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Abstract: An index theory for uniformly locally finite (ULF) graphs is developed based on the adjacency
operator A acting on the space of bounded sequences defined on the vertices. It turns out that the char-
acterization by upper and lower nonnegative eigenvectors is an appropriate tool to overcome the difficulties
imposed by the `∞–setting. A distinctive property of the spectral radius r∞(A) in `∞ is the identity

r∞ = sup {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≥ λx} =: I,

while the `2–spectral radius r2 of the adjacency operator satisfies

r2 = inf {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≤ λx} .

The index I, as well as other order indices, can serve in classifying ULF graphs and enables connections with
various graph invariants. E.g., the chromatic number can be estimated from above by 1 + r∞. Moreover,
results on the index I in the periodic case, the regular one and for graphs having only finitely many essential
ramification nodes are presented.
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operators.
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1 Introduction

The index of a finite graph, i.e. the spectral radius of its adjacency matrix, plays an important
role within graph theory, cf. e.g. [1, 7, 10, 11]. It is closely related to the chromatic
number, the complexity, and other combinatorial invariants of the graph. For infinite graphs,
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especially in the context of random walks on graphs, cf. e.g. [16, 20], the spectral radius r2

of the adjacency operator A in the `2–setting has been considered in the uniformly locally
finite (ULF) case, where A becomes a selfadjoint operator in `2(Γ). Nevertheless, the point
spectrum of the adjacency operator in the `2–setting can be rather poor when compared to
the `∞–case, realizing that, in general, the determination of the eigenvalues can be quite
delicate.

In the present context, we define the index of a ULF graph by the spectral radius r∞ of
the adjacency operator A acting in the space `∞(Γ) of bounded sequences defined on the
vertex set V (Γ), using the order properties of the adjacency operator as a positive operator
in the Banach lattice `∞(Γ). One of the key tools is the characterization of the spectral
radius r∞ by means of nonnegative upper eigenvectors:

(1) r∞ = sup {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≥ λx} =: I.

Moreover, its lower counterpart I−∞ is shown to satisfy

(2) r2 = inf {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≤ λx} =: I−∞,

see Theorems 4.9 and 4.12. Both entities reflect certain combinatorial properties of the
graph, but are different in general. Here we mention only the fact that, if Γ is regular of
valency d, then d = I(Γ), see Corollary 4.15, while r2 < d is possible in that case, e.g. for
the 3–regular tree.

The present paper is organized as follows: After Section 2 with some notations, basic
assumptions and preliminaries from graph theory and from operator theory, some general
spectral properties of the adjacency operator A in the spaces `p(Γ) are investigated in Section
3. In Section 4 the order indices I±p are introduced and compared to the corresponding
spectral radii of A in `p(Γ). The identity (2) is part of the following general result, see
Theorem 4.9:

1. ∀p ∈ [1,∞] : I−p ≤ rp & I+p ≤ rp.

2. ∀p ∈ [1, 2] : I+1 = I+p = r2 ≤ I−p ≤ I−1 .

3. ∀p ∈ [2,∞] : I−∞ = I−p = r2 ≤ I+p ≤ I+∞ & I+p ≤ I−q for 1
p

+ 1
q

= 1.

The identity (1) is based in addition on the fact that r∞ belongs to the approximate spectrum
and on the positivity properties of A, see Theorem 4.12. For periodic graphs or generalized
lattices it is shown in Section 5 that the periodic index introduced in [2, 9] coincides with I
and I−∞. In Section 6 Wilf’s theorem on the chromatic number is extended to ULF graphs, see
Theorem 6.2 while a characterization of vertex bipartition being valid for finite and periodic
graphs is shown not to hold in the ULF case. Section 7 is devoted to the characterization of
the regular case by means of the index I. Finally, in Section 8 conditions are presented under
which I−∞(Γ) = I(Γ). Beyond the finite and periodic case, infinite graphs with finitely many
essential ramification nodes are shown to fulfill this identity, see Theorem 8.2. Moreover,
the index of these graphs is shown to satisfy a characteristic equation of the form

det

(

A(S) +

(

ρ

2
−
√

ρ2

4
− 1

)

(

It 0
0 0

)

− ρ In

)

= 0,

where S is a finite subgraph containing all essential ramification nodes of the graph.
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2 Preliminaries

For any graph Γ = (V,E,∈), the vertex set is denoted by V = V (Γ), the edge set by
E = E(Γ) and the incidence relation by ∈⊂ V ×E. The valency of each vertex v is denoted
by γ(v) = card{e ∈ E v ∈ e}. We distinguish the boundary vertices Vb = {v ∈ V γ(v) = 1}
from the ramification nodes Vr = {v ∈ V γ(v) ≥ 2}, especially, we define the essential
ramification nodes by Vess = {v ∈ V γ(v) ≥ 3}. Set

γmin = min{γ(v) v ∈ V }.

For a subgraph ∆ ≤ Γ let ∆ = V (∆) =
(

V (∆), K(∆),∈
)

denote the subgraph of Γ spanned

by the vertices in ∆ with E(∆) = {e e ∈ E(Γ), e∩V (Γ) ⊂ V (∆)}. The subgraph ∆ is called
induced if ∆ = ∆. The distance between two vertices v1 and v2 is defined as the minimal
number of edges of all paths joining v1 and v2.

Unless otherwise stated, all graphs considered in this paper are assumed to be nonempty,
i.e. V 6= ∅, simple, i.e. Γ contains no loops, and at most one edge can join two vertices in Γ,
countable, i.e. V (Γ) is countable, and uniformly locally finite (ULF), i.e.

(3) max
v∈V (Γ)

γ(v) =: γmax < ∞.

For further graph theoretical terminology we refer to [21], for the algebraic graph theory to
[7] and [10], and for the theory of positive operators to [17].

A vector, a sequence or a matrix x is called positive (x � 0) if all its entries satisfy xi > 0,
and nonnegative (x ≥ 0) if all xi ≥ 0. Moreover, x > 0 denotes x ≥ 0 and x 6= 0. Sequences
or vectors with constant entries equal to 1 are denoted by e, while ek := (δhk)h∈J for k ∈ J .
With respect to the above order, the positive part and the negative part of x are defined as
x+ = sup {x, 0} and x− = sup {−x, 0} respectively such that x = x+ − x−. Throughout we
shall use the following notations.

