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Abstract

We suggest a method of fitting of the zero-range model of the tectonic plate
under the boundary stress based on comparison of the theoretical formu-
lae for the corresponding eigenfunctions/eigenvalues with the results of in-
strumental measurements of frequency and the shape and the shape of the
relevant seismo-gravitational modes in the remoted zone. Comparison of
the data of the instrumental measurements of the variation of frequency of
seismo-gravitational oscillations with results of theoretical analysis of the
fitted model permits to localize the stressed zone on the boundary of the
tectonic plate and estimate the risk of a powerful earthquake at this zone.
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1 Dynamics of the system of tectonic plates

and the motivation of the zero-range model.

The lithosphere of Earth consists of 13 tectonic plates which jigsaw fit each
other, contacting at some boundary zones. The plates are isolated from
underlying solid structures within the Earth mantle by the liquid layer of
astenosphere which is formed, due to high pressure and temperature, in the
interval of depth between 100 - 200 km. Fig. 1 below 1 shows a complex

1Fig.1 is borrowed from the book of S. Aplonov, [3], and is included in our text on the
permission of the Publishing House of the St. Petersburg University.
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Figure 1:

Boundaries of tectonic plates: 1- divergent boundaries (a - oceanic ridges, b-
continental rifts), 2- transforming boundaries, 3-convergent boundaries (a-
insular, b- active continental outskirts, c - collisions of plates). Directions
and velocities of movement of plates ( cm/ year).

form of boundaries between tectonic plates and their movements in different
directions. The plates are enumerated in the following order : 1. South-
American plate, 2. African plate , 3. Somali plate, 4. Indian plate, 5.
Pacific plate, 6. Naska plate, 7. North-American plate, 8. Phillippines
plate, 9. Euro-Asian plate, 10. Antarctic plate, 11. Caribean plate, 12.
Cocos plate, 13. Arabian plate. In [23] observations of oscillatory processes
on tectonic plates - seismo-gravitational oscillations ( SGO)- are described.
SGO are scattered in the liquid layer of the astenosphere and the energy of
the oscillations is damped in it due to viscosity. From the point of view of
elasticity, the loose materials filling the gaps between neighboring tectonic
plates are essentially different from the materials composing the plates. This
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suggests the idea that the tectonic plates are decoupled from each other
everywhere on the boundary, except few relatively small zones of contact.
The tectonic plates, in a certain range of frequencies 0.2 − 5h−1 are also
elastically disconnected from the underlying layers of the astenosphere.

For measurements of of parameters SGO special devices were constructed,
with high sensitivity to the variations of amplitudes and frequencies of SGO
within the extended interval of periods 0.5 -5 hours. Observations with these
devices reveal a wide spectrum of SGO and correlations of their short-time
(24-hour) variations with short-time variations of the angular speed of Earth.

Direct calculations of eigenfrequencies of the bending modes of rectangu-
lar thin plate 4 000 × 8 000 km, were done, see [19], based on bi-harmonic
model, with Neumann boundary conditions on the boundary, under assump-
tion that the density of the material is 3380 kg/m3 and the speeds of lon-
gitudinal and transversal waves are νs = 8080 m/sec and νp = 4470 m/sec
respectively. It appeared that periods of the lower eigen-modes f1,1 − f5,5

sit in the interval 0.21 h - 5.2 h and their total number and distribution
looks similar, see Fig. 2, to SGO described in the paper [23], and other rele-
vant literature, despite of the fact that in [19] the trivial Neumann boundary
conditions were used, and the trivial (rectangular) geometry of the plate.

Figure 2:

