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Abstract
Plasma waves in two-dimensional electron channels, with a non-trivial geometry and govern-
ing electrodes, are described by the hydro-dynamical equations, combined with the Poisson
equation for the self - consistent electric potential. If the amplitudes of the oscillations of
the velocity, the concentration and the potential, are much smaller than the stationary val-
ues of these variables, then the hydrodynamical equation for oscillations can be linearized -
transformed to the wave equation on a two-dimensional network. We consider the scattering
problem for the wave equation and develop a semi-analytic method for calculation of trans-
mission coefficients through the junction. The formulae have resonance character and may
be used for manipulation of plasma waves in 2D networks of electron channels.

PACS numbers: 52.75.-d, 02.90.+p
Keywords: Two dimensional electron channel, Dirichlet-to-Neumenn map,scattering

1 Introduction: basic equations

The hydrodynamical analogy was suggested for plasma waves in [1, 2] and was intensely used
for analysis for plasma waves in two-dimensional (2D) electron channel, with no governing
electrodes, see for instance recent paper [3]. In [4] the hydrodynamic electron transport
model is used for description of plazma oscillations in gated 2D channel in high electron
mobility transistor (HEMT). Analysis of the spectrum of plasma waves, in particular is
applicable also to other HEMT-based teraherz devices, in particular those operating in the
tera-herz (THZ) rank of frequencies, see [5, 6].

In particular, for the device constructed of basic electrodes Γb
r, forming a 2D electron

channel or even a network on the horizontal plane S = {z = 0}, and few governing electrodes
Γg

s situated in the lower or upper half-spaces, the calculation of the plasma current is reduced
to the self-consistent calculation of the electric potential, concentration and velocity from
the system of three basic equations (1,2,3) below.

1. The three-dimensional Poisson equation, for the electric potential, with the corre-
sponding dielectric constant κ

43ϕ =
4πe

κ
δ(z) Σ X

Γ
, (1)
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and the appropriate boundary conditions ϕ
∣∣∣∣
Γg

s

= V g
s , ϕ

∣∣∣∣
Γb

r

= V b
r on the basic electrodes. This

equation connects the potential ϕ with the non-zero concentration δ(z)Σ(x, y, 0, t) localized
on a 2D electron channel Γ situated on the horizontal plane S : {z = 0} between the basic
electrodes Γb

r ∈ S. Here the function X
Γ

is the indicator of the channel on S : X
Γ
(x, y) = 1,

if (x, y) ∈ Γ, otherwise X
Γ
(x, y) = 0.

2. The continuity equation connects the concentration Σ and the velocity u of electrons
on the 2D electron channel:

∂Σ

∂t
+ div2Σu = 0, (x, y) ∈ Γ. (2)

3. Euler equation for the velocity u on the 2D electron channel:

∂ u

∂t
+ 〈u,∇2〉u =

e

m
∇2ϕ− νu, (x, y) ∈ Γ. (3)

Representing the concentration, the potential and the velocity in the form of a sum of the
stationary value and a harmonic wave process with frequency-dependent amplitudes:

ϕ(x, z, t) = ϕ0(x, y, z) +
∫
ϕτ (x, y, z)e

iτtdτ,

Σ(x, y, 0, t) = Σ0(x, y) +
∫

Στ (x, y)e
−iτtdτ,

u(x, y, 0, t) = u0(x, y, 0) +
∫
uτ (x, y)e

iτtdτ,

we linearize the initial basic equations, reducing them to the search of solutions of the non-
linear stationary equations

div2Σ0u0 = 0, 〈u0,∇2〉u0 =
e

m
∇2ϕ0 − νu0, 43ϕ0 =

4πe

κ
Σ0δ(z)XΓ, (4)

with appropriate boundary conditions, and linear equations for the amplitudes of the har-
monic wave processes uω,Σω, ϕω:

−iωΣτ (x) + div2 [Σ0(x, y)uτ + u0(x, y)Στ ] = 0,

43ϕτ =
4πe

κ
Στ δ(z) XΓ, (ν + iτ)uτ =

e

m
∇2ϕτ , (5)

with zero boundary conditions on the electrodes. According to the Poisson equation the jump
of the normal derivatives of the stationary potential ϕ0 and the corresponding amplitude ϕτ

on the 2D electron channel is calculated as
[

∂ϕ0

∂n

]
= 4πe

κ
Σ0,

[
∂ϕτ

∂n

]
= 4πe

κ
Στ .

Under natural assumptions the linear system (5) may be simplified and, eventually, re-
duced to the wave equation for the spectral component ϕτ on the 2D electron channel with
zero boundary conditions. For instance, under assumption that the concentration and the
speed are slowly varying along the streamlines of the stationary speed u0, the jump of the
normal derivative of the harmonic component of the potential was calculated in [7] as[

∂ϕτ

∂n

]
=

2

q
div2Σ0(x, y)∇2ϕτ , (6)
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with 2
q

=
4π e2

iτ mκ (ν + iτ)
. Generally the expression in the left side of (6) is represented as a

combination of Dirichlet-to-Neumann maps on the 2D electron channel
[

∂ϕτ

∂n

]
= −Λ− − Λ+,

where the normal in the jump is directed upward on the 2D electron channel and the DN-
maps are defined in a standard way based on the outward normal.

Hereafter we consider the case of the planar basic electrodes Γb
r ⊂ S, where S = (z = 0).

