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1. Introduction

Standard Sturm-Liouville theory deals with the eigenvalue problem

(1.1) −(pu′)′ + qu = λwu,

together with appropriate boundary conditions, in the space L2
w of

functions square integrable with respect to the weight w, i.e., the norm-
square of the space is ‖u‖2 =

∫ |u|2w. A basic assumption for this to
be possible is that w ≥ 0. In some situations of interest this is not
the case, but instead one has p > 0, q ≥ 0. One may then use as a
norm-square the integral

∫
(p|u′|2 + q|u|2), and a problem of this type

is usually called left definite. A left definite problem of current interest
is the spectral problem associated with the Camassa-Holm equation,
which is of the form

(1.2) −u′′ + 1
4
u = λwu.

The Camassa-Holm equation is an integrable system in a similar sense
as the Korteweg-de Vries (KdV) equation is, to which is associated as a
spectral problem the standard one-dimensional Schrödinger equation.
The well developed theory of scattering and inverse scattering for the
Schrödinger equation is of crucial importance to the theory of the KdV
equation. In the same way scattering/inverse scattering theory for the
equation (1.2) is important for dealing with the Camassa-Holm equa-
tion. Unfortunately, no such theory is available unless w ≥ 0, and even
then current theory requires more smoothness of w than is convenient
to assume, in view of the lack of smoothness for the corresponding
‘peakons’.

The problem of inverse scattering for (1.2) is considerably more dif-
ficult than for the Schrödinger equation, which may be viewed as a
rather mild perturbation of the equation −u′′ = λu. In case of (1.2)
the perturbation is of the equation −u′′ + 1

4
u = λu, and thus changes

the coefficient containing the eigenvalue parameter λ. It appears that
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the methods used so far for dealing with the Schrödinger equation are
no longer applicable.

In this paper we will prove some uniqueness results for inverse spec-
tral theory and inverse scattering for the left definite case which apply
to (1.2), even though they are far short of what one would like to have.
Our approach is via the inverse spectral theory for the left definite
problem, which also is not very well developed. Even the spectral the-
ory for left definite problems is not widely known (but see for example
[3]), in the level of detail necessary for dealing with the inverse prob-
lem. We will therefore start by presenting a reasonably comprehensive
spectral theory, then prove some uniqueness theorems for the inverse
spectral problem, and finally a uniqueness theorem for inverse half-line
scattering.

Spectral theory for left-definite Sturm-Liouville problems seem to
have been initiated by Weyl [15], who called such problems polar. Later
many authors have dealt with more or less general left-definite prob-
lems. In particular we mention a series of papers by Niessen, Schneider
and their collaborators on singular left-definite so called S-hermitean
systems, see e.g. [14]. See also [3] and the references cited there. For
a more recent contribution, see [12].

Papers in inverse spectral theory for left-definite problems are much
more scarce; one example is [7]. Inverse scattering for the spectral
problem associated with the Camassa-Holm equation has been treated
by Constantin and various co-authors, for example in [8], [9] and [10].

It will be convenient to deal only with the equation

(1.3) −u′′ + qu = λwu.

There is no loss of generality in doing this, since the change of variable
t =

∫ x

0
1/p will, as is readily seen, turn the equation (1.1) into an

equation of this form.
The plan of the paper is as follows. In Section 2 we give a general

spectral theory for left definite problems on intervals with at least one
regular endpoint, modelled on standard Titchmarsh-Weyl theory. One
may extend this to intervals with two singular endpoints, in the same
way as one can extend the right definite theory, but since we will have
no use of it here we have abstained from this.

In Section 3 we deal with the generalised Fourier transform asso-
ciated to a left definite problem. To simplify the discussion we have
restricted ourselves to one case, when so called finite functions are
dense in the Hilbert space associated to the equation. There are no
fundamental difficulties involved in dealing with the general situation,
but again we have no need of it in the applications we are thinking of.

Section 4 discusses uniqueness of the inverse spectral problem. Un-
fortunately we have neither a characterisation nor a reconstruction al-
gorithm, but the fundamental uniqueness theorem is quite general.
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In Section 5 we prove a theorem of Paley-Wiener type which is crucial
for our approach to the inverse spectral theory, and Section 6 deals
with the uniqueness theorem for the half-line inverse scattering of a left
definite problem. Section 7 is devoted to some results about the number
of eigenvalues for a left-definite problem under scattering conditions.
Some elementary, but rather lengthy, calculations needed in Section 4
have been relegated to an appendix.

2. Spectral theory

We shall consider the equation (1.3) on an interval [0, b) and assume
that q and w are real-valued and integrable on compact subsets of [0, b),
that q ≥ 0, and that neither q nor w vanish a.e. Let H1 be the set
of locally absolutely continuous functions u defined in [0, b) such that
u′ ∈ L2(0, b) and q|u|2 ∈ L1(0, b). As we shall see presently H1 is a
Hilbert space with scalar product

〈u, v〉 =

∫ b

0

(u′v′ + quv)

and norm ‖u‖ =
√
〈u, u〉. In order to show completeness of H1 and

discuss how to find self-adjoint realisations corresponding to (1.3) we
first note the following simple result.

Lemma 2.1. For any a ∈ [0, b) there exists a constant Ca such that

(2.1) |u(x)| ≤ Ca‖u‖
for any x ∈ [0, a] and any u ∈ H1.

Proof. By the fundamental theorem of calculus and Cauchy-Schwarz’

inequality |u(x)| ≤ |u(y)| + |y − x|1/2
( ∫ b

0
|u′|2)1/2

. If c ∈ [a, b) is such

that
∫ c

0
q > 0, multiplication by q(y) and integrating with respect to y

gives

|u(x)|
∫ c

0

q ≤
∫ c

0

q|u|+ c1/2

∫ c

0

q
( ∫ b

0

|u′|2
)1/2

.

Using Cauchy-Schwarz again we obtain (2.1) with Ca =
(
c+(

∫ c

0
q)−1

)1/2
.

¤
Proposition 2.2. The space H1 is complete.

Proof. By (2.1) a Cauchy sequence u1, u2, . . . in H1 converges locally
uniformly to a continuous function u. Furthermore,

√
quj and u′j con-

verge in L2[0, b) to
√

qu and, say, v respectively. Now

uj(x)− uj(0) =

∫ x

0

u′j.

Letting j → ∞ we obtain u(x) = u(0) +
∫ x

0
v. Thus u is absolutely

continuous with derivative v and uj converges to u in H1. ¤
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Denote the set of integrable functions with compact support in (0, b)
by L0. Then, if u ∈ H1 and v ∈ L0 it follows that | ∫ uv| ≤ Ca

∫ |v| ‖u‖
if supp v ⊂ [0, a], so that the linear formH1 3 u 7→ ∫

uv is bounded. By
Riesz’ representation theorem we may therefore find a unique v∗ ∈ H1

so that
∫

uv = 〈u, v∗〉. Clearly v∗ depends linearly on v, so we obtain
a (bounded) operator G : L0 → H1 such that

〈u,Gv〉 =

∫ b

0

uv for u ∈ H1, v ∈ L0.

The operator G is central for the left-definite spectral theory of (1.3).

Proposition 2.3. The operator G is an integral operator Gu(x) =∫
u g0(x, ·), it is injective and its restriction to L0 ∩ H1 is symmetric

with range dense in H1.

Proof. By (2.1) the map H1 3 u 7→ u(x) is for each fixed x ∈ [0, b) a
bounded linear form, so there exists an element g0(x, ·) ∈ H1 so that

u(x) = 〈u, g0(x, ·)〉 for u ∈ H1, and therefore Gv(x) = 〈Gv, g0(x, ·)〉 =∫ b

0
v g0(x, ·) for any v ∈ L0. Thus G is an integral operator with kernel

g0(x, y) (actually, as we shall see in Proposition 2.7, g0 is real-valued).
If u and v ∈ L0 ∩H1, then

〈Gu, v〉 = 〈v,Gu〉 =

∫ b

0

uv = 〈u, Gv〉,

so the restriction of G to L0 ∩H1 is symmetric.
Now assume [c, d] ⊂ (0, b) and let uj(x) = min(1, j(x− c), j(d− x))

for x ∈ [c, d] and uj(x) = 0 otherwise. Then uj ∈ L0 ∩ H1 and tends
boundedly to the characteristic function of [c, d] as j →∞, so if Gv = 0

it follows from 0 = 〈Gv, uj〉 =
∫

vuj that
∫ d

c
v = 0 for all [c, d] ⊂ (0, b).