All experimental data described above indicate presence of active energy
in the system of tectonic plates, relevant to the inhomogeneity of the litho-
sphere. Some essential features of the dynamics of the frequencies of SGO
may be explained based on processes involving redistribution of this energy
in the astenosphere.
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We consider here the scenario of arising of stress in contact zones of the
plates based on variations of the angular speed of earth. Due to the liquid
friction in the astenosphere, the smaller tectonic plates react immediately
on these variations, and larger plates lag behind. Generically,with a certain
correction depending on the shape of the plates, this is causing collision of
neighboring plates and additional stress in active zones on the west bound-
aries of large plates with smaller plates, when the speed grows, or on the east
boundaries, when the speed decreases. Once the tectonic plates collide, caus-
ing a local strass in the relatively small active zones near the contact sites of
the plates. This stress may be either discharged via forming cracks near the
zone of contacts, splitting the zone into independently moving fragments, or,
if the stress is not discharged, and applied for extended period, it may cause
accumulation of a considerable amount of elastic energy, which eventually re-
sults in a powerful earthquake. The accumulation of the elastic energy, due
to standard variational principle [8], causes the increment of eigenfrequen-
cies of the tectonic plates. It is natural to expect that extended, long-time
variations of the angular speed of earth, caused by the major change of the
moment of inertia of earth, say, due to non-balanced displacement of huge
masses on the surface of the planet, may cause accumulation of a consider-
able amount of elastic energy at the active zones of contacts of the plates and
the corresponding growth of the frequencies of SGO. Hence growth of the fre-
quencies of the SGO may be considered as a precursor of strong earthquakes.
Our ability to extract a useful information from the observations on SGO
is limited by our understanding of the mechanism arising of the boundary
stress on the tectonic plates.

Note, that in numerous observation done on SGO in Leningrad (St. Pe-
tersburg) intense short pulses were recorded. They had approximately si-
nusoidal form with period 30 min. to 1 hour, continued for 6-10 hours and
then disappeared. In several case they were followed by powerful earthquakes
in 2-4 days. This process was noticed first in [13] and was given the name
of “pulsations”. In [13] a conjecture was formulated about the connection
between the pulsation, and the subsequent strong earthquakes occurred in
Phillipines, Spitak and San-Francisco, suggesting to consider the pulsation
as another precursor of a strong earthquake.

Essential information on SGO is obtained from the observation of vari-
ations of the frequencies and the shape of the corresponding modes in the
remoted zone. The size of the zones of contact ≈ 100 km is comparable
with the vertical size of the plates, i.e. it is negligible - “point-wise”- when
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compared with the wavelength of corresponding seismo-gravitational stand-
ing waves (SGW), calculated as Λs,p = vs,p T based on the period T of the
oscillation and the speed vs,p of the seismic waves.

Summary of the results obtained in [19] resulted in conjecture that SGO
may be interpreted as bending eigen-modes of the relatively thin tectonic
plate. Hence we can model it by the bi-harmonic boundary problem with
appropriate boundary conditions, see next section.

The boundary of a real tectonic plate is not smooth, however the details
of the local geometry of the boundary may be neglected compared with the
wavelength of typical standing waves on the plates.

Based on the above analysis, a solvable zero-range model for the tectonic
plate under the point-wise boundary stress was suggested in [25]. The role of
the parameter of the model is played by some finite matrix M , see next sec-
tion. We assume, that the matrix M defines the type of the stress, depending
on mutual positions of the neighboring plates at the zone of the contact. We
assume that these positions remain essentially unchanged during extended
period, so the matrix M characterizes the type of contact for all earthquakes
arising from the given zone of contact. This permits to fit the model ( se-
lect the matrix M) based on analysis analysis of instrumental observation of
SGO and/or pulsations. Once fitted, the constructed model would allow to
calculate in explicit form the increment of the eigenvalues and the variations
of the shape of the eigenfunctions of the stressed (perturbed) plate depend-
ing on the type and the magnitude of the local stress. We assume that the
corresponding fitting is done for all active zones on the boundary of some
tectonic plate, and the shifts of the eigenfrequencies and the shape of the
eigen-modes is done for each zone of contact.

Generically earthquake hits only one active zone at a time. Then compar-
ing the observed shift of the eigenfrequencies and the variations of the shape
of the mode in the remote zone, where Saint-Venant principle is applicable,
with the results of computing based on the model, we will be able to localize
the excited active zone, causing the observed changes of the eigen-frequencies
and the shapes of the eigen-modes.

