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Absract

A quantum network is constructed of straight quantum wires- the leads,
of constant width,- and quantum wells, which play roles of the vertex domains
of the network. Basic element of the network is the junction: a detail of the
network consisting of a single compact quantum well and few semi-infinite
wires attached to it. In the theoretical study of the one-body transport on a
junction, the role of the Hamiltonian is played by the one-body Schrödinger
operator. In case when the corresponding potential is a real constant in the
wires and is a piecewise continuous bounded real function on the quantum
well, the transport problem is reduced to the one-body scattering problem.

In this paper we suggest a semi-analytic perturbation procedure which
permits to calculate the one- body scattering parameters for arbitrary junc-
tion, based on a specially selected intrinsic large parameter. This procedure
gives us an approximate scattering matrix. The suggested analytic pertur-
bation procedure is applicable to any junction based on a compact vertex
domain, with piece-wise smooth boundary. Scattering matrix of a thin junc-
tion is approximated by the scattering matrix of the corresponding solvable
model.

1 Introduction

In this paper we denote by Ωs the vertex domains ( the quantum wells) and by
ωm the leads (quantum wires ), of equal width δ connecting the wells to each
other or extending to infinity. It is convenient to assume, that the domains
and the leads are separated from each other by imaginable orthogonal bottom
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sections γm, ∪m γm = Γ, see Fig. 1 below. The dynamic of a single electron
on the network Ω : {∪sΩs}∪{∪mωm} is described by the Schrödinger equation
which is transformed, after separation of time and scaling of energy E →
λ = 2m0E~−2, to the spectral problem for the Schrödinger operator L on the
network:

Lψ = − 1

2µ
(∇+ A)2 ψ +HR ψ + Vψ = λψ, (1)

where m0 is the conventional electron mass, and µ = m∗/m0 is the ratio
of the effective mass and the conventional mass. The magnetic potential
A and the Rashba Hamiltonian, see [1] are continuous and vanish on the
wires, the potential V is a real constant Vδ on the wires and it is a piecewise
continuous function Vs on the quantum wells Ωs. We consider hereafter a
star shaped network - a junction- with a single well Ωint (the inner part of
the network), and few quantum wires ωn attached to it. Hereafter we denote
by ω := ∪n ωn = Ω\Ωint the “exterior part” of the network.

Theoretical analysis of the electron transport problem in the junction is
usually reduced to one-electron scattering problem, see [1-3], for the pair of
Hamiltonians: the one electron Schrödinger operator L on the whole junction
Ω and the splitting of it L → Lint ⊕ lω := L0 which is an orthogonal sum of
Lint = L|L2(Ωint) and lω = L|L2(ω), obtained via imposing of additional zero
boundary condition - a mathematical version of the “solid wall” - on Γ. The
part

lω := −2µ−1 4+Vδ

of the split operator on the exterior part of the junction plays a role of a
standard unperturbed Hamiltonian in the above scattering problem. This
scattering problem is a sophisticated perturbation problem for the opera-
tor L0 which has embedded eigenvalues. Under the perturbation - removing
the solid wall on Γ- the standing waves in the vertex domain Ωint are bred
with the running waves in the wires, resulting in resonances which define
the resonance character of the transmission across the junction. Analyti-
cal calculation of the scattering matrix of the two-dimensional junction is a
difficult mathematical problem concerning perturbation of embedded eigen-
values. For practical needs of mathematical design of quantum networks with
prescribed transport properties physicists substitute the networks by quan-
tum graphs, with an appropriate boundary condition at the vertices, see
[3, 4, 5]. Validity of that solvable model was confirmed by smooth approxi-
mation of the graph by thin manifold shrinking to the graph, see for instance
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[6, 7]. This analysis showed that, in particular, for uniform shrinking, the
eigenvalues, at the lower spectral threshold, λ = 0 of the two-dimensional
Laplace equation on the manifold - the “fattened graph”, with Neumann
boundary conditions, - converge to the eigenvalues of the one-dimensional
Schrödinger equation on the graph, with the Kirchhoff boundary condition
at the vertex a :

∑
s
dψs

dx
(a) = 0. This mathematical result is proved in [7],

and remains valid for various spectral problems on fattened graphs, in par-
ticular, for the spectral problem of diffusion, where the spectral properties
of the relevant second order partial differential operator near the threshold
λ = 0 are important 1

Contrary to diffusion, scattering of electrons in quantum networks is ob-
served on the small, for low temperature, essential spectral interval centered
at the Fermi level [9] which can be situated well above the lower threshold.
In [10, 11] the resonance mechanism of conductance across the junction is
considered. For thin junction the role of main detail of the transmitting
mechanism is played by the resonance eigenfunction ϕ0, which corresponds
to the eigenvalue λ0 of the Schrödinger operator on the vertex domain, which
is the closest to the scaled Fermi - level ΛF . The magnitude of the trans-
mission coefficient is defined by the shape of the resonance eigenfunction of
the Schrödinger operator on the vertex domain of the junction. The reso-
nance mechanism permits to interpret the phenomenological parameter in
the boundary condition suggested by Datta ([2]) for T-junction.

In this paper we suggest a modified analytic perturbation procedure for
calculation of the scattering matrix of arbitrary junction, on a given essential
interval centered at the Fermi level and containing no spectral thresholds.
For thin junction the role of the first step - “jump-start” - in this analytic
perturbation procedure is played by the solvable model of the junction which
is completely fitted based on spectral data of the Schrödinger operator on
the vertex domain of the junction.

2 Scattering in Quantum Networks

Consider a junction Ω constructed of the vertex domain - a quantum well Ωint

- and the straight leads - quantum wires ωm, of equal width δ connecting the
well to the infinity, ∪mωm := ω. It is convenient to assume, that the domain

1Note that in [8] a violation of some version of Kirchhoff boundary condition is noticed
for electrons on a quantum network.
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Figure 1: A junction.

Ωint and the wires ωm are separated from each other by imaginable orthogonal
bottom sections γm, ∪mγm = Γ, see (2).

The dynamic of a single electron on the network is governed by the
Schrödinger equation which becomes equivalent, after separation of time
and scaling of energy E → λ = 2m0E~−2, to the spectral problem for the
Schrödinger operator L on Ω, see below (1).

