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Abstract

We consider the scattering of monochromatic electromagnetic waves at a dielectric object
with a non-smooth surface. This paper studies the discretization of this problem by means
of coupling finite element methods (FEM) and boundary element methods (BEM). Straight-
forward symmetric coupling as in [R. Hiptmair, Coupling of finite elements and boundary

elements in electromagnetic scattering, SIAM J. Num. Anal. 41 (2003), pp. 919-944] suf-
fers from instabilities at wave numbers related to interior Dirichlet eigenvalues, the so-called
spurious resonance phenomenon.

A remedy is offered by adopting the idea underlying the widely used combined field integral
equations (CFIE). These can be obtained from Robin-type trace operators, which ensure
uniqueness of solutions of the associated interior boundary value problem for all frequencies.
This implies uniqueness of solutions of the coupled problem. In the spirit of [R. Hiptmair

and P. Meury, Stabilized FEM-BEM Coupling for Helmholtz Transmission Problems, SIAM
J. Numer. Anal. 44 (2006), pp. 2106-2130], in order to get a coercive variational problem, we
have to incorporate a regularizing operator into the modified traces.

The discretization of the coupled variational problem is then based on curl-conforming
finite elements inside the scatterer, divΓ-conforming boundary elements for the surface currents
and curlΓ-conforming boundary elements for an auxiliary function on the boundary. Adapting
a Helmholtz-type splitting to the discrete setting, permits us to show asymptotic optimality
of the Galerkin-FEM-BEM solution.

1 Introduction

We consider the electromagnetic scattering of monochromatic incident waves from a penetrable,
three-dimensional bounded object Ω ⊂ R3, the scatterer. In applications one usually encounters
scatterers with piecewise smooth, Lipschitz continuous boundaries. Thus it is natural to assume
the scatterer to be a curvilinear Lipschitz-polyhedron in the parlance of [28, Sect. 1]. For the sake
of simplicity, we assume that its surface Γ := ∂Ω is connected. However, with slight changes all
theorems can be extended to more general situations. The material parameters εr and µr may
display some spatial variation inside Ω but assume the constant values ε0 > 0 and µ0 > 0 in the
air region.

Let Es denote the complex amplitude of the scattered electric field in the air region Ω+ := R3\Ω
and E the total electric field inside the scatterer Ω, which emerge as solutions to the Maxwell
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2 FEM-BEM Coupling for Maxwell Transmission Problems

transmission problem (cf. [49, Sect. 5.6.3])

curlµr (x)
−1

curlE− κ2εr (x)E = F (x) in Ω ,

curl curlEs − κ2Es = 0 in Ω+ ,

γ+
t Es − γ−

t E = gD on Γ, γ+
NEs − µ−1

r γ−
NE = gN on Γ ,

lim
|x|→∞

curlE× x − iκ|x|E = 0 .

(1)

Here, κ := ω
√

µ0ε0L (with ω > 0 the fixed angular frequency of the excitation, L the characteristic
length of the scatterer) denotes the normalized wave number and should be considered as a real
positive parameter. Furthermore, we write γtE for the tangential components of E on Γ and γNE

for the ”magnetic components” curlE × n on Γ. The exterior unit normal vector field n on Γ
belongs to L∞(Γ) and is directed from Ω into Ω+. In the case of excitation by plane electric waves,
whose complex amplitude will be denoted by Einc, the generic jump data gD and gN evaluate to
the following traces

gD := −γtE
inc , gN := −γNEinc .

Finally, we designate by [γU]Γ := U|Ω+ −U|Ω and {γU}Γ := 1
2

(
U|Ω+ + U|Ω

)
the jump, resp.

the average, of some generic trace γ of a function U across the boundary Γ.
Using Rellich’s lemma and unique continuation techniques, the following result can be estab-

lished (cf. [36, Thm. 3.1]).

Theorem 1.1. Provided that the relative material parameters µr and εr > 0 are piecewise smooth

and bounded away from zero everywhere in Ω, the problem (1) has a unique solution.

Boundary element methods (BEM) offer the most flexible way to deal with the homogeneous
problem in the unbounded exterior domain Ω+. They are based on boundary integral operators
on the interface Γ. Due to potentially non constant material parameters, the field problem inside
Ω may not be amenable to a treatment by means of boundary element methods. Hence, finite
element schemes (FEM) have to be used here. Thus the topic of this article comes into focus,
namely how to derive and discretize stable coupled variational formulations, and how to analyze
the resulting FEM-BEM formulation.

The coupling entails expressing the Dirichlet-to-Neumann (DtN) map of the exterior problem by
means of boundary integral operators linking the Cauchy data γtE and γNE for the electric field.
There exists a huge variety of integral formulations for the exterior electromagnetic boundary
value problem. A comprehensive survey is given in Nédélec’s monograph [49]. In principle all
these methods furnish Dirichlet-to-Neumann maps. However, in many cases, in particular with
so-called indirect formulations, the resulting operator lacks structural properties of the Dirichlet-
to-Neumann map, for instance symmetry. This is obviously the case for second order elliptic
problems. If the structure of the DtN map is not preserved, then the linear systems of equations
obtained by a Ritz-Galerkin boundary element discretization are adversely affected.

For second order elliptic problems Costabel [27] discovered that the so-called direct boundary
integral equation methods provide a remedy. The main idea is to employ the Calderón projector,
which acts on the Cauchy data of the problem. For details and theoretical considerations we refer
to [21, Sect. 4.5] and [30]. In short, the Calderón projector yields two sets of boundary integral
equations. Judiciously combining them yields a version of the Dirichlet-to-Neumann map, which
is perfectly suited for a Ritz-Galerkin discretization. Costabel’s idea of coupling finite elements
with boundary elements is usually referred to as “the symmetric coupling approach”. It has been
applied to a wide range of strongly elliptic problems; see, among others, [19, 38, 44]. For references
to the engineering literature see [53, 55] and the references therein.

Unsurprisingly, the Calderón projector for the Maxwell system has been thoroughly studied,
cf. [20, Sect. 1.3.2], [32], [49, Sect. 5.5], and [43, Sect. 3]. The idea of symmetric coupling for
the transmission problem was theoretically probed in [4, 1, 2], and in [7] for a related problem
involving impedance boundary conditions. All these results employ compactness arguments and the
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Fredholm alternative. To this end, most authors have studied the integral operators intrinsically
on Γ. They have been successful on smooth interface boundaries, but all efforts to adjust the
approach to non-smooth boundaries have been in vain.

The fundamental new insights about the traces of electromagnetic fields, presented in [9, 12, 13,
15], paved the way to further progress. That progress could finally be achieved by remembering a
highly effective policy in the modern treatment of boundary integral equations: The guideline is to
stay off the boundary as far as possible by studying variational problems instead of the boundary
integral operators directly. This policy has demonstrated its efficacy in the work of Costabel [27].
The recent textbook [46] discusses all nuances of this approach for strongly elliptic systems. Moving
off the boundary helps steer clear of its awkward geometric features. Thus, the foundation for a
theory of electromagnetic boundary integral operators could be laid in [18, 16].

In addition, in order to harness compactness arguments, we have to employ decompositions of
the surface vector fields on Γ. The classical composition is the so-called Hodge decomposition [32],
which remains a very effective tool on piecewise smooth boundaries, cf. [14], [18], and, in particular
[41]. Its counterpart on domains is the Helmholtz decomposition. It is important to realize that
there is some leeway in choosing the decomposition, because the exact orthogonality featured by
Hodge or Helmholtz decompositions is of minor importance. Instead, we prefer to use related, but
simpler, splittings.

Almost all boundary integral equations for the exterior Dirichlet problem in electromagnetic
and acoustic scattering are haunted by the presence of “spurious frequencies” [15, 18, 22], for which
the equations fail to have unique solutions. Those agree with interior Dirichlet eigenvalues. The
symmetrically coupled variational formulation presented in [39] exhibits the same drawback.

In this article, we propose a stabilized method for FEM-BEM coupling based on (mixed)
Robin-type boundary conditions to ensure unique solvability of the corresponding interior bound-
ary value problem. The use of complex combinations of boundary integral operators has been an
invaluable tool for deriving resonance-free combined field integral equations (CFIE) for electro-
magnetic scattering from a perfect conductor, cf. [35]. Furthermore, our approach also features
regularizing operators, already used to stabilize Maxwell scattering problems in [17], to ensure a
G̊arding inequality for the sesqui-linear form underlying the variational formulation. In our case,
both problems are tackled by introducing modified trace operators.

Based on the generalized traces, stabilized versions of Calderón projectors can be defined for
the coupling of domain based variational formulations with boundary integral equations. Thus, we
can derive new coupled variational formulations, which feature existence, uniqueness, and stability
of solutions for all wave numbers κ > 0. A similar approach to the one presented here can be found
in [54].

To discretize the symmetric and the stabilized coupled variational formulations, we rely on
discrete differential forms (edge elements, face elements) on triangulations of both Ω and Γ. The
Ritz-Galerkin approach is straightforward, and yet, in the discrete setting another challenge arises.
The Helmholtz and Hodge-type decompositions do not directly carry over to the discrete spaces.
For pure indirect boundary element formulations (Rumsey’s principle) remedies have been explored
in [41] and [22]. Direct boundary integral equations were tackled in [18]. All these approaches
exploit the fact that appropriate discrete splittings can approximate their continuous counterparts
reasonably well. In this paper we adapt the ideas in [18] and [39] to the symmetrically coupled
FEM-BEM problem. We will use variants of these results that do not require sophisticated elliptic
regularity theory.

The outline of this article is as follows: In the following section we will review the theory of
Sobolev spaces and tangential traces. In section 3 we will introduce the potentials, which form the
building blocks of the Stratton-Chu representation formula and the boundary integral operators for
the electric field equation. In section 4 we construct decompositions of the electric field in Ω. The
theoretical results for the symmetrically coupled variational formulation are reviewed in section 5.
In section 6 the stabilized coupling strategy is presented. So far, all sections have been merely
concerned with the analysis of the continuous variational problems. Then, in section 7, we introduce
the finite element and boundary element spaces, which are used for a Ritz-Galerkin discretization
of the coupled problem. In section 8 we derive discrete counterparts to the decompositions on
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the continuous level and establish discrete inf-sup estimates for the underlying sesqui-linear forms.
Finally, in section 10 we will establish a priori convergence estimates for the stabilized coupling
approach.

2 Traces and Spaces

The main purpose of this section is to define suitable Sobolev spaces, which can be used to derive
weak formulations of (1), and review some of their most important properties. The notation and
notions we introduce closely follow the ones of [39, Sect. 2].

The natural Hilbert space for an analysis of the Maxwell transmission problem (1) is the space

H loc(curl, D) :=
{
V ∈ L2

loc(D); curlV ∈ L2
loc(D)

}
.

Here and below D denotes a generic domain, which can be either Ω or Ω+. For a thorough
examination of these spaces we refer to [33, Chap. 1].

The Sobolev space of scalar functions and their dual spaces, Hs(Γ) and H−s(Γ), can be defined
invariantly for 0 ≤ s ≤ 1, see [34, Thm. 1.3.3]. Furthermore, we denote by γ : Hs

loc
(D) 7→

Hs−1/2(Γ), 1
2 < s < 3

2 , the natural trace operator, cf. [46, Thm. 3.38]. Superscript + and
− will be attached to the trace operators, when it is important whether they act from Ω or Ω+.
Furthermore, we denote by

〈
·, ·
〉
Γ

: H−1/2(Γ)×H1/2(Γ) 7→ C the duality pairing between H−1/2(Γ)

and H1/2(Γ), when L2(Γ) is taken as pivot space.
If Γ is a curvilinear Lipschitz polyhedron in the parlance of [28] with smooth components Γj ,

j = 1, . . . , NΓ, we define

Hs(Γ) :=
{
u ∈ H1(Γ); u|Γj

∈ Hs(Γj), j = 1, . . . , NΓ

}
for s > 1 ,

Hs
t(Γ) :=

{
u ∈ L2

t(Γ); u|Γj
∈ Hs(Γj), j = 1, . . . , NΓ

}
for s ≥ 0 ,

where L2
t(Γ) :=

{
u ∈ L2(Γ); u · n = 0

}
. We equip all spaces with their natural graph norms.