The governing electrodes Γg
s are also situated on the planes S± parallel to S, dist (S±, S) =

W±, so that the structure of the system of planes §±, S constitutes a flat condensator. Then,
for the potential ϕτ (x, y, z) vanishing on S± the jump of the normal derivative on the 2D
electron channel is usualy substtuted, see [?, 4], with a negligible error, by the value of the
potential ϕτ (x, y, 0) [

∂ϕτ

∂n

]
= −ϕτ (x, y, 0)

(
W−1

+ +W−1
−

)
Then the equation for the amplitude ϕω(x, y, 0) of the harmonic component of the potential
on the 2D electron channel is presented in form:(

W−1
+ +W−1

−

) q
2
ϕτ (x, y, 0) + div2Σ0(x, y)∇2ϕτ (x, y, 0). (7)

The expression (
W−1

+ +W−1
−

) q
2

=
(
W−1

+ +W−1
−

) iτ mκ (ν + iτ

4π e2

is a symbol of the differential operator

mκ
W−1

+ +W−1
−

4π e2

[
∂2

∂t2
+ ν

∂

∂t

]

In case of trivial geometry of the channel, when the concentration Σ0 is constant, the coef-
ficient 4π e

2
(mκ )−1Σ0 [W−1

+ +W−1
− ]−1 := a2

0 plays a role of the square of velocity of plasma
waves in the device. In general case we also interpret the ratio

4π e
2
Σ0(x, y)

mκ(W−1
+ +W−1

− )
= a2(x, y)

as a square of the local speed a2(x, y) of plasma waves in the device and rewrite the equation
for the potential on the 2D electron channel

ϕ(x, y, z, t)− ϕ0(x, y, z)
∣∣∣∣
z=0

=
∫
ϕτ (x, y, 0)e

iτ

dτ := ϕΓ(x, y)

as
∂2ϕΓ

∂t2
+ ν

∂ϕΓ

∂t
= div2a

2(x, y)∇2ϕΓ = −La ϕΓ, x, y ∈ Γ (8)

with zero boundary conditions on the boundary of the 2D electron channel. Generally we
may assume that the 2D electron channel is just a network Ω of straight plasma channels -
the leads ωm - and vertex domains Ωs on the plane S0 squeezed between the edges of few basic
electrodes Γb

r, see for instance (1) We assume that the equilibrium values of concentration,

3



Figure 1: A network of plasma channels

the velocity and the potential are obtained via solution of the system (5). We guess that
the local velocity of plasma waves on the leads ωm is constant, a(x, y) = a0, on the vertex
domains Ωs the velocity is a positive continuous function a(x, y) = as(x, y), and all leads have
the same width δ. Then essential transport properties of the network Ω can be recovered from
the solution of the corresponding scattering problem and represented in form of a table of
transmission coefficients across the star-shaped elements- junctions, each of them consisting
of a vertex domain and few semi-infinite leads attached to it, see (2). We will develop a
semi-analytic method for calculation of scattering matrix of the junction for plasma waves
described by (8). In particular, we will calculate the resonances and the resonance states
which can be interpreted as trapped modes on the junction, see for instance the recent paper
([8]) and references therein. In this paper we focus on the computational aspects of the
scattering problem.

2 Scattering of plasma waves by the junction

Consider a junction Ω = Ωint∪ω of 2D electron channels constructed of a 2-dim compact
vertex domain Ωint on a plane S0 and several channels - leads ω = ∪mω

m separated from the
junction by imaginable orthogonal bottom sections γs, ∪sγs = γ. We assume that all leads
have the same width δ. On the junction Ω := Ωint∪ω we consider the wave-equation for the

potential ϕΓ := ϕ

∣∣∣∣
Γ
:

∂2ϕΓ

∂t2
+ ν

∂ϕΓ

∂t
= div2a

2(x, y)∇2ϕΓ. (9)
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Figure 2: A junction

We assume that the speed a(x, y) is constant on ω, a(x, y) = a0 if x > 0. Transport properties
of the junction Ω are essentially described by the solutions of the scattering problem for the
stationary wave equation

Lϕp = p2ϕp = λϕp, (10)

The temporal part of the non-stationary wave equation (9) contains the first derivative
with a positive coefficient ν which defines dissipation. The spectral parameter p2 of (10) is
connected to the frequency τ by the dispersion relation iτ(iτ + ν) + p2 = 0, or τ = τ(p),

τ(p) = iν/2±
√
p2 + ν2/4.

Spectrum of the above problem (10) consists of absolutely continuous branches σa and con-
tains a countable number of positive embedded eigenvalues λs accumulating at infinity. If all
leads have the same width δ, the branches are [a2

0π
2l2/δ2,∞), l = 1, 2, . . ., with multiplicity

equal to the n umber of leads attached to the vertex domain Ωint of the junction.
Transport properties of the junction are essentially defined by resonances - the complex

poles of the corresponding scattering matrix, see next section, and by the shape of the
corresponding resonance states- non-square integrable solutions ϕp of the stationary equation
(10) with complex p, =p < 0. The resonances will be found in section 4 as zeros of the
scattering matrix of the junction. Physically the resonance states can be interpreted as a
result of breeding of the standing waves in the vertex domain Ωint with the running waves in
the leads ω. Search of resonances is a difficult problem of the spectral analysis, which can’t
be solved by methods of the self-adjoint theory. We will discuss this problem in details in
section 3. Resonance solutions of the non-stationary wave-equation are represented as

eiτ(p)tϕp = e−ν/2t e±i
√

p2−ν2/4 ϕp,
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are exponentially growing in the leads and exponentially decresing on the vertex domain when
t → infty, with the rate depending on the position of the resonance and the magnitude of
ν.

We proceed with spectral analysis of the self-adjoint problem (10), assuming that the
equilibrium velocity a(x, y) is already obtained by straightforward computing. The com-
puted stationary speed a(x, y) tends rapidly to the constant a0 in the leads, so that choosing
the bottom sections properly, we may assume a(x, y = a0 in ω and is positive and contin-
uous everywhere. We describe the transport properties of the junction via solution of the
scattering problem for the wave equation

Lψ = p2ψ (11)

with zero boundary condition on the whole boundary of the junction. On the non-perturbed
parts of the 2D electron channel- on the leads - the corresponding spectral problem admits

separation of variables, based on the cross-section eigenfunctions el =
√

2/δ sin π l y δ−1. The

scattered waves of the above stationary wave equation ( 10) in the leads are combined of
exponential modes

e±i
√

p2−π2 l2 a2
0δ−2x el := χl

±, p
2 − π2 l2 a0δ

−2 > 0,

e±
√

π2 l2 Σ0δ−2−p2x el := ξl
±, p

2 − π2 l2 a0δ
−2 < 0. (12)

For any positive p > a0π/δ there exist a finite number of oscillating modes which correspond
to open spectral canals on the leads p2− π2 l2 a2

0δ
−2 > 0, and an infinite number of exponen-

tially decreasing (growing) modes p2− π2 l2 a2
0δ
−2 < 0 associated with closed spectral canals.

