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Abstract
Casimir pistons are models in which finite Casimir forces can be calculated without any suspect

renormalizations. It has been suggested that such forces are always attractive, but we present
several counterexamples, notably a simple type of quantum graph in which the sign of the force
depends upon the number of edges. We also show that Casimir forces in quantum graphs can
be reliably computed by summing over the classical orbits, and study the rate of convergence of
the periodic orbit expansion. In generic situations where no analytic expression is available, the
sign and approximate magnitude of Casimir forces can often be obtained using only the shortest
classical orbits.
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FIG. 1: A rectangular piston in two dimensions (cf. [3]). In three dimensions there is another
length, b2 , perpendicular to the plane of the figure.

I. INTRODUCTION

According to a classic calculation [1], the Casimir force inside a roughly cubical rectan-
gular parallelepiped is repulsive; that is, it tends to expand the box. The reasoning leading
to this conclusion is open to criticism on two related grounds: It ignores the possibility of
nontrivial vacuum energy in the region outside the box, and it involves “renormalization” in
the sense of discarding divergent terms associated with the boundary although (unlike the
case of parallel plates, or any calculation of forces between rigid bodies) the geometry of the
boundary depends upon the dimensions of the box. Recently (see also [2]) a class of sce-
narios called “Casimir pistons” has been introduced to which these objections do not apply.
The piston is an idealized plate that is free to move along a rectangular shaft, whose length,
L− a, to the right of the piston is taken arbitrarily large (Fig. 1). Both the external region
and the divergent (or cutoff-dependent) terms in the internal vacuum energy are indepen-
dent of the piston position, a, so that a well-defined, finite force on the piston is calculated.
One finds that this force is always attractive, both for a two-dimensional scalar-field model
with the Dirichlet boundary condition [3] and for a three-dimensional electromagnetic field
with the perfect-conductor boundary condition [4].

Barton [5] showed that the piston force can be repulsive for some (not too small) values
of a if the conducting material is replaced by a weakly polarizable dielectric. This result
is somewhat ironic in that one reason for suspicion of repulsive Casimir forces is the belief
that the force between disjoint bodies of realistically modeled material should be always
attractive. The unexpected result is easily understood, however, as being due to attraction
between the piston and the distant part of the shaft. The effect would disappear if the shaft
extended a long distance to the left of the fixed plate (“baffle”) at a = 0 as well as to the
right of the piston.

In the present paper we study the vacuum energy and Casimir forces in one-dimensional
quantum graph models and observe several situations with idealized boundary conditions
for which the piston force is unambiguously repulsive. In quantum graphs of high symmetry,
the Casimir forces may be calculated analytically. More generally, we show that these forces
may be obtained systematically from a sum over the classical periodic orbits in the graph,
as done in three-dimensional problems in [6–8], and we discuss the rate of convergence of
the periodic-orbit expansion. In some cases, the sign and approximate magnitude of the
force on a Casimir piston may be obtained using only the shortest orbit hitting that piston.
Although the quantum graph models are less realistic than those studied in [4] and [5], they
do show that repulsive Casimir forces do arise physically and are not inevitably an artifact
of a naive renormalization scheme. Our effects are unrelated to that in [5] and do not
depend on the asymmetry noted above in connection with that paper. The periodic-orbit
techniques discussed here have relevance to the study of Casimir energies in more realistic
geometries (cf. [9]), including two- and three-dimensional chaotic billiards. In an Appendix,
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we consider a situation in which an unambiguously repulsive Casimir force appears for the
electromagnetic field in a three-dimensional geometry.

Throughout, we take h̄ = 1 = c.

II. VACUUM ENERGY IN QUANTUM GRAPHS

A finite quantum graph [10–13] consists of B one-dimensional undirected bonds or edges of
length Lj (j = 1, . . . , B). Either end of each bond ends at one of V vertices, and the valence
vα ≥ 1 of a vertex is defined as the number of bonds meeting there. A normal mode u of the
quantum graph has the form uj(x) = aj cos(kxj) + bj sin(kxj) on every bond j, and satisfies
the specified boundary conditions at each vertex. Despite their simplicity, quantum graph
models have previously shed light on a number of important physical problems, having served
originally as models of conjugated molecules, and more recently of quantum, electromagnetic,
and acoustic waveguides and circuits. These models have also served as valuable testing
grounds for studying more general properties of quantum behavior, including Anderson
localization, quantum chaos, adiabatic quantum transport, and scattering. A recent review
may be found in [14].