For any U ∈ C∞(D̄) the tangential components trace γt and the twisted tangential trace γ×

can be defined a.e. on Γ by

γtU (x) := n (x) × (U (x) × n (x)) , γ×U (x) := U (x) × n (x) .

For piecewise smooth boundaries their extension onto H loc(curl, D) has been achieved in [9] and
[12, Prop. 1.7], and for Lipschitz boundaries in [15, Sect. 2].

Theorem 2.1. There exist intrinsically defined spaces H
1/2
‖ (Γ) ⊂ L2

t(Γ) and H
1/2
⊥ (Γ) ⊂ L2

t(Γ)

such that the tangential components trace γ±
t : H1

loc(D) 7→ H
1/2
‖ (Γ) and the twisted tangential

trace γ±
× : H1

loc(D) 7→ H
1/2
⊥ (Γ) are continuous, surjective and possess continuous right inverses.

Proof. For a proof see [12, Prop, 2.7].

Their dual spaces will be denoted by H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ) respectively. In what follows

〈
λ, µ

〉
t

:=

∫

Γ

λ · µdS , λ, µ ∈ L2
t(Γ) .

will stand for the inner product on L2
t(Γ), which can be extended to a sesqui-linear duality pairing

〈
·, ·
〉
t

: H
−1/2
‖ (Γ) × H

1/2
‖ (Γ) 7→ C ,

〈
·, ·
〉
t

: H
−1/2
⊥ (Γ) × H

1/2
⊥ (Γ) 7→ C .

when L2
t(Γ) is taken as pivot space.

The classical Rellich embedding theorem can be applied to the tangential trace spaces in the
following way.
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Lemma 2.2. The embeddings H
1/2
‖ (Γ) →֒ L2

t(Γ) and H
1/2
⊥ (Γ) →֒ L2

t(Γ) are compact.

Based on surface differential operators, cf. [12, Sect. 3], we can define

H−1/2(curlΓ, Γ) :=
{
v ∈ H

−1/2
⊥ (Γ); curlΓ v ∈ H−1/2(Γ)

}
,

H−1/2(divΓ, Γ) :=
{
ζ ∈ H

−1/2
‖ (Γ); divΓ ζ ∈ H−1/2(Γ)

}
.

These spaces are endowed with the natural graph norms and are of great importance as suitable
trace spaces for vector fields in H loc(curl, D) (cf. [12, Thms. 2.7, 2.8], [13, Thm. 4.5] and [9,
Sect. 4]):

Theorem 2.3. The tangential components trace γ±
t : H loc(curl, D) 7→ H−1/2(curlΓ, Γ) and the

twisted tangential trace γ±
× : H loc(curl, D) 7→ H−1/2(divΓ, Γ) are continuous, surjective with

continuous right inverses.

From this theorem we conclude that H−1/2(curlΓ, Γ) is exactly the right space for the Dirichlet
data γ−

t E, γ+
t Es and gD in (1). Thus we adopt the alternative notation γD for γt to stress

the fact that this is the right ”Dirichlet” trace space. As has been demonstrated in [13, Sect. 4],

H−1/2(curlΓ, Γ) and H−1/2(divΓ, Γ) can be put into duality, when L2
t(Γ) is used as pivot space.

More precisely, the usual L2
t(Γ)-inner product can be extended to a sesqui-linear duality pairing

〈
· , ·
〉
t

: H−1/2(divΓ, Γ) × H−1/2(curlΓ, Γ) 7→ C

by means of a Green’s formula, D ∈ {Ω , Ω+}

∓
∫

D

U · curlV − curlU · V dx =
〈
γ±
×U, γ±

t V
〉
t

∀U,V ∈ H loc(curl, D) ,

where an overbar denotes complex conjugation.
For continuous tangential vector fields u we define the surface twist operator by

R
(
u
)
(x) := n (x) × u (x) ,

which gives rise to an isometric mapping R : H−1/2(curlΓ, Γ) 7→ H−1/2(divΓ, Γ).
We will also need the normal components trace γn defined by

γnU (x) := n (x) · U (x)

for almost all x ∈ Γ and U ∈ C∞(Ω̄). This trace can be extended to a continuous and surjective
mapping γn : H loc(div, Ω) 7→ H−1/2(Γ) (cf. [33, Thm. 2.5]).

Besides the Dirichlet trace γD the transmission conditions of (1) also feature a second trace,
aptly called the Neumann trace γN , which has to be introduced in a weak sense: For

U ∈ H loc(curl2, D) :=
{
V ∈ H loc(curl, D); curl curlV ∈ L2

loc(D)
}

,

we define γ±
NU ∈ H−1/2(divΓ, Γ) by

∓
∫

D

curlU · curlV − curl curlU · V dx =
〈
γ−

NU, γ−
DV

〉
t

∀V ∈ H loc(curl, D) , (2)

Obviously for smooth vector fields we recover γNU = γ× (curlU) = curlU × n. The following

lemma shows that H−1/2(divΓ, Γ) is exactly the right space for the ”Neumann” data in (1).

Lemma 2.4. The traces γ±
N : H loc(curl2, D) 7→ H−1/2(divΓ, Γ) furnish continuous mappings.

Proof. For a proof see [38, Lem 3.3].
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There is some analogy between the Helmholtz and the Maxwell case, which is already indicated
by the notation we have chosen. In the Helmholtz case fields of total, scattered and incident
waves belong to H1

loc
(Ω), whereas in the Maxwell case they belong to H loc(curl, Ω). For smooth

functions U or fields E and any x ∈ Γ, we can establish the following correspondence between the
Dirichlet and Neumann traces:

Dirichlet trace: γDE(x) = n(x) × E(x) ↔ γDU(x) = U(x) ,

Neumann trace: γNE(x) = curlE(x) × n(x) ↔ γNU(x) = gradU(x) · n(x) ,

Furthermore, in the Helmholtz case, the Dirichlet and Neumann traces are part of the H1/2(Γ)

and H−1/2(Γ), whereas in the Maxwell case they belong to H−1/2(curlΓ, Γ) and H−1/2(divΓ, Γ).
Nevertheless, the continuity and surjectivity results for both traces are completely analogous.

3 Potentials and Boundary Integral Operators

Any distribution U ∈ H loc(curl2, Ω+) which satisfies the electric field equation

curl curlU − κ2U = 0 in Ω+ , (3)

together with the Silver-Müller radiation condition can be written using the Stratton-Chu repre-

sentation formula (cf. [14, Sect. 3], [20, Chap. 3, Sect. 1.3.2], and [49, Sect. 5.5])

U = Ψκ
DL

(
γ+

DU
)
− Ψκ

S

(
γ+

NU
)
− grad Ψκ

S

(
γ+

n U
)

in Ω+ , (4)

with the potentials:

scalar single layer potential Ψκ
S

(
ϕ
)
(x) :=

∫

Γ

Gκ (|x − y|)ϕ (y) dS (y) , x 6∈ Γ ,

vectorial single layer potential Ψκ
S

(
µ
)
(x) :=

∫

Γ

Gκ (|x − y|)µ (y) dS (y) , x 6∈ Γ ,

Maxwell double layer potential Ψκ
DL

(
u
)
(x) := (curl ◦ Ψκ

S ◦ R)
(
u
)
(x) , x 6∈ Γ ,

based on the Helmholtz kernel

Gκ (z) :=
1

4π

exp (iκ|z|)
|z| , z 6= 0 .

However, a simplification of (4) is possible by observing that [15, Eq. (26)]

divΓ

(
γ+

NU
)

= γ+
n (curl curlU) = κ2γ+

nU in H−1/2(Γ)

for all U ∈ H loc(curl2, Ω+) satisfying (3). This makes it possible to get rid of the normal compo-
nents trace in (4) and we obtain a much simpler version of the representation formula

U = Ψκ
DL

(
γ+

DU
)
− Ψκ

SL

(
γ+

NU
)

in Ω+ , (5)

by introducing the Maxwell single layer potential

Ψκ
SL

(
µ
)
(x) := Ψκ

S

(
µ
)
(x) +

1

κ2
gradΨκ

S

(
divΓµ

)
(x) , x 6∈ Γ .

Lemma 3.1. The scalar and vectorial single layer potentials Ψκ
S

and Ψκ
S give rise to continuous

mappings Ψκ
S

: H−1/2(Γ) 7→ H1
loc

(R3), Ψκ
S : H

−1/2
‖ (Γ) 7→ H1

loc(R
3).

Proof. For a proof see [27] or [38, Thm. 5.1].
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Lemma 3.2. For u ∈ H−1/2(divΓ, Γ) we have divΨκ
S

(
u
)

= Ψκ
S

(
divΓu

)
in L2

loc
(R3).

Proof. A proof can be found in [45, Lem. 2.3].

From this we immediately derive the identities

(
curl curl − κ2Id

)
Ψκ

S

(
µ
)

= gradΨκ
S

(
divΓµ

)
∀µ ∈ H−1/2(divΓ, Γ) ,

(
curl curl − κ2Id

)
Ψκ

DL

(
u
)

= 0 ∀u ∈ H−1/2(curlΓ, Γ) ,

off the boundary in a point wise sense, and, globally in L2
loc(R

3). Thus we conclude that both Ψκ
SL

and Ψκ
DL are radiating solutions to the electric field equation in Ω ∪ Ω+.

From these relationships and Lemma 3.1 we immediately derive the following continuity prop-
erties.

Lemma 3.3. The Maxwell single layer potential Ψκ
SL : H−1/2(divΓ, Γ) 7→ H loc(curl2, Ω ∪ Ω+)

and the Maxwell double layer potential Ψκ
DL : H−1/2(curlΓ, Γ) 7→ H loc(curl2, Ω ∪ Ω+) are contin-

uous mappings.

The potentials also satisfy fundamental jump relations (cf. [25, Thm. 6.11], [49, Thm. 5.5.1]
and [38, Sect. 5]).

Lemma 3.4. The interior and exterior Dirichlet and Neumann traces of the potentials Ψκ
SL and

Ψκ
DL are well defined and satisfy

[
γDΨκ

SL

(
µ
)]

Γ
= 0 ,

[
γNΨκ

SL

(
µ
)]

Γ
= −µ , ∀µ ∈ H−1/2(divΓ, Γ) ,

[
γDΨκ

DL

(
u
)]

Γ
= u ,

[
γNΨκ

DL

(
u
)]

Γ
= 0 , ∀u ∈ H−1/2(curlΓ, Γ) .

This theorem in conjunction with Lemma 3.2 and Ψκ
S

(
R
(
u
))

∈ H1
loc(R

3) supplies further jump
relations

[
γnΨ

κ
DL

(
u
)]

Γ
= 0 ,

[
γ divΨκ

S

(
µ
)]

Γ
= 0 .

By applying averages of Dirichlet and Neumann traces to the potentials of the representation
formula we obtain the relevant boundary integral operators for the electric field equation (cf. [39,
Lem. 5.1, Thm. 5.2]). Their continuity properties are immediate from Thm. 2.1 and Lemmas 2.4,
3.1.

Lemma 3.5. The integral operators

Sκ := {γD}Γ ◦ Ψκ
S : H

−1/2
‖ (Γ) 7→ H

1/2
‖ (Γ),

S
×
κ :=

{
γ×

}
Γ
◦ Ψκ

S ◦ R : H
−1/2
⊥ (Γ) 7→ H

1/2
⊥ (Γ),

Sκ := {γ}Γ ◦ Ψκ
S : H−1/2(Γ) 7→ H1/2(Γ),

are continuous.

