solution (9) of the classical Riemann problem (8) is
given by

∂xq(x, t) =
qR − qL

2
√

α̂πt
e−

x2

4α̂t for t > 0 , (15)
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q(x,0)

qL

(a)

qR

x
0

q(x,0)
q(x,t 1)
q(x,t 2)
q(x,t 3)

qL

x

qR

q(x,t)

(b)

(c)

0

t

xqL qR

Figure 1: The classical Riemann problem for the homogeneous version of the model diffusion
equation (2).
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the solution at the interface is

q(0, t) =
1

2
(qL + qR) for t > 0 (16)

and the limiting value at the interface, as time tends to zero from above, is obviously given by

q(0, 0+) = lim
t→0+

q(0, t) =
1

2
(qL + qR) . (17)

Proof: Omitted.

2.2.2 Godunov methods

With the exact solution of the classical Riemann problem available, it would appear entirely
reasonable to attempt to construct finite volume methods of the Godunov-type by finding a
numerical flux. Here we follow the WAF approach, as proposed for hyperbolic conservation laws
in [36], [10], whereby numerical fluxes are sought as approximations to integrals in appropriately
chosen control volumes and integrand functions. We thus search for numerical fluxes for diffusion
from space-time integrals of the form

gi+ 1
2

=
1

δt

1

δx

∫ γ0∆t

0

∫ γR∆x

−γL∆x
G(q(x, t), ∂xq(x, t))dxdt , (18)

where δx = (γL + γR)∆x, δt = γ0∆t and γL, γ0, γR are three non-negative real numbers. The
integrand function G(q(x, t), ∂xq(x, t)) is also open to choice.

Here we study the special case in which γL = γR = 0 and G(q(x, t), ∂xq(x, t)) = −α̂∂xq(0, t).
Thus we have

gi+ 1
2

= − 1

γ0∆t

∫ γ0∆t

0
α̂∂xq(0, t)dt , (19)

which denotes a time-integral average in the time interval [0, γ0∆t]. Use of (15) into (19) gives
the numerical flux

gi+ 1
2

= −
√

α̂

γ0π∆t
(qn

i+1 − qn
i ) . (20)

Substituting this into (4) gives the finite volume method

qn+1
i = qn

i + d̃(qn
i+1 − 2qn

i + qn
i−1) , (21)

with definitions

d̃ =

√

d

γ0π
, d =

α̂∆t

∆x2
. (22)

A linear stability analysis reveals that the scheme (21) is conditionally stable, with stability
condition

0 ≤ d̃ ≤ 1

2
or 0 ≤ d ≤ γ0π

4
. (23)

A consistency analysis of the scheme gives the relation

∂tq(xi, t
n) = α̂

√

1

γ0πd
∂(2)

x q(xi, t
n) + O(∆t) + O(∆x2) , (24)

implying the following constraint γ0 = 1
πd , which in turn determines the integration interval as

[0, ∆t
πd ].

Remarks:
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• The Godunov approach for diffusion, interpreted in the WAF sense, reproduces identically
the well-known FTCS (Forward in Time Central in Space) finite difference scheme but
interpreted as a finite volume method,

qn+1
i = qn

i + d(qn
i+1 − 2qn

i + qn
i−1) , (25)

with numerical flux

gFTCS
i+ 1

2

= −α̂
qn
i+1 − qn

i

∆x
. (26)

• Had we taken γ0 = 1, as done in the classical Godunov method, we would have obtained
one very particular useful scheme, namely the FTCS scheme as a finite volume scheme,
with d = 1

π . In other words, the classical interpretation of Godunov method for diffusion,
still using the classical Riemann problem solution, is not productive, unless re-interpreted
in the WAF sense.

The use of high-order Riemann problems following the ADER approach, first proposed for
hyperbolic equations, provides another way, perhaps more general, for constructing finite volume
methods of the Godunov type for diffusion equations. This is the main subject of this paper.

2.3 Another Godunov Method

We consider the ADER approach [40], for which the building block is the solution of the Deriva-
tive Riemann Problem, that is the Cauchy problem

∂tq = α̂∂
(2)
x q ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qR(x) if x > 0 ,























(27)

where qL(x) and qR(x) are two smooth functions away from zero, with a discontinuity at the
origin. In a numerical setting these functions will be polynomials functions of the desired degree
resulting from a reconstruction procedure based on the set of cell integral averages {qn

i }.
The simplest, still conservative, reconstruction is the first-degree polynomial

pi(x) = qn
i + (x − xi)∆i , (28)

where ∆i is a slope for cell i, for which an obvious choice is

∆i =
qn
i+1 − qn

i−1

2∆x
. (29)

Returning to the question of determining a numerical flux via (6), we first need to define the spa-
tial gradient at the interface. This is accomplished by first establishing the following elementary
but useful result.

Proposition 2: The k-order spatial gradient of the solution of q(x, t) of (2) obeys identically
equation (2), that is

∂t(∂
(k)
x q) = α̂∂(2)

x (∂(k)
x q) + β(∂(k)

x q) . (30)

Proof: Omitted.

We can therefore pose the classical Riemann problem for derivatives

∂t(∂
(1)
x q) = α̂∂

(2)
x (∂

(1)
x q) ,−∞ < x < ∞ , t > 0 ,

∂
(1)
x q(x, 0) =







∆i if x < 0 ,

∆i+1 if x > 0 ,























(31)
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whose solution, after (16), is

∂(1)
x q(0, t) =

1

2
(∆i + ∆i+1) for t > 0 . (32)

Evaluation of (6) gives the numerical flux

gi+ 1
2

= − α̂

4∆x
(qn

i+1 + qn
i+2 − qn

i−1 − qn
i ) (33)

and the corresponding Godunov scheme is

qn+1
i = qn

i +
1

4
d(qn

i+2 − 2qn
i + qn

i−2) . (34)

This scheme is consistent and stable, with stability condition 0 ≤ d ≤ 2, whose upper limit is
four times larger than that of the FTCS scheme (25).

We note that scheme (34) for the homogeneous diffusion equation (2) resembles the Lax-
Friedrichs scheme for hyperbolic equations. The immediate neighbours of qn

i do not contribute
to its updating to qn+1

i to the next time level.

Variations of scheme (34) can be obtained by redefining the slopes in the reconstruction. For
example, we can take

∆i = γ(
qn
i − qn

i−1

∆x
) + (1 − γ)(

qn
i+1 − qn

i

∆x
) , 0 ≤ γ ≤ 1 . (35)

The special value γ = 1
2 reproduces (34).

It seems as if initial value problems with non-identical vanishing gradients can lead to useful
Godunov schemes for diffusion.

3 The Derivative Riemann Problem (DRP)

In this section we introduce the Derivative Riemann Problem, or DRP, for non-linear diffusion-
reaction equations and study a method of solution. In a numerical context, local solutions of
Derivative Riemann Problems will be used to construct numerical fluxes for high order Godunov-
type methods for parabolic equations (1).