The role of the wave function is played by the 2-spinor ψ. The spin-orbital
interaction is defined by the symmetrized Rashba “Hamiltonian”:

HR = α(x)[σ, p] + [σ, p]α(x), p = i∇,

containing the Rashba - factor α, see [1], defined by the magnitude of the
normal component of electric field. We assume that the factor vanishes near
the boundary ∂Ω and on the wires. Hence the corresponding Schrödinger
equation has the form (1). We assume that the temperature is low and the
Fermi level ΛF = 2m0EF~−2 lies deep enough below the potential on the
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complement R3\Ω, to assume that ψ vanishes on the boundary ∂Ω of the
network. The above one-electron Hamiltonian L is selfadjoint in the Hilbert
space L2(Ωint∪ω) of all square-integrable functions. The transport properties
of the junction are defined by the structure of the scattered waves - the
eigenfunctions of continuous spectrum of L. We consider also the Schrödinger
equation Lintψ = λψ, on the quantum well Ωint with Lint defined by the same
magnetic field, the potential and the Rashba term as L, and additional zero
boundary condition on Γ.

The one - body transport problem for the quantum network is solved on
the spectral interval ∆ if all scattered waves are constructed for the values of
energy λ ∈ ∆. For given temperature T an essential spectral interval ∆T :=
∆ is centered on the scaled Fermi level, see [9], EF → ΛF = 2m0E

F~−2, as

∆ =
[
ΛF − 2m0κT ~−2, ΛF + 2m0κT ~−2

]
. (2)

Hereafter we assume that neither of spectral thresholds π2l2δ−2 + Vδ is sit-
uated on the ∆. For given scaled Fermi level the spectral branches σl :=
[π2l2δ−2 + Vδ,∞) can be classified into two cathegories : open branches
[π2l2δ−2,∞), corresponding to the lower group of thresholds

π2l2δ−2 + Vδ < ΛF ,

and closed branches, corresponding to the upper group of thresholds

π2l2δ−2 + Vδ > ΛF .

These branches are characterized by the behavior of the corresponding ex-
ponential modes on the leads for λ ∈ ∆

1. Oscillating modes:

χl±(x) := exp
(
±i
√
λ− Vδ − π2l2δ−2 x‖

)
el(x

⊥),

in open branchas of the wires,λ− Vδ − π2l2δ−2 > 0, with cross-section eigen-
functions el(x

⊥) =
√

2/δ sin πlx⊥/δ ~el, l = 1, 2, . . ., 0 < x‖ <∞, 0 < x⊥ <
δ for x = (x⊥, x‖) ∈ ωm, with a constant normalized 2-d spinors ~el in each
wire, and

2. Similar exponentially decreasing modes

ξl(x) := exp
(
−
√
π2l2δ−2 + Vδ − λ x‖

)
el(x

⊥),
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in closed branches of the wires π2l2δ−2 + Vδ − λ > 0 .
The above modes satisfy formally the differential equation :

Lχl± = λχl±, Lξl(x) = λξl(x),

and vanish on both shores of the leads. The scattered waves are obtained via
matching on Γ :=

{
x : x‖ = 0

}
of the solution of the Schrödinger equation

Lintψ = λψ in Ωint, ψ
∣∣∣
∂Ωint\Γ

= 0, to the scattering Ansatz ~ψ(x, λ) =

{ψml (x, λ)} in the wires ωm. The scattering Ansatz on the exterior part
ω := ∪mωm of the network is combined of the exponential above modes as

ψml (x) ={
χl+(x) +

∑
π2r2/δ2<λ S

m,m
l,r χr−(x) +

∑
π2r2/δ2>λ s

m,m
l,r ξr(x), x ∈ ωm∑

π2r2/δ2<λ S
m,n
l,r χr−(x) +

∑
π2r2/δ2>λ s

n,m
l,r ξ

r(x), x ∈ ωn, n 6= m.
(3)

The subspaces ∨
π2l2δ−2+Vδ−ΛF<0

el := E+ ⊂ L2(Γ),

∨
π2l2δ−2+Vδ−ΛF>0

el := E− ⊂ L2(Γ)

are called the entrance subspaces of open and closed channels, respectively,
E+ ⊕ E− = L2(Γ). The subspaces H± := E± × L2(0,∞) ∈ L2(ω) are called
the channel spaces of the open and closed channels. They may be interpreted
as invariant subspaces of the unperturbed Schrödinger operator lω in L2(ω),
defined by the restriction of the differential expression L onto L2(ω

out) with
zero boundary condition ( “solid wall”) on Γ and zero boundary conditions
on both shores of the leads.

Matching on Γ the scattering Ansatz ~ψ to the solution of the Schrödinger
equation inside the quantum well gives an infinite linear system for the co-
efficients Snlr, s

n
lr, see [12]. Formally this system can be solved, if the Green

function Gint of the Schrödinger operator Lint on Ωint, with zero boundary
condition, and Meixner conditions at the inner angles of the boundary, is
constructed.

Really, according to general theory of the second order linear partial equa-

tions, see [13], the solution u of the boundary problem with the data u
∣∣∣
Γ

= uΓ
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is represented by the Poisson map with the Poisson kernel:

u(x) =

∫
Γ

Pint(x, γ)uΓ(γ)dγ = −
∫

Γ

∂Gint(x, γ)

∂nγ
uΓ(γ)dγ

∣∣∣
Γ
.

The corresponding boundary current is calculated formally as

∂u

∂n

∣∣∣
Γ

= −
∫

Γ

∂2Gint(x, γ)

∂nx∂nγ
uΓ(γ)dγ

∣∣∣
Γ

:= DN intuΓ.

The operator DN int is called Dirichlet-to-Neumann map of Lint. It is cor-
rectly defined on the appropriate Sobolev class on Γ, see [14, 15]. More
about modern DN- techniques and i’s applications in spectral analysis can
be found in [16, 17, 18, 19, 20]. In this paper we study connection between
the one-body scattering matrix and the DN-map on the two-dimensional
junction. For “thin” junctions the connection is used in transport problems
in [11, 21, 22].

Denoting byK± the exponents of the above Ansatz in the open and closed
channels in the wires and by S, s the coefficients in front of the corresponding
exponentials, we represent the Ansatz for the scattered wave on the leads in
form

Ψ(x, ν) = eiK+x ν + e−iK+x Sν + e−K−x sν (4)

In fact only the oscillating component of the scattered wave in the open
channels contains an essential information on details of the scattering process.
The direct problem of scattering is: to find the coefficients S in front of the
oscillating exponentials e−iK+x Sν - the scattering matrix. In case when the
solid wall is erected on the bottom sections Γ = ∪mγm of the wires, the
Scattering matrix is −I. The removal of the wall results in breeding of the
standing waves on the quantum well with the running exponential waves in
the wires. This breeding generates the exponentially decreasing “evanescent
waves” e−K−x sν, which do not contribute to results of scattering at infinity,
but affect the shape of the oscillating modes and add serious computational
obstacles, see for instance [12].