In the spirit of abstract modeling, the vacuum energy of a graph is defined as the sum
(renormalized) of zero-point energies over all normal-mode frequencies ωn , where the fre-
quency ωn is equal to the wave number kn in our units. It is convenient to apply an
exponential ultraviolet regularization (the same answer would be obtained, for example, by
a calculation with zeta functions):

E(t) ≡
∞∑

n=0

1

2
ωne

−ωnt = −1

2

d

dt
T (t) , (1)

where

T (t) ≡
∞∑

n=0

e−ωnt (2)

is the trace of the so-called cylinder kernel [15].

III. ANALYTIC EXAMPLES OF REPULSIVE CASIMIR FORCES

A. One-dimensional piston with mixed boundary conditions

The first example is already rather well known, in its essence. Consider a scalar field
quantized on a line divided into three parts by two points, at each of which either a Dirichlet
or a Neumann boundary condition is imposed. The contributions of the two infinite (or,
better, extremely long) intervals to the Casimir force will vanish. (As emphasized in [4], the
force contributed by a long shaft is entirely associated with periodic orbits perpendicular
to the shaft, which do not exist in the one-dimensional case.) Let the length of the central
interval be a. Then the frequencies of the normal modes are

ωn =
nπ

a
(3)

3



for nonnegative (or positive) integer n, if the boundaries are both Neumann (or both Dirich-
let, respectively), and one has

T (t) =
∞∑

n=0,1

e−πnt/a

=
1

1 − e−πt/a
[ − 1] (4)

=
a

πt
± 1

2
+

1

12

πt

a
+ O(t2) .

Thus the regularized vacuum energy is

E(t) =
a

2πt2
− π

24a
+ O(t) . (5)

The leading, divergent term is proportional to the interval length a and corresponds to a
geometry-independent constant energy density. This term is compensated in the force by
similar terms in the exterior regions, already discarded. Then letting t → 0, we obtain the
well-known attractive force

F ≡ − ∂E

∂a
= − π

24a2
. (6)

More precisely, if the entire space has length L, then the regularized energy of the exterior
regions is

L − a

2πt2
+ O(L−1) . (7)

The second term is negligible as L → ∞, and the first term combines with the first term of
(5) to make a term independent of a, which, therefore, is an unobservable constant energy
shift that contributes nothing to the force. Henceforth we shall not repeat this type of
argument every time it is needed, and will simply refer to such endpoints as Neumann or
Dirichlet pistons.

On the other hand, if one boundary is Dirichlet and the other Neumann, then the eigen-
frequencies are

ωn =
(2n + 1)π

2a
. (8)

The same calculation leads to

T (t) = e−πt/2a
∞∑

n=0

e−πnt/a

=
1

2 sinh(πt/2a)
(9)

=
a

πt
− 1

24

πt

a
+ O(t2);

the regularized energy is

E(t) =
a

2πt2
+

π

48a
+ O(t) , (10)

and the force comes out to be repulsive:

F = +
π

48a2
. (11)
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FIG. 2: A star graph with a piston installed in each edge. (The pistons are actually points; the
edges have no thickness.)

B. Quantum star graphs

In the next model the space consists of B one-dimensional rays of large length L attached
to a central vertex (Fig. 2). In each ray a Neumann piston is located a distance a from the
vertex, so that a normal mode of the field in ray j must take the form uj(x) = cj cos(ω(x−a))
when x is measured from the center. At the central vertex the field has the Kirchhoff
(generalized Neumann) behavior

uj(0) = C for all j,
B∑

j=1

u′
j(0) = 0 . (12)

The following analysis is part of a broader study of vacuum energy in quantum graphs [16]
(see also [17–19]).