Definition 2.1

`p(Γ) = `p(V (Γ)) for p ∈ [1,∞]

| · |p = `p–norm

T p = operator norm of an endomorphism T : `p → `p

σ(T,B) = spectrum of the endomorphism T in the Banach space B

σpt(T,B) = point spectrum of the endomorphism T in B

σapt(T,B) = approximate point spectrum of the endomorphism T in B

r(T,B) = sup{|λ| λ ∈ σ(T,B)} = spectral radius of T in B

r(A) = spectral radius of a finite matrix A

I = identity matrix

In = n × n–identity matrix
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3 The adjacency operator

For a given numbering of the vertices V (Γ) = {vi i ∈ J} with J ⊂ N set γi = γ(vi) and
define the adjacency matrix or adjacency operator by

(4) A(Γ) = (eih)i,h∈J : R
V (Γ) −→ R

V (Γ)

where

eih =

{

1 if vi and vh are adjacent in Γ

0 else

The operator A(Γ) is symmetric with respect to the usual `2–scalar product. Due to a result
by Mohar [15], for an arbitrary locally finite graph Γ, the closure in `2(Γ) of A(Γ), defined on
the sequences of finite support, is bounded iff Γ is ULF, and then, of course, D(A) = `2(Γ)
and A(Γ) is self–adjoint. Moreover, A : `2(Γ) → `2(Γ) is compact iff Γ is finite. For ULF
graphs Γ, we mention the following properties of the adjacency operator.

Theorem 3.1 Suppose p ∈ [1,∞]. Then A(Γ) : `p(Γ) −→ `p(Γ) is a continuous endomor-
phism, more precisely,

(5) ∀x ∈ `p(Γ) : |Ax|p ≤ γmax|x|p,

(6) γmax(Γ) = A(Γ) ∞ = A(Γ) 1

and

(7) γmax(Γ)1/p ≤ A(Γ) p ≤ γmax(Γ) for all p ∈ (1,∞).

Moreover

(a) |σ (A; `p(Γ))| ⊂ [0, γmax]

(b) Γ is connected iff A(Γ) is indecomposable, i.e. A(Γ) possesses no closed invariant order
ideal other than the zero ideal and `p(Γ).

(c) A(Γ) ≥ 0, i.e. x ≤ y =⇒ A(Γ)x ≤ A(Γ)y, and A(Γ) > 0 if E(Γ) 6= ∅.
(d) The ih–th element of the matrix A(Γ)k is equal to the number of walks of length k

between vi and vh in Γ.

Proof. Inequality (5) is plain for p = 1 and p = ∞, while for p ∈ (1,∞) and 1
p

+ 1
p′

= 1, the
finite Hölder inequality applies at each vertex vi and yields

|Ax|pp ≤
∑

i∈J

(

∑

h∈J

eih|xh|
)p

≤
∑

i∈J

γ
p

p′

i

∑

h∈J

eih|xh|p

≤ γ
p

p′

max

∑

h∈J

γh|xh|p ≤ γ
1+ p

p′

max |x|pp.

This shows also A(Γ) p ≤ γmax(Γ). The remaining inequalities in (6) and (7) follow easily
by applying A to the vectors ek.

Assertion (a) follows immediately from (5), while the remaining assertions are easily
derived as in the finite case.
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Definition 3.2 rp = rp(Γ) = r(A(Γ); `p(Γ)) = lim
k→∞

k

√

A(Γ)k
p

It is well–known by the theory of positive linear operators that rp belongs to the spectrum
of A, see e.g. [17], more precisely

(8) rp(Γ) ∈ σapt (A(Γ); `p(Γ)) ,

since the boundary of the spectrum belongs to the approximate point spectrum. Moreover,
since the adjoint of A(Γ) : `p(Γ) −→ `p(Γ) is just A(Γ) : `p′(Γ) −→ `p′(Γ), we conclude that

(9) rp(Γ) = rp′(Γ) for p ∈ [1,∞) and
1

p
+

1

p′
= 1.

But, in general, rp(Γ) is not an eigenvalue as will be shown by Example 4.17. As in the finite
case,

(10) ∀p ∈ [1,∞] : rp(Γ) ≤ γmax,

and

(11) γmin ≤ r∞(Γ).

The latter inequality follows from Theorem 4.12 or, more directly, from the fact that ih–th
element e

(k)
ih of the matrix A(Γ)k is bounded from below by γk

min and that the operator norm

A(Γ)k
∞ is bounded from below by sup{e(k)

ih i, h ∈ J}. Especially

(12) Γ regular of valency d =⇒ r∞(Γ) = d = A(Γ) ∞.

But, in general, (11) does not hold for finite p.

In fact, the eigenvalues of the adjacency operator are real.

Lemma 3.3 σpt (A(Γ), `∞(Γ)) ⊂ R.

Proof. We can follow the idea of the proof of [6, Lemma 5.2], but for the reader’s convenience
we repeat the arguments here. Without restriction, assume that Γ is connected. Choose some
node v0 and introduce for k ∈ N

Bk = {v ∈ V dist(v0, v) ≤ k} and Sk = {v ∈ V dist(v0, v) = k}.

Let ϕ ∈ `∞ be an eigensequence belonging to the eigenvalue µ ∈ C of A: Aϕ = µϕ and set

sk =
∑

vi∈Sk

|ϕi|2 , bk =
∑

vi∈Bk

|ϕi|2 .

Then

µbk =
∑

vi∈Bk

ϕi

( ∞
∑

l=0

eilϕl

)

=
∑

vi∈Bk

∞
∑

l=0

eilϕlϕi =
∞
∑

l=0

ϕl

(

∑

vi∈Bk

eliϕl

)

=µbk −
∑

vi∈Sk

∑

vh∈Sk+1

eihϕiϕh,
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and by the eigenvalue relation

−
∑

vi∈Sk

∑

vh∈Sk+1

eihϕiϕh = −µsk +
∑

vi∈Sk

∑

vh∈Bk

eihϕiϕh.

Thus, for any k ∈ N,

(13) 2i=(µ) =
1

bk

(

−µsk +
∑

vi∈Sk

∑

vh∈Bk

eihϕiϕh

)

and by Young’s Inequality, we obtain

(14) ∀k ∈ N : 2 |=(µ)| ≤ (|µ| + A ∞)
sk

bk

+
1

2
A ∞

sk−1

bk−1

.

If ϕ ∈ `2, then clearly µ(ϕ, ϕ)`2 = (Aϕ, ϕ)`2 = (ϕ,A ϕ)`2 = µ(ϕ, ϕ)`2 and µ ∈ R. Thus we
can assume that

lim
k→∞

bk = ∞.