Theorem 3.6. The following integral operators are continuous:

Vκ := {γD}Γ ◦ Ψκ
SL : H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ),

K
′
κ := {γN}Γ ◦ Ψκ

SL : H−1/2(divΓ, Γ) 7→ H−1/2(divΓ, Γ),

Kκ := {γD}Γ ◦ Ψκ
DL : H−1/2(curlΓ, Γ) 7→ H−1/2(curlΓ, Γ),

Wκ := {γN}Γ ◦ Ψκ
DL : H−1/2(curlΓ, Γ) 7→ H−1/2(divΓ, Γ).

Beyond continuity, the integral operators possess numerous important properties. In particular,
the operators Kκ and K

′
κ are closely related as expressed in the following lemma, see [39, Lem. 5.4].
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Lemma 3.7. There exists a compact linear operator Tκ : H−1/2(divΓ, Γ) 7→ H−1/2(divΓ, Γ) such

that

〈
K

′
κ

(
ζ
)
,q
〉
t

=
〈
ζ,Kκ

(
q
)〉

t
−
〈
Tκ

(
ζ
)
,q
〉
t

∀ζ ∈ H−1/2(divΓ, Γ), q ∈ H−1/2(curlΓ, Γ).

Since we aim to apply the powerful Fredholm alternative argument, compactness properties of
the boundary integral operators are of great importance. It will be crucial that we can switch to
the ”Laplace kernel” G0 by a compact perturbation only (cf. [18, Thm. 3.12] and [41, Lem. 3.2]).

Lemma 3.8. The following integral operators are compact:

δSκ := Sκ − S0 : H−1/2(Γ) 7→ H1/2(Γ),

δSκ := Sκ − S0 : H
−1/2
‖ (Γ) 7→ H

1/2
‖ (Γ),

δS×
κ := S

×
κ − S

×
0 : H

−1/2
⊥ (Γ) 7→ H

1/2
⊥ (Γ),

δWκ := Wκ − W0 : H−1/2(curlΓ, Γ) 7→ H−1/2(divΓ, Γ).

The significance of the case κ = 0 is highlighted by the following result (cf. [46, Cor. 8.13], [31,
Chap. XI, Sect. 2, Thm. 3] and [14, Prop. 4.1])

Lemma 3.9. The operators S0, S0 and S
×
0 are continuous, self-adjoint and fulfill

〈
µ, S0

(
µ
)〉

Γ
≥ C

∥∥µ
∥∥2

H−1/2(Γ)
∀µ ∈ H−1/2(Γ),

〈
µ,S0

(
µ
)〉

t
≥ C

∥∥µ
∥∥2

H
−1/2

‖
(Γ)

∀µ ∈ H
−1/2
‖ (Γ), divΓ µ = 0 ,

〈
v,S×

0

(
v
)〉

t
≥ C

∥∥v
∥∥2

H
−1/2

⊥ (Γ)
∀v ∈ H

−1/2
⊥ (Γ), curlΓ v = 0 ,

with constants C > 0 depending only on Γ.

At first glance, the Helmholtz and Maxwell cases seem similar, but there are some apparent
differences. The most striking among them is the lack of coercivity of the Maxwell single-layer
operator Vκ on H−1/2(divΓ, Γ). In the Helmholtz case, we can combine lemma 3.8 and 3.9 and
conclude that the Helmholtz single-layer operator Sκ satisfies a G̊arding inequality on H−1/2(Γ),
i.e. there exists a constant C > 0 and a compact operator TS := S0 − Sκ : H−1/2(Γ) 7→ H1/2(Γ)
such that

Re
{〈

ϑ, Sκ

(
ϑ
)〉

Γ
+
〈
ϑ, TS

(
ϑ
)〉

Γ

}
≥ C

∥∥ϑ
∥∥2

H−1/2(Γ)
, ∀ϑ ∈ H−1/2(Γ) . (6)

However, for the Maxwell single-layer operator Vκ things are different. Since variational formu-
lations are our primary concern, let us inspect the sesqui-linear form associated with Vκ, see [16,
Sect. 5] for details:

〈
µ,Vκ

(
λ
)〉

t
=
〈
µ,Sκ

(
λ
)〉

t
− κ−2

〈
divΓ µ, Sκ

(
divΓ λ

)〉
Γ

, ∀λ, µ ∈ H
−1/2
‖ (Γ) . (7)

Slightly abusing notation, we define V0 := S0 + κ−2 gradΓ ◦ S0 ◦ divΓ and by recalling lemma 3.8

we conclude that Vκ − V0 : H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ) is compact. Although, this result
is sufficient to establish coercivity in the Helmholtz case (see (6)), it does guarantee a G̊arding
inequality for the Maxwell single layer operator. According to (7)

〈
µ,V0

(
λ
)〉

t
=
〈
µ,S0

(
λ
)〉

t
− κ−2

〈
divΓ µ, S0

(
divΓ λ

)〉
Γ

,

can be split into a sum of two operators of order minus one and plus one, respectively. In contrast
to the Helmholtz case, the operator of order -1 is not elliptic but has an infinite dimensional kernel,
which agrees with the kernel of the surface divergence operator divΓ. This clearly indicates that a
G̊arding inequality for Vκ on H−1/2(divΓ, Γ) remains elusive.
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4 Decompositions

This section provides stable splittings of H (curl, Ω) and H−1/2(divΓ, Γ), which are needed to
establish generalized G̊arding inequalities for the sesqui-linear forms underlying the coupled varia-
tional formulations. We motivate the splitting idea for two particular cases, namely for an interior
source problem and for plane wave scattering from a perfect electric conductor.

Let us first consider the interior source problem for the electric wave equation in variational
form: For any F ∈ L2(Ω), find E ∈ H (curl, Ω) such that for all V ∈ H (curl, Ω) there holds

qκ(E,V) :=
(
µ−1

r curlE, curlV
)
0
− κ2

(
εrE, V

)
0

=
(
F, V

)
0
.

The numerical analysis of the indefinite interior source problem is usually based on the Fredholm
alternative, which can only be applied to variational formulations, whose underlying sesqui-linear
forms are coercive. Thus establishing a generalized G̊arding inequality for qκ(·, ·) on H (curl, Ω)
is essential. Unfortunately, due to a lack of compact embedding of H (curl, Ω) into L2(Ω), a
generalized G̊arding inequality remains elusive.

The lack of coercivity can be overcome by a splitting of the fields into two components
H (curl, Ω) = X(Ω) ⊕ N(Ω). In the context of electromagnetic problems this idea has been
pioneered by Nédélec and was first applied to integral operators in [32]. Since then, it has emerged
as very powerful theoretical tool, see [3, 14, 22] and, in particular, the monograph [49]. The
following features of a splitting prove essential:

1. the subspace N(Ω) in the splitting agrees with the kernel of the curl,

2. the compact embedding of the complement subspace X(Ω) into L2(Ω),

3. the splitting is stable

4. extra regularity of vector fields in the complement space X(Ω).

Thus, any E ∈ H (curl, Ω) can be decomposed into two components E = E0 + E⊥, where E0 ∈
N (Ω) and E⊥ ∈ X(Ω). This naturally leads us to the definition of a bounded, linear isomorphism
XΩ : H (curl, Ω) 7→ H (curl, Ω), given by XΩ

(
E
)

:= E0 − E⊥, which can be employed to “flip

signs” in the decomposition. Due to the compact embedding X(Ω) →֒ L2(Ω), we conclude that
the following terms

(
εrE

⊥, V⊥
)
0
,

(
εrE

⊥, V0
)
0
,

(
εrE

0, V⊥
)
0
, E,V ∈ H (curl, Ω) ,

are compact. Thus, there exists a compact sesqui-linear form cκ : H (curl, Ω)×H (curl, Ω) 7→ C,
such that the following estimate holds

Re
{
qκ(E, XΩ

(
E
)
) + cκ (E,E)

}
≥ C

(∥∥E⊥
∥∥2

H (curl, Ω)
+
∥∥E0

∥∥2

H (curl, Ω)

)
,

for all E ∈ H (curl, Ω). Hence, we immediately derive a generalized G̊arding inequality for the
sesqui-linear form qκ(·, ·) on the product space X(Ω) × N(Ω).

This motivates the use of the a Helmholtz-type regular splitting, whose construction is based
on the existence of vector potentials in H1(Ω) (cf. [5, Lem. 3.5]):

Lemma 4.1. There exists a continuous mapping

L : H (div 0, Ω) :=
{
V ∈ L2(Ω); divV = 0

}
7→ H1(Ω) ,

such that (div ◦ L)
(
U
)

= 0 and (curl ◦ L)
(
U
)

= U for all U ∈ H (div 0, R3).

Based on this device we introduce the following operator

P : H (curl, Ω) 7→ H1(Ω) , P
(
U
)

:= (L ◦ curl)
(
U
)
.

From the properties of L we immediately derive numerous features of P.
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Lemma 4.2. The operator P is a continuous projection that preserves the curl and satisfies

Ker(P) = Ker(curl) ∩ H (curl, Ω).

Since Ker(P) = Ker(curl) ∩ H (curl, Ω) it is clear that the following closed subspaces

X(curl, Ω) := P
(
H (curl, Ω)

)
and N(curl, Ω) := Ker(curl) ∩ H (curl, Ω)

provide a stable and direct Helmholtz-type splitting

H (curl, Ω) = X(curl, Ω) ⊕ N(curl, Ω) . (8)

For both components we retain the H (curl, Ω)-norm. The extra regularity of the X(curl, Ω)-
component, which is contained in H1(Ω), is essential, since it immediately yields the following
compact embedding.

Corollary 4.3. The embedding X(curl, Ω) →֒ L2(Ω) is compact.

Summing up, this provides us with a generalized G̊arding inequality for the sesqui-linear form
qκ(·, ·) on the product space X(curl, Ω) × N(curl, Ω).

It is hardly surprising that the splitting idea has to be adopted for the treatment of bound-
ary integral operators as well. First, we discuss this for a pure scattering problem and re-
lated indirect boundary integral equations. Using a single-layer potential ansatz E := Ψκ

SL

(
µ
)
,

µ ∈ H−1/2(divΓ, Γ), as a trial expression for electromagnetic scattering from a perfect electric

conductor, we arrive at the following variational problem: For every γDEinc ∈ H−1/2(curlΓ, Γ),

find µ ∈ H−1/2(divΓ, Γ) such that for all λ ∈ H−1/2(divΓ, Γ) there holds

〈
µ,Vκ

(
λ
)〉

t
=
〈
µ, γ−

DEinc
〉
t
.

Our considerations at the end of section 3 clearly show, that a G̊arding inequality for Vκ on
H−1/2(divΓ, Γ) is not available, and, thus an appropriate splitting has to be employed. This time

we opt for a Hodge-type splitting of the Neumann trace space into two components: H−1/2(divΓ, Γ) =
X(Γ)⊕N(Γ). In contrast to the splitting employed in [18, Thm. 3.4], we will waive orthogonality
for increased regularity in the complement subspace X(Γ) and compact embeddings. We require:

1. the subspace N(Γ) in the splitting agrees with the kernel of divΓ,

2. the compact embedding of the complement subspace X(Γ) into L2
t(Γ),

3. the splitting is stable

4. extra regularity of vector fields in the complement space X(Γ).