The scattering Ansatz

ψm
l (x) =

{
χl

+(x) +
∑

π2r2/δ2<λ S
m,m
l,r χr

−(x) +
∑

π2r2 a2
0/δ2>λ s

m,m
l,r ξr

−(x), x ∈ ωm∑
π2r2 a2

0/δ2<λ S
m,n
l,r χr

−(x) +
∑

π2r2 a2
0/δ2>λ s

n,m
l,r ξr

−(x), x ∈ ωn, n 6= m.

(13)
is bounded and satisfies the stationary equation (10) on the exterior part ω = ∪mω

m of the

junction. Matching the scattering Ansatz ~ψ to the solution of the stationary wave equation
Lintψ = p2ψ on the vertex domain Ωint, we are able , in principle, to define all coefficients of
the Ansatz, Sn

lr, s
n
lr, see for instance [9]. This infinite linear system can be solved, if the Green

- function Gint of the Schrödinger equation on Ωint with zero boundary condition on ∂Ωint

is constructed. Really, according to general theory of the second order linear equations, see
[10], on the bottom sections the solution u and the boundary current ∂u

∂n
of the boundary

problem with data u
∣∣∣∣
γ

= uγ is represented by the integral map with the Poisson kernel

Pint(x, γ) = −∂Gint(x,γ)
∂n

:

u(x) =
∫

γ
Pint(x, γ)uγ(γ)dγ,

∂u

∂n

∣∣∣∣
γ

= −
∫

γ

∂2Gint(x, γ)

∂nx∂nγ

uγ(γ)dγ
∣∣∣∣
γ

:= DN intuγ.

The integral operator DN int is called “Dirichlet-to-Neumann map”, see [11, 12]. It depends
on λ = p2 and is analytic with poles at the eigenvalues of the Schrödinger operator Lint
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on the inner part of the network, with zero boundary conditions on ∂Ωint. The coefficients
of the scattering Ansatz can be, in principle, found from the infinite linear system which
obtained by substitution of the scattering Ansatz into

∂ψ

∂n

∣∣∣∣
γ

= DN intψ

∣∣∣∣
γ
. (14)

To derive the formula for the scattering matrix in terms of DN int for given value λ = p2 of
the spectral parameter, we introduce the entrance suspaces of the open and closed canals.

E+ =
∨

p2−π2 l2 a2
0δ−2>0

el, E− =
∨

p2−π2 l2 a2
0δ−2<0

el,

and denote by P± the corresponding projections, P+ + P− = I, E+ ⊕ E− = E := L2(Γ).
Represent the restriction of the DN-map of Lint by 2×2 operator matrix with matrix elements
DN±,±′ = P±DNP±′

DN int =

(
DN++ DN+−
DN−+ DN−−

)
. (15)

Then, denoting by K+, K− the exponents of the modes in (12) in E+, E−

K+(p) :=
∑

p2−π2 l2 a2
0 δ−2>0

√
p2 − π2 l2 a2

0δ
−2el〉 〈el,

K−(p) :=
∑

p2−π2 l2 a2
0 δ−2<0

√
π2 l2 a2

0δ
−2 − p2el〉 〈el,

and by M the aggregat (to be interpreted later),

M(λ) := DN++ −DN+−
I

DN−− +K−
DN−+, (16)

we obtain the scattering matrix of the pair (L, lω) in a form of ratio:

S(p) = [iK+(p) +M(λ)]−1 [iK+(p)−M(λ)] , (17)

see [13, 14].

3 Scattering matrix via Intermediate DN map

The above standard method of calculation of the scattering matrix gives not only the scat-
tering matrix S, but also excessive information on coefficients s in front of the evanescent
modes. In fact only the information on asymptotic behavior of the oscillating part of the
scattered waves, encoded in the scattering matrix, defines the transport propertis of the
junction. Bot the standard method is unable to produce the scattering matrix separately
from coefficients in front of evanescent modes. Neccessity to calculate the coefficients in
front of these modes makes the problem much more difficult. In [13] a modified approach
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to calculation of the scattering matrix was proposed, which permits to eliminate evanescent
waves due to chosing the unperturbed operator in different way.

Indeed, the classical choice of the unperturbed operator as a splitting {Lint ⊕ lω} de-
fined by “ the solid wall ” on γ (zero boundary conditions ) involves additional difficulties
because, firstly, this perturbation is infinite-dimensional and, secondly, because of infinite
number embedded eigenvalues of Lint sitting on the absolutely-continuous spectrum of lω.
When we remove the solid wall, replacing the zero boundary conditions by the matching con-
dition, we introduce very strong perturbation, which causes breeding of the running waves
in the open canals of ω with the standing waves on the vertex domain Ωint of the junction.
This breeding transforms embedded eigenvalues of Lint into resonances. Classical methods
of the selfadjoint perturbation theory are unable to describe this transformation for infinite-
dimensional perturbations. But we are able to modify the analytic perturbation technique,
see for instance [13, 14], choosing another unperturbed operator so that the perturbation
becomes finte-dimensional. Then the transformation of the embedded eigenvalues into reso-
nances can be treated by finite-dimensional technique and the calculation of the scattering
matrix is reduced to solution of an algebraic equation.

We are able to fulfil the described program restricting our analysis onto selected essential
spectral interval ∆ centered at some spectral point Λ0:

∆ = [Λ0 − ε, Λ0 + ε],

with no spectral thresholds on ∆, hence with constant multiplicity of the continuous spectrum
of lω. The essential spectral interval can be interpreted as a sensitivity range of the device
which is used in course of observation of the scattering of waves in the 2D channel.

We consider the decomposition of L2(γ) into the orthogonal sum of the entrance subspaces
of the open and closed canals, with respect to Λ0:

L2(γ) =
∨

π2a2
0

l2

δ2
<Λ0

el ⊕
∨

π2a2
0

l2

δ2
>Λ0

el =: E0
+ ⊕ E0

−.