If the sequence (sk)k∈N
contains a bounded subsequence

(

sα(k)

)

k∈N
with injection α : N → N,

then

lim
k→∞

sα(k)

bα(k)

= 0

implying that =(µ) = 0. Thus we can assume that

lim inf
k→∞

sk = ∞.

If bk = bk+1 = bk+2 for some k ∈ N, then ϕ would vanish on two consecutive spheres Sk+1

and Sk+2 and, thereby, it would vanish everywhere by connectedness of Γ. Thus, at most two
consecutive values bk and bk+1 can be identical, and the sequence (bk)k∈N

contains a strictly
increasing subsequence that is again denoted by (bk)k∈N

.

If limk→∞
sk−1

sk
= σ ∈ R exists, then by Stolz’s Theorem

(

sk

bk

)

k∈N

is convergent to

(15) lim
k→∞

sk

bk

= lim
k→∞

sk − sk−1

bk − bk−1

= 1 − σ.

Observe that σ > 1 is excluded and that σ = 1 yields limk→∞
sk

bk
= 0. The case σ < 1 is

impossible, since on the one side (sk)k∈N
converges to 0 and thereby limk→∞

sk

bk
= 0, while on

the other the latter limit is positive by (15). Thus =(µ) = 0 if limk→∞
sk−1

sk
= σ ∈ R exists.

The same argument is valid if
(

sk−1

sk

)

k∈N

contains a convergent subsequence.

It only remains the case in which
(

sk−1

sk

)

k∈N

tends to infinity. But then again Stolz’s

Theorem would imply that limk→∞
sk

bk
< 0 which is absurd.
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Corollary 3.4 ∀p ∈ [1,∞] : σpt (A(Γ), `p(Γ)) ⊂ R.

Example 3.5 Let Td denote the regular tree of valency d ≥ 3. Then

σpt (A(Td), `
∞) = [−d, d],

and each eigenvalue λ is of infinite multiplicity in `∞(Td), see [5]. This holds especially for
λ = d = I(Td), showing that Td is not a Liouville space, see [4]. For d ≥ 3 the `2–spectral
radius differs from the above one, namely

r
(

A(Td); `
2(Td)

)

= 2
√

d − 1

due to result by P. Cartier 1972 e.a., see e.g. [16]. This case furnishes also an example for an
ULF graph satisfying γmin > rp for p ∈ [1,∞). For d = 2, the situation is different, the `2–
and `∞–spectra coincide and all eigenvalues in `∞(Td) are of multiplicity 2 or 1, see Example
4.18.

4 Order indices

We introduce the order indices I+p (Γ) and I−p (Γ) that are based on the order properties of
each real Banach lattice `p(Γ), as follows: For p ∈ [1,∞] introduce

σ+
p (Γ) = {λ ≥ 0 ∃x ∈ `p(Γ), x > 0 : Ax ≥ λx} ,

σ−
p (Γ) = {λ ≥ 0 ∃x ∈ `p(Γ), x > 0 : Ax ≤ λx} .

Both sets are never empty due to the following

Lemma 4.1 (rp(Γ),∞) ⊆ σ−
p (Γ) and {r(A(Λ)) Λ ≤ Γ, Λ finite } ⊂ σ+

p (Γ).

Proof. Choose ρ ∈ (rp(Γ),∞). Then, by a well known result for positive operators, see e.g.
[17], the resolvent is positive in `p(Γ):

(16)
(

ρ I`p(Γ) −A(Γ)
)−1 ≥ 0.

For any y ∈ `p(Γ) with y > 0 this yields x := (ρ I −A)−1
y > 0, i.e. (ρ I −A) x = y > 0.

For the second assertion, choose some finite subgraph Λ with positive eigenvector v

satisfying A(Λ)v = r(A(Λ))v. Since A(Λ) is smaller or equal than a principal minor of A(Γ),
the zero extension ṽ of v to V (Γ) satisfies r(A(Λ))ṽ ≤ A(Λ)ṽ and shows r(A(Λ)) ∈ σ+

p (Γ).

Moreover, σ+
p (Γ) and σ−

p (Γ) are intervals of the positive real half line. Now we can define
the indices

Definition 4.2

I+p (Γ) = sup σ+
p (Γ)

I−p (Γ) = inf σ−
p (Γ)
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Let us collect the basic properties of these indices in the following lemmata.

Lemma 4.3 If Γ is finite, then I−p (Γ) = r(A(Γ)) = I+p (Γ).

Proof. Without restriction we can assume that Γ is connected. Then there exists x � 0
with Ax = rx, r = r(A) and by definition, I−p (Γ) ≤ r ≤ I+p (Γ). Next, for Ay ≥ λy > 0,
y > 0 and for 0 < Az ≤ µz, z > 0 we conclude r ≥ λ and r ≤ µ since

r(x, y) = (Ax, y) = (x,Ay) ≥ λ(x, y) > 0 < r(x, z) = (Ax, z) = (x,Az) ≤ µ(x, z).

Connectedness and adjacency imply immediately

Lemma 4.4 If Γ is connected and x > 0 a node vector with Ax ≤ λx then x � 0.

An important property is the monotonicity of the indices.

Lemma 4.5 If ∆ is any subgraph of Γ then I+p (∆) ≤ I+p (Γ) and I−p (∆) ≤ I−p (Γ).

Proof. Without restriction we can assume that Γ is connected. The matrix A(∆) is smaller
or equal than a principal minor of A(Γ) and its zero extension Ã(∆) to V (Γ)2 satisfies
Ã(∆) ≤ A(Γ). For A(∆)y ≥ λy with `p(∆) 3 y > 0 and its zero extension x to V (Γ) we
conclude A(Γ)x ≥ Ã(∆)x ≥ λx.

For A(Γ)z ≤ λz with `p(∆) 3 z � 0 (Lemma 4.4) and its restriction v to V (∆) we
conclude v � 0 and A(∆)v ≤ λv.

Corollary 4.6 R := sup {r(A(Λ)) Λ ≤ Γ, Λ finite } ≤ I−p (Γ), I+p (Γ)

Lemma 4.7 I+p (Γ) ≤ rp(Γ)

Proof. For λ ∈ σ+
p (Γ) it readily follows that λ ≤ k

√

A(Γ)k
p for all k ∈ N.

By duality it follows from Definition 4.2

Lemma 4.8 I+p (Γ) ≤ I−q (Γ) and I+q (Γ) ≥ I−p (Γ) for 1
p

+ 1
q

= 1 and p ≥ 2.