There are two types of normal modes. First, if cos(ωa) �= 0, we have from (12) that cj =
C/ cos(ωa) and tan(ωa) = 0, whence ω is one of the numbers (3). Second, if cos(ωa) = 0,
then ω is one of the numbers (8) and

B∑
j=1

cj = 0 , (13)

which has B − 1 independent solutions. Therefore, the energies and forces are just the
appropriate linear combinations of those calculated in the previous example: the regularized
energy for the whole system is

E(t) =
BL

2πt2
+

(B − 3)π

48a
+ O(L−1) + O(t) , (14)

and the force (either from (14) or from (6) and (11)) is

F = − π

24a2
+ (B − 1)

π

48a2
=

(B − 3)π

48a2
. (15)

When B = 1 or B = 2, the result reduces properly to that for an ordinary Neumann
interval of length a or 2a, respectively. When B > 3, however, the force is repulsive: if the
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pistons are free to all move together, they will tend to move outward. (More generally, a
periodic-orbit calculation, such as discussed in Section IV, is applicable to unequal piston
displacements and confirms that the force on each individual piston is outward, so there
are no other, asymmetrical modes that are partly attractive.) This repulsive effect cannot
be attributed to mixed boundary conditions, since all the conditions are of the Neumann
type. (However, replacing all the pistons with Dirichlet pistons while maintaining (12) would
interchange the roles of the two types of eigenvalues and produce attraction for all B > 1.)

IV. PERIODIC-ORBIT CALCULATIONS FOR GENERAL GRAPHS

For a general quantum graph, e.g., for a star graph with unequal bond lengths or with
more complicated boundary conditions, no simple expressions for the normal-mode frequen-
cies ωn are available, and thus the vacuum energy and Casimir forces cannot be computed
in closed form. Computing the spectrum numerically, as discussed below, allows for an
accurate evaluation of the vacuum energy for any specific quantum graph, but this type
of brute force calculation must be repeated anew for every geometry and does not provide
much physical insight regarding the attractive or repulsive character of Casimir forces in
different cases. Instead, much intuition may be obtained using a classical-orbit approach,
where the sign and magnitude of every contribution to the vacuum energy are seen to be
directly related to bond lengths and boundary conditions at the vertices.

It is convenient to describe boundary conditions at every vertex α by a unitary vα × vα

scattering matrix σα (which acts on the space of undirected bonds meeting at vertex α).
For example, a Neumann or Dirichlet boundary condition at a vertex of valence vα = 1
corresponds to a scattering matrix σα = (+1) or (−1), respectively, while the Kirchhoff
boundary condition is described by (σα)jj′ = 2

vα
− δjj′ . Together these constitute a 2B × 2B

scattering matrix S for the entire graph of 2B directed bonds [11, 13] or bond-ends [20–22].
To make the following arguments valid, we must assume that S is independent of energy or
frequency (k-independent), as is true for the Dirichlet, Neumann, and Kirchhoff boundary
conditions we treat here (but not for the more general Kirchhoff-type boundary conditions
where a potential is attached to each vertex ([23] and [11, 12, 17])). Then one can construct
[11, 13] a trace formula relating the spectrum of a graph (away from the point ω = 0, which
makes no contribution to vacuum energy anyway) to its periodic orbits,

∑
n

δ(ω − ωn) =
L

π
+ Re

1

π

∑
p

∞∑
r=1

(Ap)
rLpe

irωLp . (16)

(Variations on the trace formula have been found in [10], [22], [16], and elsewhere.) In
(16) the values ωn are the normal-mode frequencies, L =

∑B
j=1 Lj is the total length of the

graph, which determines the smooth (Weyl) contribution to the spectrum, and the sum over
p is a sum over primitive periodic orbits (orbits that cannot be written as repetitions of
shorter orbits). Each p takes the form p = j1j2 · · · jn where every ji is a directed bond. The
corresponding amplitude of the primitive periodic orbit is given by a product of scattering
factors, Ap = Sj1j2 · · ·Sjn−1jnSjnj1, the metric length of the primitive orbit is Lp = Lj1 +
· · ·+ Ljn , and each r is a different repetition number of our base primitive orbit.