Mathematically the zero-range model of the point-wise stressed isolated
tectonic plate and a similar zero-range model of the point-wise stressed tec-
tonic plate submerged into environment formed by other plates, intermediate
layers and astenosphere, differ by the type of basic equations, but have a lot
in common. In particular, the number of free parameters in both models
is the same. We interpreted these parameters in the spirit of Saint-Venant
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principle as essential parameters describing the shape of the wave-process in
the remote zone, see [25]. In this paper we obtain the first order approx-
imation for the perturbed eigenfrequencies and eigenfunctions based on a
modified Krein formula, based on [1] for the point-wise stressed thin plate
described by the bi-harmonic equation. The explicit representation of the
perturbed eigen-modes permits to fit the zero-range model suggested in [25]
based on results of instrumental measurements of SGO. We also conjecture
that the properly fitted solvable model of the stressed tectonic plate may
help to enlighten the nature of the pulsations.

2 Zero-range model for the point-wise stress

We may base our approach on the standard mathematical model of the tec-
tonic plate in form of a thin elastic plate, thickness h, with free edge, or on
the 3-d Lame equations for displacements. We consider both options, de-
scribing in the next two subsections specific details of both models. Then we
develop the common part of the theory, for both models simultaneously.

2.1 Thin plate model for the isolated tectonic
plate under the localized boundary stress

Denoting by D the “the bending stiffness ”, connected with Young modulus
E, the thickness h of the plate and the Poisson coefficient σ by the for-
mula D = Eh2[12(1− σ2)]−1, we represent, following [12], the corresponding
dynamical equation for the normal displacement u as

ρ
∂2u

∂s2
= D∆2u.

We consider time-periodic solutions u(ωs, x)of the equation and separate
the time reducing the dynamical problem to the spectral problem with the
spectral parameter

λ = ρD−1 ω2 (1)

for a bi-harmonic operator on a compact 2-d domain Ω - the tectonic plate
- with a smooth boundary ∂Ω:

Au = ∆2u = λu, u ∈ W 4
2 (Ω),
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and free boundary condition involving the tangential and normal derivatives
of the displacement u and the tension ∆u:[

∂∆u

∂n
+ (1− σ)

∂3u

∂n∂t2

] ∣∣∣
∂Ω

= 0,

[
∆u− (1− σ)

∂2u

∂t2

] ∣∣∣
∂Ω

= 0. (2)

Here n, t are the normal and the tangent directions on the boundary.
The bi-harmonic operator A is selfadjoint in the Hilbert space L2(Ω) :=

H. The eigenfunctions of A are smooth and form an orthogonal basis in
L2(Ω) = H. We consider the restriction A0 of A onto D(A0) all smooth
functions vanishing near the boundary point a ∈ ∂Ω. The restriction is a
symmetric, but it is not selfadjoint, because the range of it (A− λI) D(A0),
for complex Λ has a nontrivial complement in L2Ω = spanned by the Green

function G(x, a, λ̄) := g0(x, λ̄) and it’s tangential derivatives ∂G(x,a,λ̄)
∂t

:=

g1(x, λ̄), ∂2G(x,a,λ̄)
∂t2

:= g2(x, λ̄) of the first and second order, at the point a.
The orthogonal complement Nλ of the range is called the“deficiency sub-
space”, and elements of it - “deficiency elements”:

Nλ := H	 (A0 − λI)D0 =
2∨

s=0

gs(∗, λ̄).

The deficiency elements have at the boundary point a singularities of different
types ( see for instance [14], where much more general problem is considered)
:

g0(n, t) ≈ (n2 + t2) ln(n2 + t2), g1(n, t) ≈ t ln(n2 + t2), g2(n, t) ≈ ln(n2 + t2),

hence they are linearly independent and form a basis in the deficiency sub-
space. The deficiency subspace at the spectral point λ̄is

Nλ̄ := H	 (A0 − λ̄I)D0 =
2∨

s=0

gs∗, λ.

The dimensions of the deficiency subspaces (3, 3) constitute the “deficiency
index”. Hereafter we select λ = i and attempt to construct a self-adjoint
extension of A0, which will play a role of a zero-range model of the tectonic
plate under the boundary strain.
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Note that in case of lame equations the deficiency index is also (3, 3), on
a smooth boundary. The role of deficiency elements is played by the columns
of the Green matrix. The boundary of the tectonic plates may be assumed
smooth, for the long waves, since their shape is not affected by the details of
the local geometry.