Clearly, I+p is increasing with p, while I−p is decreasing in p. Combining this with Lemmata
4.1–4.8 and with a result by B. Mohar 1982 or E. Seneta 1981, see [16], that states

(17) r2(Γ) = R,

we can resume the relations between the different indices in the following

Theorem 4.9

(a) ∀p ∈ [1,∞] : I−p (Γ) ≤ rp(Γ).

(b) ∀p ∈ [1,∞] : R ≤ I+p (Γ) ≤ rp(Γ).

(c) ∀p ∈ [1, 2] : R = I+1 (Γ) = I+p (Γ) = r2(Γ) ≤ I−p (Γ) ≤ I−1 (Γ).
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(d) ∀p ∈ [2,∞] : R = I−∞(Γ) = I−p (Γ) = r2(Γ) ≤ I+p (Γ) ≤ I+∞(Γ).

(e) ∀p ∈ [2,∞] : I+p (Γ) ≤ I−q (Γ) and I+q (Γ) = I−p (Γ) for 1
p

+ 1
q

= 1.

Corollary 4.10 I+1 (Γ) = R = r2(Γ) = I−∞(Γ) ≤ I+∞(Γ) ≤ I−1 (Γ) ≤ r∞(Γ) = r1(Γ)

All indices and spectral radii are bounded from above by γmax(Γ), but only I+∞(Γ) is bounded
from below by γmin(Γ) as follows from Ae ≥ γmine. In general, this is false for finite p or for
I−(Γ).

Lemma 4.11 γmin(Γ) ≤ I+∞(Γ) ≤ γmax(Γ).

A key result of this section is the following

Theorem 4.12 r∞(Γ) = I+∞(Γ)

Proof. By Lemma 4.7, it remains to show r := r∞(Γ) ≤ I+∞(Γ). Let
(

x(k)
)

k∈N
denote a

sequence of nonzero vectors in `∞(Γ) and (λk)k∈N
a scalar sequence with

lim
k→∞

λk = r and lim
k→∞

∣

∣A(Γ)x(k) − λk x(k)
∣

∣

∞ = 0.

Since r is a real number, we can assume w.l.o.g. that the vectors x(k) real and that all

λk > 0 and λk ↗ r as k → ∞.

Set
ε(k) = A(Γ)x(k) − λk x(k)

and get by hypothesis that limk→∞
∣

∣ε(k)
∣

∣

∞ = 0. For each k ∈ N we find

Ax(k)+ ≥ λk x(k)+ + ε(k) ≥ λk x(k)+ − ε(k)−,

−Ax(k)− ≤ λk x(k)− + ε(k) ≤ λk x(k)+ + ε(k)+.

Introduce y(k) =
∣

∣x(k)
∣

∣ > 0 and get

∀k ∈ N : Ay(k) ≥ λk y(k) −
∣

∣ε(k)
∣

∣ .(18)

Fix N ∈ N. Since (λk)k∈N
is increasing,

k ≥ N =⇒ Ay(k) ≥ λN y(k) −
∣

∣ε(k)
∣

∣ .

Thus, the vector

z(N) := sup
k≥N

y(k) =
(

z
(N)
i

)

i∈J
with z

(N)
i = sup

k≥N
y

(k)
i

satisfies z(N) > 0 and for each i ∈ J ,
(

Az(N)
)

i
≥ λN y

(k)
i −

∣

∣

∣
ε
(k)
i

∣

∣

∣
for all k ≥ N

and
(

Az(N)
)

i
≥ sup

k≥N

{

λN y
(k)
i −

∣

∣

∣
ε
(k)
i

∣

∣

∣

}

= λN z
(N)
i .

This shows Az(N) ≥ λN z(N) and that λN ∈ σ+
∞(Γ), and permits to conclude that r =

sup {λN N ∈ N} ≤ I+∞(Γ).
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In view of the above properties and results it seems reasonable to mark with distinction the
`∞–case. Let us define the index of an ULF graph as follows.

Definition 4.13 The index I(Γ) of an ULF graph Γ is defined by

I(Γ) = I+∞(Γ) = sup {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≥ λx} .

Moreover we set

I−(Γ) = I−∞(Γ) = inf {λ ≥ 0 ∃x ∈ `∞(Γ), x > 0 : Ax ≤ λx} .

Corollary 4.14 I−(Γ) ≤ I(Γ) and

I(Γ) = sup
`∞(Γ)3x>0

inf
i∈J

∑

h∈J

eih
xh

xi

= r(A(Γ); `∞(Γ)),

I−(Γ) = inf
`∞(Γ)3x�0

sup
i∈J

∑

h∈J

eih
xh

xi

= r(A(Γ); `2(Γ)).

Corollary 4.15

(a) γmin(Γ) ≤ I(Γ) ≤ γmax(Γ)

(b) If Γ is regular of valency d, then d = I(Γ).

(c) ∀p ∈ [1,∞] : I(Γ) ≤ A(Γ) p

(d) If ∆ is any subgraph of Γ, then I(∆) ≤ I(Γ).

Note that the above results yield also a proof of the monotonicity of the spectral radius of A
in the corresponding `∞–spaces. Moreover, the index I−(Γ) is always attained by a bounded
nonzero nonnegative sequence:

Lemma 4.16 If Γ is connected, then I−(Γ) is attained by a positive sequence belonging to
`∞(Γ).

Proof. Choose a decreasing real sequence (λk)k∈N
with λk ↘ I−(Γ) as k → ∞, and a sequence

(

x(k)
)

k∈N
of positive vectors in `∞(Γ) such that

A(Γ)x(k) ≤ λk x(k) for all k ∈ N.

Since each x(k) � 0, we can assume furthermore that

(19) x
(k)
0 = 1 for all k ∈ N.

For N ∈ N set
y(N) = sup

k≥N
x(k) =

(

y
(N)
i

)

i∈J
with y

(N)
i = sup

k≥N
x

(k)
i .

By the decreasing character of (λk)k∈N
and by (19), it follows that

A(Γ)y(N) ≤ λN y(N) and y
(N)
0 = 1 for all N ∈ N.
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Since
(

y(k)
)

k∈N
is decreasing, for each i ∈ J the limit

zi := lim
N→∞

y
(N)
i = inf

N∈N

y
(N)
i

exists. Thus, z := infN∈N y(N) = (zi)i∈J is a bounded sequence satisfying

z > 0 and z0 = 1.

Moreover, for each i ∈ J and for all N ∈ N,

(Az)i ≤ λN y
(N)
i

and, thereby,

(Az)i ≤ inf
N∈N

(

λN y
(N)
i

)

= I−∞(Γ) zi.