Substituting the spectrum given by Eq. (16) into Eq. (1), we obtain

E(t) =
L

2πt2
− Re

1

2π

∑
p

∞∑
r=1

(Ap)
r

Lpr2
+ O(t) . (17)
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As discussed previously, the finite vacuum energy, which is relevant for computation of
Casimir forces, is obtained by dropping the divergent Weyl term and taking the limit t → 0,

Ec = − 1

2π
Re

∑
p

∞∑
r=1

(Ap)
r

Lpr2
. (18)

A mathematically rigorous derivation and proof of (conditional) convergence of Eq. (18) will
appear in [19].

Equivalently, we may begin with the free cylinder kernel in one dimension,

T0(x, x′, t) =
t

π

1

(x − x′)2 + t2
, (19)

apply the method of images to include scattering from the vertices, take the trace

T (t) =
∫

dx T (x, x, t)

=
t

π

L

t2
+ Re

∑
p

∞∑
r=1

t

π

2Lp(Ap)
r

(rLp)2
+ O(t2) , (20)

and finally use Eq. (1) to obtain the result (17). (This construction, which generalizes the
study of the heat kernel in [10], is described in detail in [16].)

The Casimir force on any piston may be obtained easily by differentiating Eq. (18) term
by term with respect to the appropriate bond length Lj .

We note that the expansion (18) of the vacuum energy is exact and involves periodic
orbits only. The derivation of Eq. (20) hinges on the identity (σα)2 = I for the scattering
matrix at each vertex. This condition holds for any k-independent scattering matrix [20, 21],
including real scattering matrices of the form used here, but also complex energy-independent
scattering matrices in the case of time-reversal symmetry breaking by magnetic fields. It
is the crucial ingredient in proving that closed but nonperiodic paths (i.e., paths that start
and end at x but with opposite momenta) make no net contribution to the vacuum energy.
When S depends on k, two complications arise. First, the method of images cannot be
so easily applied to “time-domain” integral kernels such as T and the heat kernel, because
the reflection law becomes nonlocal in t. Second, the identity (σα)2 = I no longer applies,
and the nonperiodic paths make a nontrivial contribution to the vacuum energy (and to the
density of states, Eq. (16), even when ω �= 0). Both effects are visible in the investigations
of the simplest special cases in [17, 24].

To evaluate the accuracy of the periodic-orbit expansion in situations where no analytic
expression for the vacuum energy is available, we may compare with a brute-force calculation
where the spectrum is evaluated numerically. For a general V -vertex graph, the normal-mode
frequencies are given by solutions of a characteristic equation det h(ω) = 0, where h(ω) is
a V × V matrix [11]. For the special case of a star graph with irrationally related bond
lengths, we have

B∑
j=1

tan(ωLj + θj) = 0 , (21)

where θj = 0 or π for a Neumann or Dirichlet piston on bond j, respectively. In any case,
given a method for obtaining a numerical spectrum ωn , we may evaluate

Efinite(t) =
∑
n

1

2
ωne−ωnt − L

2πt2
(22)
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to any desired accuracy by summing over all ωn ≤ ωmax where ωmax � 1/t. Since the
divergent term associated with the Weyl density of states, or equivalently with the free one-
dimensional geometry, has already been subtracted, we only need take the numerical limit
t → 0 to obtain the true vacuum energy Ec . Expressing the regularized vacuum energy as
a power series,

Efinite(t) = Ec + α1t + α2t
2 + · · · , (23)

we may apply Richardson extrapolation to approximate the vacuum energy to any desired
order of accuracy, Ec = Enumerical

c + O(ts), by evaluating Efinite(t) at s distinct values of the
regularization parameter t.

V. RATE OF CONVERGENCE OF PERIODIC-ORBIT EXPANSION

We consider a star graph with Kirchhoff boundary condition for B bonds meeting at the
central vertex, and a Dirichlet or Neumann piston on each bond at a distance aj from the
central vertex (i.e., the pistons may be located at different distances from the center). The
leading contribution to the vacuum energy is given by the shortest primitive orbits, each of
which travels back and forth along a single bond. Including all repetitions of such orbits,
we obtain

Eshortest
c = − 1

4π

B∑
j=1

∞∑
r=1

1

r2

(
2

B
− 1

)r cos(rθj)

aj
, (24)

where θj = 0 for a Neumann piston or π for a Dirichlet piston. For example, for all Neumann
pistons the sum over r can be evaluated as a dilogarithm, which in turn can be expanded
in powers of 1/B as