2.2 Construction of the self-adjoint extension

Extend A0 from D0 onto D(A+
0 ) = D0 + Ni + N−i as an “adjoint operator”

A+
0 by setting

(
A+

0 +±iI
)
g = 0 for g ∈ N±i. This operator not selfadjoint,

even it is not symmetric, so that the boundary form

〈A+
0 u, v〉 − 〈u, A+

0 v〉 = J (u, v) (3)

does not vanish, generally, for u, v ∈ D(A+
0 ). One can re-write (3) in more

convenient form with using new symplectic coordinates with respect to new
basis in N

W+
s =

1

2

[
gs +

A + iI

A− iI
gs

]
=

A

A− iI
gs

W−
s =

1

2i

[
ss −

A + iI

A− iI
gs

]
= − I

A− iI
gs

Due to A+
0 gs + igs = 0, [A+

0 − iI]A+iI
A−iI

gs = 0 we have,

A+
0 W+

s = W−
s , A+

0 W−
s = −W+

s . (4)

Following [21] we will use the representation of elements from the domain of
the adjoint operator by the expansion on the new basis:

u = u0 +
∑

s

ξs
+W+

s + ξs
−W−

s = u0 +
A

A− iI

∑
s

ξs
+gs −

I

A− iI

∑
s

ξs
−gs :=

= u0 +
A

A− iI
~ξ+ −

I

A− iI
~ξ−. (5)

Note that due to (4)

A+ A

A− iI
~ξ+ = − I

A− iI
~ξ+, A+ −I

A− iI
~ξ− = − A

A− iI
~ξ−.
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Note that the boundary form

〈A+
0 u, v〉 − 〈u, A+

0 v〉 := J (u, v)

of elements u, v,

u = u0 +
A

A− iI
~ξu
+ −

I

A− iI
~ξu
− := u0 + nu, u0 ∈ D(A0) nu ∈ N, (6)

v = v0 +
A

A− iI
~ξv
+ −

I

A− iI
~ξv
− := v0 + nv, u0 ∈ D(A0) nv ∈ N

depends only on components nu, nv of them in the defect N . Then the
boundary form is represented as:

〈A+
0 u, v〉 − 〈u, A+

0 v〉 := J (u, v) = 〈~ξu
+, ~ξv

−〉 − 〈~ξu
−, ~ξv

+〉 (7)

with Euclidean dot-product for vectors ~ξ± ∈ Ni. Note that the representa-
tion of the boundary form in terms of abstract boundary values ~ξ± contains
only integral characteristics of the elements from the domain of the opera-
tors considered, hence is stable with respect of minor local perturbations of
geometry of the plates. This permits to substitute, for practical calculations,
the real sophisticated boundaries of the plates by the smoothened bound-
aries, obtained via elimination of minor geometrical details, compared with
the length of standing waves of SGO, 1000 -4000 km.

The boundary form vanishes on the Lagrangian plane defined in D(A+
0 )

defined by the “boundary condition” with an hermitian operator M : Ni →
Mi :

~ξ+ = M~ξ−. (8)

This boundary condition defines a self-adjoint operator AM as a restriction
of A+

0 onto the Lagrangiam plane TM ∈ D(A+
0 ) defined by the boundary

condition (8). The resolvent of AM defined by the boundary conditions is
represented, at regular points of AM , by the Krein formula, see [2, 21]:

(AM − λI)−1 =
I

A− λI
− A + iI

A− λI
P+M

I

I + P+
I+λA
A−λI

P+M
P+

A− iI

A− λI
(9)
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2.3 Compensation of singularities in Krein formula
and calculation of the perturbed spectral data

Singularities of the resolvent (AM − λI)−1 coincide with the spectrum of AM .
But both terms in the right side of (9) also have singularities on the spec-
trum of the non-perturbed operator A. The singularities of the first and
second term the eigenvalues of A compensate each other. We are able to
derive this statement via straightforward calculation, similar to [1]. More-
over, in course of this calculation we can recover both the eigenvalues of
the perturbed operator AM and the corresponding eigenfunctions. Similar
statement, as a lemma on compensation of singularities of the corresponding
Weyl-Titchmarsh function, was discovered in [6] for 1-d solvable model of
the quantum network in form of a quantum graph. Later, in [16] and in [15],
similar statements were proven for Dirichlet-to-Neumann maps of quantum
networks. We derive here this statement for the resolvent of the selfadjoint
extension based on ideas proposed in [17].