Thus v = 0 a.e. so that G is injective. On the other hand, if u ∈ H1

is orthogonal to Gv for all v ∈ L0 ∩ H1, we may put v = uj, so that

0 = 〈u,Guj〉 →
∫ d

c
u. It follows that u = 0 so the range of G restricted

to L0 ∩H1 is dense and the proof is complete. ¤

We shall have to briefly use the theory of symmetric relations as
presented in [3, section 1], and define maximal and minimal relations
corresponding to (1.3). We start by setting

Tc = {(G(wv), v) | v ∈ L0 ∩H1}.
Then, since w is real-valued, Tc is a symmetric relation in H1, for

〈G(wu), v〉 = 〈v, G(wu)〉 =

∫ b

0

wuv = 〈u,G(wv)〉.

Proposition 2.3 implies that Tc is the graph of a densely defined sym-
metric operator in H1 if supp w = [0, b), but at this point we do not
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want to exclude the possibility of w vanishing on an open set. We de-
fine the minimal relation T0 as the closure (in H1⊕H1) of Tc, and the
maximal relation T1 as the adjoint of this, i.e.,

T1 = {(u, f) ∈ H1 ⊕H1 | 〈u, v〉 = 〈f, G(wv)〉 for all v ∈ L0 ∩H1}.
We must show that T1 is a differential relation.

Proposition 2.4. We have (u, f) ∈ T1 if and only if u and f ∈ H1,
u′ is locally absolutely continuous, and −u′′ + qu = wf .

Proof. First note that if u and f ∈ H1, then the definition of G shows
that

(2.2) 〈u, v〉 − 〈f, G(wv)〉 =

∫ b

0

(u′v′ + quv − wfv)

for any v ∈ L0 ∩ H1. If in addition u′ is locally absolutely continuous
and satisfies −u′′ + qu = wf integrating by parts gives

〈u, v〉 − 〈f,G(wv)〉 =

∫ b

0

(−u′′ + qu− wf)v = 0.

This proves one direction of the proposition.
In proving the other direction the assumption is that the quantity

(2.2) is zero. But since C∞
0 (0, b) ⊂ H1 this means that the distri-

butional derivative of u′ is qu − wf so that u′ is locally absolutely
continuous and u satisfies the differential equation.

To give a proof without the use of distribution theory we prove a
variant of the classical du Bois Reymond lemma. If v ∈ L0 ∩ H1

integration by parts in (2.2) gives

(2.3)

∫ b

0

{u′ −
∫ x

0

(qu− wf)− C}v′ = 0

for any constant C. Now let [c, d] ⊂ (0, b) and choose C to be C =
1

d−c

∫ d

c
{u′ − ∫ x

0
(qu− wf)}. Put v(y) = 0 for y /∈ [c, d] and

v(y) =

∫ y

c

{u′(x)−
∫ x

0

(qu− wf)− C} dx

for y ∈ [c, d]. Then v ∈ L0 ∩H1 and (2.3) gives
∫ d

c

|u′ −
∫ x

0

(qu− wf)− C|2 = 0

so that u′−∫ x

0
(qu−wf) is constant in [c, d]. Thus u′ is locally absolutely

continuous, and differentiation gives −u′′ + qu = wf .
¤

Let Dλ = {(u, λu) ∈ T1} and let Dλ be the projection of Dλ onto
its first components, i.e., u ∈ Dλ means that u ∈ H1 and u satisfies
−u′′ + qu = λwu. We then have

T1 = T0 uDλ uDλ
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as a direct sum, for any non-real λ. Here dimDλ = dim Dλ is constant
in each of the upper and lower half-planes, and these dimensions will be
called the deficiency indices of T1. See [3, Theorem 1.4] for this simple
generalisation of the von Neumann formula for symmetric operators
and its consequences. It is clear that dim Dλ ≤ 2, and that dim Dλ =
dim Dλ, since u ∈ Dλ if and only if u ∈ Dλ. Thus deficiency indices are
always equal, and there are always self-adjoint extensions of T0, which
will at the same time be restrictions of T1, and therefore realisations
of (1.3). It is of course of interest to have criteria in terms of the
coefficients q and w for different values of the deficiency indices dim Dλ.
In surprising contrast to the right-definite case, we have the following
simple and explicit criteria.

Theorem 2.5. Suppose Im λ 6= 0 and let W be an anti-derivative of
w. Then dim Dλ = 2 if b < ∞ and q + W 2 ∈ L1[0, b). Otherwise
dim Dλ = 1 for Im λ 6= 0.

The theorem is a special case of [4, Theorem 2.3]. See also [1]. In
the right-definite case a simple variation of constants argument shows
that if dim Dλ = 2 for one real or non-real value of λ, then this holds
for all λ ∈ C. A similar argument shows that this remains true in the
left-definite case, with the exception that it is possible that dim D0 = 2
even if dim Dλ < 2 for all λ 6= 0. This is to be expected, since D0 does
not depend on the choice of w. We characterise dim D0 completely
in the following theorem, which also brings out the significance of the
space D0. We use the expression finite function in H1 to denote a
function which vanishes near b.

Theorem 2.6.

(1) The set D0 is the orthogonal complement in H1 of L0 ∩H1 and
has dimension 1 or 2.

(2) dim D0 = 2 if and only if b < ∞ and q ∈ L1[0, b).
(3) If b < ∞ and q ∈ L1[0, b), then v and v′ have finite limits at b

for all v ∈ D0, and these limits uniquely determine v.
(4) If b < ∞ and q ∈ L1[0, b), then every u ∈ H1 has a limit at b

which is a bounded linear form on H1.
(5) If dim D0 = 1 and D0 3 v 6≡ 0, then v(0)v′(0) < 0 and

u(x)v′(x) → 0 as x → b for any u ∈ H1.
(6) Finite functions are dense in H1 if and only if dim D0 = 1.

Most of this is also a special case of the results of [4] respectively
[1], but we give a simple proof, an elaboration of which can also prove
Theorem 2.5.

Proof. We have u ∈ D0 precisely if (u, 0) ∈ T1, which holds precisely
if 〈u, v〉 = 〈u, v〉 − 〈0, G(wv)〉 = 0 for all v ∈ L0 ∩ H1, proving the
first claim. Since there are elements v ∈ H1 with v(0) 6= 0, and since
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u(0) = 0 for every u ∈ L0 ∩ H1 it follows from (2.1) for x = 0 that
dim D0 ≥ 1 and we have proved (1).

If b is finite and q integrable standard existence and uniqueness the-
orems show that all solutions of −v′′ + qv = 0 are continuously differ-
entiable with absolutely continuous derivative in [0, b], and thus in H1,
and that they are uniquely determined by the values of v and v′ at b.
In this case the proof of Lemma 2.1 clearly also works for a = b, so we
have proved (3), (4) and one direction of (2).

Now let u ∈ H1 and v ∈ D0. Integration by parts gives

(2.4)

∫ x

0

(u′v′ + quv) + u(0)v′(0) = u(x)v′(x).

Thus u(x)v′(x) has a limit at b. If this is not 0, then (u(x)v′(x))−1 is
bounded close to b. Therefore u′/u = u′v′/(uv′) is integrable near b, so
that u has a non-zero limit at b. Since q|u|2 is integrable it follows that
q ∈ L1(0, b). Similarly, v′′/v′ = qv/v′ = qvu/(v′u) is integrable near b,
so v′ has a non-zero limit at b. Since |v′|2 is integrable it follows that
b is finite.

Now, setting u = v 6≡ 0 in (2.4) the integral is increasing, ≥ 0 and

not constant, so if v(0)v′(0) ≥ 0, then v(x)v′(x) can not tend to 0 at
b. However, if dim D0 = 2 we may choose v ∈ D0 with v′(0) = 0, so it
follows that q ∈ L1(0, b) and b finite, completing the proof of (2).

On the other hand, if dim D0 = 1 then u(x)v′(x) must tend to zero

for any u ∈ H1. In particular, for u = v one therefore has v(0)v′(0) < 0
for any non-zero v ∈ D0 which proves (5).

Finally, if u ∈ H1 is finite and v ∈ D0 integration by parts shows
that 〈u, v〉 = −u(0)v′(0), so the orthogonal complement of the finite
functions consists of those v ∈ D0 for which v′(0) = 0. According to
(5) this implies v = 0 if dim D0 = 1 and the proof is complete. ¤

It is now possible to give a detailed description of the kernel g0.

Proposition 2.7. The kernel g0(x, y) is real-valued and symmetric in
x, y. As a function of y it satisfies (1.3) with λ = 0 for y 6= x, and
there are real-valued functions ψ0 and ϕ0 which solve (1.3) with λ = 0,
such that if u ∈ H1, then

(1) ψ0 ∈ H1, ψ′0(0) = 1 and ψ′0(x)u(x) → 0 as x → b,
(2) ϕ0(0) = −1, ϕ′0(0) = 0,
(3) g0(x, y) = ϕ0(min(x, y))ψ0(max(x, y)),

Proof. The existence of the solution ϕ0 is not in question, and if a solu-
tion with the properties of ψ0 exists, it is easy to verify that the kernel
ϕ0(min(x, y))ψ0(max(x, y)) has the properties required of g0(x, y).