3.1 The Problem

We call the following Cauchy problem

∂tq(x, t) = ∂x(α(q(x, t))∂xq(x, t)) + s(x, t, q(x, t)) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qR(x) if x > 0 ,























(36)

the Derivative Riemann Problem, where the initial condition q(x, 0) consists of two arbitrary
functions qL(x) and qR(x) that are smooth away from zero. Figure 2 depicts a typical distribution
of the initial conditions for the IVP (36). We look for a solution qLR (τ), right at the interface
x = 0, as a function of time τ . In the spirit of the Cauchy-Kowaleswki method, see for example
[46], we express the sought solution at x = 0 as a power series expansion in time as follows

qLR(τ) = q(0, 0+) + τ∂tq(0, 0+) + . . . +
τk

k!
∂

(k)
t q(0, 0+) + O(τK+1) , (37)
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q(x,0)

qR(x)

qL(x)

x=0
x

Figure 2: General initial condition for the Derivative Riemann Problem (DRP).

where

0+ = lim
τ→0

τ, ∂
(k)
t q(x, t) ≡ ∂kq(x, t)

∂tk
, for k = 1, . . . , K . (38)

We truncate the series by neglecting error terms O(τK+1) and thus obtain K + 1 terms in (37).
If qL(x) and qR(x) are polynomials of order at most K then the truncation is justified.

To compute each term of (37), and thus to compute the complete solution, we follow the
methodology put forward in [37], [38], as applied to hyperbolic equations. The technique can
be applied to the complete non-linear inhomogeneous IVP (36), but for ease of exposition we
consider four distinct cases: the linear homogeneous case, the linear inhomogeneous case, the
non-linear homogeneous case and the nonlinear inhomogeneus case.

3.2 The Linear Homogeneous Case

We consider the linear homogeneous case with constant diffusion coefficient α̂

∂tq(x, t) = α̂∂
(2)
x q(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qR(x) if x > 0 .























(39)

The sought solution at x = 0 has the form (37), for which we need to determine the leading
term and the coefficients of the higher order terms.

3.2.1 The leading term

The leading term q(0, 0+) in (37) accounts for the first-instant interaction of the initial conditions
and is obtained by solving exactly the following classical (piece-wise constant data) Riemann
problem

∂tq(x, t) = α̂∂
(2)
x q(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =















lim
x→0−

qL(x) ≡ qL(0) if x < 0 ,

lim
x→0+

qR(x) ≡ qR(0) if x > 0 .































(40)

Application of Corollary 1, equation (17), gives the exact solution as

q(0, 0+) =
1

2
(qL(0) + qR(0)) . (41)
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3.2.2 Higher order terms

The higher order terms require the calculation of the coefficients, which are the time derivatives

∂
(k)
t q(0, 0+). Here we apply the Cauchy-Kowalewski procedure to convert time derivatives to

functions of spatial derivatives using the governing equation. It is easily seen that

∂
(k)
t q(x, t) = α̂k∂

(2k)
x q(x, t) , for k = 1, . . . , K . (42)

Therefore the sought coefficients in (37) are given by

∂
(k)
t q(0, 0+) = α̂k∂

(2k)
x q(0, 0+) , for k = 1, . . . , K . (43)

Now the problem consists of determining the space derivatives in (43). But for the linear equation

with constant diffusion coefficient we have already shown, Proposition 2, that ∂
(k)
x q(x, t) obeys

the original evolution equation, see (30). We can therefore pose and solve the classical Riemann
problem with piece-wise constant data for derivatives, namely

∂t(∂
(2k)
x q(x, t)) = α̂∂

(2)
x (∂

(2k)
x q(x, t)) ,−∞ < x < ∞ , t > 0 ,

∂
(2k)
x q(x, 0) =















q
(2k)
L (0) ≡ lim

x→0−

d2k

dx2k qL(x) if x < 0 ,

q
(2k)
R (0) ≡ lim

x→0+

d2k

dx2k qR(x) if x > 0 .



































(44)

Again, from Corollary 1 the form of the solution to this problem is the same as that for the
leading term, namely

∂(2k)
x q(0, 0+) =

1

2

(

q
(2k)
L (0) + q

(2k)
R (0)

)

(45)

and the final solution reads

qLR(τ) =

K
∑

k=0





1
2 α̂k

(

q
(2k)
L (0) + q

(2k)
R (0)

)

k!



 τk . (46)

3.3 The Linear Inhomogeneous Case

The problem we consider now is the linear diffusion equation with a source term, which depends
linearly on the unknown q(x, t):

∂tq(x, t) = α̂∂
(2)
x q(x, t) + βq(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qR(x) if x > 0 .























(47)

The solution procedure is very similar to the one described for the homogeneus case. Applying
the Cauchy-Kowalewski procedure, time derivatives can be expressed as

∂
(k)
t q(x, t) =

k
∑

l=0

(

k

l

)

βlα̂k−l∂(2(k−l))
x q(x, t) (48)

and the interface solution can be written in the form:

qLR(τ) =
1

2
(qL(0) + qR(0)) +

K
∑

k=1

τk

k!

[

1

2

k
∑

l=0

βlα̂k−l
(

q
2(k−l)
L + q

2(k−l)
R

)

]

. (49)
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3.4 The Non-linear Homogeneous Case

The problem to solve is

∂tq(x, t) = ∂x (α(q)∂xq(x, t)) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qR(x) if x < 0 .























(50)

Again the proposed solution has the form (37). The solution strategy is analogous to that for
the linear problem, the difference being in the evaluation of the functions of space derivatives.
In the linear case these functions were the linear functions (42). Now the full non-linearity of
the governing equation enters the problem. In general one has

∂
(k)
t q(x, t) = P (k)

(

∂(0)
x q(x, t), · · · , ∂(2k)

x q(x, t)
)

. (51)

For example, for k = 1 we have

∂tq(x, t) = P (1) = α(q)∂(2)
x q(x, t) + α′(q(x, t)) (∂xq(x, t))2 . (52)

We note that the reliable evaluation of the higher order time derivatives requires the use of
algebraic manipulators. To fully determine the functions P (k) in (51) we need to obtain all the
space derivatives of q(x, t), which are the arguments of the functions. To this end we propose
to solve linearized classical Riemann problems for space derivatives, as done for the linear case.
The solution is given by

qLR(τ) =
1

2
(qL(0) + qR(0)) +

K
∑

k=1

P (k)

k!
τk . (53)

Remark: All coefficients involving α(q) and its derivatives are evaluated using the leading term
q(0,0+) of the expansion.

3.5 The Non-linear Inhomogeneous Case

Now we consider the full problem

∂tq(x, t) = ∂x(α(q(x, t))∂xq(x, t)) + s(x, t, q(x, t)) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qL(x) if x > 0 .























(54)

Here the only difference to the previous simpler cases is given by the presence of the non-linear
source term. For the time derivatives one obtains functions of space derivatives and derivatives
of the source term with respect to the unknown q(x, t). For example, for k = 1 we have

∂tq(x, t) = P (1) = α(q)∂(2)
x q(x, t) + α′(q(x, t)) (∂xq(x, t))2 + s(x, t, q(x, t)) . (55)

As before, the calculation of higher order terms require the use of algebraic manipulators. Spatial
derivatives are solutions to classical Riemann problems for spatial derivatives, as before. The
final solution will have the same form as (53).
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Figure 3: The Derivative Riemann Problem. Comparison of the approximate solution at x = 0
(symbols) with the exact solution (line) for the linear homogeneous case.