This shows Az ≤ I−∞(Γ) z and Lemma 4.4 permits to conclude that z � 0.

Note that, in general, r2 is not an eigenvalue in the `2–setting, despite Lemma 4.16. For the
regular tree Td of valency d ≥ 3, the value r2(Td) = 2

√
d − 1 = I−(Td) possesses a positive

bounded lower eigenvector that has to take arbitrarily small values in view of Lemma 8.1.
An analogous construction for the index I(Γ) fails, since here (19) cannot be fulfilled in

general. In fact, I(Γ) needs not to be attained as will be well displayed by the next example.

Example 4.17 Let Γ0 denote the one-sided unbounded path with vertex set V (Γ0) = N and
edges {{i, k} |i − k| = 1}. A recurrence argument based on the eigenvector equation shows
that σpt (A(Γ0); `

∞(Γ0)) = (−2, 2). Suppose that 0 < x ∈ `∞(N), λ ≥ 2 and A(Γ0)x ≥ λx.
Then x is increasing and x1 ≥ λx0 and

∀k ∈ N
∗ : xk+1 ≥ λxk − xk−1 ≥ (λ − 1)xk.

This imposes λ = 2. But still the difference sequence (xk+1 − xk)k∈N
is increasing, which

enforces that x is constant. Since this is excluded, I(Γ0) = 2 is not attained. Moreover,
I−(Γ0) = 2 by Lemma 4.5, since the index 2 cos π

n+1
of any finite path with n vertices is a

lower bound for I−(Γ0). It is well attained by the constant sequence e.

1 2 3 4 k k+10

Figure 1: The one-sided unbounded path Γ0

Example 4.18 Let Γ1 denote the two-sided unbounded path, i.e. the connected 2 - regular
graph with V (Γ1) = Z and edges {{i, k} |i − k| = 1}. The eigenvectors obey the difference
equations

xk+1 = λxk − xk−1 for all k ∈ Z,

that lead to the characteristic roots

(20) a1(λ) =
λ

2
+

√

λ2

4
− 1, a2(λ) =

λ

2
−
√

λ2

4
− 1.
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Then the boundedness condition implies σpt (A(Γ1); `
∞(Γ1)) = [−2, 2]. By Corollary 4.15,

or more directly as in Example 4.17, we conclude I(Γ1) = 2 = I−(Γ1) and both of the indices
are attained by the constant sequence e.

We close this section with some general lower bounds for both of the indices.

Corollary 4.19 Let Γ be an infinite and connected graph. Then

(a) I−(Γ) ≥ 2,

(b) I−(Γ) >
√

2 +
√

5 = 2.058171.., if Γ is not a tree.

(c) I−(Γ) > 3√
2

= 2.121320.., if Γ contains a periodic graph of rank at least 2.

Proof. By hypothesis, Γ contains a subgraph isomorphic to Γ0. Thus, (a) follows by Lemma
4.5. It applies also for (b) in connection with the corresponding result for finite graphs
containing proper circuits due to A. J. Hoffman [12] and for (c) in connection with the lower
bound found in [2, Theorem 8.1].

5 Periodic graphs

A periodic graph, see [2], [9] or generalized lattice, see [20] is a ULF graph whose automor-
phism group contains a transitive subgroup G isomorphic to some Z

m. In detail:

Definition 5.1 A ULF graph Γ is called periodic of rank m with translation group G =
⊕m

i=1Zbi ≤ Aut(Γ), with kernel N and with cell F , if the following conditions hold:

(a) Γ is connected.

(b) N and F are finite connected subgraphs of Γ.

(c) V (N)G = V (Γ),

(d) F = N ∪ ⋃m
i=1 N bi and E(F )G = E(Γ),

(e) ∀g, h ∈ G : g 6= h =⇒ V (N g) ∩ V (Nh) = ∅,

(f) rank G = m.

Classical examples are given by the graphs of the Keplerian plane tilings, as e.g. the tiling
with regular triangles and dodecagons in Fig. 2, where a kernel is given by any pair of
adjacent triangles. To the periodic graph Γ we associate the finite nuclear matrix A(N, Γ)
as follows. The vertices of the kernel P1, . . . , Pn decompose V (Γ) into n disjoint classes
P1, . . . , Pn. Then A(N, Γ) = (aik)n×n is the weighted adjacency matrix between these equiv-
alence classes, i.e. aik is the number of vertices in Γ of the class Pk that are adjacent to any
vertex of class Pi. The conditions 5.1 ensure that A(N, Γ) is a symmetric, nonnegative and
indecomposable matrix. Moreover, the spectral radii of all nuclear matrices of Γ coincide
and, thereby, the “periodic” index of Γ is well-defined:

12



Figure 2: Kepler’s plane tiling with regular triangles and dodecagons

Definition 5.2 Iper(Γ) = r(A(N, Γ))

For this and more details we refer to [2]. In fact, the periodic index coincides with the indices
from Definition 4.13.

Theorem 5.3 If Γ is a periodic graph, then Iper(Γ) = I−(Γ) = I(Γ).

Proof. Set ρ = Iper(Γ). The periodic graph Γ possesses a periodic vector p � 0 such that
A(Γ)p = ρp, which shows I−(Γ) ≤ ρ ≤ I(Γ).

Suppose A(Γ)y ≥ λy with `∞(Γ) 3 y > 0. Find a scalar α > 0 with αp ≥ y and
αpj = yj > 0 for some j. Then ραp = A(Γ)αp ≥ A(Γ)y ≥ λy and 0 ≤ (ρ − λ)αpj, which
implies λ ≤ ρ. Thus ρ ≥ I(Γ).

In order to show ρ ≤ I−(Γ), observe that for any 0 � x ∈ `∞(Γ) with Ax ≤ λx and for
any kernel N , the restriction zx of x to V (N) satisfies A(N ; Γ)z ≤ λz. Thus

{λ ∃x > 0 : Ax ≤ λx} ⊂ {λ ∃z > 0 : A(N ; Γ)z ≤ λz} .

Since for the finite matrix A(N, Γ) the infimum of the r.h.s. amounts to ρ, the assertion is
shown.

Combining this result with Theorem 4.9 we are lead to the

Corollary 5.4 For a periodic graph Γ all the indices I±
p and corresponding spectral radii

coincide:
∀p ∈ [1,∞] : Iper(Γ) = R = I−p (Γ) = I+p (Γ) = rp(Γ).

13



The last result generalizises the characterization of the periodic index in [3] and applies
especially to the 2m-regular infinite m-dimensional grid Γm in R

m with V (Γm) = Z
m and

the edges generated by the adjacency

ezw = 1 ⇐⇒
m
∑

j=1

|zj − wj| = 1.