Again, any λ ∈ H−1/2(divΓ, Γ) can be decomposed into λ = λ⊥ + λ0, where λ⊥ ∈ X(Γ)

and λ0 ∈ N(Γ). This time, the sign-flip isomorphism XΓ : H−1/2(divΓ, Γ) 7→ H−1/2(divΓ, Γ) is
defined by XΓ

(
λ
)

:= λ⊥ − λ0. Furthermore, the embedding X(Γ) →֒ L2
t(Γ) allows us to identify

the following compact sesqui-linear pairings

〈
λ⊥, µ⊥

〉
t
,

〈
λ⊥,S0

(
µ⊥
)〉

t
,

〈
λ⊥,S0

(
µ0
)〉

t
,

〈
λ0,S0

(
µ⊥
)〉

t
,

∀λ, µ ∈ H (curl, Ω) ,

which imply existence of a compact sesqui-linear form cκ : H−1/2(divΓ, Γ)×H−1/2(divΓ, Γ) 7→ C,

such that for all λ ∈ H−1/2(divΓ, Γ) the following estimate holds true

Re
{〈

λ,V0

(
XΓ

(
λ
))〉

t
+ cκ (λ, λ)

}
≥ C

(∥∥λ⊥
∥∥2

H
−1/2

‖
(Γ)

+
∥∥λ0

∥∥2

H
−1/2

‖
(Γ)

)
,

Thus, we immediately derive a generalized G̊arding inequality for the sesqui-linear form corre-
sponding to the Maxwell single-layer operator Vκ on the product space X(Γ) × N (Γ).
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This motivates the construction of the following Hodge-type decomposition of H−1/2(divΓ, Γ):

Pick an arbitrary λ ∈ H−1/2(divΓ, Γ), set ω := divΓ λ ∈ H−1/2(Γ) and solve the the Neumann
problem

Ψ ∈ H1(Ω)/R : ∆Ψ = 0 in Ω , γ−
n grad Ψ = ω on Γ .

Obviously W := gradΨ ∈ H (div 0, Ω) belongs to the domain of the lifting operator L. Thus
we can introduce the operator J : H−1/2(Γ) 7→ H1(Ω) by J

(
ω
)

:= L
(
W
)
. Its continuity is

straightforward and, thanks to Theorem 2.1, inherited by the mapping

P
Γ : H−1/2(divΓ, Γ) 7→ H

1/2
⊥ (Γ) , P

Γ := γ× ◦ J ◦ divΓ .

Properties of P
Γ matching those of P can be easily established.

Lemma 4.4. The operator P
Γ : H−1/2(divΓ, Γ) 7→ H

1/2
⊥ (Γ) is a continuous projection that pre-

serves the divΓ and satisfies Ker(PΓ) = Ker(divΓ) ∩ H−1/2(divΓ, Γ).

By defining the components

X(divΓ, Γ) := P
Γ
(
H−1/2(divΓ, Γ)

)
and N(divΓ, Γ) := Ker(divΓ) ∩ H−1/2(divΓ, Γ)

we arrive at a stable direct decomposition of the space of magnetic traces:

H−1/2(divΓ, Γ) = X(divΓ, Γ) ⊕ N(divΓ, Γ) .

As before, the extra regularity of X(divΓ, Γ) rewards us with a valuable compact embedding
analogous to [18, Thm. 3.4].

Corollary 4.5. The embedding X(divΓ, Γ) →֒ L2
t(Γ) is compact.

In short, this provides us with a generalized G̊arding inequality for the sesqui-linear form corre-
sponding to the Maxwell single-layer operator Vκ on the product space X(divΓ, Γ) × N(divΓ, Γ).

5 Symmetric FEM-BEM Coupling

Applying the Green’s formula to the electric wave equation in Ω results in the following variational
formulation: Find E ∈ H (curl, Ω) such that

(
µ−1

r curlE, curlV
)
0
− κ2

(
εrE, V

)
0
−
〈
µ−1

r γ−
NE, γ−

DV
〉
t

=
(
F, V

)
0

(9)

for all V ∈ H (curl, Ω). The coupling to the exterior domain is taken into account by the
transmission conditions

µ−1
r γ−

NE = γ+
NEs − gN , γ+

DEs = γ−
DE + gD . (10)

In order to incorporate the exterior field on the unbound domain Ω+ into the variational formulation
some realization of the Dirichlet-to-Neumann map has to be provided. It is furnished by the exterior

Calderón projector, which arises from applying both exterior Dirichlet and Neumann traces to the
representation formula (5) (cf. [32, Eq. (29)], [49, Sect. 5.5], [18, Sect. 3.3], and [43, Eq. (24)]). In
variational form the resulting identities read

〈
µ, γ+

DEs
〉
t

=
〈
µ,
(

1
2 Id + Kκ

) (
γ+

DEs
)〉

t
−
〈
µ,Vκ

(
γ+

NEs
)〉

t
,

〈
γ+

NEs,v
〉
t

=
〈
Wκ

(
γ+

DEs
)
,v
〉
t
+
〈(

1
2 Id − K

′
κ

) (
γ+

NEs
)
,v
〉
t
,

(11)

for all µ ∈ H−1/2(divΓ, Γ) and v ∈ H−1/2(curlΓ, Γ). Now we can use the transmission conditions
(10) and the second equation of the Calderón projector to replace the boundary term in (9). The
trick underlying the symmetric coupling approach according to Costabel [26] is to combine the
resulting equation together with the first equation of (11) (cf. [32, Sect. 4] for Maxwell equations).
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Adopting the abbreviation λ := γ+
NEs ∈ H−1/2(divΓ, Γ) we arrive at the following variational

formulation: Find E ∈ H (curl, Ω) and λ ∈ H−1/2(divΓ, Γ) such that for all V ∈ H (curl, Ω)

and µ ∈ H−1/2(divΓ, Γ)

qκ(E,V) −
〈
Wκ

(
γ−

DE
)
, γ−

DV
〉
t

+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

= f1
(
V
)
,

〈
µ,
(

1
2 Id − Kκ

) (
γ−

DE
)〉

t
+

〈
µ,Vκ

(
λ
)〉

t
= g1

(
µ
)
,

(12)

with right hand sides

f1
(
V
)

:=
(
F, V

)
0
−
〈
gN , γ−

DV
〉
t
+
〈
Wκ

(
gD

)
, γ−

DV
〉
t
,

g1

(
µ
)

:=
〈
µ,
(
Kκ − 1

2 Id
) (

gD

)〉
t
,

and qκ(·, ·) representing the interior sesqui-linear form,

qκ(E,V) :=
(
µ−1

r curlE, curlV
)
0
− κ2

(
εrE, V

)
0
.

Lemma 5.1. Provided that curl curlU− κ2U = 0 in Ω and γ−
DU = 0 on Γ implies U = 0, then

any solution of (12) provides a solution of (1) by retaining E ∈ Ω and using the representation

formula (5) for the Cauchy data (γ−
DE + gD, λ) in Ω+.

Proof. For a proof see [39, Lem. 6.1]

If κ2 coincides with an interior Dirichlet eigenvalue, then the solution (12) is only unique up
to contributions (0, η), where η is contained in the span of Neumann data belonging to interior
Dirichlet eigensolutions. In particular, the interior electric field E and its Dirichlet data γ−

DE are
unique.

Since the sesqui-linear form underlying the variational formulation (12) features the domain-
based part qκ(·, ·), as well as the Maxwell single-layer operator Vκ, our considerations from section 4

clearly indicate that coercivity on H (curl, Ω)×H−1/2(divΓ, Γ) does not hold. Thus, based on the
splittings provided in section 4, we can decompose the trial and test functions in the variational
problem (12) according to:

E = E⊥ + E0 , E⊥ ∈ X(curl, Ω), E0 ∈ N (curl, Ω),

V = V⊥ + V0 , V⊥ ∈ X(curl, Ω), V0 ∈ N(curl, Ω),

λ = λ⊥ + λ0 , λ⊥ ∈ X(divΓ, Γ), λ0 ∈ N (divΓ, Γ),

µ = µ⊥ + µ0 , µ⊥ ∈ X(divΓ, Γ), µ0 ∈ N (divΓ, Γ).

In addition, we sort the unknowns according to their ”electric” or ”magnetic” nature, grouping
them as (λ⊥,E0) (electric), (λ0,E⊥) (magnetic). Thus we arrive at a variational formulation with
a distinct block structure on the Hilbert space

V := X(divΓ, Γ) × N(curl, Ω) × N (divΓ, Γ) × X(curl, Ω),

that is endowed with the natural graph norm: Find (λ⊥,E0, λ0,E⊥) ∈ V such that

â sym
κ

(
(λ⊥,E0, λ0,E⊥), (µ⊥,V0, µ0,V⊥)

)
= f̂ sym

κ

(
µ⊥,V0, µ0,V⊥

)
(13)

for all (µ⊥,V0, µ0,V⊥) ∈ V. The sesqui-linear form â sym
κ : V × V 7→ C and the linear form

f̂ sym
κ : V 7→ C are defined by

â sym
κ

(
(λ⊥,E0, λ0,E⊥), (µ⊥,V0, µ0,V⊥)

)
:=

a sym
κ

(
(E⊥ + E0, λ⊥ + λ0), (V⊥ − V0,−µ⊥ + µ0)

)
,

f̂ sym
κ

(
µ⊥,V0, µ0,V⊥

)
:= f sym

κ

(
V⊥ − V0,−µ⊥ + µ0

)
,
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where a sym
κ and f sym

κ are the sesqui-linear and the linear form underlying the variational equation
(12) (see [39, Eq. 8.1] for a detailed structure of a sym

κ ). Evidently, the split variational formulation
(13) produces exactly the same solutions as (12) for λ = λ⊥ +λ0 and E = E⊥ +E0, provided that
unique solutions exist. The decomposition of test and trial spaces provides us with the following
powerful theorem.

Theorem 5.2. The sesqui-linear form â sym
κ : V×V 7→ C satisfies a generalized G̊arding inequality;

that is, it can be written as a sum â sym
κ = aE+aC of a V-elliptic sesqui-linear form aE : V×V 7→ C

and a compact sesqui-linear form aC : V × V 7→ C.

Proof. For a proof see [39, Thm. 8.3].

6 Stable FEM-BEM Coupling

As pointed out in Lemma 5.1, the existence of spurious modes is directly linked to the fact that
for certain κ there exist non-trivial interior Maxwell solutions E satisfying γ−

DE = 0. On the other
hand, there are complex Robin-type boundary conditions which ensure unique solvability of the
corresponding boundary value problem, namely,

curl curlE− κ2E = 0 in Ω , γ−
DE + iη γ−

NE = 0 on Γ , (14)

for some η ∈ R \ {0}. Testing equation (2) with V := E yields the identity

iη
∥∥γ−

NE
∥∥2

L2
t
(Γ)

=
〈
γ−

NE, γ−
DE
〉
t

=

∫

Ω

|curlE|2 − κ2 |E|2 dx ∈ R .

Considering the imaginary part only, we arrive at γ−
NE = 0 and γ−

DE = 0 immediately follows
from the boundary condition. Since both traces are equal to zero we conclude that E must vanish
on Ω, which establishes uniqueness of solutions to the boundary value problem (14). Note that we
can rely on a Robin-type boundary operator to state the transmission conditions of (1), as long as
we are able to recover the conventional traces.