We will observe the effect of compensation of singularities on a certain
spectral interval ∆0 = [λ0 − δ, λ0 + δ] centered at the resonance eigenvalue
λ0 of the non-perturbed plate, assuming that the perturbation, defined by
the matrix M is relatively small, in a certain sense.

Assuming that there is a single eigenvalue λ0 of A on the interval ∆0,
with the eigenfunction ϕ0, we use the following representations, separating
the polar terms from smooth operator functions Ki, K−1, K on ∆0

A + iI

A− λI
= (λ0 + i)

ϕ0〉〈ϕ0

λ0 − λ
+ K−i,

A− iI

A− λI
= (λ0 − i)

ϕ0〉〈ϕ0

λ0 − λ
+ Ki,

P+
I + λA

A− λI
P+ = (1 + λ2

0)
P+ϕ0〉 〈P+ϕ0

λ0 − λ
+ K(λ), (10)

with a smooth matrix-function K(λ) = K0 + o(|λ − λ0|), with K0 = K(λ0)
and ‖ o(|λ− λ0|) ‖≤ C0δ.

Definition 2.1 We say that the matrix M is relatively small, if [I+K(λ)M ]−1

exists and is bounded on ∆0.

This condition is obviously fulfilled if

‖ [I + K(λ0)M ]−1 ‖ C0δ << 1. (11)
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To calculate the second term in the right side of the Krein formula (9) we
have to compute the inverse of the denominator, that is to solve the equation[

I + P+
I + λA

A− λI
P+M

]
u = g (12)

Though the standard analytic perturbation technique is still not applicable to
this equation under the above conditions 2.1 or (11), we are able to construct
the inverse based on finite dimensionality ( one-dimensionality) of the polar
term.

u = [I +KM ]−1g− (1+λ2
0)

[I + KM ]−1P+ϕ0〉〈P+ϕ0M [I + KM ]−1g〉
λ0 − λ + 〈P+ϕ0M [I + KM ]−1ϕ0〉

. (13)

Based on the last formula we are able, see [7, 1] to observe the compensation
of singularities in the above Krein formula (9) and calculate the polar term
of the resolvent at the single eigenvalue of the operator AM on the interval
∆0:

Theorem 2.1 If the perturbation is relatively small, as required in (2.1),
then there exist a single eigenvalue λM of the perturbed operator AM on the
interval ∆0 which is found as zero of the denominator in (13)

λ0 − λ + (1 + λ2
0)〈P+ϕ0M [I + KM ]−1ϕ0〉 := dM(λ), dM(λM) = 0 (14)

and the corresponding eigenfunction

ϕM = ϕ0 − (λ0 − i)K−iM [I + KM ]−1P+ϕ0, (15)

computed at the zero λM . The polar term of the resolvent of the perturbed
operator at the eigenvalue is represented as:

ϕ0 − (λ0 − i)K−iM [I + KM ]−1P+ϕ0〉〈ϕ0 − (λ0 − i)K−iM [I + KM ]−1P+ϕ0

dM(λ)

Proof of this statement can be obtained similarly to relevant statement in
[1]. We postpone it to further publication. If the stronger condition (11) is
fulfilled, then the approximate eigenvalue and the corresponding approximate
eigenfunction of AM can be obtained via replacement K, K±i in (14,15) by
K(λ0), K±i(λ0):

λM ≈ λ0 + (1 + λ2
0)〈P+ϕ0M [I + K(λ0)M ]−1K(λ0)ϕ0〉,
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ϕM ≈ ϕ0 − (λ0 − i)K−i(λ0)M [I + K(λ0)M ]−1P+ϕ0. (16)

Remark Analysis of the multi-point boundary condition which corresponds
to several strains applied at the points a1, a2, . . . am on the boundary of
the plate Ω differs from the above analysis of the single-point case only
in the first step. In multi-point strain we have to construct of elements
{gr

0(x, ar, i), gr
1(x, ar, i), gr

2(x, ar, i)}m
r=1 a basis in the larger deficiency sub-

space Ni, dim Ni = 3m. Due to presence of singularities of different types
at different points, the deficiency elements are linearly independent.

3 Concluding remarks on fitting of the model

The pair of data (16) may be used in two different ways: either for calculation
of the shift of the frequency of SGO and the corresponding perturbation of
the eigenfunction, under the point-wise stress characterized by the matrix M ,
or, vice versa, for recovering of the data on the location, type and intensity
of the stress from instrumental observations.