It includes as a special case m = 2 the regular graph K1 belonging to the Keplerian plane
tiling with squares. Thus, rp(Z

m) = 2m for all p ∈ [1,∞]. It has been shown in [2] that

σ (A(Zm); `∞(Zm)) = σpt (A(Zm); `∞(Zm)) = [−2m, 2m]

with the aid of the mapping (z1, . . . , zm) 7→ xz1+···+zm
that induces a spectral embedding

λ 7→ mλ from σpt (A(Γ1); `
∞(Γ1)) onto σ (A(Zm); `∞(Zm)) using eigenvectors x on Γ1. The

same technique applies to the corresponding resolvent sets and yields

∀p ∈ [1,∞] : σ (A(Zm); `p(Zm)) = [−2m, 2m].

Note that in general the `∞–point spectrum is not connected. The graph in Fig. 2 bears
that property, see [5, 3, 14], a more simple example is given by the infinite comb Z1 from [5,
Example 8.2] with σpt (A(Z1); `

∞(Z1)) = [−
√

2 − 1, 1 −
√

2] ∪ [
√

2 − 1, 1 +
√

2].

6 Vertex colourings

Recall that the chromatic number ν(Γ) of the graph Γ is defined as the minimal number
of colours necessary to partition V (Γ) such that no class contains two adjacent vertices. A
classical result by H. W. Wilf [19] relates ν(Γ) to the graph index in the finite case as follows.

Theorem 6.1 If Γ is a finite graph then ν(Γ) ≤ 1 + r(A(Γ)).

The same formula holds for ULF graphs.

Theorem 6.2 ν(Γ) ≤ 1 + I−(Γ) ≤ 1 + I(Γ).

Proof. A fundamental result by N. G. de Bruijn and P. Erdös [8] states that, if for an
arbitrary infinite graph G there exists N ∈ N such that for all finite subgraphs ∆ ≤ G their
chromatic numbers satisfy ν(∆) ≤ N , then ν(G) is bounded from above by N too. In the
ULF case, we find a sufficiently large finite subgraph ∆ ≤ Γ with ν(∆) = ν(Γ). Then

ν(Γ) = ν(∆) ≤ 1 + r(A(∆)) ≤ 1 + I−(Γ)

by Wilf’s Theorem 6.1 and Lemma 4.5.

By Theorem 4.9 the chromatic number is also a lower bound for all I−p (Γ), I+p (Γ) and rp(Γ).
The periodic example given in [2, Example 5.5] shows that the estimate in Theorem 6.2 is
optimal. In the bipartite case, the `2–spectrum is symmetric with respect to the origin, see
[15]. This remains true in `∞(Γ):
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Lemma 6.3 Suppose Γ is bipartite. Then σ(A(Γ); `∞(Γ)) is symmetric with respect to the
origin and

dimR ker(λI −A(Γ)) = dimR ker(−λI −A(Γ)).

Proof. Choose a 2–colouring c : V (Γ) → {0, 1} and define the diagonal matrix C = (cih)i,h∈J

by cii = (−1)c(vi). Then
CA(Γ) = −A(Γ)C

and by putting y = Cx,

ρx −A(Γ)x = b ⇐⇒ −ρy −A(Γ)y = −Cb.

This shows that ρ−A is a bounded automorphism of `∞(Γ)) with bounded inverse iff −ρ−A
has the same properties. Thus the resolvent set is symmetric with respect to the origin and
so does σ(A(Γ); `∞(Γ)). Moreover, the multiplicity formula follows readily by C being an
automorphism of `∞(Γ).

In the finite or periodic case, index and bipartite character are closely related by the

Theorem 6.4 ([1],[2]) Suppose that Γ is a finite or periodic graph. Then Γ is bipartite iff

−I(Γ) ∈ σ(Γ).

For general infinite ULF graphs, it has been shown in [18] that, if r2(Γ) is an eigenvalue with
eigenvector belonging to `2(Γ), then Γ is bipartite iff −I−(Γ) = −r2(Γ) ∈ σpt (A(Γ); `2(Γ)).
But for the index I(Γ), this is no longer true as the following example shows.

Example 6.5 Take a 3–regular tree in which one node is replaced by a triangle such that
the resulting graph Θ remains 3–regular, see Fig. 3 Then Θ is not bipartite, but −I(Γ) is an
eigenvalue of A(Γ) in `∞(Γ) of infinite multiplicity, as follows readily with the constructions
in [4, Section 5] or [5, Section 8].

Figure 3: A non bipartite graph with −I(Γ) ∈ σpt (A(Γ); `∞(Γ))
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7 Maximal regular subgraphs

For finite or periodic graphs all conditions in Theorem 7.1 are equivalent. But in the ULF
case the situation is more complicated. Let us first note the implications in this context that
are plain.

Theorem 7.1 The following implications hold

(a) ⇐= (c) ⇐⇒ (d) ⇐⇒ (e) ⇐⇒ (f) =⇒ (b),

where

(a) γmax = I(Γ),

(b) γmin = I(Γ),

(c) Γ is regular of valency r(Γ),

(d) e is eigenvector of Γ,

(e) Ae ≥ γmax e,

(f) Ae ≤ γmin e.

In general, γmax = I(Γ) does not imply that Γ is regular. Any easy example is furnished
by the one-sided unbounded path Γ0 in Example 4.17. The invalidity of (b) =⇒ (c) in the
general ULF case is more complicated and will be shown by Example 7.4. Let us first note
the following

Lemma 7.2 If Γ is infinite and satisfies γmin = I(Γ) =: d, then Γ does not contain any finite
subgraph Λ such that γmin(Λ) = γmin(Γ), and any d–regular subgraph is infinite. Moreover,
Γ contains a maximal d–regular infinite subgraph ∆.

Proof. Without restriction we can assume that Γ is connected. By hypothesis, d = I−(Γ) =
I(Γ) and Γ contains d–regular subgraphs. If a connected finite subgraph Λ ≤ Γ would satisfy
γmin(Λ) = γmin(Γ), then there would exist a connected finite subgraph Λ̃ ≤ Γ containing
Λ properly and satisfying d = r(Λ) < r(Λ̃) ≤ r(Γ) = d by the strict monotonicity of the
spectral radius in the class of indecomposable nonnegative finite matrices and by Lemma
4.5. Thus γmin(Λ) < γmin(Γ). Especially, Γ cannot contain d–regular finite subgraphs, and
d–regular subgraphs must be infinite. Since any two of those are vertex and edge disjoint,
the union of all of them is maximal with the regularity property and defines ∆ as desired.