The difficulty of the direct scattering problem is defined by the fact, that
the above matching is a major perturbation of

LΩint
⊕ lω := L0 −→ L,

caused by the removal of the “solid wall” on Γ via replacement of the zero
boundary condition by the matching condition. It is a typical perturbation
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problem on continuous spectrum, for an operator L0 which has embedded
eigenvalues. Breeding of the standing waves in the quantum well with the
running waves in the wires gives non-square -integrable resonance states,
which define resonance character of the transmission across the quantum
well. Unfortunately this breeding can’t be interpreted in terms of the spec-
tral theory of self-adjoint operators. Nevertheless we are able to suggest an
algebraic version of the analysis of this breeding, based on the corresponding
Krein formula.

3 Krein formula for the scattering matrix

Krein formula for the scattering matrix which corresponds to the general-
ized resolvent of a general symmetric operator was obtained first in [27]. In
[28] this formula was used in analysis of zero-range solvable models. In [3]
the Krein formula is used for analysis of the one-dimensional model of the
quantum network in form of a quantum graph. In this paper we aim on the
problem of fitting of the model suggested in [3].

We begin with derivation of the Krein formula for the scattering matrix
of a realistic two-dimensional junction. The parameters of the fitted solvable
model of the junction can be selected based on comparison of the special
rescription of the Krein formula of the junction, see next section, Theorem
3.1, with the corresponding formula of the model.

Consider the decomposition of the cross-section subspace E := L2(Γ) into
an orthogonal sum of the entrance subspaces E± of the open and closed chan-
nels. Assuming that the Dirichlet-to-Neumann mapDN int of the Schrödinger
operator Lint is known, construct the matrix representation of DN int with
respect to the orthogonal decomposition E = E+ ⊕ E−, denoting by P± the
corresponding orthogonal projections I = P+ ⊕ P−:

DN int =

(
P+DNP+ P+DNP+

P−DNP+ P−DNP−

)
:=

(
DN++ DN +−
DN−+ DN−−

)
. (5)

The Cauchy data of the scattering Ansatz on the bottom sections Γ are:

Ψ(ν)
∣∣∣
Γ

= (|+ S)ν + sν,

Ψ′(ν)
∣∣∣
Γ

= iK+(| − S)ν −K−sν, (6)
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Inserting the boundary values of the Scattering Ansatz on the bottom sec-
tions into the DN-map, we obtain:

DN {[I + S]ν + sν} =

= iK+[I − S]ν −K−sν.

The orthogonal components of the result in E± are equal to

DN++[I + S]ν +DN+−sν = iK+(I − S)ν,

DN−+[I + S]ν +DN−−sν = −K−sν,

respectively. If DN−− +K− is invertible on a complex neighborhood of the
essential spectral interval, that gives

sν = − I

DN−− +K−
DN−+[I + S]ν,

which implies the following Krein formula for the scattering matrix, with the
denominator preceding the numerator:

S =
iK+ −

[
DN++ −DN+−

I
DN−−+K−

DN−+

]
iK+ +

[
DN++ −DN+−

I
DN−−+K−

DN−+

] (7)

The expression

DN++ −DN+−
I

DN−− +K−
DN−+ := DN F (8)

has a structure typical for the classical Krein formula and can be interpreted
as a Dirichlet-to-Neumann map of an intermediate Hamiltonian, so that

S =
iK+ −DN F

iK+ +DN F
. (9)

The formula (9) has a typical form of the scattering matrix for the one-
dimensional scattering systems, see for instance [23]. Similar formula plays
an important role in modern approach to the one-dimensional inverse spectral
problem, see [24, 25].
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To transform the Krein formula (7) of the two-dimensional scattering
system to the convenient quasi-one-dimensional form (9), we have to analyze
the expression (8) in details.

The intermediate Hamiltonian was introduced in [11, 21, 22] as a compo-
nent LF of the splitting

L −→ lF ⊕ LF

of L defined by an additional “partial” zero boundary condition imposed at
the bottom sections ∪mγm := Γ onto the elements from the domain of L:

P+u
∣∣∣
Γ

= 0. (10)

Here lF , LF are selfadjoint operators in H+, H− ⊕ L2(Ωint) respectivey, see
[22]. The absolutely continuous spectra of lF , LF coincide with the union of

all open and closed branches σl =
[
π2 l2

δ2
+ V∞, ∞

)
respectively :

σ(lF ) = ∪open σl, σac(LF ) = ∪closed σl.

It is proven in [22], that the restriction

PL2(Ωint)[LF − λI]−1PL2(Ωint)⊕H−

of the resolvent of LF , acting as an operator from L2(Ωint)⊕H− onto L2(Ωint)
can be represented by an integral operator with a kernel GF . Then the
statement (7) can be verified based on the Poisson formula for the solution
of an intermediate boundary problem for the Schrödinger equation

Lu− λu = 0, P+u(x) = 0 if x > 0, P+u
∣∣∣
Γ

= u+ ∈ E+.

u(x) = −
∫

Γ

∂GF

∂nγ
(x, γ) u+dΓ, x ∈ Ωint.

Then, denoting by u± the components of u
∣∣∣
Γ

in E±, and taking into account

that P−
∂u
∂nγ

= −K−u−, we obtain:

(
DN++ DN +−
DN−+ DN−−

)(
u+

u−

)
=

(
P+

∂u+

∂nγ

−K−u−

)
.
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One can see that the expression (8) is the Shur complement, ([26]), of the
matrix (

DN++ DN +−
DN−+ DN−− +K−

)
This implies the announced statement, once we define the DN- map of the
intermediate Hamiltonian as

P+
∂u+

∂nγ

∣∣∣
Γ

:= DN Fu+. (11)

The DN- map of the selfadjoint operator LF has a negative imaginary part
in the upper half-plane =λ > 0 and simple poles at the eigenvalues of LF .
Practically, for relatively thin wires, see [22], we are able to substitute the
DN- map DN F in the above Krein formula (9) for the scattering matrix by
the rational part

DN F −→ DN F
∆ (12)

on the essential spectral interval ∆, with the same poles and residues on ∆.
The corresponding approximate scattering matrix takes the form

S(λ) → S∆(λ) =
iK+ −DN F

∆

iK+ +DN F
∆

. (13)

Rational expressions of the above form (13) are typical for one-dimensional
scattering systems. Sometimes they can be interpreted as scattering matrices
of zero-range solvable models with “Inner Hamilonian”, see [27, 28]. These
zero-range models are automatically fitted on the essential spectral interval
∆, if DN F

∆ serves a rational approximation of DN F on ∆.
To construct the corresponding model for arbitrary junction, we need

explicit expression for the poles and residues of the DN-map DN F of the
intermediate Hamiltonian. While the corresponding data for Lint can be ob-
tained via straightforward computing with standard programs, the similar
problem for the intermediate Hamiltonian appears to be more difficult. For-
tunately, for “relatively thin” junctions, the spectral data can be obtained
via special analytic perturbation procedure based on a certain “modified”
rescription of the Krein formula (8).
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4 Analytic perturbation procedure for the

Krein denominator and compensation

of singularities.