Eshortest
c =

π

48

(
1 − 24 ln 2

π2B
+ · · ·

)
B∑

j=1

1

aj
. (25)

This approximation compares well to the analytic result π
48

(
1 − 3

B

)
B
a

for B equal-length

bonds (Eq. (14)).
The results are illustrated in Fig. 3, where the exact force on each piston in a star graph

having either all Dirichlet or all Neumann pistons is compared with the contribution to the
force from the shortest periodic orbit. The repulsive behavior in the Neumann case, as well
as the attractive behavior in the Dirichlet case, are well explained by considering only the
shortest periodic orbit, i.e., the bounce between the piston and the central vertex.

To obtain a better approximation, we may systematically include contributions from
longer orbits. In Fig. 4, we show the convergence of the sum (18) when all orbits, including
primitive orbits and repetitions, of total length rLp ≤ Lmax are included in the summation.
In this example, a star graph with B = 4 bonds, all Neumann pistons, and unequal bond
lengths is used, so the exact answer is obtained to the necessary accuracy from a numerical
spectrum as described in Section IV. We note that the rate of convergence is given by

|ELmax
c − Ec| ∼ 1

Lmax

, (26)

consistent with the fact that each contribution to Eq. (18) from orbits of length rLp ∈
[Lmax, Lmax+∆] scales as L−2

max for large Lmax, and all such contributions appear preferentially
with the same (negative) sign.
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FIG. 3: The force on a piston in a star graph with B bonds of length 1, Kirchhoff boundary
condition at the center, and either Neumann or Dirichlet boundary condition at each piston is
computed using only the shortest periodic orbit (Eq. (24)) and compared with the exact answer.
Positive values indicate repulsive forces.
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FIG. 4: The error |ELmax
c −Ec| in the periodic orbit expansion for the vacuum energy is shown for

a star graph with four bonds of length 1.1, 1.6176, 1.2985, and 1.1159, and a Neumann piston at
the end of each bond.

In more general situations, involving non-star topologies, more complicated boundary
conditions, or non-zero gauge fields, orbits of different length are expected to contribute
with random signs to the sum (18). The error made by omitting orbits of length greater
than Lmax takes the form

∑∞
n=0 Dn , where Dn , associated with all orbits of total length rLp ∈

[Lmax+n∆, Lmax+(n+1)∆], scales as Dn ∼ (Lmax+n∆)−2, but the Dn appear with random
(uncorrelated) signs. The mean squared error then scales as

∑∞
n=0 D2

n ∼ ∑∞
n=0(Lmax +

n∆)−4 ∼ L−3
max , and the root mean square error decays as

|ELmax
c − Ec| ∼ 1

L
3/2
max

. (27)

As an example, in Fig. 5, we consider the convergence of the periodic-orbit sum for the same
4-bond star graph, but with a Dirichlet instead of Neumann piston on one of the bonds.
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FIG. 5: The error |ELmax
c − Ec| is shown for the same quantum graph as in Fig. 4, but with a

Dirichlet piston at the end of the first bond.

The behavior is consistent with the faster rate of convergence predicted by Eq. (27).

VI. SUMMARY

We have seen that unambiguously repulsive as well as unambiguously attractive Casimir
forces arise in simple quantum-graph models, and that the sign of the force in a given
geometry may often be easily understood in terms of the short periodic orbits of the system.
We have also examined (numerically) the rate of convergence of the periodic-orbit expansion.
Classical-orbit approximations may also be useful for understanding the sign of Casimir
forces in higher-dimensional piston systems where no analytic solution exists, for example,
in two- or three-dimensional chaotic billiards.
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APPENDIX A: INFINITELY PERMEABLE PISTON

In principle, a repulsive piston can be constructed in the more realistic case of the elec-
tromagnetic field in dimension 3, in analogy with our original one-dimensional model. If the
electromagnetic analog of the Dirichlet condition is a perfect conductor, then the analog of
the Neumann condition is a material with infinite magnetic permeability, and the Casimir
force between slabs of these two different types is repulsive [25]. (A list of references on
this topic appears in [26].) The existence of real materials with sufficient permeability to
exhibit Casimir repulsion in the laboratory is controversial [27–29]. Here we merely check
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that the piston effect discovered by Cavalcanti [3] and the MIT group [4] does not destroy
the repulsion shown by less sophisticated calculations. This is not trivial, since the effect
arises from the action of the shaft walls on the transverse behavior of the field.