In order to obtain a stable coupled variational formulation for the Maxwell transmission problem
(1), we will make use of the idea of complex linear combinations of traces underlying the boundary
value problem (14). Recalling the Calderón projector in its operator form, we arrive at the following
two equations

γ+
DEs =

(
1
2 Id + Kκ

) (
γ+

DEs
)
− Vκ

(
γ+

NEs
)

in H−1/2(curlΓ, Γ) , (15)

γ+
NEs = Wκ

(
γ+

DEs
)

+
(

1
2 Id − K

′
κ

) (
γ+

NEs
)

in H−1/2(divΓ, Γ) . (16)

Unfortunately, the trace spaces H−1/2(curlΓ, Γ) and H−1/2(divΓ, Γ) do not match, which means
that complex linear combinations of Dirichlet and Neumann traces are not well defined. Thus, we
cannot simply work with the natural trace spaces of problem (1), but have to do a lifting of both
traces onto L2

t(Γ). Now for η > 0, the complex linear combination (15)+ iη (16) yields the identity

0 =
(
Kκ − 1

2 Id + iη Wκ

) (
γ+

DEs
)
−
(
Vκ + iη

(
1
2 Id + K

′
κ

)) (
γ+

NEs
)
∈ L2

t(Γ) , (17)

which can be used to replace either (15) or (16) in a coupled variational formulation. Moreover, in
order to get meaningful tangential trace operators, we have to replace H (curl, Ω) by the Hilbert
space

X :=
{
U ∈ H (curl, Ω); γ−

DU ∈ L2
t(Γ)

}
,

which is Hilbert space with respect to the graph norm on H (curl, Ω), cf. [47, Chapt. 4].
Thus, introducing the new variable λ := γ+

NEs ∈ L2
t(Γ) together with the equations (9),

(10), (16), and (17), we arrive at the following coupled variational formulation: Find E ∈ X and
λ ∈ L2

t(Γ), such that for all V ∈ X and µ ∈ L2
t(Γ) there holds

qκ(E,V) −
〈
Wκ

(
γ−

DE
)
, γ−

DV
〉
t
+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

= f2
(
V
)
,

〈
µ,
(
Vκ + iη

(
1
2 Id + Kκ

)) (
γ−

DE
)〉

t
+
〈
µ,
(

1
2 Id − Kκ − iη Wκ

) (
λ
)〉

t
= g2

(
µ
)
,

(18)
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where the right hand sides are given by

f2
(
V
)

=
(
F, V

)
0
−
〈
gN , γ−

DV
〉
t
+
〈
Wκ

(
gD

)
, γ−

DV
〉
t
,

g2

(
µ
)

=
〈
µ,
(
Kκ − 1

2 Id + iη Wκ

) (
gD

)〉
t
.

At first sight, this variational formulation looks promising, since it shares a similar internal struc-
ture as the symmetric formulation and in addition there is hope that the additional terms might
suppress internal resonances. However, due to a lack of compactness of the boundary integral
operators

1
2 Id + Kκ : L2

t(Γ) 7→ L2
t(Γ) , Wκ : L2

t(Γ) 7→ L2
t(Γ) ,

on non-smooth domains, the sesqui-linear form underlying the variational formulation (18) is in
general not coercive. Unfortunately, switching to smooth domains (18) does not provide us with
a stable variational formulation either, since Wκ is not even compact on smooth boundaries.
This bars us from applying the Fredholm alternative on either smooth or non-smooth domains
and prevents us from establishing existence and uniqueness of solutions and asymptotic quasi-
optimality error estimates. Hence, simple complex combination of Dirichlet and Neumann traces
is not enough to stabilize coupled variational formulations.

The problem concerning the non-matching Dirichlet and Neumann trace spaces and the lack
of coercivity can be overcome by introducing a special trace transformation operator

T : H−1/2(curlΓ, Γ) × H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ) × H−1/2(divΓ, Γ)

defined by

T

[
u

µ

]
:=

[
u + iη M

(
µ
)

µ

]
, η > 0 , (19)

for all u ∈ H−1/2(curlΓ, Γ) and µ ∈ H−1/2(divΓ, Γ).
The main ingredient here is a regularising operator

M : H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ) ,

which satisfies the following assumption.

Assumption 6.1. We suppose that

1. M : H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ) is compact, and

2. Re
{〈

µ,M
(
µ
)〉

t

}
> 0 for all µ ∈ H−1/2(divΓ, Γ) \ {0}.

After a straightforward application of the trace transformation operator (19) to the exterior
Calderón projector (11) the first equation changes into
〈
µ, γ+

DEs + iη M
(
γ+

NEs
)〉

t
=

〈
µ,
(

1
2 Id + Kκ + iη M ◦ Wκ

) (
γ+

DEs
)〉

t

+
〈
µ,
(
iη M ◦

(
1
2 Id − K

′
κ

)
− Vκ

) (
γ+

NEs
)〉

t
.

A simple algebraic transformation yields the following variational identities for the Dirichlet and
Neumann traces γ+

DEs and γ+
NEs (cf. [40, Sect. 6] for the Helmholtz case)

〈
µ, γ+

DEs
〉
t

=
〈
µ,
(

1
2 Id + Kκ + iη M ◦ Wκ

) (
γ+

DEs
)〉

t

−
〈
µ,
(
Vκ + iη M ◦

(
1
2 Id + K

′
κ

)) (
γ+

NEs
)〉

t
,

〈
γ+

NEs,v
〉
t

=
〈
Wκ

(
γ+

DEs
)
,v
〉
t
+
〈(

1
2 Id − K

′
κ

) (
γ+

NEs
)
,v
〉
t
,

(20)

for all µ ∈ H−1/2(divΓ, Γ) and v ∈ H−1/2(curlΓ, Γ). The identity (20) provides an alternative
realization of the Dirichlet-to-Neumann map.

For the construction of regularizing operators we strongly rely on the techniques already es-
tablished for the regularisation of Maxwell scattering problems (cf. [17, Sect. 4]). A crucial tool
in the construction of a suitable regularizing operator will be the following trace space

H (curlΓ, Γ) :=
{
µ ∈ L2

t(Γ); curlΓ µ ∈ L2(Γ)
}
⊂ L2

t(Γ) .
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Lemma 6.2. The space H (curlΓ, Γ) ⊂ H−1/2(curlΓ, Γ) is a dense subspace.

Proof. We start from the dense inclusions C∞(Ω) ⊂ H1(Ω) and H1(Ω) ⊂ H (curl, Ω). By

definition and due to theorem 2.3 we conclude that Vγ := γD

(
C∞(Ω)

)
⊂ H−1/2(curlΓ, Γ) is

dense. Since the following inclusions hold Vγ ⊂ H (curlΓ, Γ) ⊂ H−1/2(curlΓ, Γ), the statement is
proved.

Lemma 6.3. The embedding H (curlΓ, Γ) →֒ H−1/2(curlΓ, Γ) is compact.

Proof. Our is similar to the one given in [17, Lem. 2.5]. Let {un}n∈N ⊂ H (curlΓ, Γ) such that∥∥un

∥∥
H (curlΓ, Γ)

≤ 1, for all n ∈ N. The compact embedding L2
t(Γ) →֒ H

−1/2
⊥ (Γ) directly implies,

that there exists u ∈ H
−1/2
⊥ (Γ) and a subsequence unk

of un such that unk
→ u strongly in

H
−1/2
⊥ (Γ).

Due to the continuity of the operator curlΓ : H
−1/2
⊥ (Γ) 7→ H−3/2(Γ) we get curlΓ unk

→ curlΓ u

strongly in H−3/2(Γ) (see [12] for the proof and a definition of H−3/2(Γ)).
On the other hand we know that

∥∥curlΓ unk

∥∥
L2(Γ)

≤ 1, which implies up to extraction of a

subsequence curlΓ unk
, is strongly converging to an element in H

−1/2
⊥ (Γ). By uniqueness of the

limit we conclude that curlΓ u ∈ H
−1/2
⊥ (Γ), and, up to selecting a proper subsequence unk

→ u ∈
H

−1/2
⊥ (Γ), strongly.

A simple eligible operator M can be introduced through a variational definition: For any
ζ ∈ H−1/2(divΓ, Γ) find M

(
ζ
)
∈ H (curlΓ, Γ) such that

〈
M
(
ζ
)
,q
〉
t
+
〈
curlΓ M

(
ζ
)
, curlΓ q

〉
t

=
〈
ζ,q

〉
t
, ∀q ∈ H (curlΓ, Γ) . (21)

In order to simplify notations we introduce the associated sesqui-linear form

b(p,q) :=
〈
p,q

〉
t
+
〈
curlΓ p, curlΓ q

〉
t
. (22)

Compactness of M : H−1/2(divΓ, Γ) 7→ H−1/2(curlΓ, Γ) immediately follows from lemma 6.3.

Lemma 6.4. The regularisation operator M : H−1/2(divΓ, Γ) 7→ H (curlΓ, Γ) defined by (21) is

injective and thus item 2. of assumption 6.1 holds true for all µ ∈ H−1/2(divΓ, Γ).

Proof. The proof closely follows the one given in [17, Sect. 4]. Assume that M
(
ζ
)

= 0 from which

we conclude that
〈
ζ,q

〉
t

= 0 for all q ∈ H (curlΓ, Γ). Now choose η ∈ H−1/2(curlΓ, Γ) such that

〈
ζ, η

〉
t

=
∥∥ζ
∥∥2

H−1/2(divΓ, Γ)

and since H (curlΓ, Γ) ⊂ H−1/2(curlΓ, Γ) is dense, there exists a sequence {ηk}k∈N ⊂ H (curlΓ, Γ)

such that ηk → η strongly in H−1/2(curlΓ, Γ). From the definition of the regularisation operator
we infer 0 =

〈
ζ, ηk

〉
t
, for all k ∈ N. Thus taking the limit yields ζ = 0, which finishes the proof.

Thus we conclude that both items of assumption 6.1 are satisfied and hence M given by the
implicit definition (21) qualifies as a regularising operator.

Using the abbreviation λ := γ+
NEs ∈ H−1/2(divΓ, Γ) and the same trick as in section 5, to

couple the boundary integral equations (20) together with the variational problem on Ω, we finally

end up with the following formulation: Find E ∈ H (curl, Ω) and ϑ ∈ H−1/2(divΓ, Γ) such that

for all V ∈ H (curl, Ω) and µ ∈ H−1/2(divΓ, Γ)

qκ(E,V) −
〈
Wκ

(
γ−

DE
)
, γ−

DV
〉
t
+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

= f3
(
V
)
,

〈
µ,
(

1
2 Id − Kκ − iη M ◦ Wκ

) (
γ−

DE
)〉

t

+
〈
µ,
(
Vκ + iη M ◦

(
1
2 Id + K

′
κ

)) (
λ
)〉

t
= g3

(
µ
)
,

(23)
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with the right hand sides given by

f3
(
V
)

:=
(
F, V

)
0
−
〈
gN , γ−

DV
〉
t
+
〈
Wκ

(
gD

)
, γ−

DV
〉
t
,

g3

(
µ
)

:=
〈
µ,
(
Kκ − 1

2 Id + iη M ◦ Wκ

) (
gD

)〉
.

Summing up, due to the compactness of the regularisation operator M we conclude that all
additional off-diagonal terms in the sesqui-linear form underlying the regularised variational for-
mulation, compared to the symmetric formulation, are compact. In combination with theorem 5.2
this results again in a G̊arding inequality on V . It remains to establish uniqueness of solutions,
which amounts to confirming that (23) is really immune to spurious resonances.

Lemma 6.5. Any solution of (23) provides a solution of (1) by retaining E in Ω and using the

representation formula (5) for the Cauchy data (γ−
DE + gD, λ) in Ω+.

Proof. Our approach is based on [52, Sect. 4.3] and [18, Sect. 5]. Testing with V that is compactly
supported in Ω confirms that E satisfies (1) in Ω. We conclude (9) for any admissible V. This
renders (23) equivalent to

〈
ξ, γ−

DV
〉
t
−
〈
Wκ

(
u
)
, γ−

DV
〉
t
+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

= 0 ,
〈
µ,
(

1
2 Id − Kκ − iη M ◦ Wκ

) (
u
)〉

t
−
〈
µ,
(
Vκ + iη M ◦

(
1
2 Id + K

′
κ

)) (
λ
)〉

t
= 0 ,

with ξ := µ−1
r γ−

NE− gN and u := γ−
DE− gD. Translated into operator notation this yields

(
T ◦

[
1
2 Id − Kκ Vκ

−Wκ
1
2 Id + K

′
κ

])[
u

λ

]
=

[
0

λ − ξ

]
, (24)

where the second operator in the product we recognize as an interior Calderón projector [18,
Sect. 3.3]. By applying the trace transformation operator (19) to the Dirichlet and Neumann
traces of the following function

U (x) := Ψκ
SL

(
λ
)
(x) − Ψκ

DL

(
u
)
(x) , x ∈ Ω ,

we obtain the traces

γ−
DU + iη M

(
γ−

NU
)

= 0 , γ−
NU = λ − ξ .