4 Assessment of the DRP Approximations

Here we assess the accuracy of the solution method for the Derivative Riemann Problem via
some examples with exact solution.

4.1 The Linear Homogeneous Case

Let us consider the following Cauchy problem

∂tq(x, t) = α∂
(2)
x q(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qL(x) if x > 0 .























(56)

The exact solution is

q(x, t) =
1

2
√

παt

[
∫ 0

−∞
qL(ξ)e−

(x−ξ)2

4αt dξ +

∫ ∞

0
qR(ξ)e−

(x−ξ)2

4αt dξ

]

, (57)

which is used to assess the accuracy of the proposed approximate solutions. We consider the
initial condition: qL(x) = e−x2

and qR(x) = 1
2e−x2

and the diffusion coefficient α̂ = 1.

Figure 3 shows the solution of the DRP at the position x = 0, as a function of time. Symbols
represent the solution for different orders of the DRP approximate solution. It can be seen that
when the order increases the accuracy increases. Table 1 shows the errors for different output
times (t = 0.01, t = 0.05, t = 0.1, t = 0.2). When time increases there is a loss of accuracy, as
the series expansion tends to loose validity.
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Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

0 0.1456 × 10−1 0.6535 × 10−1 0.116 × 10−1 0.1909 × 10−1

1 0.4355 × 10−3 0.9653 × 10−2 0.3386 × 10−1 0.1090 × 10−1

2 0.1449 × 10−3 0.1596 × 10−2 0.1113 × 10−1 0.7098 × 10−2

3 0.5068 × 10−6 0.2782 × 10−3 0.3866 × 10−2 0.4901 × 10−2

4 0.1823 × 10−7 0.4993 × 10−3 0.1384 × 10−2 0.3498 × 10−2

5 0.6682 × 10−9 0.9134 × 10−5 0.5057 × 10−3 0.2549 × 10−2

6 0.2481 × 10−10 0.1694 × 10−5 0.1873 × 10−3 0.1885 × 10−2

7 0.9301 × 10−12 0.3172 × 10−6 0.7009 × 10−4 0.1409 × 10−2

8 0.3513 × 10−13 0.5986 × 10−7 0.2643 × 10−4 0.1062 × 10−2

9 0.1335 × 10−14 0.1136 × 10−7 0.1003 × 10−4 0.8052 × 10−3

10 0.5095 × 10−16 0.2168 × 10−8 0.3826 × 10−5 0.6137 × 10−3

Table 1: DRP solution errors for different output times and orders of accuracy. Linear homoge-
neous case.

Order t = 0.01 t = 0.05 t = 0.1 t = 0.2

0 0.7173 × 10−2 0.3024 × 10−1 0.4947 × 10−1 0.6722 × 10−1

1 0.3267 × 10−3 0.7256 × 10−2 0.2553 × 10−1 0.8278 × 10−1

2 0.1074 × 10−4 0.1181 × 10−2 0.8220 × 10−2 0.5221 × 10−1

3 0.3814 × 10−6 0.2092 × 10−3 0.2905 × 10−2 0.3678 × 10−1

4 0.1382 × 10−7 0.3783 × 10−4 0.1048 × 10−2 0.2647 × 10−1

5 0.5089 × 10−9 0.6955 × 10−5 0.3849 × 10−3 0.1939 × 10−1

6 0.1896 × 10−10 0.1294 × 10−5 0.1431 × 10−3 0.1439 × 10−1

7 0.7126 × 10−12 0.2429 × 10−6 0.5367 × 10−4 0.1079 × 10−1

8 0.2696 × 10−13 0.4594 × 10−7 0.2028 × 10−4 0.8145 × 10−2

9 0..1026 × 10−14 0.8734 × 10−8 0.7709 × 10−5 0.6186 × 10−2

10 0.3922 × 10−16 0.1668 × 10−8 0.2944 × 10−5 0.4722 × 10−2

Table 2: DRP solution errors for different output times and orders of accuracy. Linear inhomo-
geneous case.

4.2 Linear Inhomogeneous Case

Now we consider the following Cauchy problem

∂tq(x, t) = α∂
(2)
x q(x, t) + βq(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







qL(x) if x < 0 ,

qL(x) if x > 0 .























(58)

where α and β are two constants. The approximate solution of the DRP is obtained as in (49)
and is compared with the exact solution

q(x, t) =
eβt

2
√

παt

[
∫ 0

−∞
qL(ξ)e−

(x−ξ)2

4αt dξ +

∫ ∞

0
qR(ξ)e−

(x−ξ)2

4αt dξ

]

. (59)

As initial condition we take qL(x) = e−x2
and qR(x) = 1

2e−x2
with diffusion coefficient α = 1

and reaction coefficient β = 1. Results are depicted in Figure 4, while the errors are shown in
Table 2.
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Figure 4: The Derivative Riemann Problem. Comparison of the approximate solution (symbols)
with the exact solution (line) for the linear inhomogeneus case.

5 Reconstruction, Numerical Fluxes and Schemes

We now use local solutions of derivative Riemann problems to construct finite volume schemes
of the form

qn+1
i = qn

i +
∆t

∆x
[gi+ 1

2
− gi− 1

2
] + ∆tsi , (60)

for which we need to specify the numerical flux gi+1/2 and the numerical source si.

5.1 The High-Order Riemann Problem and Numerical Fluxes

The intercell flux at the interface position xi+1/2 is defined as an approximation to the time
integral average

gi+1/2 = − 1

∆t

∫ ∆t

0
α(q(xi+1/2, τ))∂xq(xi+1/2, τ)dτ , (61)

for which we need the functions of time q(xi+1/2, τ) and ∂xq(xi+1/2, τ) at the interface, and

which we denote respectively by q
(0)
LR(τ) and q

(1)
LR(τ).

5.1.1 Solution for the state variable

To find q
(0)
LR(τ) we solve the Derivative Riemann Problem

∂tq(x, t) = ∂x(α(q(x, t))∂xq(x, t)) + s(x, t, q(x, t)) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







pi(x) if x < 0 ,

pi+1(x) if x > 0 ,























(62)

where pi(x) and pi+1(x) are polynomials to be obtained from a reconstruction procedure, to be
detailed in the next subsection. The sought solution is expressed as the following power series
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expansion

q
(0)
LR(τ) = q(0, 0+) +

K
∑

k=1

τk

k!
∂

(k)
t q(0, 0+) + O(τK+1) . (63)

To find the leading term q(0, 0+) we linearize the equation in (62) and pose the linear, homoge-
neous conventional Riemann problem

∂tq(x, t) = α̂∂
(2)
x q(x, t) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) =







pi(0) if x < 0 ,

pi+1(0) if x > 0 ,























(64)

where α̂ = α(1
2(pi(0) + pi+1(0))). The solution is

q(0, 0+) =
1

2
(pi(0) + pi+1(0)) . (65)

To compute the higher order terms in (63) we use the Cauchy-Kowalewski procedure to express
time derivatives as functions of space derivatives using fully the non-linear equation in (62),
including the source term, namely

∂
(k)
t q(0, 0+) = P (k)

(

∂(0)
x q(0, 0+), ∂(2)

x q(0, 0+), ∂(4)
x q(0, 0+), · · · , ∂(2k)

x q(0, 0+)
)

. (66)

The space derivatives, which are the arguments of the functions P (k), are found by solving
homogeneous, linearized classical Riemann problems for derivatives, see (44) to (46).