Denote by P 0
± the corresponding orthogonal projections P 0

++P 0
− = I. The exponential modes

of the wave equation in the 2D channel, spanned by the elements el from the subspace E0
+,

are oscillating on ∆, and ones spanned by elements el from E0
−, are evanescent modes. We

separate them by introducing “the partial zero boundary condition”

P 0
+u
∣∣∣∣
γ

= 0, (18)

which is a softer perturbation, that the solid wall. By imposing the additional boundary
condition (18) the operator L is split into an orthogonal sum of the unperturbed operator l0

on the leads E0
+ × L2(0,∞) = H0

l0 = − d2

d(x‖)2
P+ +

∑
open

[π2l2Σ0δ
−2]el〉 〈el,

and a selfadjoint operator L0 in the orthogonal complement L2(Ω ∪ ω)	H+ :

L −→ L0 = l0 ⊕ L0.
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The continuous spectrum of L is split accordingly: the “open” branches σl =

[
π2a2

0l2

δ2 ,∞),
π2a2

0l2

δ2 < Λ0 are inherited by l0, and the “closed” branches σl =

[
π2a2

0l2

δ2 ,∞),
π2a2

0l2

δ2 > Λ0 are inherited by L0. The “softer” - finite-dimensional- perturbation
defined by (18) was suggested in [13, 15]. It appeared, see [14], that it gives a geometrical
interpretation of the phenomenological Datta condition at the junction of a one-dimensional
network, [16, 17, 18].

The boundary condition (18) defines a semi-transparent wall at γ which neither admits
to Ωint the waves from the open spectral canals in the leads, nor releases the waves from
Ωint, shaped on γ to fit open spectral canals, to exit from Ω to ω. We refrain here from
a discussion of a physical realization of this boundary condition, but we remark, that, due
to the finite dimension of E+, the perturbation in L introduced by the additional bound-
ary condition (18) is finite-dimensional. The operator L0 has a finite number of eigenval-
ues below λmin = minπ2a2

0l2/δ2>Λ0
π2a2

0l
2/δ2 and probably a countable number of embedded

eigenvalues accumulating at infinity. The eigenvalues situated below the lower thresold
λmin =: π2a2

0l
2
minδ

−2 play an important role in scattering peocesses, [15]. When the semi-
transparent wall is removed, they are transformed to resonances, which define the transport
properties of the junction.

The operator L0 plays hereafter a role of the intermediate Hamiltonian. We are able to
obtain the Green function G0 of L0, for λ < λmin, and other spectral characteristics on that
interval, via modified analytic perturbation procedure from the corresponding characteristics
of Lint. Once the Green function G0 is known, we are able to construct the corresponding
Poisson map solving the intermediate boundary problem with data uγ ∈ E0

+:

uγ(x) =
∫

γ
P0(x, γ)uγ(γ)dγ, x ∈ Ωint,

with the kernel P0(x, γ) = −∂G0(x,γ)
∂n

, and the corresponding DN-map:

P 0
+

∂u

∂n

∣∣∣∣
γ

= −P 0
+

∫
γ

∂2G0(x, γ)

∂nx∂nγ

uγ(γ)dγ
∣∣∣∣
γ

=: DN 0 uΓ.

The use of DN 0 simplifies the problem of matching, because all matrix coefficients sm,n in
front of the evanescent modes are taken into account automatically by the solution of the
intermediate boundary problem. But even more: if we introduce into (17) the exponentials
K0
± corresponding to the decomposition E = E0

+ ⊕ E0
−, then the cumbersome aggregat M

which appeared in the above expression (17) for the scattering matrix just consides with
DN 0. Thus the formula (17) for the scattering matrix can be represented as

S(p) =
[
iK0

+(p) +DN 0
]−1 [

iK0
+(p)−DN 0

]
. (19)

DN-map DN 0(λ) of the intermediate Hamiltonian L0 is a sophisticated object: it contains
a sum over the eigenvalues of L0 and an integral over it’s continuous spectrum, see [15, 14].
But the structure of it on the essential iterval of the spectral parameter ∆ situated below
the lower threshold λmin of the continuous spectrum, is simpler: it can be represented as a
sum of polar terms over the eigenvalues of the intermediate operator on ∆:

∑
λs∈∆

P+
∂ϕ0

s

∂n
〉 〈P+

∂ϕ0
s

∂n

λ− λ0
s

=: DN 0
∆

9



and a regular function K0
∆ on a complex neighborhood Ω∆:

DN 0 = DN 0
∆ +K0

∆.

If the leads ω are thin, and the essential spectral interval ∆ is selected in the mid-
dle of the interval (λmax, λmin) between the upper threshold of the open channels
maxπ2a2

0l2/δ2<Λ0
π2a2

0l
2/δ2 = λmax =: π2a2

0l
2
max/δ

2 and the lower threshold of the closed chan-

nels, then K0
+ ≈

√
Λ0 − λmax ≈ πa0lmaxδ

−1 is large and can even dominate the error K0 of
the above rational approximation on the essential spectral interval:

|K0
+(λ)| >> max

λ∈Ω∆

|K0
∆|, λ ∈ Ω∆. (20)

Then the expression (19) for the scattering matrix can be replaced on Ω∆ by the simpler
expression:

S(p) ≈ Sapprox(p) =
[
K0

+(p)−DN 0
∆

]−1 [
K0

+(p) +DN 0
∆

]
, (21)

where the correcting term K0 is neglected. For thin networks the exact scattering matrix
can be obtained from Sapparox by the geometrically convergent analytic perturbation series,
see [13]. The approximate scattering matrix of the junction can be interpreted, see [20]
as the scattering matrix of an explicitly solvable model of the junction, represented as a a
star-shaped graph with an inner space

∨
λs∈∆ ϕs =: E∆ attached to the node and supplied

with an ”inner Hamiltonian” -
L0

∆ :=
∑

λ0
s∈∆

λ0
sϕ

0
s〉 〈ϕ0

s,

which is just a part of the intermediate Hamiltonian in E∆. The boundary conditions
at the node are defined, see [20], such that the scattering matrix of the model coincides
on the essential spectral interval, with a good prezision with the approximate scattering
matrix, so that the constructed model is fitted. The resonances of the solvable model situated
near the continuous spectrum ( in Ω∆) can be found as solutions of the algebraic equation
[K0

+(p) + DN 0
∆(λ)]eλ = 0. For thin junctions they are sutuates close to the resonances

of the original operator L, see [21], and thus define the resonance character of transport
properties of the junction, in particular, the speed of transition properties when the junction
is manipulated by an exterior electric field, arising from additional potentials on the governing
electrodes Γg, or by changing details of the geometry of the junction.