Furthermore, since U is a solution to the boundary value problem

curl curlU − κ2U = 0 in Ω , γ−
DU + iη M

(
γ−

NU
)

= 0 on Γ ,

integration by parts together with the “test function” V := U yields

iη
〈
γ−

NU,M
(
γ−

NU
)〉

t
=
〈
γ−

NU, γ−
DU

〉
t

=

∫

Ω

|curlU|2 − κ2 |U|2 dx ∈ R .

Considering the imaginary part of the previous equation we finally arrive at

0 = η Re
{〈

γ−
NU,M

(
γ−

NU
)〉

t

}

and item 2. of assumption 6.1 immediately implies λ = ξ. From (24) we conclude that (u, λ)
belong to the kernel of the interior Calderón projector, which implies that they represent Cauchy
data of an exterior Maxwell solution. Hence, due to the following definition

W(x) := Ψκ
DL

(
u
)
(x) − Ψκ

SL

(
λ
)
(x) , x ∈ Ω+ .

we obtain a pair of solutions (E, W) to the Maxwell transmission problem (1). Finally, uniqueness
of solutions to the transmission problem carries over to the variational formulation (23).
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Eventually, existence of solutions to the variational problem (23) follows from their uniqueness
and a Fredholm argument, see [46, Thm. 2.33].

Although (23) provides us with a stable variational formulation, it cannot be discretized by
means of a straightforward Galerkin scheme, due to the various operator products. This suggests
to introduce the auxiliary variable

p := M
( (

1
2 Id + K

′
κ

) (
λ
)
− Wκ

(
γ−

DE + gD

))
∈ H (curlΓ, Γ) , (25)

which converts (23) into the following mixed variational formulation: Find E ∈ H (curl, Ω),

λ ∈ H−1/2(divΓ, Γ), and p ∈ H (curlΓ, Γ) such that for all V ∈ H (curl, Ω), µ ∈ H−1/2(divΓ, Γ),
and q ∈ H (curlΓ, Γ)

qκ(E,V) −
〈
Wκ

(
γ−

DE
)
, γ−

DV
〉
t
+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

= f4
(
V
)
,

〈
µ,
(

1
2 Id − Kκ

) (
γ−

DE
)〉

t
+
〈
µ,Vκ

(
λ
)〉

t
− iη

〈
µ,p

〉
t

= g4

(
µ
)
,

〈
Wκ

(
γ−

DE
)
,q
〉
t
−
〈(

1
2 Id + K

′
κ

) (
λ
)
,q
〉
t
+ b(p,q) = h4

(
q
)
,

(26)

with right hand sides given by

f4
(
V
)

:=
(
F, V

)
0
−
〈
gN , γ−

DV
〉
t
+
〈
Wκ

(
gD

)
, γ−

DV
〉
t
,

g4

(
µ
)

:=
〈
µ,
(
Kκ − 1

2 Id
) (

gD

)〉
t
,

h4

(
q
)

:= −
〈
Wκ

(
gD

)
,q
〉
t
.

An essential feature of the stabilized variational formulation is that the auxiliary unknown p

obtained from the solutions (E, λ,p) to the mixed variational formulation (26) can be recast into
the following expression

p = M
( (

1
2 Id + K

′
κ

) (
λ
)
− Wκ

(
γ−

DE + gD

))
.

At second glance, we realize that p = 0, if (E, ϑ) solves (26). This follows directly from lemma
6.5 and (11). Summing up, p is a “dummy variable”.

Again using the splittings from section 4 and grouping the components into electric (λ⊥,E0),
magnetic (λ0,E⊥), and auxiliary ones p we arrive at a variational formulation on the Hilbert space

W := V × H (curlΓ, Γ) ,

that is endowed with the natural graph norm: Find (λ⊥,E0, λ0,E⊥,p) ∈ W such that

â reg
κ

(
(λ⊥,E0, λ0,E⊥,p), (µ⊥,V0, µ0,V⊥,q)

)
= f̂ reg

κ

(
µ⊥,V0, µ0,V⊥,q

)
, (27)

for all (µ⊥,V0, µ0,V⊥,q) ∈ W . Again, the sesqui-linear form and the linear form of the split vari-
ational equation are related to those underlying (26), namely a reg

κ and f reg
κ , through the following

equations

â reg
κ

(
(λ⊥,E0, λ0,E⊥,p), (µ⊥,V0, µ0,V⊥,q)

)
:=

a reg
κ

(
(E⊥ + E0, λ⊥ + λ0,p), (V⊥ − V0,−µ⊥ + µ0,q)

)
,

f̂ reg
κ

(
µ⊥,V0, µ0,V⊥,q

)
:= f reg

κ

(
V⊥ − V0,−µ⊥ + µ0,q

)
.

In order to settle the issue of existence and uniqueness of solutions of (26) we first observe that
by the very definition of M in (21) and (25) the first two components of (U, λ,p) of (26) will also
solve (23) and thus lemma 6.5 ensures uniqueness.

The next lemma tells us that we do not need to worry about the new terms introduced into
the variational equations.
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Lemma 6.6. The following sesqui-linear forms are compact

〈
·, ·
〉
t

: H−1/2(divΓ, Γ) × H (curlΓ, Γ) 7→ C ,
〈
Wκ

(
·
)
, ·
〉
t

: H−1/2(curlΓ, Γ) × H (curlΓ, Γ) 7→ C ,
〈(

1
2 Id + K

′
κ

) (
·
)
, ·
〉
t

: H−1/2(divΓ, Γ) × H (curlΓ, Γ) 7→ C .

Proof. It is sufficient to note that the sesqui-linear forms
〈
·, ·
〉
t
,
〈(

1
2 Id + K

′
κ

) (
·
)
, ·
〉
t

: H−1/2(divΓ, Γ) × H−1/2(curlΓ, Γ) 7→ C

and 〈
Wκ

(
·
)
, ·
〉
t

: H−1/2(curlΓ, Γ) × H−1/2(curlΓ, Γ) 7→ C

are continuous and that the injection H (curlΓ, Γ) →֒ H−1/2(curlΓ, Γ) is compact due to lemma
6.3.

As an immediate consequence of this result we note that all additional off-diagonal terms of
(26) are compact. Furthermore, the sesqui-linear form

b(·, ·) : H (curlΓ, Γ) × H (curlΓ, Γ) 7→ C

is clearly elliptic, since it gives rise to an inner product on H (curlΓ, Γ). In combination with
theorem 5.2 we conclude that the sesqui-linear form â reg

κ : W × W 7→ C from (27) satisfies a
G̊arding inequality on the Hilbert space W .

Again, a Fredholm argument ensures the existence of solutions from the uniqueness result.
Thus we have obtained a well-posed variational formulation which yields weak solutions to the
transmission problem and which is amenable to standard Galerkin discretizations.

Summing up, the sesqui-linear form a reg
κ underlying the stabilized variational formulation (26)

on the non-split Sobolev spaces can be decomposed into the following block structure

qκ(E,V) −
〈
Wκ

(
γ−

DE
)
, γ−

DV
〉
t

+
〈(

K
′
κ − 1

2 Id
) (

λ
)
, γ−

DV
〉
t

〈
µ,
(

1
2 Id − Kκ

) (
γ−

DE
)〉

t
+

〈
µ,Vκ

(
λ
)〉

t
− iη

〈
µ,p

〉
t

〈
Wκ

(
γ−

DE
)
,q
〉
t

−
〈(

1
2 Id + K

′
κ

) (
λ
)
,q
〉
t

+ b(p,q)

From lemma 6.6 we obtain that the dotted frames mark compact sesqui-linear forms. Furthermore,
lemma 3.7 implies that the operator K

∗
κ −K

′
κ : H−1/2(divΓ, Γ) 7→ H−1/2(divΓ, Γ) is compact and

thus up to some compact perturbation, the corresponding sesqui-linear forms cancel out. Finally,
we conclude that all sesqui-linear forms enclosed by solid boxes are skew-symmetric. Thus, we
conclude that up to compact perturbations the sesqui-linear form a reg

κ has a block skew-symmetric
structure.

7 Galerkin Discretization

We equip (the curvilinear polyhedron) Ω with a family of tetrahedral, shape regular triangulations
{Ωh}h. The parameter h designates the mesh width, that is the length of the longest edge. Let H

stand for the collection of mesh widths occurring in {Ωh}h and, moreover, assume that H ⊂ R+

forms a decreasing series tending to zero. The set Th will include all tetrahedra of Ωh. Restricting
Ωh, h ∈ H, to Γ gives a sequence {Γh}h of surface meshes. They inherit shape regularity from
{Ωh}h. We suppose that all Γh are aligned with edges of Γ.

Discrete electric fields should be modeled by discrete 1-forms (edge elements). They can be
represented by piecewise polynomial vector fields: For a fixed degree ν, ν ∈ N0, and any tetrahedron
T ∈ Th the local spaces are given by (cf. [48])

E1
ν+1(T ) :=

{
V ∈ (Pν+1(T ))3 ; V (x) · x = 0 ∀x ∈ T

}
,



R. Hiptmair and P. Meury 19

where Pν+1(T ) is the space of multivariate polynomials of total degree ν on T . This gives rise to
the global finite element space

E1
ν+1(Ωh) :=

{
U ∈ H (curl, Ω); U|T ∈ E1

ν+1(T ) ∀T ∈ Ωh

}
.

This renders degrees of freedom based on moments (of tangential components) on edges, faces, and
the elements themselves well defined. See [37] and [24] for details and proof of unisolvence. The
discrete 1-forms on {Ωh}h form an affine family of finite elements in the sense of [23] with respect
to the pullback of 1-forms. Based on the degrees of freedom, we can introduce nodal interpolation
operators Π1

ν+1 onto E1
ν+1(Ωh). To begin with they are defined only for continuous vector fields

but can be generalized to less regular settings

Lemma 7.1. If s > 1
2 , then for all U ∈ Hs(Ω) such that curlU ∈ Hs(Ω)

∥∥U − Π1
ν+1

(
U
)∥∥

L2(Ω)
≤ Chmin{ν+1,s}

(∣∣U
∣∣
Hs(Ω)

+
∣∣curlU

∣∣
Hs(Ω)

)
,

∥∥curl
(
U − Π1

ν+1

(
U
))∥∥

L2(Ω)
≤ Chmin{ν+1,s}

∣∣curlU
∣∣
Hs(Ω)

,

with constants C > 0 depending only on Ω, ν, s and the shape-regularity of the meshes.

Proof. For a proof see [24, Lem. 3.2, Lem. 3.3].

The reason why we want to use the nodal interpolation operator Π1
ν+1, although it fails to be

defined on the entire space H (curl, Ω), is its exceptional algebraic properties. In order to explain
them, we need to introduce the H (div, Ω)-conforming spaces Fν(Ωh) of discrete 2-forms, also
known as face elements, cf. [8, Chap. 3] and [48]. Suitable degrees of freedom for this space are
provided by moments of face fluxes and weighted integrals over elements. They introduce the nodal
interpolation operators Π2

ν onto Fν(Ωh). A straightforward application of the Stokes theorem, cf.
[37], confirms the following commuting diagram property

curl ◦ Π1
ν+1 = Π2

ν ◦ curl , (28)

which is valid for all vector fields contained in the domain Dom
(
Π1

ν+1

)
of Π1

ν+1. From relation

(28) we conclude that Π1
ν+1 leaves the kernel of the curl invariant.