Both terms in the left side of (8) have singularities on the spectrum of the
non-perturbed operator Lint. It is normally expected, that the singularities
of the first and second term at the eigenvalues of Lint compensate each other,
so that only the zeros of the denominator DN−− +K− arise as singularities
of DN F . In this section we produce analysis supporting this statement, see
a one-dimensional version of the statement in [31]. But we obtain in course
of the relevant calculation even more important “byproduct”: we derive an
algebraic equation for the eigenvalues of the intermediate Hamiltonian and
calculate the residues at the corresponding poles of the intermediate DN-
map. Then we are able to do the first step announced above, calculating,
based on (9), the scattering matrix of a “relatively thin” junction.

For given temperature T we consider an essential spectral interval ∆T :=
∆, see (2). We assume that the temperature is low, so that ∆ is situated
inside the conductivity band ∆F between the lower threshold λmin of the
closed channels and the upper threshold λmax of the open channels

∆ ⊂ (λmax, λmin) = ∆F .

Our aim is: to construct on ∆ a convenient local “quasi-one-dimensional”
representation of the intermediate DN-map and for the scattering matrix
of the junction, (9), with compensated singularities inherited from the Lint.
Later, in next section, we will use this construction as a basement for an
analytic perturbation procedure, with an “intrinsic” large parameter, to cal-
culate approximately the scattering matrix of arbitrary junction.

Let us present the DN-map DN of Lint on the essential spectral interval
as a sum

DN int =
∑
λs∈∆

∂ϕs

∂n

∣∣∣
Γ
〉〈∂ϕs

∂n

∣∣∣
Γ

λ− λs
+K := DN∆ +K (14)

of the rational expression constituted by the polar terms with singularities at
the eigenvalues λs ∈ ∆ of the operator Lint and an analytic operator-function
K on G∆. We will also use the operators obtained from DN int via framing
of it by the projections P±, for instance:

P+DN intP− = P+DN∆P− + P+KP− = DN∆
+− + K+−.
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We introduce also the linear hull E∆ =
∨
s {ϕs} - an invariant subspace of

Lint corresponding to the essential spectral interval ∆ and the part L∆ :=∑
λs∈∆ λsϕs〉〈ϕs of Lint in it.
To calculate the intermediate DN-map (8) in terms of the standard DN -

map of Lint we have to solve the equation:

[DN−− +K−]u = DN−+g (15)

on the essential spectral interval ∆. It can be solved based on Banach prin-
ciple if K− can play a role of a large parameter, so that the operator

[K−− +K−]−1 (16)

exists on ∆. Then, due to continuity of K−−, K− there exist also a complex
neighborhood of ∆ where the inverse exists. We assume that this complex
neighborhood is G∆. The junction, for which the condition (16) is fulfilled,
we call relatively thin junction, based on the following motivation. The DN-
map of Lint is homogeneous degree −1. It acts from W

3/2
2 (Γ) to W

1/2
2 (Γ),

see [14]. If Ωint has a small diameter d then, the norm of the correcting
term K is estimated as Const 1/d. The same estimate remains true for

P−KP− := K−−. The exponent K− also acts from W
3/2
2 (Γ) to W

1/2
2 (Γ) and

the norm of its inverse is estimated as Const δ. Then the W
3/2
2 − norm of

K−1
− K−− is estimated as Const δ/d. Hence, in particular, K− + K−− =

K−
[
I +K−1

− K−−
]

is invertible if δ/d << 1, see more comments in [22].
Notice, that for an arbitrary junction the auxiliary Fermi level ΛF

1 := Λ1 can
be selected such that the condition (16) is fulfilled. We will use this option
in the following section, when calculating the scattering matrix. Now we
proceed in this section assuming that (16) is fulfilled.

Denoting by T the map

T =
∑
λs∈∆T

ϕs〉〈
∂ϕs
∂n

,

and

T
I

K−− +K−
T+ := Q(λ) : E∆ → E∆.

We also denote (
P+ −K+−

I

K−− +K−
P−

)
:= J (λ).
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Then we discover, after some cumbersome calculation, that all singularities
in the Krein formula, arising from the eigenvalues λs of Lint are compensated.

Theorem 4.1 The Krein formula (8) for the intermediate DN - map, can
be re-written, for a thin junction, on the essential spectral interval, as:

DN F = K++ −K+−
I

K−− +K−
K−+ + J T+〉 I

λI − L∆ +Q(λ)
〈TJ +. (17)

The representation (17) remains valid on a complex neighborhood G∆ of the
essential spectral interval.

Remark The announced rescription (17) of the Krein formula (8) for the DN-
map of the intermediate Hamiltonian, has on the essential spectral interval
only non-compensated singularities, at the eigenvalues of the intermediate
Hamiltonian, calculated as zeros of the denominator λI∆ − L∆ + Q(λ) :=
D(λ):

D(λFs ) νFs = 0.

These singularities coincide with the eigenvalues of the intermediate Hamil-
tonian. We call the above formula (17) for DN F the modified Krein formula.
Inserting (17) into the above formula (9) gives a convenient representation for
the scattering matrix of the relatively thin junction, which permits, in par-
ticular, to calculate the resonances based on eigenvalues of the intermediate
operator.

In case of one-dimensional zeros of the denominator D the corresponding
residues are calculated as projections onto the subspaces

EFs = J (λFs )T+ νFs .

For multidimensional zeros of the denominator, D(λFs )NF
s = 0, dim NF

s > 1
the residues are projections onto the images of the corresponding null-spaces
NF
s =

∨
s ν

N
s

EFs = J (λFs )T+ NF
s .

Proof We begin with the standard Krein formula (8) for the DN-map of the
intermediate Hamiltonian LF on the essential spectral interval ∆. Denote
by DN∆ the component of the DN-map of Lint on ∆ defined by the formula
(14), and introduce similar notations for the matrix elements of DN with
respect to the orthogonal decomposition E = E+ ⊕ E−, for instance

DN+− = DN∆
+− +K+−.
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To calculate explicitly the second addendum in (8), we re-write (15)as:[
DN∆

−−u+ (K− +K−−)
]
u =

[
DN∆

−+ +K−+

]
g.