It follows from the above arguments, that the intermediate Hamiltonian plays an impor-
tant role in the developed theory: it essentially defines the transport prperties of the junction
on the essential spectral interval, see an extended discussion in [22]. That’s why calculation
of the spectral characteristics of the intermediate Hamiltonian is important. Unfortunately,
the corresponding spectral problem is not a standard problem of spectral analysis, so there
is no standard software for computing eigenfunctions and eigenvalues of it. In [19] a special
perturbation technique is developed to calculate the Dirichlet-to-Neumann map of the the
intermediate Hamiltonian L0 based on spectral characteristics of the spectral data of the
corresponding operator Lint on the vertex domain Ωint. It appeared that, essentially, the
spectral characteristics of L0 can be substituted, for thin junctions, by the spectral charac-
teristics of lint, More precize, the result achieved in [19] can be represented in the following
form.
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Represent the DN-map DN of Lint on the essential spectral interval as a sum

DN = DN∆ +K (22)

of the rational expression constituted by the polar terms with singularities at the eigenvalues
λs ∈ ∆ of the operator Lint and an analytic operator-function on the complex neighborhood
G∆. We will use also operators obtained from DN via framing it by the projections P±, for
instance

P+DNP− = P+DN∆P− + P+KP− := DN∆
+− +K+−.

Due to the spectral representation of the DN , we have

DN∆
+− =

∑
λs∈∆T

P+
∂ϕs

∂n
〉〈P− ∂ϕs

∂n

λ− λs

, (23)

where ϕs are the eigenfunctions of Lint on ∆. We introduce also the linear hull E∆ =
∨

s {ϕs}
- an invariant subspace of Lint corresponding to the essential spectral interval ∆ and the part
L∆ :=

∑
λs∈∆ λsϕs〉〈ϕs of Lint in the invariant subspace E∆. To calculate the intermediate

DN-map

DN g = DN++g −DN+−
I

DN−− +K−
DN−+g (24)

in terms of the standard DN - map of Lint we have to solve the equation:

[DN−− +K−]u = DN−+g

on the essential spectral interval ∆T . We are able to do that if K− can play a role of a large
parameter, so that the operator

[K−− +K−]−1 (25)

exists on ∆. Using the large parameter K−, we are able to develop an analytic perturbation
procedure for the denominator in the Krein formula. Denote by T the map

T =
∑

λs∈∆T

ϕs〉〈
∂ϕs

∂n
,

and introduce

T I

K−− +K−
T + =: Q(λ)E∆T

→ E∆T
,

and (
P+ −K+−P−

I

K−− +K−
P−

)
=: J (λ).

The perturbation procedure permits to observe the compensation of singularities in Krein
formula for DN 0 inherited from Lint and represent the formula for it in more convenient
form.

Theorem on compensation of singularities [19]If the condition (25) is fulfilled on
the essential spectral interval ∆ then the intermediate DN-map can be represented, by a finite
matrix dim E+× dim E+ on the essential spectral inteval ∆ as

DN 0 = K++−

11



−K+−
I

K−− +K−
K−+ + P+J T +〉 I

λI − L∆ +Q(λ)
〈T J +P+, E+ → E+. (26)

We call the above representation (26) the modified Krein formula for the intermediate DN-
map.

For thin junctions the first addendum of the intermediate DN-map

K++ −K+−
I

K−− +K−
K−+

in the formula (19) can be neglected, compared with K+, so that we obtain a modified
expression for the approximate scattering matrix with the polar term only

P+J T +〉 I

λI − L∆ +Q(λ)
〈T J +P+ = M∆ :

Sapprox(p) = [iK+ +M∆]−1[iK+ −M∆]. (27)

Then the thin junction of 2D electron channels can be substituted, for theoretical analysis,
by the corresponding solvable model, based on results of [19]. The aim of this paper is:
search for an adequate computing for spectral quantinies of an arbitrary junction and for the
DN-map of the intermediate Hamiltonian.

4 Direct computing for the Intermediate Hamiltonian

Calculation of eigenvalues and eigenfunctions of the intermediate hamiltonian is a non-
standard problem of computational spectral analysis. Up to now, we did not have any stan-
dard programs to compute the spectral quantities of the intermediate Hamiltonian. That’s
why in [14, 22] analysis is based on a special analytic perturbation techniques.

In this section we suggest a semi-analytic method for calculation transport propertirs of
the junction, based on straightforward computing for spectral quantities of the intermediate
operator. Note in this connection the recent paper [23], where an efficient computational
technique is developed for junctions based on classical ideas. The objects considered in [23]
are infinite-dimensional. The method suggested by the authors of [23] proves to be efficient

due to use of an additional boundary condition u
∣∣∣∣
γ
⊥E+ at the final stage of computation.

This condition in fact coincides with our condition imposed onto the eigenfunctions of the
intermediate Hamiltonian, see section 2 above, and our papers [13, 14].

In this section we suggest our version of the direct computing for the junction, based
on the intermedate Hamiltonian. Our version of computing for the scattering matrix and
for resonances deals mainly with finite matrices dim E+× dim E+, because the evaneschent
modes are eliminated via introduction of the Intermediate Hamiltonian. Complete spectral
pecture of the intermediate Hamiltonian for thin junction is developed in [22], but we know
numerous publications where detail of this picture are described, see [24, 25, ?, 27, 28]. The
main original part of our result in [22] is the proof of existence of the intermediate Poisson
map, which requires extension of the Schwartz theorem on the integral representation of
the resolvent, see [29] for the intermediate Hamiltonian, and the connection between the
intermediate DN-map and the classical DN-map of the Schrödinger operator in Ωint.
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4.1 Eigenvalues of the intermediate Hamiltonian

Note, first of all, that the eigenvalues of the intermediate Hamiltonian for the thin junction
can be found as vector zeros of the re-normalized denominator[

I − L∆ +Q(λ)
]
e0 = 0, (28)

or, in the original form, for an arbitrary junction:[
DN−− +K0

−

]
e = 0. (29)