The existence of ψ0 follows from Theorem 2.6. Indeed, if dim D0 = 2,
the element v ∈ D0 with v(b) = 1, v′(b) = 0 is real-valued and must
have v(0)v′(0) < 0 by (2.4), so v′(0) 6= 0, and an appropriate multiple
will have the properties required of ψ0.
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On the other hand, if dim D0 = 1, any non-zero v ∈ D0 satisfies
v(0)v′(0) < 0 so v′(0) 6= 0, and an appropriate multiple will satisfy the
requirements for ψ0. Note that this solution is real-valued, since its
real and imaginary parts also are in D0, and are thus proportional, and
the initial condition guarantees that the imaginary part vanishes. ¤

Now let T be a self-adjoint restriction of T1 and assume that (u, f)
and (v, g) ∈ T . Integrating by parts we then obtain

(2.5)

∫ x

0

(u′g′ + qug)−
∫ x

0

(f ′v′ + qfv) = (u′g − fv′)
∣∣x
0
.

As x → b this vanishes, since the left hand side tends to 〈u, g〉− 〈f, v〉.
Thus the condition for symmetry is that

(u′g − fv′)
∣∣b
0

= 0.

Comparing this with (u′v − uv′)
∣∣b
0

= 0, which is the similar condition
in the right-definite case, we see that only exceptionally would self-
adjoint boundary conditions in the left-definite case also be self-adjoint
boundary conditions in the right-definite case.

Separated boundary conditions are those that make u′g− fv′ vanish
at each end-point separately, and are thus at 0 of the form

(2.6) f(0) cos α + u′(0) sin α = 0,

for some α ∈ [0, π). Again comparing with the right-definite case,
where the condition is u(0) cos α + u′(0) sin α = 0, the conditions coin-
cide only in the case α = π/2, the Neumann boundary condition. How-
ever, for eigenfunctions, where f = λu, it is clear that also α = 0, the
Dirichlet boundary condition, give the same spectra outside of λ = 0.

We shall not need a detailed description of self-adjoint boundary
conditions at a singular endpoint. However, one may always impose the
condition (2.6) at 0. It is easy to see that the corresponding restriction
of T1 has a symmetric adjoint, which is a strict extension of T0. If the
deficiency indices of T0 equal 1, this is sufficient to obtain a self-adjoint
restriction T of T1, and all selfadjoint realisations are of this form.
Otherwise, a condition needs to be imposed also at b. From (2.5) it
follows immediately that every (u, f) ∈ T1 satisfying such a condition

at b must satisfy Im(u′(x)f(x)) → 0 as x → b.
Assuming now that we have a self-adjoint relation T , the spectral

theorem looks as follows ([3, Theorem 1.15]). Consider the set H∞ =
{u ∈ H1 | (0, u) ∈ T}. Then H∞ is a subspace of H1, and setting
H = H1ªH∞ the domain DT of T (i.e., the set of first components of
T ) is a dense subset of H, and T ∩H⊕H is the graph of a self-adjoint
operator in H. We will denote this operator by T as well, and may
now apply the usual spectral theorem to T . If the resolution of the
identity for the operator T is {Et}t∈R, we extend the domain of the
projection Et to all of H1 by setting EtH∞ = 0. Clearly one may view
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H∞ as an eigenspace for the relation T belonging to the eigenvalue
∞, so adjoining the orthogonal projection onto H∞ to {Et}t∈R gives a
resolution of the identity in H1 for the relation T . In the present case
one may give a rather complete description of H∞.

Proposition 2.8. The space H∞ consists of those elements g ∈ H1 for
which wg = 0 a.e., and for which (0, g) satisfies the boundary conditions
that define T . In particular, if wg = 0 a.e. and g ∈ L0 ∩ H1, then
g ∈ H∞.

Proof. Now g ∈ H∞ means that (0, g) ∈ T , which therefore satisfies
the boundary conditions defining T . In particular, 0 = 〈g,G(wf)〉 −
〈0, f〉 = 〈g,G(wf)〉 =

∫
gfw for any f ∈ L0 ∩H1. It follows, as in the

proof of Proposition 2.3, that wg = 0 a.e.
Conversely, if (0, g) satisfies the boundary conditions and gw = 0

a.e., then if (u, f) ∈ T an integration by parts gives

〈u, g〉 − 〈f, 0〉 = lim
x→b

(u′g − f · 0)
∣∣x
0

= 0,

i.e., (0, g) ∈ T , so the proof is complete. ¤
We remark that if an endpoint is regular, then the boundary con-

dition implied by u ∈ H∞ are in most cases the vanishing of u in
that endpoint. For separated boundary conditions an exception occurs
when the boundary condition is of Neumann type, (i.e., when α = π/2
in (2.6)). If we have Neumann conditions at both ends, or at one end
when deficiency indices equal 1, there are no boundary conditions for
elements of H∞.

We will base our derivation of the expansion theorem for the operator
T on a detailed description of the resolvent Rλ = (T − λ)−1. Thus Rλ

is defined on H, but we extend its domain to H1 by setting RλH∞ = 0.
The range of Rλ is of course DT , which is a dense set in H. Using
the kernel g0 for the evaluation operator on H1 introduced in the proof
of Proposition 2.3, we have Rλu(x) = 〈Rλu, g0(x, ·)〉 = 〈u,Rλg0(x, ·)〉,
since the adjoint of Rλ is Rλ. Thus we may view G(x, ·, λ) = Rλg0(x, ·)
as Green’s function for our operator; note, however, that G is not the
kernel of a standard integral operator. It will turn out to be convenient
to introduce the kernel g(x, y, λ) = G(x, y, λ) + g0(x, y)/λ, so that we
obtain

(2.7) Rλu(x) = 〈u, g(x, ·, λ)〉 − u(x)/λ.

Note that G(x, ·, λ) ∈ H but this is not true of g(x, ·, λ) unless H∞ =
{0}. We shall need a precise description of g(x, y, λ). To do this we
must introduce solutions of (1.3) satisfying initial conditions at 0, so
let ϕ(x, λ), θ(x, λ) be solutions of (1.3) for λ 6= 0 satisfying

(2.8)

{
λϕ(0, λ) = − sin α

ϕ′(0, λ) = cos α
,

{
λθ(0, λ) = cos α

θ′(0, λ) = sin α
.
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This means that ϕ satisfies the boundary condition (2.6) and θ another
similar boundary condition at 0. We have the following theorem.

Theorem 2.9. Suppose T is a selfadjoint realisation of (1.3) given
by (2.6) and, if needed, an appropriate condition at b. Then there
exists a function m(λ) defined for Im λ 6= 0, the Titchmarsh-Weyl m-
function for T , depending only on λ and such that ψ(x, λ) = θ(x, λ) +
m(λ)ϕ(x, λ), called the Weyl solution for T , is in H1 and satisfies the
boundary condition at b, if any. Furthermore

g(x, y, λ) = ϕ(min(x, y), λ)ψ(max(x, y), λ).

Proof. For non-real λ neither ϕ nor θ can be in H1 and satisfy the
boundary condition at b, since that would make λ a non-real eigenvalue
for a selfadjoint problem. Thus there is a solution ψ(x, λ) = θ(x, λ) +
m(λ)ϕ(x, λ) in H1 which also satisfies the boundary condition at b,
since if dim D(λ) = 2 one linear, homogeneous condition still leaves a
one-dimensional space, whereas if dim D(λ) = 1 no boundary condition
is imposed at b.

Define, for fixed x and λ /∈ R the function

F (y) = ϕ(min(x, y), λ)ψ(max(x, y), λ)− λ−1g0(x, y).

Since ψ(·, λ) and ψ0 are in H1 so is F . We claim that F ∈ DT . In fact,
one easily checks that F ′ is locally absolutely continuous and that F
satisfies −F ′′ + qF = λwF + wg0(x, ·). It is also easy to check that F
satisfies the boundary condition (2.6).

Finally, for y > x the function F is a linear combination of ψ(·, λ) and
ψ0. The former satisfies the boundary condition at b by construction,
and ψ0 satisfies the boundary condition at b by Theorem 2.6(5), since
if (u, f) ∈ T , then ψ′0f − 0u′ = ψ′0f → 0 at b. All this means that F =

Rλg0(x, ·) = Rλg0(x, ·) = G(x, ·, λ) so that g(x, y, λ) is as claimed. ¤

Theorem 2.10. The function m is analytic outside R, it maps the
upper half plane into itself, and satisfies m(λ) = m(λ).