5.1.2 Solution for the gradient

To compute q
(1)
LR(τ) we assume an estimate ∂xq(0, 0+) for the gradient at time t = 0+. This

estimate is calculated as in the process for obtaining the state variable q, see (44) to (46). Then

we formally write a power series expansion for q
(1)
LR(τ) ≡ ∂xq(0, t) about t = 0+, at x = 0, namely

q
(1)
LR(τ) = ∂xq(0, 0+) +

K
∑

k=1

τk

k!
∂

(k)
t (∂xq(0, 0+)) + O(τK+1) . (67)

The leading term is already determined. The higher order terms are calculated by first trans-
forming time derivatives to space derivatives, via Cauchy-Kowalewski procedure, namely

∂
(k)
t (∂xq(0, 0+)) = Q(k)

(

∂(0)
x q(0, 0+), ∂(1)

x q(0, 0+), ∂(3)
x q(0, 0+), ∂(5)

x q(0, 0+), · · · , ∂(2k+1)
x q(0, 0+)

)

.

(68)
We note that to obtain the function Q(k) we use the full non-linear equation, including the
source term, if present. The spatial derivatives, which are the arguments of Q(k), are obtained
as for the solution of the state variable at the interface, namely, we solve linearized Riemann
problems for spatial derivatives, see (44) to (46).

5.1.3 Reconstruction

In order to solve the derivative Riemann problem (62) we need to provide the initial conditions
knowing only the set of cell averages {qn

i }. To accomplish this we perform a reconstruction
procedure, as done for modern shock-capturing methods for hyperbolic balance laws, generating
in this manner piece-wise polynomial functions pi(x) for each cell Ii. If we wish to get an order
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0

pi+1(x)

pi(x) pi(0)

pi+1(0)

i i+1 x

Figure 5: Initial condition for the Derivative Riemann Problem used in the reconstruction
process.

O(τK+1) in expansions (63) and (67), the polynomial pi(x) must have degree, at least, 2K + 1,
in order to be able to evaluate all the derivatives in (66), (68). This polynomial can be expressed
as

pi(x) =
2K+1
∑

k=0

ckx
k , (69)

where the coefficients ck, (k = 0, 1, · · · , 2K + 1) are to be determined from 2(K + 1) conditions
that may be obtained from conservation requirements. To enforce conservation several techniques
can be applied [12, 20]. Let us assume that the polynomial pi(x) passes through 2K + 2 cells

{i − s0, i − s0 + 1, · · · , i − s0 + 2K + 1} ,

where the value of s0 will be discussed later. We choose to apply reconstructions that are
conservative and to some extent non-linear, as we shall explain below. Conservation requires

qn
j =

1

∆x

∫ xj+1/2

xj−1/2

pi(ξ)dξ , (j = i − s0, i − s0 + 1, · · · , i − s0 + 2K + 1) , (70)

where qn
j is the spatial average of the function q(x, tn) in the cell Ij = [xj−1/2, xj+1/2]. Conditions

(70) result in a system of algebraic equations for the coefficients {ck}2K+1
k=0 in (69). Having

obtained the polynomial pi(x) the spatial derivatives needed are given by

∂(k)
x q(0, 0+) =

dk

dxk
pi(0) . (71)

In this manner the local initial conditions for the Derivative Riemann Problem (62) are deter-
mined as qL(x) ≡ pi(x), qR(x) ≡ pi+1(x). Figure 5 depicts the form of the initial conditions.
Using the solution procedure studied in Section 4 we can determine (63) and (67) and thus (61)
can be evaluated.

5.1.4 Choice of the stencil

We have developed the schemes ADER-DRn,m (ADER for Diffusion Reaction) where the sub-
script n = 3, 4, · · · , 10 indicates the degree of the interpolation polynomial used, while the
subscript m = 2, 3, · · · , 5 denotes the degree of the time series expansion in the solution of the
DRP.

We have implemented non-linear ENO reconstruction schemes with a restricted range in the
choice of the stencil. The restriction favours centred stencils, excluding fully one-sided and
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Scheme s0

ADER − DR3,2 2, 1
ADER − DR4,2 3, 2, 1
ADER − DR5,3 3, 2
ADER − DR6,3 4, 3, 2
ADER − DR7,4 4, 3, 2
ADER − DR8,4 5, 4, 3
ADER − DR9,5 6, 5, 4, 3
ADER − DR10,5 7, 6, 5, 4, 3

Table 3: Choice of the index s0 for each one of the ADER schemes for diffusion.

highly biased stencils. The rational behind is that centred stencils are the best choice from the
point of view of accuracy and stability, even for hyperbolic problems [34], for which non-linear
reconstructions are mandatory in order to circumvent Godunov’s theorem. For diffusion-reaction
equations we have performed extensive numerical experiments, arriving at similar conclusions.
As a matter of fact, for most situations one can use a linear reconstruction with a fixed stencil,
a centred or quasi-centred stencil. The results reported here are all based on the restricted
ENO reconstruction, for which the choice of admissible values of the index s0 in (70) has
been based on numerical experiments. Results are shown in the Table 3. For instance, the
scheme ADER − DR4,2 uses the stencils {i − 3, i − 2, i − 1, i, i + 1}, {i − 2, i − 1, i, i + 1, i + 2}
and {i − 1, i, i + 1, i + 2, i + 3}.

5.2 Numerical source

To determine the numerical source si in the finite volume scheme (4) we compute the space-time
average

si =
1

∆x

∫ xi+1/2

xi−1/2

1

∆t

[
∫ ∆t

0
s(x, τ, q(x, τ))dτ

]

dx (72)

using a numerical quadrature formula. To get good accuracy in the space and time integration,
we can use a Gaussian quadrature rule, with N points in space and N points in time, so that
we can write

si =
1

∆x

N
∑

j=1

{

ωj

(

1

∆t

N
∑

l=1

δls(xl, τl, q(xj , τl))

)}

, (73)

where (δl, τl) are the weights and points used in time integration, while (ωj , xj) are the weights
and points used in space integration. The function values q(xj , τl) are obtained from the Cauchy-
Kowalewski method.