To solve this equation effectively, we should calculate the DN-map of Lint.
Let {ϕs}∞s=1 , {ψs}∞s=1 be orthogonal bases in L2(∂Ωint). Following [?], consider two

boundary problems for the original differential equation Lu−λu = 0, with the Dirichlet and
Neumann boundary conditions on ∂Ωint:

u
∣∣∣∣
∂Ωint

= ϕs, and
∂u

∂n

∣∣∣∣
∂Ωint

= ψs (30)

respectively, assuming that λ is not an eigenvalue of the corresponding homogeneous prob-
lems. Denote solutions of this equations by ΦD

s , ΨN
s respectively. Then the integration by

parts gives the following formulae :∫
Ωint

∇2Φsa(x, y)∇2Φ̄tdxdy − λ〈Φs, Φt〉 = a2
0

∫
∂Ωint

∂Φs

∂n
ϕ̄tdσ = a2

0〈DNϕs, ϕt〉, (31)

∫
Ωint

∇2Ψsa
2(x, y)∇Ψ̄tdxdy = a0

∫
∂Ωint

∂Ψs

∂n
ψ̄tdσλ〈Φs, Φt〉 = a2

0〈ψs, NDψt〉. (32)

Here ND is the Neumann-to-Dirichlet map of L in the domain Ωint, ND ×DN = I in the
appropriate Sobolev space W

3/2
2 (∂Ωint). Since the eigenvalues of the Dirichlet and Neumann

problems never coinside, at least one of the above boundary problems has a solution, for
given Λ, hence either the matrix of DN , or the matrix of ND can be found. Then due to
ND DN = I the DN-map map can be calculated near to the eigenvalue of the Dirichlet
preoblem, as the inverse of the ND-map.

The suggested algorithm is practical, see [23] when reducing the above expression for
matrix elements of DN and ND maps to the finite matrices 1 ≤ s, t ≤ N , if the distance
between the eigenvalues of the Dirichlet and neumann problems are not too small. Then the
approximate DN and ND maps are obtained as N × N matrices. We can use this obser-
vation when calculating the intermediate DN-map based on modified analytic perturbation
procedure, see [19].

4.2 Search for eigenfunctions/eigenvalues
of the intermediate Hamiltonian

Note, first of all, that the spectral problem on discrete spectrum of the intermediate Hamil-
tonian can be substituted, below the lower threshold minclosedπ

2l2a2
0δ
−2 of its continuous

spectrum by the “non standard” spectral problem

−∇2a
2(x, y)∇2ϕp = p2ϕp, P

0
+ϕp

∣∣∣∣
γx, x>0

= 0. (33)
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for the Schrödinger operator restricted onto the orthogonal complement L2(Ω)	H+ of the
open canals E+ × L2(0,∞) =: H0

+. Note that the projection I − PH0
+

generally spoils the

continuity of the functions from the domain of L on the bottom section γ := (x = 0). Hence
we are not able to rewrite the above spectral problem (33) with P0 := PH0

+
and P⊥ := I	PH0

+

in L2(Ω) as a problem for the singular “operator” P⊥LP⊥ := L⊥ in L2(Ω)	H+. But after
the reduction of the operator L to a finite matrix LN , respecting the invariant subspace
H+ of the splitting, we obtain a bounded operator, hence the multiplication of it by the
projection P⊥ on the left or on the right (or on both sides) is legal. Thus the intermediate
spectral problem is reduced, in matrix form, to the selfadjoint spectral problem

P⊥LNP⊥ϕ = λϕ, (34)

where ϕ is an N-component vector. Note that the projection factor P⊥ the right (or left)
side may be omitted, if we develop an iteration process for the eigenvectors, restoring the
orthogonality to H+ on each step. A convenient procedure for calculation of the eigenvector
at the lower eigenvalue λ0

s of L0 may be based on the corresponding heat equation du
dt

=
P⊥LNP⊥u,

e−τR−1LNRϕ ≈
[
P⊥(1− τR−1LN)

]R
e−λ1τϕ→ 〈ϕ, ϕ1〉ϕ1,

for large N,R.
In fact, when calculating the scattering matrix of an asymmetric T-junction below, we

used slightly modified iteration suggested in [31]. First of all, we do not make use of the
basis respecting the invariant subspaces of the intermediate operator, so that each step of
iteration may give in a result, which is not orthogonal to the subspace H+. Secondly, instead
of iteration of the aggregat arising from the heat equation, we consider, for the fixed grid,
see [30], the discretized operator LN =: H and select the value λ of the spectral parameter
equal to the maximal eigenvalue of H. Then, following [31] and using the corresponding
notations, we iterate the operator M(λ − H), applying the projection M = I − P⊥ onto
the orthogonal complement of H+ in L2(γ) on each step, because the non-respecting of the
invariant subspaces of L by the basis selected gives, generally, a non-orthogonal to H+ result
on each step of the iteration. After arranging the iterations in form of a product, we see,
that the factors M may be attached, equivalently, to each factor on the right, as (λ−H)M
or on both sides as M(λ−H)M, because M2 = M.

4.3 Search for the DN-map of the
intermediate Hamiltonian

To find the DN-map of the intermediate Hamiltonian, we should solve the corresponding
intermediate boundary problems:

−∇a2∇uD = λuD,

P+u
D

∣∣∣∣
γint

= dγ ∈ E+, P+u
D

∣∣∣∣
γx, x>0

= 0, (35)

, for uD smoosthly extended from Ωint to ω in closed canals. Similar problem for ND-map is

−∇a2∇uN = λuN ,
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P+
∂uN

∂n

∣∣∣∣
γint

= nγ ∈ E+, P+u
N

∣∣∣∣
γx, x>0

= 0, (36)

also for uN smoothly extended to ω in closed canals. The corresponding intermediate DN
and ND maps are introduced as :

DN 0 : dγ → P+
∂uD

∂n

∣∣∣∣
γint

, ND0 : nγ → P+u
N

∣∣∣∣
γint

.

Via integraion by parts in the boundary form∫
γ

[
∂uD

∂n
P+ū

N − P+u
D ∂ū

N

∂n

]
dγ = 0

we derive ND0 × DN 0 = P+ = IE+ . Hence, similarly to the classical situation,see the su-
section 4.1, we can search for one of maps ND0,DN 0, and find another one as it’s inverse.