Proof. Since Rλ is analytic outside R in the strong operator topology
Rλu(x) is, by (2.1), pointwise analytic. It follows that g(x, ·, λ) is
weakly analytic for each x, and thus, again by (2.1), g(x, y, λ) is analytic
outside R for each x and y. Since ϕ(x, λ) and θ(x, λ) also are analytic
and since an integration by parts shows that they are non-zero for x > 0
and λ /∈ R, it follows that m(λ) is analytic in C \ R.

If (v, g) defines a boundary condition at b, then so does either its real
part or its imaginary part, which is easily seen. Therefore, since ψ(x, λ)

satisfies (1.3) and the boundary condition at b, so does ψ(x, λ), and is

thus a multiple of ψ(x, λ). Now ϕ(x, λ) = ϕ(x, λ), θ(x, λ) = θ(x, λ)

and ψ(x, λ) = θ(x, λ) + m(λ)ϕ(x, λ) so it follows that m(λ) = m(λ).
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Integrating by parts we have

Im λ

∫ x

0

(|ψ′(·, λ)|2 + q|ψ(·, λ|2) = Im(ψ′(·, λ)λψ(·, λ))
∣∣x
0
.

Since ψ satisfies a boundary condition at b, the integrated term vanishes
as x → b. At 0 the integrated term evaluates to− Im m(λ), so we obtain

(2.9) ‖ψ(·, λ)‖2 = Im m(λ)/ Im λ.

Thus m maps the upper and lower half-planes into themselves. ¤
A function with the properties of m is a so called Nevanlinna or

Herglotz function, and has a unique representation

(2.10) m(λ) = A + Bλ +

∫

R

( 1

t− λ
− t

t2 + 1

)
dρ,

where A ∈ R, B ≥ 0, and dρ is a positive measure with
∫
R

dρ(t)
1+t2

< ∞.
We will call the measure dρ the spectral measure for T , for reasons that
will become clear presently.

We finally note the following proposition.

Proposition 2.11. Unless α = π/2 and 0 /∈ supp w the functions ψ0

and ψ(·, λ) are in H.

Proof. Suppose g ∈ H∞. An integration by parts then gives

〈g, ψ〉 = −g(0)ψ′(0),

where ψ = ψ0 or ψ(·, λ). The boundary condition at 0 requires g(0) = 0
unless α = π/2, and even then g(0) = 0 unless w = 0 in a neighbour-
hood of 0. ¤

3. The Fourier transform

We shall call functions that vanish near b finite and from now on
make the following simplifying assumption.

Assumption 3.1. Assume that finite functions are dense in H1.

According to Theorem 2.6 this means exactly that either q /∈ L1(0, b)
or else b = ∞. Note that, according to Theorem 2.5, the assumption
implies that the deficiency indices of T1 equal 1.

The spectral measure introduced in the previous section gives rise to
a Hilbert space L2

ρ with scalar product 〈û, v̂〉ρ =
∫∞
−∞ ûv̂ dρ. We shall

define a generalised Fourier transform F : H1 → L2
ρ with the following

properties.

Theorem 3.2.

(1) The map u 7→ ∫ b

0
(u′ϕ′(·, t) + quϕ(·, t)), defined for finite u ∈

H1, extends by continuity to a map F : H1 → L2
ρ called the

generalised Fourier transform. The image of u ∈ H1 is denoted
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by F(u) or û. We write this as û(t) = 〈u, ϕ(·, t)〉 although the
integral in general does not converge pointwise.

(2) The mapping F : H1 → L2
ρ has kernel H∞ and is unitary be-

tween H and L2
ρ so that Parseval’s formula 〈u, v〉 = 〈û, v̂〉ρ holds

if at least one of u and v is in H.
(3) If u ∈ DT , then F(Tu)(t) = tû(t). Conversely, if û and tû(t)

are in L2
ρ, then F−1(û) ∈ DT .

(4) Suppose α 6= 0 in (2.6). Then ϕ(x, ·) ∈ L2
ρ for each x and∫∞

−∞ ûϕ(x, ·) dρ = 〈û, ϕ(x, ·)〉ρ converges in H, and hence locally

uniformly in x, for û ∈ L2
ρ. This is the adjoint of F : H1 → L2

ρ

and thus the inverse of F restricted to H. If M is a Borel set
in R, then EMu(x) =

∫
M

ûϕ(x, ·) dρ.
If α = 0 the same is true, except that we must replace ϕ(·, t)

for t = 0 by the function ψ0 of Proposition 2.7. Note that ψ0 is
the eigenfunction for the eigenvalue 0 in this case.

We first consider the Fourier transform for finite functions u ∈ H1,
for every λ ∈ C setting

û(λ) = 〈u, ϕ(·, λ)〉.
It is clear that û is an entire function, since integration by parts shows
that

û(λ) = 〈u, ϕ(·, λ)〉 =

∫ b

0

uλϕ(·, λ)w − u(0) cos α,

and by (2.8) λϕ(x, λ) is an entire function of λ, locally uniformly in x.

Lemma 3.3. For finite u and v ∈ H1 we have û and v̂ ∈ L2
ρ. If

E∆ is the spectral projection for T associated with an interval ∆, then
〈E∆u, v〉 =

∫
∆

ûv̂ dρ.

Proof. We have 〈Rλu, v〉 = û(λ)v̂(λ)m(λ) + g(λ), where g is entire, as
is easily verified by direct calculation. Integrating around a rectangle
γ with corners at c ± i and d ± i we therefore have

∫
γ
〈Rλu, v〉 dλ =∫

γ
û(λ)v̂(λ)m(λ) dλ whenever one of the integrals exists. By the spec-

tral theorem the first integral equals
∫

γ

∫
R

d〈Etu,v〉
t−λ

dλ, so if the inte-

gral is absolutely convergent changing the order of integration gives
−2πi〈E(c,d)u, v〉 if c and d are points of continuity for 〈Etu, v〉.

Similarly, using the Nevanlinna representation (2.10), the other in-

tegral equals −2πi
∫ d

c
û(t)v̂(t) dρ(t) if it is absolutely convergent and c,

d are points of continuity for ρ.
The absolute convergence of the double integrals is ensured if 〈Etu, v〉

respectively ρ are differentiable at c and d as is easily seen. See [2,
Lemmas 14.3, 14.4] for more details of the identical calculation carried
out for the right-definite case.
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As functions of bounded variation 〈Etu, v〉 and ρ are both differen-
tiable a.e., so the second claim of the lemma is true if the endpoints of
∆ belong to this dense set of points, and so in general by continuity.
In particular, letting c → −∞, d → ∞ through such points it follows
that 〈ERu, u〉 = 〈û, û〉ρ, so that û, v̂ ∈ L2

ρ. ¤

Since finite functions are dense in H1, and since ER has kernel H∞,
we now obtain Theorem 3.2 (1) by continuity and also (2) except for
the surjectivity of F . To prove this we need the following lemmas.

Lemma 3.4. The transform of Rλu is û(t)/(t− λ).

Proof. According to the spectral theorem we have 〈Rλu, v〉 =
∫
R

d〈Etu,v〉
t−λ

and by Lemma 3.3 we have 〈Etu, v〉 =
∫ t

−∞ ûv̂ dρ so that

〈Rλu, v〉 =

∫

R

û(t)

t− λ
v̂(t) dρ(t).

We also have Rλ−Rλ = (λ−λ)RλRλ and 〈Rλu,Rλu〉 = 〈RλRλu, u〉 so

〈Rλu,Rλu〉 =
1

λ− λ
(〈Rλu, u〉 − 〈Rλu, u〉) =

∥∥ û(t)

t− λ

∥∥2

ρ
.

Expanding ‖ û(t)
t−λ
−F(Rλu)‖2

ρ and using Parseval’s formula and the above
yields 0, thus proving the lemma. ¤

Lemma 3.5. The operator T has eigenvalue 0 if and only if α = 0, in
which case the eigenfunction is ψ0, and for any u ∈ H1 we then have
û(0) = −u(0).

Furthermore, the measure dρ has mass at 0 ( {0} is not a nullset

with respect to dρ) precisely if α = 0. In this case ψ̂0 = χ{0}/ρ{0},
where χ{0} is the characteristic function of the singleton {0} and ρ{0}
the spectral measure of this set.