Indeed, if the geological structure of the tectonic plates at the active
zones, encoded in matrices Ms attached to the active zones as where the
collisions occur, are known, then, theoretically, we are able to calculate the
eigenfunctions and the eigenfrequencies of the plates, taking into account the
stress caused by collisions. We are also able, theoretically, to construct the
deficiency elements for all active zones. Then the self-adjoint extension of
the bi-harmonic operator on the plate, with the point-wise boundary stress,
can be constructed, with the matrices Ms, corresponding to given collision
points. The obtained theoretical results can be compared with the corre-
sponding results of the instrumental measurements. This permits to recover
the matrices Ms, which correspond to the stressed points a1, a2, . . ..

Assume that the structure of the plates at the collision point a remains
unchanged, but the tension is increasing linearly with time as τ : M(τ) = mτ ,
with some matrix coefficient m : N → N . Then the formulae (15,14), for
small τ , define the derivatives of λM , ϕM with respect to τ at the moment
τ = 0:

∂ϕM

∂τ

∣∣∣
τ=0

= −(λ0− i)K−im0P+ϕ0(xs),
∂λM

∂τ

∣∣∣
τ=0

= (1+λ2
0)〈P+ϕ0, m P+ϕ0〉.

Comparing this result with ratios

ϕmτ (xs)− ϕ0

τ
(xs)

∣∣∣
τ=0

,
λmτ − λ0

τ

∣∣∣
τ=0

,
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measured experimentally for the amplitude and frequency of SGO, we are
able to find fit m, and calculate the increment of M δM = τm.

Practical experience in analytic perturbations shows, that minor pertur-
bations affect rather the eigenvalues, that the eigenfunctions of the spectral
problem. Based on this observation we can estimate the speed of accumu-
lation of elastic energy E , under the point-wise boundary stress depending
on the speed of the shift of the eigenvalues (eigenfrequencies) of SGO and
initial distribution of the elastic energy on the modes ϕs

0 defined by the cor-
responding Fourier coefficients 〈u, ϕs

0〉:

dE
dτ

≈
∑

s

dλs
M

dτ
|〈u, ϕs

0〉|2 =
∑

s

(1 + (λs)2
0)〈P+ϕs

0, m P+ϕs
0〉 |〈u, ϕs

0〉|2,

with the summation extended only on the eigen-modes which correspond to
variing eigenvalues. If there is only one active zone as involved at a time, then
only one matrix Ms is taken into account, so that the risk of the powerful
earthquake may be estimated based on the magnitude of δs = τms.

If there are several active zones at the points a1, a2, . . . am on the boundary
of the plate, then the corresponding matrices M1, M2, . . . Mm can be fitted
based on observations of SGO in the remote zone during preceding earth-
quakes which occurred at a1, a2, . . . am. Variations of the frequencies and
the shape of SGO may arise from the stress at any active zone, but usually
only one active zone is involved at a time. Once the matrices M1, M2, . . .
are known, then comparison of the perturbation of the frequencies and the
shapes of SGM (or, probably, pulsations) at the given groups of points in
the remote zone with results of previous measurements at these groups per-
mits to identify the active zone where the stress is applied. We guess that
the above model gives a chance to introduce a useful system into the scope
of the experimental data on the seismo-gravitational oscillations in remote
zone and use them for estimating of risk and localization of the powerful
earthquakes. This opens an alternative to the statistical methods, see [30],
of estimation of risk of powerful earthquakes.

Fitting of the proposed model in reality requires both extended computing
and a major experimental data base. Because the lengths of standing waves,
1000 - 4000 km, dominate the size of active zones, one may assume, that
the straightforward computing with averaged and smothered data for Young
modulus and geometric characteristics of the plates will permit to obtain a
realistic approximation of the deficiency elements, with singularities at the
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active zones and combine the eigenfunctions of the plates, which correspond
to SGO.

More accurate theory requires taking into account more realistic boundary
conditions and the exchange of energy with the liquid underlay and neigh-
boring plates. The choice of realistic boundary conditions has to be done
based on experimental data interpreted within an appropriate extension of
the scheme proposed with Lame and hydro-dynamical equations involved.
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