To pick a suitable discrete trial space for H−1/2(divΓ, Γ) we also adopt the perspective of

differential forms. Be aware that H−1/2(divΓ, Γ) is the trace space for magnetic fields, and keep

in mind that those can also be described by 1-forms. This suggests that H−1/2(divΓ, Γ) should

be approximated by traces of discrete 1-forms on the surface. In other words, as H−1/2(divΓ, Γ)-
conforming boundary element space we chose γ×E1

ν+1(Ωh). Elementary computations reveal that
this generates exactly the two-dimensional face elements Fν(Γh) on the surface mesh, see [50].
The degrees of freedom are also inherited from E1

ν+1(Ωh). By construction, the induced nodal

interpolation operator Φ2
ν satisfies

Φ2
ν ◦ γ× = γ× ◦ Π1

ν+1 ,

which, due to (28), implies another commuting diagram property,

divΓ ◦ Φ2
ν = QΓ

ν ◦ divΓ ,

for sufficiently smooth tangential surface vector fields. Here, QΓ
ν is the plain L2(Γ)-orthogonal

projection onto the space Qν(Γh) of discontinuous, piecewise polynomials of degree ν on Γh.
Invariance of Ker

(
divΓ

)
∩ Dom

(
Φ2

ν

)
under Φ2

ν is immediate.
From the results of [50] and [41, Sect. 5] we obtain the following interpolation error estimates.

Lemma 7.2. If µ ∈ Hs
t(Γ), divΓ µ ∈ Hs(Γ) for some s > 0, then

∥∥µ − Φ2
ν

(
µ
)∥∥

L2(Γ)
≤ Chmin{s,ν+1}

(∣∣µ
∣∣
Hs

t
(Γ)

+
∣∣divΓ µ

∣∣
Hs(Γ)

)
,

∥∥divΓ

(
µ − Φ2

ν

(
µ
))∥∥

L2(Γ)
≤ Chmin{s,ν+1}

∣∣divΓ µ
∣∣
Hs(Γ)

.
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Finally, it remains to choose a suitable conforming discrete trial space for H (curlΓ, Γ). Picking
an arbitrary function uh from a such trial space, it must feature qh ∈ L2

t(Γ), as well as curlΓ qh ∈
L2(Γ). Thus a suitable choice would be to take γtE

1
1(Ωh), which creates exactly the space of

H (curlΓ, Γ)-conforming surface edge elements E1
1(Γh). The degrees of freedom are again inherited

from E1
1(Ωh). For sufficiently smooth vector fields, the induced nodal interpolation operator Φ1

1

satisfies the following commuting diagram property

curlΓ ◦ Φ1
1 = QΓ

0 ◦ curlΓ .

Again, we conclude invariance of Ker
(
curlΓ

)
∩ Dom

(
Φ1

1

)
under Φ1

1.

Lemma 7.3. If q ∈ Hs
t(Γ), curlΓ q ∈ Hs(Γ) for some 0 < s ≤ 1, then

∥∥q − Φ1
1

(
q
)∥∥

L2(Γ)
≤ Chs

(∥∥q
∥∥

Hs
t
(Γ)

+
∣∣curlΓ q

∣∣
Hs(Γ)

)
,

∥∥curlΓ
(
q − Φ1

1

(
q
))∥∥

L2(Γ)
≤ Chs

∣∣curlΓ q
∣∣
Hs(Γ)

.

Based on the conforming finite element spaces, the Galerkin discretization of the variational
problems (26) and (27) is straightforward: Find Eh ∈ E1

ν+1(Ωh), ϑh ∈ Fν(Γh), and ph ∈ E1
1(Γh)

such that for all Vh ∈ E1
ν+1(Ωh), µh ∈ Fν(Γh), and qh ∈ E1

1(Γh)

qκ(Eh,Vh) −
〈
Wκ

(
γ−

DEh

)
, γ−

DVh

〉
t
+
〈(

K
′
κ − 1

2 Id
) (

λh

)
, γ−

DVh

〉
t

= f4
(
Vh

)
,

〈
µh,

(
1
2 Id − Kκ

) (
γ−

DEh

)〉
t
+
〈
µh,Vκ

(
λh

)〉
t
+ iη

〈
µh,ph

〉
t

= g4

(
µh

)
,

〈
Wκ

(
γ−

DEh

)
,qh

〉
t
−
〈(

1
2 Id + K

′
κ

) (
λh

)
,qh

〉
t
+ b(p,qh) = h4

(
qh

)
.

(29)

Remark 7.4. Why do we have to worry about approximating the auxiliary variable p at all, though
it vanishes and apparently the choice of boundary elements does not affect the convergence of
Galerkin solutions? The reason is that the convergence of discrete solutions hinges on sufficiently
good approximation properties of the underlying finite element and boundary element spaces.
Hence the use of lowest order boundary elements is sufficient to ensure optimal convergence rates
for the discretization error.

8 Discrete Decompositions

The splitting idea, which was used to prove coercivity on the continuous level, has to be adopted
for an analysis on the discrete level as well. We follow a simple guideline, which boils down to
applying nodal interpolation operators to the Helmholtz-type splittings in section 4.

First we construct a discrete counterpart of X(curl, Ω). We strongly rely on the projector
already introduced in section 4. According to the recipe outlined above, it is formally defined as
Ph := Π1

ν+1 ◦P. However, even on P
(
H (curl, Ω)

)
the nodal interpolation operator Π1

ν+1 fails to
be bounded, because the smoothness of the curl is not controlled. Nonetheless, we aim to apply
Ph to finite element functions only, the following lemma saves the idea.

Lemma 8.1. If U ∈ Hs(Ω) and curlU ∈ Fν(Ωh), for some s ≥ 1, then U ∈ Dom
(
Π1

ν+1

)
and

∥∥U − Π1
ν+1

(
U
)∥∥

L2(Ω)
≤ Chmin{ν+1,s}

∣∣U
∣∣
Hs(Ω)

,

with C > 0 depending only on Ω, ν, and the shape regularity of Ωh.

Proof. For a proof see [42, Lem. 2.1].

Due to the commuting diagram property (28) and lemma 4.2, we conclude that curlP
(
Uh

)
∈

Fν(Ωh) for Uh ∈ E1
ν+1(Ωh),

Lemma 8.2. The operator Ph : E1
ν+1(Ωh) 7→ E1

ν+1(Ωh) is a h-uniformly continuous projection

and preserves the curl, and Ker(Ph) = Ker(curl) ∩ E1
ν+1(Ωh).
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Thus by defining

Xh(curl, Ωh) := Ph

(
E1

ν+1(Ωh)
)
, Nh(curl, Ωh) := Ker(curl) ∩ E1

ν+1(Ωh) ,

we instantly get a h-uniformly H (curl, Ω)-stable direct splitting

E1
ν+1(Ωh) = Xh(curl, Ωh) ⊕ Nh(curl, Ωh) .

The following result makes it possible to pursue the same strategy in the case of the face
elements space Fν(Γh), cf. [41, Lem. 6.2].

Lemma 8.3. If µ ∈ Hs
t(Γ) and divΓ µ ∈ Qν(Γh), for some s ≥ 1

2 , then µ ∈ Dom
(
Φ2

ν

)
and

∥∥µ − Φ2
ν

(
µ
)∥∥

L2(Γ)
≤ Chmin{ν+1,s}

∥∥µ
∥∥

Hs
t
(Γ)

,

with C > 0 only depending on Γ, ν, s, and the shape-regularity of the meshes.

Thus, we can define the operator

P
Γ
h : Fν(Γh) 7→ Fν(Γh) , P

Γ
h := Φ2

ν ◦ P
Γ ,

and obtain properties similar to those of Ph : E1
ν+1(Ωh) 7→ E1

ν+1(Ωh).

Lemma 8.4. The mapping P
Γ
h : Fν(Γh) 7→ Fν(Γh) is a h-uniformly continuous projector, which

preserves divΓ and fulfills Ker(PΓ
h) = Ker(divΓ) ∩ Fν(Γh).

The projector P
Γ
h furnishes the desired h-uniformly H−1/2(divΓ, Γ)-stable splitting of the dis-

crete Neumann trace space

Fν(Γh) = Xh(divΓ, Γh) ⊕ Nh(divΓ, Γh) ,

with
Xh(divΓ, Γh) := P

Γ
h

(
Fν(Γh)

)
, Nh(divΓ, Γh) := Ker(divΓ) ∩ Fν(Γh) .

Notice that vector fields in E1
ν+1(Ωh) are by no means continuous across inter element faces.

On the other hand, any vector field in H1(Ω) must possess continuous components. Furthermore,
there are elements in Xh(divΓ, Γh) that are not twisted tangential traces of continuous vector
fields. In short,

Xh(curl, Ωh) 6⊂ X(curl, Ω) , Xh(divΓ, Γh) 6⊂ X(divΓ, Γ) ,

Nh(curl, Ωh) ⊂ N(curl, Ω) , Nh(divΓ, Γh) ⊂ N (divΓ, Γ) .

Thus by choosing

Wh := Xh(divΓ, Γh) × Nh(curl, Ωh) × Nh(divΓ, Γh) × Xh(curl, Ωh) × E1
1(Γh) ,

as a discrete approximation space for W , we have made a nonconforming choice, since Wh 6⊂ W .
Note that this is a special type of non-conformity, since it does not arise from the choice of discrete
spaces, but from the way they are split. However, the G̊arding inequality for â was only established
with respect to the split space W . This prevents us from applying the well-known results about
convergence of conforming Galerkin discretizations of coercive variational problems [51].

9 Discrete Inf-Sup Estimates

We start by recalling the main results of the abstract convergence theory from [18, Sec. 4.1] (see
also [10, 11, 22]).

Let W be a Hilbert space with an W -stable decomposition W = X ⊕ N , such that for any
w ∈ W we have uniquely determined u ∈ X , v ∈ N with w = u + v and

C−1
∥∥w
∥∥

W
≤
∥∥u
∥∥

W
+
∥∥v
∥∥

W
≤ C

∥∥w
∥∥

W
.

Based on the splitting we can define the isomorphism an X : W 7→ W by X
(
w
)

:= u − v.



22 FEM-BEM Coupling for Maxwell Transmission Problems

Assumption 9.1. Consider a sequence of closed subspaces Wh ⊂ W with decompositions Wh =
Xh ⊕ Nh, satisfying the following assumptions:

1. The family Wh is approximating in W , i.e.

lim
h→0

inf
wh∈Wh

∥∥w − wh

∥∥
W

= 0 .

2. Wh satisfies a gap property, i.e. there exist two subsets Xh, Nh of Wh such that

δh := max {δ (X, Xh) , δ (N, Nh)} → 0 , as h → 0,

where

δ(X, Xh) := sup
uh∈Xh

inf
u∈X

∥∥uh − u
∥∥

W∥∥uh

∥∥
W

, and δ(N, Nh) := sup
vh∈Nh

inf
v∈N

∥∥vh − v
∥∥

W∥∥vh

∥∥
W

.

Remark 9.2. In the particular case in which Nh ⊂ N , we have of course δ (Nh, N) = 0. This means
that the condition δ (W, Wh) → 0 for h → 0 implies that Nh is approximating in N , i.e.

lim
h→0

inf
vh∈Nh

∥∥v − vh

∥∥
W

= 0 .

The following theorem provides us with a discrete inf-sup estimate on the conforming, discrete
trial space, cf. [18, Thm. 4.1] and [10, Th,. 3.7].

Theorem 9.3. Assume that A : W 7→ W ∗ is continuous and that there exists a compact operator

T : W 7→ W ∗ and a constants α > 0 such that for all w ∈ W

Re
{〈

(A + T)
(
w
)
, X
(
w
)〉}

≥ α
∥∥w
∥∥2

W
,

where
〈
·, ·
〉

denotes the duality pairing between W ∗ and W . Assume further that A is one-to-one

and let {Wh}h denote a sequence of subspaces of W satisfying assumption 9.1.

Then there exists h0 > 0 such that for all h < h0 the following inf-sup estimate holds

sup
vh∈Wh

∣∣〈A
(
wh

)
, vh

〉∣∣
∥∥vh

∥∥ ≥ α

2

∥∥wh

∥∥
X

for all wh ∈ Wh . (30)

It is well known that the discrete in-sup condition implies that the discrete Galerkin equation
〈
A
(
wh

)
, vh

〉
=
〈
f, vh

〉
for all vh ∈ Wh ,

has unique solutions for all right hand sides f ∈ W ∗ and that the discretization error is quasi-
optimal, i.e. there exists a constant C > 0 such that

∥∥w − wh

∥∥
W

≤ C inf
vh∈Wh

∥∥w − vh

∥∥
W

,

where w ∈ W satisfies A
(
w
)

= f .