At least for d = 2, ∆ = Γ, as will be shown next.

Corollary 7.3 If Γ is infinite with 2 = γmin = I(Γ), then Γ is 2–regular.
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Figure 4: Ξ

Figure 5: T

Proof. Suppose that Γ is not 2–regular. Then Γ contains either an infinite subgraph Ξ as
depicted in Fig. 4 in the case V (∆) = V (Γ), or an infinite subgraph T as depicted in Fig. 5

in the case V (∆) 6= V (Γ). In the first case Corollary 4.19 yields I(Ξ) >
√

2 +
√

5, while in

the second one
√

2 +
√

5 ≤ I(T ), as will be shown next. Thus, both cases are impossible,
since by Lemma 4.5, 2 = I(Γ) dominates the subgraph indices.

It remains to estimate I(T ). Set λ0 =
√

2 +
√

5. Let v0 denote the vertex of valency
3 and b the boundary vertex. Number the remaining vertices of T by Z correspondingly.
Then, using the function a2(λ) from (20), p ∈ `1(T ) with

pk =











1 if k = 0

a2(λ0)
|k| if 0 6= k ∈ Z

1
λ0

at b

satisfies A(T )p = λ0p. Thus, I(T ) ≥ λ0.

In fact, it can be shown that I(T ) = λ0 using the functions in (20) and comparison arguments.
The arguments in both proofs show also that if the maximal d–regular infinite subgraph

∆ is induced and such that adding an adjacent vertex v1 outside ∆ increases strictly the
index of the graph (V (∆) ∪ {v1}, K(∆) ∪ {v0, v1},∈) , then Γ is regular. But, in general,
γmin = I(Γ) =: d does not imply that Γ is d–regular, as will be illustrated by the

Example 7.4 Let T0 denote the backwards genealogical tree as depicted in Fig. 6. Connect
four copies of T0 by identifying their four boundary vertices with one ramification node v0,
and get the tree T as displayed in Fig 7 that is not regular. All the vertices are of valency 3
except the vertex v0 of valency 4.

Claim : γmin(T ) = I(T ) = 3 < γmax(T ) = 4.

Proof. First, observe that p = (pk)k∈N
with

pk =
1

2
+

1

2k+1
, k ∈ N

satisfies 0 � p ∈ `∞(T ) and A(T )p = 3p.
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[k−1] [k]   [k+1]   

Figure 6: The tree T0

T0

T0

T0

T0

0
1

1

1

1

Figure 7: The non regular tree satisfying γmin = I(Γ) in 7.4

Next, suppose (xk)k∈N
= x ∈ `∞(T ) is an eigenvector with A(T )x = λx. If the sum of the

four neighboring values of v0 vanishes, then either the value x0 at v0 vanishes or λ = 0. In
both cases, λ ∈ σp (A(T0); `

∞(T0)) and |λ| ≤ 3. Thus we can assume that x0 = 1, and, by
symmetry, that in the k–th generation [k] of all of the four T0 the values of x coincide, still
denoted by xk. Then, for the reduced vector x, the initial condition and the recursion read

λx0 = λ = 4x1, 2xk+1 = λxk − xk−1 for k ≥ 1.

For λ > 3, the characteristic equation and the boundedness requirement lead to the solution

xk =

(

λ −
√

λ2 − 8

4

)k

,

especially x1 = λ
4

= λ−
√

λ2−8
4

, which is absurd. Thus σpt (A(T ); `∞(T ))∩ (3,∞) = ∅, and the
bipartite character of T guarantees that σpt (A(T ); `∞(T )) ∩ (−∞,−3) = ∅.

Question 7.5 Let Γ be an infinite graph satisfying γmin = I(Γ) =: d. Let ∆ denote the
maximal infinite d–regular subgraph of Γ from Lemma 7.2. Do the conditions d ≥ 3 and
V (∆) = V (Γ) imply that Γ is d–regular?

It is clear that a counterexample must have minimal valency at least 3. The following
example seems to confirm the implication in Question 7.5.
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Figure 8: The periodic band ∆

Figure 9: The graph Πk for k = 3

Example 7.6 Let ∆ denote the 3–regular periodic band depicted in Fig. 8. Add periodi-
cally diagonal edges to each m–th square while leaving out k = m − 1 squares and get the
graph Πk depicted in Fig. 9. Then

I(Πk) ≥ 3 +
1

k + 1
> I(∆) = 3 = γmin(Πk) and V (∆) = V (Πk).

The index remains strictly greater than 3 if we add only one edge as depicted in Fig. 10. The
resulting graph Γ satisfies V (∆) = V (Γ) and contains the finite subgraph with 30 vertices
depicted in Fig. 11 that has an index bounded from below by 3.0531. Thus

I(∆) = 3 = γmin < 3.053 < I(Γ).

Figure 10: The graph Γ

Figure 11: A finite subgraph with I > 3.053

8 When do I−(Γ) and I(Γ) coincide?

As pointed out already above, in general, I−(Γ) < I(Γ), but for finite or periodic graphs I−(Γ)
and I(Γ) coincide. For each connected graph in both of these classes, there exists a positive
eigensequence belonging to I(Γ). Moreover, if Γ possesses a `1–Perron–vector p, i.e. a positive
sequence p belonging to `1(Γ) and satisfying A(Γ)p = I(Γ)p, then I−(Γ) = r2(Γ) = I(Γ).
This suggests the following generalizations.

1This value has been calculated with the aid of mathematica. The author is indebted to his colleague
Shalom Eliahou for the help in calculating this value.
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Lemma 8.1 Each of the following conditions implies that I−(Γ) = I(Γ):

(a) ∃p ∈ `1(Γ) : p � 0 & I(Γ)p ≤ A(Γ)p.

(b) ∃p ∈ `1(Γ) : p � 0 & A(Γ)p ≤ I−(Γ)p.

(c) ∃p ∈ `∞(Γ) : p ≥ e & A(Γ)p ≤ I−(Γ)p.

Proof. In order to show the first case, suppose x ∈ `∞(Γ), x > 0 and Ax ≤ λx. Then
(pixi)i∈J ∈ `1(Γ) and, by symmetry and boundedness of A,

(21) I(Γ)(x,p)`2 ≤ (x,Ap)`2 = (Ax,p)`2 ≤ λ(x,p)`2 and I(Γ) ≤ λ.