If (K− +K−−) is invertible on ∆, then the above equation is equivalent to:

I

K− +K−−
DN∆

−−u+ u =
I

K− +K−−
[
DN∆

−+g +K−+g
]
. (18)

Denote
〈∂ϕs

∂n
, u〉

λ− λs
:= vs,

∑
s

ϕs〉vs =
I

λI∆ − L∆
Tu := v,

and take into account that

DN∆
−+ = P−T

+ I

λI∆ − L∆
TP+.

Then multiplying (18) by T we obtain an equation for v:[
λI∆ − L∆ +Q(λ)

]
v = Q

I

λI∆ − L∆
TP+g + T

I

K− +K−−
K−+g.

This gives the following representation for v

v =
I

λI∆ − L∆ +Q(λ)

[
Q

I

λI∆ − L∆
TP+g + T

I

K− +K−−
K−+g

]
.

and permits to calculate, based on (18)

u =

− I

K− +K−−
T+v +

I

K− +K−−
T+ I

λI∆ − L∆
TP+g +

I

K− +K−−
K−+g =

− I

K− +K−−
T+ I

λI∆ − L∆ +Q(λ)

[
Q

I

λI∆ − L∆
TP+g + T

I

K− +K−−
K−+g

]
+

I

K− +K−−
T+ I

λI∆ − L∆
TP+g +

I

K− +K−−
K−+g

Now we substitute this expression into the formula (8):

DN Fg = DN∆T
++g +K++g −DN∆T

+−u−K+−u = (19)
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P+T
+ I

λI∆ − L∆
TP+g+K++g−P+T

+ I

λI∆ − L∆
TP−u−K+−u := I1+I2+I3+I4,

where

I3 = −P+T
+ I

λI∆ − L∆
TP−u =

−P+T
+ I

λI∆ − L∆
Q(λ)

I

λI∆ − L∆
TP+g−

−P+T
+ I

λI∆ − L∆
T

I

K− +K−−
K−+g+

+P+T
+ I

λI∆ − L∆
Q

I

λI∆ − L∆ +Q
Q

I

λI∆ − L∆
TP+g+

P+T
+ I

λI∆ − L∆
Q

I

λI∆ − L∆ +Q
T

I

K− +K−−
K−+g = I31 + I32 + I33 + I34,

and
I4 = −K+−u =

K+−
I

K− +K−−
T+ I

λI∆ − L∆ +Q(λ)
Q

I

λI∆ − L∆
TP+g+

K+−
I

K− +K−−
T+ I

λI∆ − L∆ +Q(λ)
T

I

K− +K−−
K−+g+

−K+−
I

K− +K−−
T+ I

λI∆ − L∆
TP+g −K+−

I

K− +K−−
K−+g =

I41 + I42 + I43 + I44.

Insert these results into the above formula (19) and collect the terms in the
right side which contain the second power of [λI∆ − L∆]−1:

I31 + I33 = −P+T
+ I

λI∆ − L∆
Q(λ)

I

λI∆ − L∆
TP+g+

+P+T
+ I

λI∆ − L∆
Q

I

λI∆ − L∆ +Q
Q

I

λI∆ − L∆
TP+g =

(20)

−P+T
+ I

λI∆ − L∆

I

λI∆ − L∆ +Q
TP+g.
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This result, combined with I1 yields:

P+T
+ I

λI∆ − L∆
TP+g − P+T

+ I

λI∆ − L∆

I

λI∆ − L∆ +Q
TP+g =

P+T
+ I

λI∆ − L∆ +Q
TP+g := J1g. (21)

Now we combine the terms I32 + I34 and I41 + I43 containing [λI∆ − L∆]−1:

I32 + I34 = −P+T
+ I

λI∆ − L∆

[
−I +Q

I

λI∆ − L∆ +Q

]
T

I

K− +K−−
K−+g =

−P+T
+ I

λI∆ − L∆ +Q
T

I

K− +K−−
K−+g := J2g, (22)

I41 + I43 = K+−
I

K− +K−−
T+

[
−I +

I

λI∆ − L∆ +Q
Q

]
TP+g =

−K+−
I

K− +K−−
T+ I

λI∆ − L∆ +Q
TP+g := J3g. (23)

We see that no terms left in the right side of (19) with singularities [λI∆ −
L∆]−1 inherited from the unperturbed operator - all these singularities are
compensated. Assembling separately the terms J1g, J2g, J3g, I43 contain-
ing [λI∆ − L∆ + Q]−1 and regular terms I2, I44 , we obtain the announced
expression DN Fg

DN Fg = P+T
+ I

λI∆ − L∆ +Q
TP+g−

P+T
+ I

λI∆ − L∆ +Q
T

I

K− +K−−
K−+g−

K+−
I

K− +K−−
T+ I

λI∆ − L∆ +Q
TP+g+

K+−
I

K− +K−−
T+ I

λI∆ − L∆ +Q(λ)
T

I

K− +K−−
K−+g+

K++g −K+−
I

K− +K−−
K−+g =

P+T
+ −K+−

I

K− +K−−
T+〉 I

λI∆ − L∆ +Q(λ)
〈TP+ − T

I

K− +K−−
K−+g+
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K++g −K+−
I

K− +K−−
K−+g (24)

The announced expression (17) for DN F is obtained from the above formula
by introducing the notation P+−K+−

I
K−+K−− := J . The derived formula is

extended onto the complex neighborhood G∆ of the essential spectral interval
due to analyticity. Further analytical continuation is possible as well, but
the estimates of leading and subordinate terms are obviously lost.

The end of the proof
The scattering matrix of the original problem on the essential spectral

interval may be obtained via replacement in (9) the intermediate DN-map
by the expression (17) with compensated singularities. This substitution is
possible for thin junctions, when the exponent K− in closed channels can
play a role of a large parameter, compared with the error K−− of the rational
approximation DN∆ of DN . This condition may be not satisfied for given
Fermi level Λ := Λ0.

5 Intrinsic large parameter and an analytic

perturbation procedure for the scattering

matrix of an arbitrary junction

In fact the choice of the “technical” Fermi level ΛF := Λ0 is in our hands,
so we are able to select another value Λ1 >> Λ0, such that the condition
(16) is fulfilled. The corresponding splitting of the original Hamiltonian
would be defined by the orthogonal decomposition of the entrance space
E =

[
E0

+ ⊕ E1
+

]
⊕E1

−, such that few closed channels with thresholds V∞+ π2l2

δ2

situated between Λ0 and Λ1 are formally included into the lower group of
channels, with an extended entrance subspace E0

+ ⊕ E1
+ := E+. We will

use hereafter the intermediate DN-map DN 1 of the operator L1, defined by
the semi-transparent boundary condition hight Λ1 associated with the above
decomposition of the entrance space L2(Γ) =

[
E0

+ ⊕ E1
+

]
⊕ E1

−.