5.3 Example

Let us consider the Cauchy diffusion-reaction problem

∂tq(x, t) = α̂∂
(2)
x q(x, t) + βq(x, t) ,

q(x, 0) = q(0)(x) ,







(74)

where α and β are constants. If we take the scheme ADER-DR3,2 with s0 = 2, which means
that we are choosing the fixed stencil {i − 2, i − 1, i, i + 1}, and apply the procedure described
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in sections 5.1 and 5.2, we obtain the final expression for the scheme as

qn+1
i =

2
∑

l=−3

blq
n
i+l , (75)

with
b−3 = − 1

24d (1 − 6d) − 1
48rd ,

b−2 = 1
24d (3 − 18d) + 1

16rd ,

b−1 = 1
24d (22 + 12d) + 11

24rd + 1
2rd ,

b0 = 1 − 1
24d (50 − 12d) − 25

24rd + r
(

1 − d + 1
2r
)

,

b1 = 1
24d (27 − 18d) + 9

16rd + 1
2rd ,

b2 = − 1
24d (1 − 6d) − 1

48rd































(76)

and d = α̂∆t
∆x2 and r = ∆tβ.

6 Convergence Rates Study

In this section we perform a detailed study of the convergence rates for the high-order schemes
developed, in order to verify that the expected orders of accuracy hold in practice.

6.1 Empirical order of accuracy

The procedure to obtain empirically the order of accuracy of a scheme consists of considering
a set of M regular meshes of sizes {∆xk}M

k=1. These meshes are then used to obtain numerical

solutions and corresponding errors {‖ǫk‖}M
k=1, assuming the exact or a reference solution is

known. The error satisfies
‖ǫk‖ ≤ C (∆xk)

p , (77)

where C is a constant independent of the mesh and p is the order of accuracy of the scheme, to
be determined. For our study we use the sequence of meshes ∆xk =

∆xk−1

2 , (k = 2, 3, · · · , M)
and apply the following sequence of steps

1. Computation of the numerical solution with the first mesh.

2. Computation of the error ‖ǫ1‖ on a chosen norm.

3. For k=2, M do

(a) Computation of the numerical solution with mesh k.

(b) Evaluation of the error ‖ǫk‖.

(c) Calculation of the order p =
log

‖ǫk−1‖
‖ǫk‖

log2 .

4. End of k

The process just described will give the sought value of p, which is the order of accuracy of the
scheme.

The following subsections are devoted to analyze the accuracy of the schemes described in
Section 5 applied to four test cases. To perform this study we obtain numerical solutions for
four different meshes of 20, 40, 80, 160 cells, for the linear case, and 15, 30, 60, 120 for the nonlinear
case. Results of up to 10th order of accuracy have been obtained. To measure the error we have
used the norms L1, L2 and L∞.
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Figure 6: Contour plot x − t of solution for linear homogeneous problem.

As can be seen in (66)-(68), to have an order O(τK+1) in the DRP solution, we need a recon-
struction polynomial of degree at least 2K +1; this means that to obtain O(τ2) we need at least
a third degree polynomial but, to get one more order, O(τ3), we need a fifth degree polynomial,
and so on. We shall see in the examples below that the empirical order of accuracy is close to
the degree of the polynomial used in the reconstruction.

In all the examples described the chosen output time is t = 0.5 and the diffusion coefficient to
calculate the time step is d = 0.5. The time step, at any time level n, is calculated according
to the formula ∆t = d∆x2

αmax
, where αmax is the largest value of the diffusion coefficient in the

domain, at the time level considered.

6.2 The Linear Homogeneous Case

As a first example we consider the linear diffusion problem

∂tq(x, t) = ∂
(2)
x q(x, t) ,−10 < x < 10 , t > 0 ,

q(x, 0) = e−x2
.











(78)

The exact solution to this problem is

q(x, t) =
1

2
√

πt

∫ 10

−10
e
−

»

ξ2+
(x−ξ)2

4αt

–

dξ . (79)

Figure 6 depicts the contour plot of the analytical solution in time and space. Convergence rates
results for this test problem are shown in Table 4. We use four meshes (M = 4), with 20, 40, 80
and 160 cells respectively. We calculate the errors with the norms L1, L2 and L∞ and obtain
the corresponding orders p1, p2 and p∞ from the procedure described above. Results have been
obtained for the schemes ADER-DRn,m (n = 3, · · · , 10; m = 2, · · · , 5), described in Section 5.
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Cells L1 p1 L2 p2 L∞ p∞
ADER-DR3,2

20 0.20 × 10−1 0.42 × 10−1 0.94 × 10−1

40 0.15 × 10−2 3.75 0.28 × 10−2 3.89 0.90 × 10−2 3.39
80 0.14 × 10−3 3.36 0.29 × 10−3 3.28 0.12 × 10−2 2.94
160 0.16 × 10−4 3.16 0.33 × 10−4 3.16 0.14 × 10−3 3.08

ADER-DR4,2

20 0.12 × 10−1 0.25 × 10−1 0.57 × 10−1

40 0.69 × 10−3 4.16 0.13 × 10−2 4.29 0.33 × 10−2 4.10
80 0.49 × 10−4 3.81 0.87 × 10−4 3.86 0.23 × 10−3 3.82
160 0.55 × 10−5 3.18 0.99 × 10−5 3.14 0.24 × 10−4 3.28

ADER-DR5,3

20 0.44 × 10−2 0.89 × 10−2 0.22 × 10−1

40 0.11 × 10−3 5.34 0.25 × 10−3 5.15 0.90 × 10−3 4.58
80 0.29 × 10−5 5.21 0.62 × 10−5 5.34 0.24 × 10−4 5.22
160 0.88 × 10−7 5.05 0.18 × 10−6 5.08 0.73 × 10−6 5.05

ADER-DR6,3

20 0.39 × 10−2 0.80 × 10−2 0.19 × 10−1

40 0.60 × 10−4 6.05 0.12 × 10−3 6.06 0.32 × 10−3 5.92
80 0.82 × 10−6 6.19 0.15 × 10−5 6.28 0.40 × 10−5 6.31
160 0.14 × 10−7 5.92 0.25 × 10−7 5.93 0.67 × 10−7 5.91

ADER-DR7,4

20 0.27 × 10−2 0.72 × 10−2 0.24 × 10−1

40 0.25 × 10−4 6.76 0.57 × 10−4 6.96 0.25 × 10−3 6.57
80 0.11 × 10−6 7.75 0.25 × 10−6 7.86 0.12 × 10−5 7.69
160 0.61 × 10−9 7.55 0.13 × 10−8 7.57 0.66 × 10−8 7.54

ADER-DR8,4

20 0.52 × 10−3 0.10 × 10−2 0.25 × 10−2

40 0.22 × 10−5 7.87 0.44 × 10−5 7.82 0.14 × 10−4 7.45
80 0.13 × 10−7 7.43 0.26 × 10−7 7.39 0.84 × 10−7 7.40
160 0.58 × 10−10 7.78 0.12 × 10−9 7.80 0.37 × 10−9 7.81

ADER-DR9,5

20 0.67 × 10−3 0.13 × 10−2 0.33 × 10−2

40 0.16 × 10−5 8.68 0.35 × 10−5 8.57 0.14 × 10−4 7.88
80 0.42 × 10−8 8.61 0.85 × 10−8 8.68 0.29 × 10−7 8.93
160 0.79 × 10−11 9.04 0.16 × 10−10 9.07 0.56 × 10−10 9.01

ADER-DR10,5

20 0.85 × 10−3 0.17 × 10−2 0.42 × 10−2

40 0.16 × 10−5 9.03 0.36 × 10−5 8.92 0.13 × 10−4 8.31
80 0.91 × 10−9 10.80 0.18 × 10−8 10.93 0.68 × 10−8 10.92
160 0.59 × 10−12 10.61 0.12 × 10−11 10.61 0.42 × 10−11 10.68

Table 4: Convergence rates for the linear homogeneous example.