We substitute the above non-standard boundary problem for DN 0 by the standard
boundary problem on Ωint. Separate the basis ϕs into two parts ϕ±s ∈ E±, E+ ⊕ E− = E,
and construct solutions of the corresponding boundary problems:

−∇a2∇Φ±
s = λΦ±

s ,

P+Φ±
s

∣∣∣∣
γint

= ϕ±s . (37)

The solution of the standard boundary peoblem

−∇a2∇u = λu, u
∣∣∣∣
∂Ω

=
∑
s

us
+ϕ

+
s +

∑
t

ut
−ϕ

−
t =: u+

γ + u−γ

is represented in Ωint as

u =
∑
s

us
+Φ+

s +
∑

t

ut
−Φ−

t =: u+ + u−. (38)

Consider the matrix of the classical DN- map with respect to the decompositions E =
E+ ⊕ E−, with elements P+DNP− = DN+−, . . .(

DN++ DN+−
DN−+ DN−−

)
=: DN,

and denote by ~uγ, ~ργ, the columns combined of (u+
γ , u

−
γ ) and the corresponding normal

derivatives
(

∂u+
γ

∂n
,

∂u−γ
∂n

)
. We also denote by M the diagonal matrix dDN 0, −K−c. Then,

due to smooth continuation of u to ω in closed canals we have the equation for DN 0

DN ~uγ = ~ργ = M ~uγ. (39)

Solving this equation we obtain the representation of DN 0 as a Shur complement

DN 0 = DN++ −DN+−
I

DN−− +K−
DN−+.
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Note that matrix elements of each detail of the formula can be obtained based on the bi-linear
formula 31.

Similar construction gives the intermediate ND-map in terms of matrix elements of the
decomposition (

ND++ ND+−
ND−+ ND−−

)
=: ND

of the classical ND - map with respect to E+ ⊕ E−:

ND0 = ND++ −ND+−
I

K−1
− +ND−−

ND−+.

Note that zeros of the intermediate ND-map are the poles of the intermediate DN map and
coincide with eigenvalues of the intermediate Hamiltonian. Once intermediate map ND0 is
calculated, the formula ND0×DN 0 = I can be used to find another. Numerilal realization
is stable if the eigenvalues of the corresponding intermediate Dirichlet and Neumann spectral
problems are well separated.

4.4 Straightforward computing for the scattering matrix

The above non-spectral approach to the calculations of DN and ND maps permits to calculate
the polar terms of the DN-map near and thus gives a possibility to describe the resonance
behavior of the scattering matrix near the eigenvalue of the intermediate hamiltonian without
formal solution of the spectral problem. The idea of the following calculation belongs to V.
Adamyan. We do it here only in the case when the zero λ1 of the Hermitian matrix ND0

is simple and one-dimensional: ND0(λ1)Q1 = 0 , with Q1 = e1〉 〈e1, and Q⊥1 ND0(λ1)Q
⊥
1 =:

ND⊥⊥ is invertible. Then the matrix ND0(λ) is represented near to λ1 in the orthogonal
basis e1, E

⊥
1 as

ND0 =

(
d1(λ− λ1) (λ− λ1)ND1⊥

(λ− λ1)ND⊥1 ND⊥⊥

)
, (40)

with analytic near λ1 functions d1,D1⊥,D11, d1(λ1) 6= 0 and ND⊥1(λ) calculated by sym-
metry principle as ND +1⊥ (λ̄). Then DN 0 is also represented, see [32], near λ1 in form

DN0 =

(
d−1

1 (λ− λ1)
−1 DN 1⊥

ND+1⊥ DN⊥⊥

)
=: d−1

1

Q1

λ− λ1

+ D, (41)

with analytic bounded matrix elements DN 1⊥,DN⊥⊥ uniquelly defined near λ1 by d1(λ1)
and the matricesND1⊥,ND⊥⊥. Hence the scattering matrix near the zero λ1 of the ND-map
is represented as

S(λ) =

[
iK+ +

d1
−1(λ)Q1

λ− λ1

+ D(λ)

]−1 [
iK+ −

d1
−1(λ)Q1

λ− λ1

−D(λ)

]
.

For thin networks the resonances of the full scattering matrix can be calculated approx-
imately with use of the operator-valued Rouche theorem, [21], based on the approximate
scattering matrix

Sapprox(λ) =

[
iK+ +

d1
−1(λ1)Q1

λ− λ1

+ D(λ1)

]−1 [
iK+ −

d1
−1(λ1)Q1

λ− λ1

−D(λ1)

]
.
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One more straightforward possibility of using the ND-map is just based on the formula:

S(λ) = [iND0K+ − I]−1 [iND0K+ + I] , (42)

which is equivalent to (17), since M := DN 0 = ND−1
0 . Choice one of formuls (42, 17) may

be more convenient for calculaton of resonances of a junction, than another.

5 Example

Consider an example of a network, studied by modified analytic technique in [14]. Now we
demonstrate the direct computational technique based on the same example. This permits
to estimate the efficiency of the direct computing and to confirm the validity of the modified
analytic perturbation technique, see [19].

Let Ω be a simplest asymmetric T-junction of three straight leads width π/2 attached
to the quantum well - the square Ωint on ξ-plane : 0 < ξ1 < π, 0 < ξ2 < π. Assume that
the first wire ω1 = {−∞ < ξ1 < 0, π/2 < ξ2 < π} is attached orthogonally to the left side of
∂Ω on Γ1 = {ξ1 = 0, π/2 < ξ2 < π}, the second wire ω2 = {0 < ξ1 < π/2, π < ξ2 <∞} is
attached in the middle of the upper side, and the third wire ω3 = {π < ξ1 <∞, 0 < ξ2 < π}
is attached to the middle of the right side of Ωint. On the constructed quantum network

Figure 3: Simplest asymmetric T-junction

Ω = Ωint ∪ ω1 ∪ ω2 ∪ ω3 consider the scattering problem for Laplacian with homogeneous
Dirichlet boundary condition at the boundary. The cross-section eigenfunctions in the first
spectral channel in the wires ω1, ω − 2, ω3 are :

e1
∣∣∣∣
Γ1

=
2√
π

sin 2ξ2, e
2

∣∣∣∣
Γ2

=
2√
π

cos 2ξ1,
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e3
∣∣∣∣
Γ3

=
2√
π

cos 2ξ2

The Dirichlet Laplacian on Ωint has on the first spectral band ∆1 = [4, 16] the eigenvalues
λ0 = 5 ,λ1 = 8, λ2 = 10 and λ3 = 13 with eigenfunctions Φ0,Φ1,Φ2.Φ3, Φ0 = 2

π
sin ξ1 sin 2ξ2.