Proof. According to Theorem 2.6 the only non-trivial solutions of (1.3)

for λ = 0 in H1 are multiples of a solution u for which u′(0)u(0) < 0,
so that u′(0) 6= 0. These solutions satisfy the boundary condition (2.6)
precisely if α = 0, which proves the first claim. If u is any finite function
integrating by parts gives û(0) = 〈u, ϕ(·, 0)〉 = −u(0). This holds in
general by continuity, u(0) being a bounded linear form on H1 by (2.1),
and û(0) on L2

ρ since dρ has mass at 0, as we shall see presently.
Now u ∈ DT and Tu = 0 precisely if u + λRλu = 0, and the Fourier

transform of u + λRλu is (1 + λ
t−λ

)û(t) = tû(t)
t−λ

. If this is 0, then û = 0
a.e. with respect to dρ except possibly at t = 0. Thus, if α = 0, then
{0} can not be a nullset with respect to dρ. It also follows that ψ̂0 is
a multiple of the characteristic function of the set {0}. On the other
hand, since dim Dλ = 1, Weyl solutions for different α are proportional
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so it immediately follows that

m0(λ) =
ψ′(0, λ)

λψ(0, λ)
=

sin α + mα(λ) cos α

cos α−mα(λ) sin α
,

where mα denotes the m-function associated with the boundary condi-
tion parameter α. Now m0(iν) →∞ as ν ↓ 0, as a consequence of the
mass at 0, so that mα(iν) → cot α for α 6= 0. For α 6= 0 the spectral
measure therefore has no mass at 0.

It only remains to prove the formula for ψ̂0. By Parseval’s formula
(note that ψ0 ∈ H by Proposition 2.11) we have ψ̂0(0) = −ψ0(0) =

‖ψ0‖2 = ‖ψ̂0‖2
ρ = |ψ̂0(0)|2ρ{0}. Hence −ψ0(0) = ψ̂0(0) = 1/ρ{0}. ¤

It is now easy to prove that F is surjective.

Lemma 3.6. The Fourier transform H → L2
ρ is surjective.

Proof. Suppose that û ∈ L2
ρ is orthogonal to all Fourier transforms

v̂. Since v̂(t)/(t − λ) is also a transform, for any non-real λ, we have∫
1

t−λ
û(t)v̂(t) dρ(t) = 0 for all non-real λ. Thus the Stieltjes transform

of the measure ûv̂ dρ is 0, so by the uniqueness of the Stieltjes transform
it follows that this measure is the zero measure.

Now, if v̂ is the transform of a finite function in H1, then it is an
entire function, so to prove that t is outside the support of û dρ it is
enough to show that there is such a v̂ for which v̂(t) 6= 0. If t 6= 0 and
v̂(t) = 0 for all compactly supported v ∈ H1, then as in the proof of
Proposition 2.4 it follows that ϕ(·, t) satisfies (1.3) both for λ = 0 and
λ = t, so that ϕ(·, t)w = 0 a.e., which is not possible since it implies
that ϕ(·, t) = 0 in a set of positive Lebesgue measure. It therefore
follows that û dρ vanishes outside 0. But according to Lemma 3.5 this
proves that the measure is zero, unless α = 0. However, also in this case
û = 0 since otherwise û would be the transform of an eigenfunction. ¤

We next turn to Theorem 3.2 (3).

Lemma 3.7. If u ∈ DT then F(Tu)(t) = tû(t). Conversely, if û and
tû(t) are in L2

ρ, then F−1(û) ∈ DT .

Proof. We have u ∈ DT if and only if for some v ∈ H1 we have u =
Rλ(v−λu), i.e., if and only if û(t) = (v̂(t)−λû(t))/(t−λ) or tû(t) = v̂(t)
for some v̂ ∈ L2

ρ. ¤
We obtain the following corollary which will be useful later on.

Corollary 3.8. If u ∈ DT , then û is integrable with respect to dρ.

Proof. The functions tû(t), û and 1/(t− i) are all in L2
ρ, so that û(t) =

(tû(t)− iû(t))/(t− i) is integrable with respect to dρ. ¤
To finish the proof of Theorem 3.2 it only remains to consider the

inverse transform.
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Lemma 3.9. If α 6= 0 the integral 〈û, ϕ(x, ·)〉ρ converges in H and
locally uniformly for every û ∈ L2

ρ. If û = F(u) for some u ∈ H1, then
the integral is the orthogonal projection of u onto H.

If α = 0 the same statement is true if one replaces ϕ(·, 0) by ψ0 in
the integral.

Remark 3.10. A simple integration by parts shows that every finite
function is orthogonal to ϕ0. Now suppose α = 0 and let θ0 = ϕ(·, 0)
so that θ0 solves (1.3) for λ = 0 with initial data θ0(0) = 0, θ′0(0) = 1.
Then, when calculating the Fourier transform at 0 we may replace
ϕ(·, 0) by any function θ0 + Aϕ0 for A constant, with no change to the
Fourier transform.

In particular we may choose A = −ψ0(0) = 1/ρ{0}, according to
Lemma 3.5, so that θ0 + Aϕ0 = ψ0. This might seem a more natural
choice of kernel for the Fourier transform, in view of the fact that it
must be used for the inverse transform, and that ψ0 is an eigenfunction
to the eigenvalue 0, but would thus not actually change the Fourier
transform.

Proof of Lemma 3.9. We have u(x) = 〈u, g0(x, ·)〉 = 〈û, e(x, ·)〉ρ for
u ∈ H where e(x, t) = F(g0(x, ·))(t). If u ∈ H1 we instead get the
projection of u onto H, so that the integral operator û 7→ 〈û, e(x, ·)〉ρ
is the adjoint of F . We must prove that e(x, t) = ϕ(x, t), so suppose û
has compact support and consider ũ(x) = 〈û, ϕ(x, ·)〉ρ which satisfies
the equation −ũ′′ + qũ = w(x)〈û, tϕ(x, ·)〉ρ, differentiating under the
integral sign. Since û has compact support u ∈ DT , so that −u′′ +
qu = w(x)〈tû(t), e(x, t)〉ρ. Thus u1 = u − ũ satisfies −u′′1 + qu1 =
w(x)〈tû(t), e(x, t)− ϕ(x, t)〉ρ.

Now, if v is finite, then

〈ũ, v〉 =

∫∫
û(t)(ϕ′(·, t)v′ + qϕ(·, t)v) dρ(t) = 〈û, v̂〉ρ = 〈u, v〉,

since the double integral is absolutely convergent. Hence u1 is or-
thogonal to all finite v so it satisfies −u′′1 + qu1 = 0. It follows that
w(x)〈tû(t), e(x, t)−ϕ(x, t)〉ρ = 0 a.e., so that 〈tû(t), e(x, t)−ϕ(x, t)〉ρ =
0 on a set of positive measure. But this function also satisfies (1.3) for
λ = 0, as is seen by replacing û by tû(t) in the previous calculations.
It follows that t(e(x, t) − ϕ(x, t)) = 0 for a.a. t with respect to dρ, so
that e(x, t) = ϕ(x, t) except possibly if t = 0 and α = 0.

However, 0 is an eigenvalue for α = 0 and the eigenfunction ψ0

has transform χ{0}/ρ{0} according to Lemma 3.5, so we must choose
e(x, 0) = ψ0(x). ¤

The proof of Theorem 3.2 is now complete if we note that from
〈Etu, v〉 =

∫ t

−∞ ûv̂ follows that the transform of Etu is û multiplied
by the characteristic function of (−∞, t]. The formula EMu(x) =∫

M
ûϕ(x, ·) dρ therefore follows from the inversion formula.
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In Lemma 3.5 we calculated the Fourier transform of ψ0 in the case
α = 0. We shall need to find a few more Fourier transforms.

Lemma 3.11. If λ /∈ R the Fourier transform of ψ(·, λ) is ψ̂(t, λ) =

1/(t − λ). Furthermore, the Fourier transform of ψ0 equals ψ̂0(t) =
sin α/t for α 6= 0 and 1/ρ{0} times the characteristic function of the
set {0} for α = 0.

Proof. We have already calculated ψ̂0 for α = 0 in Lemma 3.5. If
α 6= 0 we note that ψ0(x) = −g0(0, x) so its Fourier transform is
−e(0, t) = −ϕ(0, t) = sin α/t.

According to (2.7), Theorem 2.9 and Lemma 3.9, for u ∈ H we have

− sin α〈û, ψ̂(·, λ)〉ρ = λϕ(0, λ)〈u, ψ(·, λ)〉

= λRλu(0) + u(0) = 〈( λ

t− λ
+ 1)û(t), e(0, t)〉ρ

= 〈û(t),
t e(0, t)

t− λ
〉ρ = − sin α〈û(t),

1

t− λ
〉ρ

so that we have ψ̂(t, λ) = 1
t−λ

if α 6= 0. If α = 0 we assume û has
compact support so that we may differentiate u(x) = 〈û, e(x, ·)〉ρ under
the integral sign to obtain

〈û, ψ̂(·, λ)〉ρ = ϕ′(0, λ)〈u, ψ(·, λ)〉 = (Rλu)′(0)

= 〈 û(t)

t− λ
, e′x(0, t)〉ρ = 〈û(t),

e′x(0, t)
t− λ

〉ρ = 〈û(t),
1

t− λ
〉ρ.