P+u
∣∣∣
Γ

= 0, with P+ := PE0
+⊕E1

+
.

Denote byK0
+, K

1
± the exponents of the oscillating and decreasing solutions of

the Schrödinger equation in the channels associated with E0
+, E

1
±,respectively.
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Consider the orthogonal decomposition E = E0
+ ⊕ E1

+ ⊕ E1
− and represent

the DN-map DN of Lint by the matrix

DN =

 DN 00
++ DN 01

++ DN 01
+−

DN 10
++ DN 11

++ DN 11
+−

DN 10
−+ DN 11

−+ DN 11
−−

 := DN. (25)

Hereafter we consider the Schrödinger operator (1) on an arbitrary junction
Ω = Ωint∪ω, assuming that the compact domain Ωint has a piecewise smooth
boundary and the Meixner conditions are imposed at the inner corners of the
boundary of Ωint. Consider the rational approximation of the DN-map of the
Schrödinger operator Lint on the essential spectral interval ∆:

DN = DN (∆) +K,

including into DN (∆) the polar terms corresponding to the eigenvalues λs ∈
∆: ∑

λs∈∆

∂ϕs

∂n
〉 〈∂ϕs

∂n

λ− λs
=: DN (∆),

with a properly selected self-adjoint operator C∆ and denote appropriately
the corresponding matrix elements, for instance:

DN 00
++ = DN (∆)00

++ +K00
++.

Now we select, for the junction Ω, the technical Fermi-level Λ1 from the
condition, that the junction is thin, with respect to the new Fermi level Λ1:

Definition We say that the the quantum network is relatively thin on the
level Λ1 if the operator K11

−−+K1
− is invertible on some complex neighborhood

G∆ of the essential spectral interval ∆.

This condition may be substituted by a stronger, but more convenient con-
dition

sup
λ∈G∆

‖ K00
+−(λ) ‖<

√
ΛF

1 − ΛF − 2m0κT ~−2. (26)

If Λ1 is defined from (26), we construct the corresponding decomposition
E = E+ ⊕ E−, with E+ =

[
E+ ⊕ E1

+

]
, E− = E1

−

E =
[
E0

+ ⊕ E1
+

]
⊕ E1

−.
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and define the intermediate Hamiltonian L1 as a non-trivial component of
the corresponding splitting of L:

L = L1
F ⊕ lF1 , (27)

obtained by imposing on Γ the additional boundary condition

P+u
∣∣∣
Γ

= 0.

Note that the trivial part lF1 of this splitting contains additional channels in
the “lover” group of channels : E+ = E0

+ ⊕ E1
+, which correspond to expo-

nentially decreasing modes e−K
1
+xν. The matrix (25) connects the boundary

data Ψ(0), Ψ′(0) of the scattering Ansatz

Ψ(x, λ) = eiK+xν + e−iK+xSν + e−K
1
+xs1

+ν + e−K
1
−xs1

−ν, (28) iK+(ν − Sν)
−K1

+s
1
+ν

−K1
−s

1
−ν

 = DN

 (ν + Sν)
s1
+ν
s1
−ν


Eliminating s1

−ν from the last equation,

s1
−ν =

I

DN 11
−− +K1

−

[
DN 01

−+(ν + Sν) +DN 11
−+s

1
+ν
]

we obtain a finite-dimensional equation for the components of the scattering
Ansatz in E0

+ ⊕ E1
+(
iK+(ν − Sν)
−K1

+s
1
+ν

)
= D̃N

(
(ν + Sν)
s1
+ν

)
.

Here

D̃N :=

(
D̃N 00

++ D̃N 01

++

D̃N 10

++ D̃N 11

++

)
,

where

D̃N 00

++ = DN 00
++ −DN 01

+−
I

DN 11
−− +K1

−
DN 10

−+,

D̃N 01

++ = DN 01
++ −DN 01

+−
I

DN 11
−− +K1

−
DN 11

−+,
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D̃N 10

++ = DN 10
++ −DN 11

+−
I

DN 11
−− +K1

−
DN 10

−+,

D̃N 11

++ = DN 11
++ −DN 11

+−
I

DN 11
−− +K1

−
DN 11

−+.

Eliminating s1
+ν from the second equation we obtain a finite-dimensional

expression for the Scattering matrix of the junction

S(λ) =

iK+ −
[
D̃N 00

++ − D̃N
01

++
I

D̃N 11
+++K1

+

D̃N 01

++

]
iK+ +

[
D̃N 00

++ − D̃N
01

++
I

D̃N 11
+++K1

+

D̃N 01

++

] , (29)

with the denominator preceding the numerator. The ultimate representation
(29) of the scattering matrix is completely finite-dimensional, hence more
convenient for the computational process. The large parameter Λ1 permits
to eliminate the infinite-dimensional part K1

− of K− and obtain a completely
finite-dimensional formula (29) for the scattering matrix, without any ad-
ditional assumptions on geometrical or physical parameters of the network.
Actually essential details of the analytic perturbation process which are still
present in (7) are mostly reloaded by (29) on the direct computing with finite
matrices. Hence the formula (29) opens, in particular, a semi-analytic way
of calculating of transmission coefficients across any junction. Comparison
of the formula (29) with (9) implies the equation

D̃N 00

++ − D̃N
01

++

I

D̃N 11

++ +K1
+

D̃N 01

++ = DN F . (30)

The terms of (30) contain sophisticated singularities inherited from the op-
erator Lint. Again, we are able to transform this expression to another form,
with all singularities compensated. We observe first the compensation sin-
gularities in DN, representing it Krein’s form. Denote

T+ =
∑
λs∈∆

ϕs〉〈P 0
+

∂ϕs
∂n

+ P 1
+

∂ϕs
∂n

,

T− =
∑
λs∈∆

ϕs〉〈P 1
−
∂ϕs
∂n

,
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and consider the rational approximation of DN

DN = DN(∆) +K :

DN++ :=

(
DN 00

++ DN 01
++

DN 10
++ DN 11

++

)
= T +

+

I

λI∆ − L∆
T+ +

(
K00

++ K01
++

K10
++ K11

++

)
,

DN+− :=

(
DN 00

+− DN 01
+−

DN 10
+− DN 11

+−

)
= T +

+

I

λI∆ − L∆
T− +

(
K01

+−
K11

+−

)
,

DN−+ :=

(
DN 10

−+ DN 11
−+

DN 10
−+ DN 11

−+

)
= T +

−
I

λI∆ − L∆
T+ +

(
K10
−+,K11

−+

)
,

Consider the Krein formula for D̃N

D̃N = DN++ −DN+−
I

DN 11
−−(∆) +K11

−− +K1
−
DN−+. (31)

Compensation of singularities in (31) inherited from the spectrum of Lint
can be observed in the same way as the compensation of singularities in (8).
Introduce

T+−
I

K−− +K−
T +
−+ := Q(λ) : E∆ → E∆,

and

P+ −
(
K01

+−
K11

+−

)
I

K11
−− +K1

−
P− := J (λ).