20



0.0508475

0.0847458

0.118644

0.20339

0.338983

0.525424

0.813559

0.457627

0.0677966

0.101695

-0.9 0 0.9

t

x

2

Figure 7: Contour plot x − t of solution for linear inhomogeneous problem.

6.3 The Linear Inhomogeneous Case

We consider the linear diffusion problem with a reaction term

∂tq(x, t) = ∂
(2)
x q(x, t) − q(x, t) ,−10 < x < 10 , t > 0 ,

q(x, 0) = e−x2
.











(80)

The exact solution is

q(x, t) = et

[

1

2
√

πt

∫ 10

−10
e
−

»

ξ2+
(x−ξ)2

4αt

–

dξ

]

. (81)

Figure 7 depicts the contour plot in space and time of the exact solution, given by (81). In
Table 5 we show the empirical orders of accuracy obtained when using the ADER-DRn,m schemes
described in Section 5.

6.4 The Non-linear Homogeneous Case

Now we consider the problem

∂tq(x, t) = ∂x

(

(q(x, t)−1∂xq(x, t)
)

,−4.5 < x < 4.5 , t > 0 ,

q(x, 0) = sinh(2)

cosh(2)−sin(
√

2(x−1))
.











(82)

The exact solution [31] is

q(x, t) =
sinh(2t + 2)

cosh(2t + 2) − sin
(√

2 (x − 1)
) . (83)

This solution is periodic with period
√

2
π . Figure 8 depicts the corresponding contour plot.

Table 6 shows the empirical orders of accuracy obtained when using the schemes described in
Section 5.
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Cells L1 p1 L2 p2 L∞ p∞
ADER-DR3,2

20 0.12 × 10−1 0.29 × 10−1 0.10 × 100

40 0.78 × 10−3 4.00 0.16 × 10−2 4.12 0.65 × 10−2 3.97
80 0.80 × 10−4 3.28 0.16 × 10−3 3.35 0.58 × 10−3 3.48
160 0.95 × 10−5 3.07 0.19 × 10−4 3.09 0.65 × 10−4 3.15

ADER-DR4,2

20 0.57 × 10−2 0.12 × 10−1 0.34 × 10−1

40 0.31 × 10−3 4.19 0.61 × 10−3 4.29 0.17 × 10−2 4.33
80 0.21 × 10−4 3.89 0.39 × 10−4 3.94 0.11 × 10−3 3.90
160 0.22 × 10−5 3.27 0.40 × 10−5 3.28 0.11 × 10−4 3.35

ADER-DR5,3

20 0.24 × 10−2 0.45 × 10−2 0.11 × 10−1

40 0.35 × 10−4 6.12 0.84 × 10−4 5.73 0.31 × 10−3 5.14
80 0.12 × 10−5 4.84 0.26 × 10−5 5.04 0.10 × 10−4 4.96
160 0.44 × 10−7 4.80 0.90 × 10−7 4.82 0.36 × 10−6 4.78

ADER-DR6,3

20 0.35 × 10−2 0.65 × 10−2 0.16 × 10−1

40 0.39 × 10−4 6.50 0.82 × 10−4 6.31 0.27 × 10−3 5.92
80 0.63 × 10−6 5.93 0.13 × 10−5 6.02 0.46 × 10−5 5.86
160 0.10 × 10−7 5.92 0.20 × 10−7 5.98 0.67 × 10−7 6.10

ADER-DR7,4

20 0.32 × 10−2 0.63 × 10−2 0.19 × 10−1

40 0.17 × 10−4 7.57 0.38 × 10−4 7.36 0.15 × 10−3 6.98
80 0.73 × 10−7 7.84 0.16 × 10−6 7.92 0.73 × 10−6 7.71
160 0.38 × 10−9 7.59 0.80 × 10−9 7.64 0.39 × 10−8 7.53

ADER-DR8,4

20 0.23 × 10−2 0.40 × 10−2 0.78 × 10−2

40 0.73 × 10−5 8.32 0.17 × 10−4 7.87 0.66 × 10−4 6.88
80 0.26 × 10−7 8.14 0.53 × 10−7 8.34 0.21 × 10−6 8.29
160 0.10 × 10−9 8.00 0.20 × 10−9 8.04 0.75 × 10−9 8.14

ADER-DR9,5

20 0.38 × 10−3 0.86 × 10−3 0.26 × 10−2

40 0.10 × 10−5 8.50 0.22 × 10−5 8.63 0.73 × 10−5 8.50
80 0.28 × 10−8 8.51 0.60 × 10−8 8.51 0.21 × 10−7 8.47
160 0.53 × 10−11 9.06 0.11 × 10−10 9.09 0.35 × 10−10 9.20

ADER-DR10,5

20 0.80 × 10−3 0.20 × 10−2 0.62 × 10−2

40 0.18 × 10−5 8.79 0.45 × 10−5 8.78 0.19 × 10−4 8.36
80 0.13 × 10−8 10.43 0.28 × 10−8 10.66 0.12 × 10−7 10.64
160 0.12 × 10−11 10.10 0.24 × 10−11 10.20 0.96 × 10−11 10.28

Table 5: Convergence rates for the linear inhomogeneous example.
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Cells L1 p1 L2 p2 L∞ p∞
ADER-DR3,2

15 0.25 × 10−2 0.29 × 10−2 0.57 × 10−2

30 0.29 × 10−3 3.10 0.35 × 10−3 3.03 0.66 × 10−3 3.11
60 0.33 × 10−4 3.12 0.43 × 10−4 3.06 0.79 × 10−4 3.06
120 0.40 × 10−5 3.05 0.53 × 10−5 3.02 0.96 × 10−5 3.05

ADER-DR4,2

15 0.11 × 10−2 0.13 × 10−2 0.29 × 10−2

30 0.59 × 10−4 4.27 0.71 × 10−4 4.24 0.15 × 10−3 4.27
60 0.49 × 10−5 3.59 0.56 × 10−5 3.68 0.10 × 10−4 3.87
120 0.58 × 10−6 3.09 0.64 × 10−6 3.14 0.93 × 10−6 3.45

ADER-DR5,3

15 0.32 × 10−3 0.37 × 10−3 0.60 × 10−3

30 0.86 × 10−5 5.22 0.10 × 10−4 5.17 0.21 × 10−4 4.86
60 0.23 × 10−6 5.22 0.29 × 10−6 5.14 0.69 × 10−6 4.90
120 0.64 × 10−8 5.16 0.79 × 10−8 5.18 0.19 × 10−7 5.15