Thus, also in this case we obtain ψ̂(t, λ) = 1
t−λ

. ¤
Corollary 3.12. Suppose u ∈ H. Then 〈u, ψ(·, tλ)〉 → 0 as t → ∞,
locally uniformly for λ /∈ R. By (2.1) this means that ψ(x, tλ) → 0 as
t →∞, locally uniformly in x and λ /∈ R.

In fact, unless 0 /∈ supp w and α = π/2 we have ψ(·, tλ) → 0 in H,
locally uniformly in λ /∈ R as t →∞.

Proof. We have 〈u, ψ(·, λ)〉 = 〈û, ψ̂(·, λ〉ρ. With the extra assumptions

Proposition 2.11 shows that ψ(·, λ) ∈ H so that ‖ψ(·, λ)‖ = ‖ψ̂(·, λ)‖ρ.
It follows immediately by dominated convergence from Lemma 3.11

that the claims are true. ¤
Remark 3.13. All of the theory of Sections 2 and 3 extends with no
essential change to the case when w is just a measure, or even an
element of H−1

loc (0, b).

4. Uniqueness of the inverse problem

We shall here deal with the following question: To what extent is
the operator T , i.e., the interval [0, b), the coefficients q and w, and the
boundary condition parameter α determined by the spectral measure
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dρ? To answer this question we introduce the concept of a Liouville
transform as a map v 7→ u given by u(x) = f(x)v(g(x)), where f
and g are fixed functions. We suppose that g is strictly increasing
and continuous, and that f is never 0. It is then easy to see that the
inverse of a Liouville transform is also a Liouville transform, as is the
composition of two Liouville transforms.

Now consider another relation T̆ of the same type as T , with Hilbert
space H̆1, interval [0, b̆), boundary condition parameter ᾰ, and coeffi-
cients q̆ and w̆. We will assume, as we do for H1, that finite functions
are dense in H̆1.

Theorem 4.1. Suppose that α = ᾰ, or 0 < α = π/2 − ᾰ < π/2, or
π/2 < α = 3π/2 − ᾰ < π and that there is a continuously differen-

tiable bijection g from [0, b) to [0, b̆) with the following properties: g,
g′, and g′′ are locally absolutely continuous, g′ > 0, g(0) = g′′(0) = 0,
g′(0) = (sin ᾰ/ sin α)2 if α 6= 0 6= ᾰ, g′(0) = 1 if α = ᾰ = 0, and the co-

efficients of T and T̆ satisfy q̆(g(x)) = (−f(x)f ′′(x)+ q(x)f(x)2)/g′(x)
and w̆(g(x)) = w(x)/g′(x)2 where f(x) = g′(x)−1/2.

Then the spectral measures associated with T and T̆ are identical.

Proof. The functions g and f give rise to Liouville transform L from
functions defined on [0, b̆) to functions defined on [0, b), in particular

to a transform from H̆1 to H1. We will first show that this latter
transform is unitary. To that end assume that ŭ and v̆ are in H̆1 and
that at least one of them is a finite function. Obviously Lŭ and Lv̆ are
locally absolutely continuous. Furthermore we obtain after a partial
integration

〈Lŭ,Lv̆〉H1 =

∫ b

0

(g′(ŭ′v̆′) ◦ g + (−ff ′′ + qf 2)(ŭv̆) ◦ g)

=

∫ b̆

0

(ŭ′v̆′ + q̆ŭv̆) = 〈ŭ, v̆〉H̆1
.

This proves firstly that Lŭ ∈ H1 whenever ŭ is a finite function in
H̆1 and secondly that L is an isometry from the finite functions in H̆1

onto the finite functions in H1. As an isometry L can be extended to
a unitary operator from H̆1 to H1.

Next, a straightforward computation, using that 2f ′g′ + fg′′ = 0,
shows that −u′′ + qu = wr if u = (Lŭ) and −ŭ′′ + q̆ŭ = w̆r̆. In

particular, (ŭ, r̆) ∈ T̆ implies that (Lŭ,Lr̆) ∈ T and Lψ̆(·, λ) must be
a multiple of ψ(·, λ).

Also, since ϕ̆(·, λ) satisfies the differential equation −ŭ′′ + q̆ŭ =
λw̆ŭ the function Lϕ̆(·, λ) satisfies the differential equation −u′′ +
qu = λwu. Our assumptions on α, ᾰ, g′(0), and g′′(0) imply that
f(0) = sin α/ sin ᾰ = cos ᾰ/ cos α and that f ′(0) = 0. Therefore
we find λ(Lϕ̆(·, λ))(0) = λf(0)ϕ̆(0, λ) = − sin α and (Lϕ̆(·, λ))′(0) =
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ϕ̆′(0, λ)/f(0) = cos α which shows that ϕ(·, λ) = Lϕ̆(·, λ). The situa-

tion is a little more complicated for the relationship between θ and θ̆
were one finds that

Lθ̆(·, λ) = θ(·, λ) + (tan ᾰ− tan α)ϕ(·, λ).

By the linearity of L we have

Lψ̆(·, λ) = θ(·, λ) + (tan ᾰ− tan α + m̆)ϕ(·, λ) = ψ(·, λ).

This proves that m̆ + tan ᾰ = m + tan α and hence that ρ̆ = ρ. ¤
In the rest of this section we will make the following additional as-

sumption about (1.3).

Assumption 4.2. The coefficients w and w̆ satisfy supp w = [0, b),

supp w̆ = [0, b̆).

Note that this does not mean that w 6= 0 a.e.; w could vanish on a
nowhere dense set of strictly positive measure. However, it does mean
that H∞ = {0}, H = H1.

Remark 4.3. One may also allow w to be an arbitrary measure. How-
ever, then in the definition of the function h below, and in the statement
of Lemma 5.1, w should be replaced by the density of the absolutely
continuous part of the measure w, and Assumption 4.2 will have to be
made on this density. If this is done, the results in the rest of the paper
are still true, mutatis mutandis, with essentially the same proofs.

Now define the functions h(x) =
∫ x

0

√
|w| on [0, b) and h̆(x) =∫ x

0

√
|w̆| on [0, b̆) respectively. By Assumption 4.2 these are strictly

increasing, locally absolutely continuous functions.
Our main theorem is the following.

Theorem 4.4. Suppose that T and T̆ have the same spectral measure
dρ. Then there is a unitary Liouville transform U taking T̆ into T , in
the sense that H 3 u 7→ Uu ∈ H̆ through u(x) = f(x)Uu(g(x)) and

UT = T̆U . Here g(x) = h̆−1 ◦ h(x) and f(x) = (g′(x))−1/2.
The functions f and g are continuously differentiable, f is strictly

positive and f ′ is locally absolutely continuous with f ′(0) = 0. Also
α = ᾰ, in which case f(0) = 1, or else 0 < α = π/2 − ᾰ < π/2 or
π/2 < α = 3π/2− ᾰ < π, in which case f(0) = | tan α|.

The relations between the coefficients are w̆(g(x)) = w(x)/(g′(x))2

and q̆(g(x)) = (−f ′′(x) + q(x)f(x))/(f(x)(g′(x))2).

It is clear from Theorem 4.1 that Theorem 4.4 is optimal in the
sense that it is not possible to deduce more about the relation between
T and T̆ from the equality of their spectral measures than is done in
Theorem 4.4. Sufficient additional information, however, will imply
that T and T̆ are identical. We give two corollaries of this type.
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Corollary 4.5. Suppose T and T̆ have the same spectral measure and
that |w| = |w̆| in [0, min(b, b̆)). Then T = T̆ , i.e., b = b̆, α = ᾰ, q = q̆
and w = w̆.

Proof. The assumptions together with Theorem 4.4 show that g(x) = x

so that b = b̆, and that f(x) = 1, so that T and T̆ are identical. ¤
Note that only the absolute value of w need be known, so that all

information about sign changes in w is encoded in the spectral measure.
Also note that if |w| = |w̆| only in [0, a) where 0 < a < min(b, b̆) we
still have α = ᾰ and q = q̆, w = w̆ in [0, a).

Corollary 4.6. Suppose T and T̆ have the same spectral measure, that
q = q̆ on [0, min(b, b̆)) and that either b = b̆ or α = ᾰ. Then T = T̆ ,

i.e., b = b̆, α = ᾰ, q = q̆ and w = w̆.

We will postpone the proof and first prove Theorem 4.4. To do this
we will use a theorem of Paley-Wiener type. For its statement it will
be convenient to introduce a special class of entire functions.

Definition 4.7. Let A be the set of entire functions û of order ≤ 1/2
which satisfy

(4.1) lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw

for some a ∈ (0, b) and all λ ∈ C \ R.