The boundary currents of Φ0 are

∂Φ0

∂n

∣∣∣∣
Γ1

= − 2

π
sin 2ξ2,

∂Φ0

∂n

∣∣∣∣
Γ2

= − 4

π
sin ξ1,

∂Φ0

∂n

∣∣∣∣
Γ3

=
2

π
sin 2ξ2.

Assume that the Fermi level of the material is situated between the first and the second
thresholds of the network 4 < E

F
< 16 close to the eigenvalue λ0 = 5 cm

−2
, λF = 4.33 cm−2.

The electrons are supplied to the network in the first spectral band from the second wire
across the bottom section Γ2 and exit across Γ1, Γ3. Due to orthogonality of the cross-section
eigenfunction of the open spectral channel to the boundary currents of the eigenfunctions
Φ′

0, Φ′
3 the corresponding modes are not excited. An essential link to the closed spectral

channels is supplied only by Φ0, the contribution from other eigenfunctions either vanish or
are suppressed due to the factors (λ0−λs) in the denominator. Then the normalized vector of
the boundary current is e0 = (−0.8, 0.6, 0), and the boundary conditions at the junction for
low temperatures are represented by the formulae (27) with P0 = e0〉 〈e0 , which is different
from the condition for a symmetric junction suggested in [16] for symmetric T-junction. For
the higher temperatures the boundary condition is energy dependent and can be represented
in form (44), with the approximate scattering matrix

Sappr(p) =
i
√
λ− 4P+ − 0.15 P0

λ−4.33

i
√
λ− 4P+ + 0.15 P0

λ−4.33

, (43)

and P0 = e0〉〈e0.
It is interesting to notice, that accurate computing done as described above, section 4,

gives the same results for the sscattering matrix, as a crude approximate calculation done in
[14], on the first step of the analytic perturbation procedure. This confirms the validity our
approach to the calculation of transport properties of the junction .

6 Manipulation of the transmission across

the junction and trapped modes

The explicit expression for the scattering matrix of the junction may be derived from a solv-
able model of the junction in form of a quantum graph, with a one- dimensional Schrödinger
equation ψ′′ + p2ψ = 0, with p2 = λ − 4, and the boundary condition at the junction, de-
fined such that the scattering matrix of the graph coincides with the scattering matrix if the
junction

ip[I − Sapprox(λ)]~ψ = [I + Sapprox(λ)]~ψ′. (44)
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Here ~ψ, ~ψ′ are vectors of the boundary values of ψ at the vertex. The polar terms in
the numerator and in the denominator of (43) can be represented via the relevant one-

dimensional orthogonal projection P0 := ~e0〉 〈~e0 with ~e0 := (e10, e
2
0, e

3
0) =‖ ~φ0 ‖−1 ~φ0 := α−1~φ0 .

Then ~φ0〉 〈~φ0 = α
2
P0 . Denoting by P

⊥

0
the complementary projection I − P

⊥

0
in L2(Γ), we

Figure 4: 1-d model of T-junction

obtain

Sapprox(λ) = P
⊥

0
+

[
ip(λ− λ0)− α

2

ip(λ− λ0) + α2

]
P0 (45)

≡ P
⊥

0
+ Θ(λ)P0 .

The factor

Θ =
ip− α2

λ−λ0

ip+ α2

λ−λ0

is close to −1 on the essential spectral interval ∆T . Then, in first approximation, the
energy-dependent boundary condition (44) is reduced on ∆T to iP⊥0 ψ − P0ψ

′ ≈ 0, or, due

to orthogonality of P0, P
⊥
0 , to P⊥0

~ψ ≈ 0; P0
~ψ′ ≈ 0, see [?]. This condition correlates with

some rescription of Datta condition,[16]. But our analysis in [14] reveals the meaning of the
projection P0: it coincides with the projection onto the one-dimensional subspace defined by
the vector φ0 of boundary values of the normal derivatives of the resonance eigenfunction,
projected onto E+.

It is clear that the shape of the vertex domain and the coefficient a(x, y) on it can be
chosen, based on the formula (43) to optimize the transport properties of the junction.

The approximate formula (43) may be also used to calculate approximately the
resonances- the zeros of the scattering scattering matrix. Once the zero λs = p2

s, =ps < 0 is
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found, S(λs)es = 0, we are able to obtain the corresponding solution of the stationary wave
equation with the no-square integrable component in ω:

Ψ(ps) = eiK+xes, es ∈ E+.

Then the corresponding mode of the non-stationary wave equation is

e−τ(ps)teiK+xes, S(ps)es = 0

where iτ(iτ + ν) + p2, ω(p) = iν/2 ±
√
−ν2/4 + p2]. If ν << ps we have

√
−ν2/4 + p2

s] ≈
ps − ν2/8ps. Then for ν << |ps| we have the following expression on the leads ω for the
exponentially dissipating on the junction trapped mode associated with the resonance ps.
The corresponding formal solution of the homogeneous stationary equation tends t→∞ on
the wires. It can be interpreted in terms of Lax-Phillips scattering for corresponding solvable
model.
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and Rouché theorem Mat. Sbornik. 84, 607 (1971)

[22] A. Mikhailova,B. Pavlov, L. Prokhorov Intermediate Hamiltonian of a quantum net-
work via Glazman splitting and analytic re-normalization procedure 66 p. Accepted by
Mathematische Nachrichten.

[23] M. Levitin A simple calculation of eigenvalues and resonances in domains with regular
ends arXiv:math.SP/0611237 v1 8 Nov 2006, 28 p.

[24] Y. Colin de Verdière, Y.: Pseudo-Laplacians II Ann. Inst. Fourier 33 (1983) pp 87-113.

[25] H. Donnely Eigenvalue estimates for certain noncompact manifolds Mich. Math. J. 31
(1984) pp 349-357.
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