Theorem 5.1 The Krein formula (31) for the D̃N can be re-written on the
essential spectral interval, as:

D̃N =

(
K00

++ K01
++

K10
++ K11

++

)
−
(
K01

+−
K11

+−

)
I

K11
−− +K1

−

(
K01
−+, K11

−+

)
+

J T+〉 I

λI − L∆ +Q(λ)
〈TJ + = KF

∆ +DN F
∆, (32)

with

KF
∆ :=

(
K00

++ K01
++

K10
++ K11

++

)
−
(
K01

+−
K11

+−

)
I

K11
−− +K1

−

(
K01
−+, K11

−+

)
and

DN F
∆ := J T+〉 I

λI − L∆ +Q(λ)
〈TJ + =

∑
λF

s

φFs 〉 〈φFs
λ− λFs

. (33)
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Here λFs are the eigenvalues of the intermediate Hamiltonian which arose
from the eigenvalues of Lint on the essential spectral interval, and φFs are the
projections of the boundary currents of the corresponding normalized eigen-
functions ϕFs of the intermediate Hamiltonian LF onto the entrance subspace
E+ of the open channels,

φFs = P+
∂ϕFs
∂n

∣∣∣
Γ
.

The summation on s in the above formula (33) is spread over all (vector -)
zeros of L∆ − λI∆ + Q(λ) which arose from the eigenvalues of Lint on the
essential spectral interval. The representation (31) remains valid on some
complex neighborhood G∆ of the essential spectral interval.

Note that the expression (30) is the Schur complement, see [26], of the
matrix

D̃N +

(
0 0
0 K1

−

)
=

(
DN 00

++ DN 01
++

DN 10
++ DN 11

++ +K1
−

)
.

Absence of singularities at the spectrum of Lint in (32) is inherited by the
Schur complement. Inserting the Schur complement into (29) gives an explicit
formula for the scattering matrix of the junction in form:

S(λ) =
{
iK+ −

[
DN F

∆ +KF
∆

]} {
iK+ +

[
DN F

∆ +KF
∆

]}−1
, (34)

with the denominator preceding the numerator. The details of this repre-
sentation can be recovered, if needed, from the above theorem 5.1. We leave
this calculation to the reader. Note that the above expression (34) for the
scattering matrix can be simplified if some additional assumption is imposed
on K+, KF

∆.
Definition We call the junction Ω thin in open channels on the essential

spectral interval if
‖ K−1/2

+ ‖ ‖ K−1/2
+ KF

∆ ‖< 1.

Theorem 5.2 If the junction Ω is thin in open channels on the essential
spectral interval, then it can be obtained by the analytic perturbation procedure
from the essential scattering matrix

Sess(λ) = [iK+ −DN F
∆][iK+ +DN F

∆]−1, (35)

where denominator precedes the numerator and the intermediate DN-map
DN F = DN F

∆ +KF
∆ is substituted by the essential polar part DN F

∆.
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Proof Represent the numerator and the denominator of the right side of
(34) as:

iK+ −
[
DN F

∆ +KF
∆

]
=
(
iK+ −DN F

∆

) [
I −

(
iK+ −DN F

∆

)−1KF
∆

]
iK+ +

[
DN F

∆ +KF
∆

]
=
(
iK+ +DN F

∆

) [
I +

(
iK+ +DN F

∆

)−1KF
∆

]
.

Notice that
sup
λ∈∆

‖
(
iK+ +DN F

∆

)−1KF
∆ ‖< 1, (36)

if
‖ K−1/2

+ ‖ ‖ K−1/2
+ KF

∆ ‖< 1

Indeed, denote DN F
∆ := A, KF

∆ := B. Then

‖ I

iK+ + A
Bu ‖≤‖ K−1/2

+

I

iI +K
−1/2
+ AK

−1/2
+

K
−1/2
+ Bu ‖≤

‖ K−1/2
+ ‖ ‖ I

iI +K
−1/2
+ AK

−1/2
+

K
−1/2
+ Bu ‖≤‖ K−1/2

+ ‖ ‖ K−1/2
+ Bu ‖≤

‖ K−1/2
+ ‖ ‖ K−1/2

+ KF
∆u ‖ .

This result implies (36). Now we can represent the scattering matrix as a
product of three factors:

S(λ) =[
I +

(
iK+ +DN F

∆

)−1KF
∆

]−1

Sess(λ)
[
I −

(
iK+ −DN F

∆

)−1KF
∆

]
. (37)

The central factor coincides with the essential scattering matrix, and the left

and right factors contain the small parameter
(
iK+ ±DN F

∆

)−1KF
∆. Hence

the first factor can be decomposed into the geometrically convergent series.
Thus the scattering matrix can be obtained from the essential scattering
matrix via standard analytic perturbation procedure, with the above small
parameter.

The end of the proof
Remark 1 Denote by λ0 the vector zero of the numerator of the essential

scattering matrix: [
iK+ −DN F

∆

]
e0 = 0.
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For the network which is sufficiently thin on the open channels the estimate

sup
λ∈Σε

‖
[
iK+ −DN F

∆

]−1KF
∆ ‖< 1

is valid on a small circle Σε = {|λ− λ0| = ε} centered at λ0. Then, due to
the operator-valued Rouche theorem, [34] the numerators of the original and
the essential scatering matrices have equal total multiplicity of vector zeros
inside Σε, because

sup
Σε

‖ I −
[
iK+ −DN F

∆

]−1 [
iK+ −DN F

∆ −KF
∆

]
‖=

sup
Σε

‖
[
iK+ −DN F

∆

]−1KF
∆ ‖< 1.

Thus the zeros of the original scattering matrix - resonances -of the thin
junction are situated close to the zeros of the essential scattering matrix.
A relevant perturbation procedure may be developed for calculation of the
resonances. Localization of zeros is important for estimation of speed of
transition processes in the junction, if it is used as a switch.

Remark 2 The above statement (35) and the formula (37) permits to
substitute, on the essential spectral interval, the scattering matrix of a thin
junction by the essential scattering matrix. According to [30], the essential
scattering matrix can be interpreted as a Scattering matrix of a solvable
model.