ADER-DR6,3

15 0.33 × 10−3 0.39 × 10−3 0.63 × 10−3

30 0.52 × 10−5 5.96 0.64 × 10−5 5.91 0.14 × 10−4 5.51
60 0.75 × 10−7 6.13 0.95 × 10−7 6.08 0.23 × 10−6 5.89
120 0.11 × 10−8 6.14 0.14 × 10−8 6.13 0.34 × 10−8 6.09

ADER-DR7,4

15 0.20 × 10−3 0.25 × 10−3 0.54 × 10−3

30 0.62 × 10−6 8.31 0.68 × 10−6 8.54 0.11 × 10−5 8.99
60 0.66 × 10−8 6.55 0.77 × 10−8 6.47 0.15 × 10−7 6.14
120 0.60 × 10−10 6.79 0.69 × 10−10 6.79 0.14 × 10−9 6.77

ADER-DR8,4

15 0.14 × 10−3 0.17 × 10−3 0.31 × 10−3

30 0.35 × 10−6 8.65 0.43 × 10−6 8.62 0.85 × 10−6 8.50
60 0.14 × 10−8 7.94 0.19 × 10−8 7.80 0.47 × 10−8 7.48
120 0.52 × 10−11 8.09 0.71 × 10−11 8.09 0.18 × 10−10 8.07

ADER-DR9,5

15 0.84 × 10−4 0.92 × 10−4 0.15 × 10−3

30 0.24 × 10−7 11.76 0.31 × 10−7 11.53 0.66 × 10−7 11.11
60 0.65 × 10−10 8.55 0.77 × 10−10 8.66 0.17 × 10−9 8.59
120 0.12 × 10−12 9.06 0.14 × 10−12 9.07 0.30 × 10−12 9.18

ADER-DR10,5

15 0.79 × 10−4 0.91 × 10−4 0.17 × 10−3

30 0.31 × 10−7 11.30 0.40 × 10−7 11.17 0.83 × 10−7 11.02
60 0.45 × 10−10 9.46 0.63 × 10−10 9.28 0.18 × 10−9 8.83
120 0.46 × 10−13 9.92 0.63 × 10−13 9.98 0.18 × 10−12 9.97

Table 6: Convergence rates for the nonlinear homogeneous example.
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Figure 8: Contour plot x − t of solution for nonlinear inhomogeneous problem.

6.5 The Non-linear Inhomogeneous Case

The last test case consists of a nonlinear diffusion equation with source term

∂tq(x, t) = ∂x

(

(q(x, t)−1∂xq(x, t)
)

+ s(x, t, q(x, t)) ,−∞ < x < ∞ , t > 0 ,

q(x, 0) = sinh(2)
[

cosh(2) − sin
(√

2 (x − 1)
)]−1

,







(84)

where the source has the expression

s(x, t, q(x, t)) = q(x, t) +
sinh(2t + 2)

(

sin(
√

2(x − 1) − cosh(2t + 2)
)

(

cosh(2t + 2) − sin(
√

2(x − 1)
)2 . (85)

Table 7 shows the empirical orders of accuracy obtained when using the schemes described in
Section 5.

The convergence rates study just performed gives the empirical orders of accuracy and these
are in agreement with the theoretically expected orders of accuracy for the schemes developed
in this paper.

7 Numerical Examples

To illustrate the practical applicability of the methods we show numerical results for two exam-
ples. The first one is

∂tq(x, t) = ρ∂x [q(x, t) (1 − q(x, t)) ∂xq(x, t)] , x ∈ [−1
2 , 1

2 ] ,

q(x, 0) =







1 if x < 0 ,

0 if x > 0 ,























(86)

with 0 ≤ ρ < 1. The equation arises in plasma physics, where the unknown q(x, t) is the mass
fraction of one component of the plasma. One remarkable aspect of this parabolic equation with
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Cells L1 p1 L2 p2 L∞ p∞
ADER-DR3,2

15 0.28 × 10−2 0.32 × 10−2 0.62 × 10−2

30 0.35 × 10−3 3.01 0.43 × 10−3 2.93 0.77 × 10−3 3.02
60 0.41 × 10−4 3.09 0.52 × 10−4 3.03 0.95 × 10−4 3.01
120 0.50 × 10−5 3.04 0.65 × 10−5 3.01 0.12 × 10−4 3.04

ADER-DR4,2

15 0.14 × 10−2 0.17 × 10−2 0.36 × 10−2

30 0.11 × 10−3 3.69 0.13 × 10−3 3.77 0.25 × 10−3 3.84
60 0.87 × 10−5 3.64 0.99 × 10−5 3.69 0.17 × 10−4 3.85
120 0.89 × 10−6 3.30 0.99 × 10−6 3.33 0.14 × 10−5 3.62

ADER-DR5,3

15 0.23 × 10−3 0.27 × 10−3 0.57 × 10−3

30 0.86 × 10−5 4.71 0.10 × 10−4 4.74 0.19 × 10−4 4.88
60 0.27 × 10−6 5.03 0.33 × 10−6 4.93 0.78 × 10−6 4.64
120 0.78 × 10−8 5.08 0.97 × 10−8 5.11 0.23 × 10−7 5.08

ADER-DR6,3

15 0.27 × 10−3 0.31 × 10−3 0.57 × 10−3

30 0.57 × 10−5 5.56 0.72 × 10−5 5.45 0.16 × 10−4 5.15
60 0.88 × 10−7 6.01 0.12 × 10−6 5.93 0.30 × 10−6 5.77
120 0.13 × 10−8 6.09 0.17 × 10−8 6.08 0.44 × 10−8 6.06

ADER-DR7,4

15 0.25 × 10−3 0.32 × 10−3 0.66 × 10−3

30 0.85 × 10−6 8.17 0.92 × 10−6 8.43 0.14 × 10−5 8.86
60 0.87 × 10−8 6.62 0.98 × 10−8 6.55 0.19 × 10−7 6.22
120 0.79 × 10−10 6.78 0.91 × 10−10 6.75 0.18 × 10−9 6.75

ADER-DR8,4

15 0.18 × 10−3 0.22 × 10−3 0.41 × 10−3

30 0.33 × 10−6 9.09 0.40 × 10−6 9.11 0.86 × 10−6 8.90
60 0.15 × 10−8 7.85 0.21 × 10−8 7.60 0.54 × 10−8 7.30
120 0.56 × 10−11 8.03 0.77 × 10−11 8.06 0.21 × 10−10 8.03

ADER-DR9,5

15 0.98 × 10−4 0.11 × 10−3 0.19 × 10−3

30 0.50 × 10−7 10.94 0.66 × 10−7 10.68 0.13 × 10−6 10.54
60 0.72 × 10−10 9.44 0.88 × 10−10 9.54 0.17 × 10−9 9.52
120 0.14 × 10−12 8.99 0.16 × 10−12 9.08 0.27 × 10−12 9.33

ADER-DR10,5

15 0.82 × 10−4 0.94 × 10−4 0.18 × 10−3

30 0.36 × 10−7 11.15 0.49 × 10−7 10.90 0.12 × 10−6 10.60
60 0.55 × 10−10 9.34 0.69 × 10−10 9.48 0.16 × 10−9 9.50
120 0.57 × 10−13 9.92 0.73 × 10−13 9.89 0.20 × 10−12 9.67