The case (b) is shown analogously. Under (c) we conclude for x ∈ `∞(V ), x > 0 and
A x ≥ λx, that there exists α > 0 such that p ≥ αx and pi0 = αxi0 for some i0 ∈ J or
limν→∞(piν − αxiν ) = 0 for some subsequence (iν)ν∈N

. In both cases I−(Γ)p ≥ Ap ≥
Aαx ≥ λαx leads to I−(Γ) ≥ λ.

In the next result we construct a `1–Perron–vector in a special class of infinite graphs.

Theorem 8.2 If Γ is an infinite connected graph with finitely many essential ramification
nodes, then

I−(Γ) = I(Γ).

More precisely: By hypothesis, Γ consists in a finite connected graph S with n vertices,
among them t distinguished vertices v1, . . . , vt, and in t one–sided disjoint unbounded paths
Π1, . . . , Πt, each isomorphic to Γ0. Each of the paths Πi is linked with S at the node vi such
that γ(vi, Γ) ≥ 2 and γ(vi, Πi) = 1. All the other vertices of each Πi have valency 2 in Γ.
Then

I(Γ) ≥ max {2, r(S)} ,

and if Γ 6= Γ0, I(Γ) is attained and is equal to the maximal zero ρ of the equation

(22) δ(ρ) := det

(

A(S) +

(

ρ

2
−
√

ρ2

4
− 1

)

(

It 0
0 0

)

− ρ In

)

= 0,

especially

(23) I(Γ) ≤ r(S) +
1

r(S)

with equality iff Γ = Γ0 or Γ = Γ1. Moreover, I(Γ) = 2 iff Γ = Γ0, Γ = Γ1 or S is a path of
length 2 and t = 1.

Proof. By Lemma 4.5, I(Γ) ≥ 2. On each Πi, each positive vector p satisfying Ap ≤ µp

decays geometrically and leads to a sequence belonging to `1(Πi). Then the conclusion (21)
remains valid for any µ > 0 with µx ≤ Ax instead of I. Thus, I−(Γ) = I(Γ).

Next suppose that Γ 6= Γ0 and r(S) ≥ 2, and choose ρ > I(S). In fact, we shall determine
a `1–Perron–vector p belonging to I(Γ). Set A = A(S) and denote the vertices of each Πi
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in the canonical order, i.e. by v
(i)
k with k ∈ N endowed with the adjacency eih = δ1,|i−h|. For

each vector b =
∑t

i=1 bi e
(i)
0 with b1, . . . , bt > 0 we obtain on S

x := (ρ In − A)−1
b > 0 and ρx = Ax + b.

On each Πi any eigensequence belonging to `∞(Γ) satisfies necessarily

(24) x
(i)
k = x

(i)
0 α2(ρ)k for k ≥ 1

where we have used the function α2 from (20). Thus the vector x defined on S can be
extended to an eigenvector on the whole graph if on each Πi (24) is satisfied and if

α2(ρ) x
(i)
0 = bi for t = 1, . . . , t.

With this choice we are lead to the equation

ρx = Ax + α2(ρ)

(

It 0
0 0

)

x

for x defined on S. As x > 0, the characteristic equation (22) is shown, since δ always has
zeros in [2,∞) for r(S) ≥ 2: The function

f(ρ) = r

(

A + α2(ρ)

(

It 0
0 0

))

decays strictly on [2,∞) to r(A). But at ρ = 2, f takes a value that is strictly greater than
r(A), in particular, f(2) > 2. Thus f possesses a unique fixed point ρ0 ∈ (2,∞) that is the

principal eigenvalue of the matrix A + α2(ρ0)

(

It 0
0 0

)

and, thereby, a zero of δ. We note

in passing, that this argument cannot hold for Γ = Γ0, since here f(ρ) ≤ 1+
√

5
2

uniformly
and δ > 0 in [2,∞). Moreover, since

r

(

A(S) + α2(ρ)

(

It 0
0 0

))

≤ r (A(S) + α2(ρ)In) ,

and since the latter spectral radius is determined by the equation I(S) = α1(ρ) and amounts
to the r.h.s. in (23), Inequality (23) is shown.

If Γ = Γ0, then I(Γ) = 2 without being attained according to Example 4.17. Thus, 2
cannot be a zero of δ in this case. If Γ = Γ1, then I(Γ) = 2 with eigenvector e according
to Example 4.18, but 2 is also the maximal zero of δ, where S is the single edge graph. If
t ≥ 2 and Γ 6= Γ1, then Γ contains a subgraph T as in the proof of Corollary 7.3 and as in
Fig. 5 with I(T ) > 2, which enforces I(Γ) > 2 by Lemma 4.5. If I(Γ) = 2, then t = 1, and S

is a path, since a tree with at least 2 essential ramification nodes contains a finite subgraph
of index 2. But then S can have at most 3 vertices, since the graph Ψ depicted in Fig. 12
possesses a positive eigenvector x ∈ `1(Ψ) associated to ρ = 2 + 1

30
defined by x−3 = 1,

x−2 = 2 x−1 = 3
2
, x0 = 3 and xk = 3

(

5
6

)k
for k ≥ 1. If S is a path with 3 vertices, and if

Γ has one vertex of valency 3, then I(Γ) = 2 with associated positive eigenvector p ∈ `∞(Γ)
coinciding with e on Π1 and being 1

2
at the two boundary vertices. Moreover, in this case,

2 is the only positive zero of δ, which accomplishes the proof.
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−3
−2

0
1 2 k k+1

−1

Figure 12: The graph Ψ

Note that it is no restriction to assume that a vertex vi is incident only with one Πi, since
otherwise we can enlarge S in order to achieve this situation. Moreover, the estimate (23)
is optimal: If each vertex of S is adjacent to an infinite path, i.e. t = n, then ρ = I(Γ) is
governed by the equation r(S) = α1(ρ) that leads to

ρ = r(S) +
1

r(S)
.

Example 8.3 Let At denote the infinite star graph with essential ramification node v0 of
valency t ≥ 3 and with one–sided infinite paths Π1, . . . , Πt with v0 as boundary vertex. Then
Theorem 8.2 permits to conclude that

I−(At) = I(At) =
t√

t − 1
=: r

by calculating the zeros of δ(ρ) = (α2(ρ) − ρ)t−1 (ρ2 − ρα2(ρ) − t) according to (22). Note
further that At admits the eigenvector p ∈ `1(Γ) associated to r and satisfying on each Πi

pk = pi
k =

(

r

2
−
√

r2

4
− 1

)k

for k ∈ N.

Figure 13: The infinite star graph
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