6 Conclusion: role of solvable models

in analytic perturbation procedure

and a relevant realization problem

The solvable model of thin junction fitted on a certain essential spectral inter-
val can serve as a first step of - jump-start, see [29] - of the modified analytic
perturbation procedure which is applied to perturbation of embedded eigen-
values, see extended comments in [22]. The proposed jump-start procedure
confirms the hypothesis of H. Poincare, about the role of resonances in ana-
lytic perturbation procedure: elimination, due to the chain-rule for the scat-
tering matrices, of resonances on the essential spectral interval ∆ permits to
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construct a convergent analytic perturbation procedure. Unfortunately nei-
ther finite degree of precision in our approximations for the scattering matrix
allows to construct the solvable model with exactly the same resonances on ∆
as in original scattering problem. Nevertheless one can say, that zero-range
solvable models of the quantum system, see for instance [36, 37, 38, 39] could,
after appropriate fitting, play a role of the jump start. Our jump-start solv-
able models, see also [29, 30, 40, 41, 22] are automatically fitted, because
the corresponding scattering matrix serves an approximation of the whole
scattering matrix of the original perturbed operator.

It may be interesting that Nobel Prize winner 1972 Iliya Prigogine, see
[42], inspired by the above mentioned idea of H. Poincare, [35], about the role
of resonances in analytic perturbation procedure, attempted to construct an
“intermediate operator”- a version of our jump-start- as a tool of analytic
perturbation procedure on continuous spectrum. His attempt was not suc-
cessful, because he imposed, in advance, too strong conditions on the object
of his search. In particular, he assumed that the intermediate operator should
be a function of the non-perturbed Hamiltonian. Our jump-start is obtained
based on local rational approximation of the corresponding DN-map, and it is
constructed via finite-dimensional perturbation of the original Hamiltonian,
with the same leading resonances on the essential spectral interval.

We were able, see sections 4,5 and references therein, to construct a solv-
able model of a thin junction in the Hilbert space with a standard positive
metric. We conjecture, that a similar solvable model can be constructed for
arbitrary junction when using operators in Pontryagin space based on the
corresponding realization theorems, see for instance [43]. Note that solvable
models in Pontryagin space are more flexible, but yet reduce to a standard
selfadjoint operators in the positive invariant subspace of scattered waves,
see for instance [40, 41].
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ballistic mesoscopic rings with Rashba spin-orbit coupling, Phys. Rev.
B, 68:165341, (2003)

[5] I. A. Shelykh, N. G. Galkin, and N. T. Bagraev. Quantum splitter con-
trolled by Rashbe spin-orbit coupling Phys. Rev.B 72,235316 (2005)

[6] P. Kuchment and Zeng. Convergence of spectra of mesoscopic systems
collapsing onto graph In: Journal of Mathematical Analysis and Appli-
cation 258 (2001) pp 671-700

[7] P. Exner, O.Post Convergence of graph-like thin manifolds J. Geom.
Phys. 541 (2005) pp 77-115

[8] J. Gabelli, G. Feve, J.-M. Berroir, B. Placais, A. Cavanna, B. Etienne, Y.
Jin, D.C.Glatti Violation of Kirchhoff’s Laws for a coherent RC Cirquit
In: Science, 313, 28 July 2006, pp 499-502.

[9] O. Madelung. Introduction to solid-state theory. Translated from Ger-
man by B. C. Taylor. Springer Series in Solid-State Sciences, 2. Springer-
Verlag, Berlin, New York ( 1978)

[10] M. Harmer, B. Pavlov, A. Yafyasov Boundary conditions at the junc-
tion. International Workshop on Computational Electronics (IWCE-11),
Vienna, 25 May - 29 May 2006, book of abstracts, pp 241-242.

[11] N. Bagraev, A. Mikhailova, B. S. Pavlov, L. V. Prokhorov, and
A. Yafyasov. Parameter regime of a resonance quantum switch. Phys.
Rev. B, 71:165308, 2005.

[12] R. Mittra, S. Lee Analytical techniques in the theory of guided waves The
Macmillan Company, NY, Collier-Macmillan Limited, London, 1971.

[13] R. Courant, . Hilbert, Methods of mathematical physics. Vol. II. Partial
differential equations. Reprint of the 1962 original. Wiley Classics Li-
brary. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New
York, 1989. xxii+830 pp.

27



[14] J. Sylvester, G. Uhlmann The Dirichlet to Neumann map and applica-
tions. In: Proceedings of the Conference ” Inverse problems in partial
differential equations (Arcata,1989)”, SIAM, Philadelphia, 101 (1990)

[15] B. Pavlov. S-Matrix and Dirichlet-to-Neumann Operators In: Encyclo-
pedia of Scattering, ed. R. Pike, P. Sabatier, Academic Press, Harcourt
Science and Tech. Company (2001) pp 1678-1688

[16] W. O. Amrein, D. B. Pearson M-operators: a generalization of Weyl-
Titchmarsh Theory Journal of Computational and Applied Mathematics
171, 1-2 (2004), pp 1- 26.

[17] M. Marletta Eigenvalue problems on exterior domains and Dirichlet-to-
Neumann map J. Comp. Appl. Math. 171, 1-2 (2004) pp 367-391

[18] B. M. Brown, M. Marletta Spectral inclusion and spectral exactness for
PDEs on exterior domain IMA J. Numer. Anal. 24, 1 (2004) pp 21-43.

[19] B.N. Brown, M.S.P. Eeasham, W.D. Evans, Laudatum [Norrie Everitt].
J. Comput. Appl. Math. 171, 1-2 (2004) pp xi–xiii.

[20] F. Gesztesy, Y.Latushkin, M.Mitrea, M.Zinchenko Non-selfadjoint op-
erators, infinite determinants and some applications, Russian journal of
Mathematical Physics, 12 (2005) pp 443-471.

[21] Mikhailova, B. Pavlov, L. Prokhorov Modelling of quantum networks
arXiv math-ph/031238, 2004, 69 p.

[22] A. Mikhailova,B. Pavlov, L. Prokhorov Intermediate Hamiltonian of a
quantum network via Glazman splitting and analytic re-normalization
procedure 66 p, Sbm. to Mathematische Nachrichten.

[23] B. PavlovOn one-dimensional scattering of plane waves on an arbitrary
potential, Teor. i Mat. Fiz.,v16, N1, 1973, pp 105-119.

[24] F. Gesztesy, B.Simon. Inverse spectral analysis with partial information
on the potential. I. The case of an a.c. component in the spectrum. Pa-
pers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker,
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