Theorem 4.8. Let û be the generalised Fourier transform of u ∈ H.
Then û has at most one entire continuation in A, and if sup supp u =
a < b such a continuation is given by

û(λ) =

∫ a

0

(u′ϕ′(·, λ) + quϕ(·, λ))

in which case (4.1) holds with equality for all λ ∈ C.
Conversely, if û has an entire continuation of order ≤ 1/2 satisfying

(4.1) for λ on at least two different rays from the origin, then supp u ⊂
[0, a].

We will postpone the proof of Theorem 4.8 to the next section and
instead turn to the proof of Theorem 4.4.

Lemma 4.9. Let g : [0, b) → [0, b̆) be increasing and g(0) = 0. Suppose

U : H1 → H̆1 is linear with the properties that (Uu)(0) = 0 if u(0) =
0, that suppUu ⊂ [0, g(x)] if supp u ⊂ [0, x], and that suppUu ⊂
[g(x), b̆) if supp u ⊂ [x, b). Then there exists a function f such that
(Uu)(g(x)) = f(x)u(x) for all u ∈ H1.

Proof. Fix x ∈ [0, b). Suppose u, v ∈ H1 and that u(x) = v(x). We
will first show that (U(u−v)(g(x)) = 0. If x = 0 this is by assumption.
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For x > 0 we define1 u− = χ[0,x](u − v) and u+ = χ[x,b)(u − v).
These are elements of H. Thus suppUu− ⊂ [0, g(x)] and suppUu+ ⊂
[g(x), b) so that the functions Uu± vanish in g(x). Adding them gives
U(u− v)(g(x)) = 0 as desired.

It follows that the value of Uu at g(x) only depends on the value of
u at x. Thus, for each fixed x ∈ [0, b), the map u(x) 7→ Uu(g(x)) is
well-defined and linear on C, so we may find f(x) so that Uu(g(x)) =
f(x)u(x). ¤

We will also need the following lemma.

Lemma 4.10. Put m(x, λ) = ψ′(x, λ)/(λψ(x, λ)). Then m(x, λ) → 0
and λm(x, λ) → ∞ for every x ∈ [0, b) as λ → ∞ along any non-real
ray starting from the origin.

Proof. First note that m(x, λ) is the m-function for (1.3) on the interval
[x, b), with the Dirichlet boundary condition (α = 0) at x. The first
claim is then an immediate consequence of [5, Theorem 3.6].

To prove the second claim, first assume that q does not have com-
pact support, so that it does not vanish identically on [x, b). Now note
that m̃(λ) = −1/m(x, λ) is the m-function for the Neumann boundary
condition (α = π/2) at x, so we need to show this to be o(|λ|). Now, in
the Nevanlinna representation (2.10) it is easy to see that the integral
is always o(|λ|), so we simply need to prove that B = 0 in the repre-

sentation of m̃. Denote the corresponding Weyl solution by ψ̃ and the
spectral measure by dρ̃. Using (2.9) and Lemma 3.11 we obtain

‖ψ̃(·, λ)‖2
[x,b) =

Im m̃(λ)

Im λ
= B +

∫ ∞

−∞

dρ̃(t)

|t− λ|2 = B + ‖ ˆ̃ψ(·, λ)‖2
ρ̃.

However, by Proposition 2.11, Parseval’s formula is correct for ψ̃, so
that B = 0 and we are done in the case when q does not have compact
support.

Now suppose q vanishes identically in [x, b). Consider an auxiliary
equation for which q does not have compact support, but which has
the same coefficients as (1.3) up to some point c, x < c < b. For this

equation the above proof of the lemma is valid. Moreover, let θ̃ and ϕ̃
denote functions analogous to θ and ϕ for α = 0, but with initial data
given in the point x. In view of (2.9) both the original m(x, λ) and
the corresponding function for the auxiliary equation are in the ‘Weyl
disk’ defined by ∫ c

x

|θ̃′ + mϕ̃′|2 ≤ Im m

Im λ
,

so their distance is bounded by the diameter of the disk, which is expo-
nentially small as λ becomes large (see [5, Theorem 6.3] for this result).
Since m(x, λ) is a non-trivial Nevanlinna function it can not tend to

1χI denotes the characteristic function of an interval I
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0 faster than a multiple of 1/|λ| for large |λ|, so that asymptotically
m(x, λ) is the same as the corresponding function for the auxiliary
equation. Thus the lemma is actually valid in all cases. ¤
Proof of Theorem 4.4. Note first that by Lemma 3.5 we must have ei-
ther α = ᾰ = 0 or else α 6= 0 6= ᾰ.

LetH respectively H̆ denote the Hilbert spaces and F respectively F̆
the generalised Fourier transforms associated with the two equations,
and put U = F̆−1 ◦F : H → H̆, which is unitary since the target space
is L2

ρ for both F and F̆ . By Lemma 3.11 we have Uψ0 = ψ̆0 if α = ᾰ,

and if α 6= 0 6= ᾰ we have Uψ0 = sin α
sin ᾰ

ψ̆0. Since 〈u, ψ0〉 = −u(0) it
follows that

(4.2) u(0) = −〈u, ψ0〉 = −〈Uu,Uψ0〉 =
sin α

sin ᾰ
Uu(0),

where the quotient of the sines is to be read as 1 for α = ᾰ = 0. In
particular, Uu(0) = 0 if and only if u(0) = 0.

Now, applying Theorem 4.8 for the rays generated by ±i, it is clear
that if ă ∈ (0, b̆) and u ∈ H, then sup supp u = a if sup suppUu = ă,

where h(a) = h̆(ă), provided there is such an a ∈ (0, b)2. This will
certainly be the case if ă is sufficiently close to 0. Suppose for some
ă ∈ (0, b̆) we have h(b) ≤ h̆(ă). Then, since compactly supported
functions are dense in H, the range of U would be orthogonal to all
elements of H̆ with supports in (ă, b̆), contradicting the fact that U is
unitary.

A similar reasoning applied to U−1 shows that the mapping

g : [0, b) 3 a 7→ ă ∈ [0, b̆)

is bijective, and that sup suppUu = ă if sup supp u = a. It follows that
sup supp u = a if and only if sup suppUu = g(a).

We also have inf supp u = a if and only if inf suppUu = g(a).
To see this, note that what we have already proved implies that if
inf supp u = a > 0, then Uu is orthogonal to all elements of H̆ with
support in [0, g(a)]. This means that in this interval Uu is a multiple
of ϕ̆0. However, since u(0) = 0 we also have Uu(0) = 0, so that the
multiple is 0, and thus inf suppUu ≥ g(a). A similar reasoning applied
to U−1 proves the other direction.

We have now verified that U and U−1 both have the properties re-
quired in Lemma 4.9. This implies that there is a non-vanishing func-
tion f so that

(4.3) u(x) = f(x)Uu(g(x)).

We must have f real-valued since F and F̆−1, and thus U , map real-
valued functions to real-valued functions. We note that (4.2) implies
that f(0) = 1 if α = ᾰ = 0 and f(0) = sin α

sin ᾰ
> 0 if α 6= 0 6= ᾰ. Now

2Note that Re
√±iw =

√
|w|/2
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choose Uu = 1 in a neighbourhood of g(x). We then have u = f in a
neighbourhood of x. Since u ∈ H is locally absolutely continuous, so is
f . This also implies that f is strictly positive, since it can not change
sign and f(0) > 0. Similarly, choosing Uu linear in a neighbourhood
of g(x) it follows that also g is locally absolutely continuous.

According to Lemma 3.11 Uψ(·, λ) = ψ̆(·, λ), so we have ψ(x, λ) =

f(x)ψ̆(g(x), λ). Taking the logarithmic derivative we obtain

ψ′(x, λ)

ψ(x, λ)
=

f ′(x)

f(x)
+ g′(x)

ψ̆′(g(x), λ)

ψ̆(g(x), λ)
.

Here the left member and the coefficient for g′(x) are locally absolutely
continuous, and the coefficient for g′(x) is not independent of λ by
Lemma 4.10. It follows that g′ and f ′ are locally absolutely continuous,
and differentiating, using the differential equations, we obtain

−f ′′

f
+ q − (g′)2q̆ ◦ g − λ(w − (g′)2w̆ ◦ g) =

(f 2g′)′

f 2

ψ̆′(g(·), λ)

ψ̆(g(·), λ)
.