Remark 9.4. The approximation and the gap property of assumption 9.1 of the family of subspaces
Wh ⊂ W are equivalent to the existence of two bounded, linear operators, namely an interpolation

operator Πh : W 7→ Wh, and a bridge mapping Bh : Wh 7→ W , which satisfy

∀w ∈ W :
∥∥w − Πh

(
w
)∥∥

W
→ 0 ,

∥∥Id − Bh

∥∥ → 0 , (31)

as h → 0, see [18, Sect. 4.1] and [39, Sect. 11]. Provided we have two such operators on hand, then
the following two estimates are straightforward

inf
wh∈Wh

∥∥w − wh

∥∥
W

≤ C
∥∥w − Πh

(
w
)∥∥

W
→ 0 for h → 0 ,

δ(W, Wh) := sup
wh∈Wh

inf
w∈W

∥∥wh − w
∥∥

W∥∥wh

∥∥
W

≤ C sup
wh∈Wh

∥∥wh − Bh

(
wh

)∥∥
W∥∥wh

∥∥
W

→ 0 for h → 0 .
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Thus, item 1 and 2 of assumption 9.1 hold. In finite element/boundary element framework the
existence of an interpolation estimate is straightforward, since interpolation error estimates are
well established.

We return to particular setting of the coupled variational formulation and start by splitting the
continuous trial space W = X ⊕ N into the following components

X := X(divΓ, Γ) × {0} × {0} × X(curl, Ω) × H (curlΓ, Γ) ,

N := {0} × N(curl, Ω) × N(divΓ, Γ) × {0} × {0} ,

and note that the discrete trial Wh space is approximating in W due to lemma 7.1, lemma 7.2
and lemma 7.3. Thus part 1 of assumption 9.1 holds true.

Furthermore, we split the discrete trial space Wh = X h ⊕ N h according to

X h := Xh(divΓ, Γh) × {0} × {0} × Xh(curl, Ωh) × E1
1(Γh) ,

N h := {0} × Nh(curl, Ωh) × Nh(divΓ, Γh) × {0} × {0} ,

into a non-conforming component X h 6⊂ X and a conforming component N h ⊂ N , for which
δ (N , N h) = 0 holds. According to remark 9.4, we can rely on a suitable bridge mapping to estab-
lish the gap property 2 of assumption 9.1. A suitable operator can be constructed in a component-
wise fashion on the discrete trial spaces Xh(curl, Ωh) and Xh(divΓ, Γh), see [39, Sect. 11].

First, we define the bridge mapping BΩ : Xh(curl, Ωh) 7→ X(curl, Ω) by BΩ

(
Uh

)
:= P

(
Uh

)
,

Uh ∈ Xh(curl, Ωh). The projection properties from lemma 8.2 and lemma 4.2 yields

(
Π1

ν+1 ◦ BΩ

) (
Uh

)
= Uh , curlBΩ

(
Uh

)
= curlUh ∈ Fν(Ωh) ,

for all Uh ∈ Xh(curl, Ωh). Thus, lemma 8.1 permits us to estimate

∥∥Uh − BΩUh

∥∥
L2(Ω)

=
∥∥(Π1

ν+1 − Id
)
BΩ

(
Uh

)∥∥
L2(Ω)

≤ Ch
∥∥BΩUh

∥∥
H1(Ω)

≤ Ch
∥∥curlUh

∥∥
L2(Ω)

,
(32)

where the constant C > 0 only depends on Ω, ν, and the shape regularity of Ωh.
The same construction can also be used for Xh(divΓ, Γh). We introduce the bridge mapping

BΓ : Xh(divΓ, Γh) 7→ X(divΓ, Γ) by BΓ

(
µh

)
:= P

Γ
h

(
µh

)
, µh ∈ Xh(divΓ, Γh). As above, using the

lemma 8.4 and lemma 4.4, we obtain

(
Φ2

ν ◦ BΓ

) (
µh

)
= µh , divΓ BΓ

(
µh

)
= divΓ µh ∈ Qν(Γh) ,

for all µh ∈ Xh(divΓ, Γh). A straightforward application of lemma 8.3 yields the following estimate

∥∥µh − BΓ

(
µh

)∥∥
L2(Γ)

=
∥∥(Φ2

ν − Id
) (

µh

)∥∥
L2(Γ)

≤ Ch1/2
∥∥BΓ

(
µh

)∥∥
H

1/2

⊥ (Γ)

≤ Ch1/2
∥∥divΓ µh

∥∥
H−1/2(Γ)

,
(33)

with C > 0 depending only on Γ, ν and the shape regularity of the meshes. Thus we define the
bridge mapping

B : Wh 7→ W , B
(
µ⊥

h ,U0
h, µ0

h,U⊥
h ,ph

)
:=
(
BΓ

(
µ⊥

h

)
,U0

h, µ0
h,BΩ

(
U⊥

h

)
,ph

)
,

for µ⊥
h ∈ Xh(divΓ, Γh), µ0

h ∈ Nh(divΓ, Γh), U⊥
h ∈ Xh(curl, Ωh), U0

h ∈ Nh(curl, Ωh), and
p ∈ E1

1(Γh). Combining the estimates (32), (33) we end up with

δ (W , Wh) ≤ sup
wh∈Wh

∥∥wh − B
(
wh

)∥∥
W∥∥wh

∥∥
W

≤ Ch1/2 → 0 , as h → 0 ,

thus we have established the desired gap property for the space Wh.
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10 Convergence

The discrete inf-sup estimate established in section 9 paves the way for a quasi optimal asymptotic
estimate of the discretization error.

Theorem 10.1. There exists a mesh width h0 ∈ H, depending only on Ω, κ, ν and the shape

regularity of the meshes Ωh, such that for every h < h0 the discrete problem (29) has a unique

solution (Eh, ϑh,ph) ∈ E1
ν+1(Ωh)×Fν(Γh)×E1

1(Γh), which is quasi optimal in the following sense

∥∥E− Eh

∥∥
H (curl, Ω)

+
∥∥λ − λh

∥∥
H−1/2(divΓ, Γ)

+
∥∥p − ph

∥∥
H (curlΓ, Γ)

≤ C inf

{ ∥∥E− Vh

∥∥
H (curl, Ω)

+
∥∥λ − µh

∥∥
H−1/2(divΓ, Γ)

;

Vh ∈ E1
ν+1(Ωh), µh ∈ Fν(Γh)

}
,

with a constant C > 0 independent of (E, ϑ,p) and h ∈ H.

Proof. In order to prove the quasi optimality estimate we have to verify all assumptions from
theorem 9.3. The roles of W, Wh are now played by W , Wh and the spaces X, Xh and N, Nh have
to be replaced by X , X h and N , N h. Continuity, compactness and injectivity can be obtained
directly from section 6. The approximation and the gap property for Wh have already been
established in section 9. Eventually, we obtain h-uniform stability according to (30) for â on the
family Wh, h ∈ H, provided that h is sufficiently small.

Furthermore, from lemma 8.4 and 8.2 we obtain the following h-uniform equivalence of norms

∥∥(µ⊥
h ,V0

h, µ0
h,V⊥

h ,qh

)∥∥
W

≍
∥∥(V⊥

h + V0
h, µ⊥

h + µ0
h,qh

)∥∥
Y

∀
(
µ⊥

h ,V0
h, µ0

h,V⊥
h ,qh

)
∈ Wh ,

where the space Y is defined by Y := H (curl, Ω) × H−1/2(divΓ, Γ) × H (curlΓ, Γ) and endowed
with its natural graph norm.

Based on the discrete inf-sup estimate on the space Wh, we get for h0 < h

sup
(Vh,µh,qh)∈E1

ν+1
(Ωh)×Fν(Γh)×E1

1
(Γh)

∣∣∣ a reg
κ

(
(Eh, λh,ph), (Vh, µh,qh)

) ∣∣∣
∥∥(Vh, µh,qh)

∥∥
Y

≥ C sup
(µ⊥

h ,V0
h,µ0

h,V⊥
h ,qh)∈Wh

∣∣∣ â reg
κ

(
(λ⊥

h ,E0
h, λ0

h,E⊥
h ,ph), (µ⊥

h ,V0
h, µ0

h,V⊥
h ,qh)

) ∣∣∣
∥∥(µ⊥

h ,V0
h, µ0

h,V⊥
h ,qh

)∥∥
W

≥ C
∥∥
(
λ⊥

h ,E0
h, λ0

h,E⊥
h ,ph

)∥∥
W

≥ C
∥∥(Eh, λh,ph)

∥∥
Y

,

with constants independent of the functions and h ∈ H. From Babuška’s theory [6], we conclude
the error estimate from the theorem.

Note that the auxiliary variable p does not show up on the right hand side of the quasi optimality
estimate. This is guaranteed by p = 0 ∈ E1

1(Γh). However, we can not simply drop the auxiliary
variable from (26), since the quasi-optimality estimate in theorem 10.1 is an asymptotic estimate,
which only holds under sufficient approximation properties of the space Wh.

The main prerequisite for establishing orders of convergence of best approximations in finite
element spaces are assumptions on the regularity of solutions of the continuous problem (26). We
will assume that both the electric and the magnetic fields E, H := (iωµr)

−1curl E belong to Hs(Ω)
for some s > 0. We point out that the regularity of solutions of Maxwell’s equations depends on
the discontinuities of the material parameters εr and µr (cf. [29]).

It is reasonable to demand that the discontinuities of εr and µr be resolved by the meshes Ωh.
That is, if Ωi, i = 0, . . . , M , M ∈ M, are subdomains of Ω on which both material parameters are
smooth, then Ωh|Ωi

must supply a valid triangulation of Ωi. Then we can exploit curl E = iκµrH

to see that curlE is locally in Hs(Ωi), i = 1, . . . , M . Globally curlE is at least contained in
Hmin{s,1/4}(Ω).
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Lemma 10.2. If E,H ∈ Hs(Ω) for some s > 0, and if the jumps of εr and µr are resolved by

all triangulations, we find a constant C > 0 depending on only on εr, µr, Ω, ν and the shape

regularity of the meshes Ωh such that

∥∥E − Π1
ν+1

(
E
)∥∥

H (curl, Ω)
≤ Chmin{ν+1,s}

(
∥∥E
∥∥

Hs(Ω)
+

M∑

i=1

∥∥H
∥∥

Hs(Ωi)

)
.

Proof. For a proof see [39, Lem. 12.2].

Lemma 10.3. Assume that the meshes Ωh resolve the discontinuities of both εr and µr, that

H,E ∈ Hs(Ω) and that Einc is smooth. Then

∥∥ϑ − Φ2
ν

(
ϑ
)∥∥

H−1/2(divΓ, Γ)
≤ Chmin{ν+1,s}

(
∥∥E
∥∥

Hs(Ω)
+

M∑

i=1

∥∥H
∥∥

Hs(Ωi)
+
∥∥Einc

∥∥
Hs(Ω)

)
,

where C > 0 depends neither on H, E, Einc nor on h ∈ H

Proof. For a proof see [39, Lem. 12.3].

The two previous lemma along with the quasi optimality estimate from theorem 10.1 imply the
convergence of the Galerkin solutions in E1

ν(Ωh) × Fν(Γh) × E1
1(Γh) of the order O

(
hmin{ν+1,s}

)

in the natural energy norms as h → 0.
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[6] I. Babuška, Error bounds for the finite element method, Numer. Math., 16 (1971), pp. 322–
333.

[7] A. Bendali, Boundary element solution of scattering problems relative to a generalized

impedance boundary condition, in Partial differential equations: Theory and numerical so-
lution. Proceedings of the ICM 98 satellite conference, Prague, Czech Republic, August 10-
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