Following Lukosz [1], but in a notation closer to Cavalcanti’s (see Fig. 1), we consider a
rectangular box with dimensions a, b1 , and b2 . As previously exemplified, we can calculate
a finite vacuum energy naively, in full confidence that the discarded divergent terms will
cancel when a force is calculated for the piston system as a whole. We are interested in
the case where the piston (the surface that is free to move) is infinitely permeable but the
shaft and the baffle (the rest of the box) are perfect conductors. By the Rayleigh–Dowker
argument [30], the energy, Ea , of such a box is

Ea = E2a − Ea , (A1)

where Ea is the energy of a totally conducting box also of length a. By differentiation
with respect to a (not 2a !), this relation extends to forces and pressures. (Throughout this
discussion “pressure” simply means “force per area” without necessarily implying a local
pressure independent of position on the wall.) Thus (11) follows from (6) by virtue of

− π

24a

[
1

2
− 1

]
= − π

24a

[
− 1

2

]
, (A2)

and the three-dimensional analogs will involve quantities proportional to

1

a3

[
1

8
− 1

]
=

1

a3

[
− 7

8

]
. (A3)

When a 
 bj , Lukosz calculates an attractive pressure

Pa = − π2

240a4
, (A4)

which implies by (A1) Boyer’s formula [25]

P a = +
7

8

π2

240a4
(A5)

for the box with one permeable wall. The external (long) part of the shaft has length
L − a � b1 = b2 = b. For this limit, Lukosz finds a repulsive pressure (involving Catalan’s
constant)

P = +
0.915965

24b4
. (A6)

Just as in [4], the resulting force is inversely proportional to the cross-sectional area and is
independent of L− a, so the corresponding energy term is proportional to L− a. Therefore,
application of (A1) gives

PL−a = PL−a = +
0.915965

24b4
(A7)

(as ought to be the case, since the nature of the plate at the distant end of the long shaft
ought to be irrelevant). To find the total force on the piston, we must reverse the sign of
(A7), add it to (A5), and multiply by the area, b2. The point is that the total force is
positive if a 
 b; the long external part of the shaft has negligible effect in that case.

On the other hand, for a cube Lukosz found that the perfectly conducting box was already
repulsive. The formula (A1) does not yield a simple factor −1

2
in that case, because the

doubled box is no longer a cube. Nevertheless, the graph presented in [31] shows that E2a

is closer to 1
2
Ea than to Ea . We conclude that the permeable piston is attractive in the

cubical configuration.
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[10] J.-P. Roth, in Théorie du Potentiel, Proc. Colloq. J. Deny, G. Mokobodzki and D. Pinchon,
eds. (Springer-Verlag, 1985).

[11] T. Kottos and U. Smilansky, Ann. Phys. (N.Y.) 274, 76 (1999).
[12] P. Kuchment, Waves Random Media 14, S107 (2004).
[13] S. Gnutzmann and U. Smilansky, Advances In Physics 55, 527 (2006).
[14] P. Kuchment, Waves Random Media 12, R1 (2002).
[15] S. A. Fulling, J. Phys. A 36, 6857 (2003).
[16] Justin H. Wilson, Undergraduate Research Fellow thesis, Texas A&M University, in prepara-

tion.
[17] S. A. Fulling, Contemp. Math. 415, 161 (2006) (G. Berkolaiko et al., eds., Quantum Graphs

and Their Applications).
[18] B. Bellazini and M. Mintchev, J. Phys. A 39, 11101 (2006).
[19] G. Berkolaiko, J. Harrison, and J. H. Wilson, in preparation.
[20] V. Kostrykin and R. Schrader, J. Phys. A 32, 595.
[21] V. Kostrykin and R. Schrader, Fortschritte der Physik 48, 703 (2000).
[22] V. Kostrykin, J. Potthoff, and R. Schrader, arXiv:math-ph/0701009 (unpublished).
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