Table 7: Convergence rates for the nonlinear inhomogeneous example.
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Cells L1 p1 L2 p2 L∞ p∞
ADER-DR3,2

20 0.11 × 10−1 0.25 × 10−1 0.70 × 10−1

40 0.13 × 10−2 3.00 0.36 × 10−2 2.79 0.12 × 10−1 2.61
80 0.16 × 10−3 3.10 0.48 × 10−3 2.91 0.25 × 10−2 2.21
160 0.15 × 10−4 3.41 0.49 × 10−4 3.30 0.32 × 10−3 2.96

ADER-DR4,2

20 0.10 × 10−1 0.24 × 10−1 0.68 × 10−1

40 0.72 × 10−3 3.79 0.20 × 10−2 3.54 0.73 × 10−2 3.21
80 0.32 × 10−4 4.49 0.10 × 10−3 4.31 0.46 × 10−3 4.00
160 0.21 × 10−5 3.92 0.60 × 10−5 4.11 0.27 × 10−4 4.06

ADER-DR5,3

20 0.15 × 10−1 0.34 × 10−1 0.87 × 10−1

40 0.21 × 10−3 6.16 0.74 × 10−3 5.52 0.32 × 10−2 4.74
80 0.78 × 10−5 4.77 0.27 × 10−4 4.80 0.13 × 10−3 4.60
160 0.15 × 10−6 5.65 0.55 × 10−6 5.60 0.39 × 10−5 5.09

ADER-DR6,3

20 0.14 × 10−1 0.32 × 10−1 0.82 × 10−1

40 0.32 × 10−3 5.47 0.97 × 10−3 5.06 0.41 × 10−2 4.32
80 0.37 × 10−5 6.44 0.12 × 10−4 6.35 0.53 × 10−4 6.25
160 0.52 × 10−7 6.15 0.16 × 10−6 6.18 0.98 × 10−6 5.77

ADER-DR7,4

20 0.17 × 100 0.38 × 100 0.10 × 101

40 0.17 × 10−2 6.59 0.64 × 10−2 5.91 0.36 × 10−1 4.85
80 0.11 × 10−5 10.67 0.31 × 10−5 10.98 0.13 × 10−4 11.45
160 0.38 × 10−8 8.14 0.12 × 10−7 8.05 0.70 × 10−7 7.52

ADER-DR8,4

20 0.18 × 100 0.40 × 100 0.91 × 100

40 0.53 × 10−3 8.42 0.16 × 10−2 7.94 0.72 × 10−2 6.98
80 0.64 × 10−6 9.69 0.19 × 10−5 9.76 0.75 × 10−5 9.90
160 0.12 × 10−8 9.04 0.41 × 10−8 8.85 0.26 × 10−7 8.18

ADER-DR9,5

20 0.77 × 100 0.17 × 101 0.39 × 101

40 0.53 × 10−2 7.18 0.15 × 10−1 6.87 0.53 × 10−1 6.20
80 0.16 × 10−6 15.05 0.59 × 10−6 14.62 0.34 × 10−5 13.92
160 0.12 × 10−9 10.39 0.39 × 10−9 10.56 0.23 × 10−8 10.53

ADER-DR10,5

20 0.56 × 100 0.12 × 101 0.28 × 101

40 0.13 × 10−1 5.42 0.38 × 10−1 5.01 0.13 × 100 4.39
80 0.12 × 10−6 16.72 0.38 × 10−6 16.61 0.21 × 10−5 15.92
160 0.37 × 10−10 11.66 0.13 × 10−9 11.57 0.82 × 10−9 11.36

Table 8: Convergence rates for example (88).
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Figure 9: Solution of problem (86). Comparison of the ADER-DR4,2 solution (symbols) with
the exact solution (line).

finite speed of propagation is that it represents the limiting case of a hyperbolic system with
relaxation. The exact solution to the problem (86) is

q(x, t) =



























1 if x < −√
ρt ,

1
2

(

1 − x√
ρt

)

if x ∈ [−√
ρt,

√
ρt] ,

0 if x >
√

ρt .

(87)

We have solved the problem using the numerical schemes described in the previous sections,
using as speed of propagation ρ = 10−3. Regarding the discretization in space, we have used
100 cells in the spatial domain (−0.5, 0.5), so that ∆x = 0.01. The diffusion parameter used is

d = 0.5. To calculate the size of the time step we use the formula ∆t = d∆x2

αmax
, where αmax = 1

4
is the maximum value of the diffusion coefficient in the domain.

Figure 9 shows results at the output time t = 10 using the scheme ADER − DR4,2, where for
comparison we also show the analytical solution (full line).

As a second example we take the non-linear inhomogeneous problem

∂tq(x, t) = ∂x (q(x, t)∂xq(x, t)) − q(x, t) + (2 − 8x2)e−2(x2+t) , x ∈ (−10, 10) ,

q(x, 0) = e−x2
.







(88)

This problem may represent, for instance, filtration in porous media, with a reaction term given
by −q(x, t) and a Gaussian source, time and space dependent. The exact solution of problem
(88) is

q(x, t) = e−(x2+t) . (89)

27



Spatial coordinate

S
ol

ut
io

n:
q(

x,
t)

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Num. Sol. (t=0.5)
Exact Sol. (t=0.5)
Num. Sol. (t=1.0)
Exact Sol. (t=1.0)
Num. Sol. (t=2.0)
Exact Sol. (t=2.0)

Figure 10: Solution of problem (88). Comparison of numerical solutions for several output times
(symbols) with the corresponding exact solutions (line).

Results using one of the schemes described in this paper (ADER−DR4,2) are shown in Figure 10,
comparing the numerical solution with the exact solution. We have used 100 cells in the domain
(−10, 10). The diffusion coefficient used is d = 0.5. The time step is calculated according to

the formula ∆t = d∆x2

αmax
, where αmax is the largest diffusion coefficient in the domain at any

given time level. For this example, we have also calculated the convergence rates. The results
obtained are shown in Table 8, for the output time t = 0.5.

8 Summary and Conclusions

We have constructed very-high order finite volume schemes of the Godunov type for solving non-
linear diffusion-reaction parabolic equations, following the ADER approach. In our first attempt,
following the Godunov approach to the letter, we found the approach to be too restrictive. A
re-interpretation of the approach following the WAF framework [36], [10] is more productive,
reproducing the well-known FTCS finite difference scheme, in a finite volume setting.

Another approach to generalize Godunov’s method for diffusion-reaction equations is provided
by the ADER methodology, in which high-order Riemann problems are solved to find numer-
ical fluxes. We proposed methods for solving this high-order Riemann problem for non-linear
diffusion-reaction equations. The initial conditions for these high-order Riemann problems are
provided by a modified ENO approach; the modification requires restrictions on the length of
the stencils, based on accuracy and stability considerations. Then ADER schemes of up to 10-th
order of accuracy in space and time are implemented and systematically assessed, with particu-
lar attention to their convergence rates. Two numerical examples have also been presented, for
which numerical results are compared against analytical solutions.
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