Here the right member is o(|λ|) according to Lemma 4.10 so the coef-
ficient of λ to the left vanishes. On the other hand, the right member
is not independent of λ unless (f 2g′)′ = 0, so that we obtain

q̆ ◦ g =
1

f(g′)2
(−f ′′ + qf),

w̆ ◦ g = (g′)−2w,

f 2g′ = C

for some constant C. Evaluating (4.3) and its derivative at 0 for u =
ψ(·, λ) elementary calculations now show3 that C = 1 and f ′(0) = 0.
One also deduces that either α = ᾰ or else 0 < α = π/2− ᾰ < π/2 or
π/2 < α = 3π/2− ᾰ < π. In these calculations one uses that m̆ is not
a Möbius transform, which is clear since this would give a transform
space of dimension 1. This can only happen if w, and dρ, is a point
mass. ¤

Finally we have to prove Corollary 4.6

Proof of Corollary 4.6. The function f̃ = −ϕ0 solves −f̃ ′′ + qf̃ = 0
with initial data f̃(0) = 1, f̃ ′(0) = 0. Since q ≥ 0 this solution is

strictly positive on [0, b), so we may put g̃(x) =
∫ x

0
1/f̃ 2. The pair of

functions f̃ , g̃ gives us a Liouville transform F0 mapping [0, b) onto some

interval [0, c) and [0, b̆) onto [0, c̆), and transforming the equations into
−u′′0 = λw0u0 and −ŭ′′0 = λw̆0ŭ0 respectively. Thus F0FF−1

0 , where
F is the Liouville transform of Theorem 4.4, transforms one of these
equations into the other.

3See Appendix
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Being a composition of Liouville transforms this is itself a Liouville
transform given, say, by u0(x) = f1(x)ŭ0(g1(x)). By construction we
obtain f1(0) = f(0), f ′1(0) = 0 and f 2

1 g′1 ≡ 1. Since both potentials are
identically 0 it follows that f ′′1 = 0. This means that f1 ≡ f(0) and
g1(x) = x/(f(0))2.

If α = ᾰ then by Theorem 4.4 f(0) = 1 so that F0FF−1
0 is the

identity, implying that also F is the identity. Similarly, if b = b̆ then
c = c̆ so that f(0) = 1, unless c = c̆ = ∞. We will show that c is
always finite, and then it again follows that F is the identity.

Now c =
∫ b

0
1/f̃ 2, so we need to show that this integral is finite. Put

H = f̃ ′f̃ which will be strictly positive sufficiently close to b by (2.4).

Differentiating H ′ = (f̃ ′)2 + f̃ ′′f̃ = (f̃ ′)2 + qf̃ 2 ≥ (f̃ ′)2. Thus 1/f̃ 2 =

(f̃ ′)2/H2 ≤ H ′/H2 so that
∫ b

d
1/f̃ 2 ≤ 1/H(d) < ∞ if d is sufficiently

close to b. This completes the proof. ¤

5. The Paley-Wiener theorem

The proof of Theorem 4.8 relies on the following lemma, which is
taken from [5, Theorem 6.1, Corollary 6.2].

Lemma 5.1. The following asymptotic formulas hold, locally uniformly
for λ ∈ C \ R and x > 0. The square root refers to the branch with
positive real part.

lim
t→∞

t−1 ln ϕ(x, t2λ) =

∫ x

0

√
−λw,

lim
t→∞

t−1 ln ψ(x, t2λ) = −
∫ x

0

√
−λw.

The next lemma implies the simple direction of Theorem 4.8.

Lemma 5.2. Suppose u ∈ H and supp u ⊂ [0, a]. Then û(λ) is entire
of order ≤ 1/2 and û(λ) = o(|λϕ(a + ε, λ)|) for every ε > 0 as λ →∞
along any non-real ray originating at the origin.

Proof. For finite u we have 〈u, ϕ(·, λ)〉 = −u(0) cos α +
∫ b

0
uλϕ(·, λ)w.

Now write

û(λ) = −u(0) cos α + λϕ(a + ε, λ)

∫ a

0

uϕ(·, λ)w/ϕ(a + ε, λ).

The function ϕ(x, λ)/ϕ(a + ε, λ) tends to zero uniformly for x ∈ [0, a]
and λϕ(a + ε, λ) → ∞ according to Lemma 5.1 as λ → ∞ along a
non-real ray. The lemma follows. ¤

The hard direction of Theorem 4.8 follows from the next lemma.

Lemma 5.3. Suppose u ∈ H, that û has an entire continuation of
order ≤ 1/2 and that û(λ) = O(1/|ψ(a, λ)|) as λ → ∞ along two
different non-real rays originating at the origin. Then supp u ⊂ [0, a]

and û(λ) = 〈u, ϕ(·, λ)〉.
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Proof. Let ε > 0 and consider F (λ) = 〈Rλu, v〉−û(λ)〈ψ(·, λ), v〉, where
v = G(wf) and f ∈ H has compact support in (a + ε, b). In particular
v ∈ DT . We shall show that F has an entire continuation of order
≤ 1/2 which tends to 0 along the given rays. By Phragmén-Lindelöf’s
principle it follows that F is bounded everywhere and is therefore con-
stant by Liouville’s theorem, thus actually identically 0.

Now F (λ) =
∫ b

0
(Rλu − û(λ)ψ(·, λ))fw so, arguing like in the proof

of Proposition 2.3, it follows that Rλu − û(λ)ψ(·, λ) has support in
[0, a + ε]. Applying the differential equation it follows that also u has
support in [0, a + ε]. Since ε > 0 is arbitrary, in fact u has support in

[0, a]. For x > a the formula (2.7) gives Rλu(x) = ψ(x, λ)〈u, ϕ(·, λ)〉 so

that ψ(x, λ)(û(λ)− 〈u, ϕ(·, λ)〉) = 0. The lemma follows from this.
To prove that F is entire, Parseval’s formula and Lemma 3.11 show

that

F (λ) =

∫ ∞

−∞

û(t)− û(λ)

t− λ
v̂(t) dρ(t).

It is obvious that this is an entire function, at least if we can bound
the integrand properly. To do this and see that the order is at most
1/2, note that for |t − λ| ≤ 1 we may estimate the integrand by
sup|z|≤1 |û′(λ+ z)||v̂(t)|. For |t−λ| > 1 we may estimate the integrand
by |û(t)v̂(t)|+ |û(λ)||v̂(t)|. Hence we have locally uniformly dominated
convergence of the integral and

|F (λ)| ≤ ‖u‖‖v‖+ (sup
|z|≤1

|û′(λ + z)|+ |û(λ)|)
∫ ∞

−∞
|v̂|dρ,

which is the required estimate, the integral being finite by Corollary 3.8
and û and therefore û′ being of order ≤ 1/2.

Finally, to show that F tends to 0 along the rays, we first note that
ψ(x, λ)/ψ(a, λ) converges to 0 uniformly for x ∈ [a+ ε, b), according to
Lemma 5.1. Assuming f has compact support in [a + ε, b) we obtain∫ b

0
ψ(·, λ)fw = o(|ψ(a, λ)|). Since Rλ → 0 strongly as Im λ → ∞,

it follows that F tends to 0 along the given rays. This finishes the
proof. ¤

Theorem 4.8 is a simple consequence of these lemmas.

Proof of Theorem 4.8. If supp u ⊂ [0, a] it follows from Lemmas 5.2
and 5.1 that û(λ) = 〈u, ϕ(·, λ)〉 is an entire continuation of û of order
≤ 1/2 such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤ lim
t→∞

t−1 ln |ϕ(a + ε, t2λ)| =
∫ a+ε

0

Re
√
−λw

for non-real λ and all ε > 0.
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On the other hand, suppose there is an entire continuation of û of
order ≤ 1/2 and such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw

for λ on two different rays from the origin. If one or both of these
are real, an immediate application of the Phragmén-Lindelöf principle
shows this to be true for all other rays as well, so we may assume them
non-real. By Lemma 5.1 this implies that û(λ) = O(|ψ(a + ε, λ)|−1)
for large λ on these rays if 0 < ε < b− a. Lemma 5.3 now shows that
supp u ⊂ [0, a + ε] for small ε > 0 and thus for ε = 0. The uniqueness
of the continuation also follows from Lemma 5.3. If we have strict
inequality on one ray a simple argument using the Phragmén-Lindelöf
principle (see [6, Lemma 3.6]) shows this to hold on all nearby rays as
well, so that in fact sup supp u < a. The proof is now complete. ¤

6. Inverse scattering on the half-line

In this section we will show that scattering data for the half-line
problem determines the coefficient w if q is known. We will of course
have to assume that our equation is sufficiently close to a model equa-
tion, which, as usual, has constant coefficients.

Thus we consider (1.3) on [0,∞) with the following additional as-
sumption, which will be in force throughout this section.

Assumption 6.1. There is a constant q0 ≥ 0 such that q(x)− q0 and
w(x)− 1 are both in L1(0,∞).

Note that according to Theorems 2.5 and 2.6 finite functions are
dense in H1 and, given the boundary condition (2.6), there is a unique
selfadjoint realisation T of (1.3) in H1.

We will need the following standard result.

Proposition 6.2. For Im k ≥ 0, k 6= 0 there exists a solution f(·, k) of
(1.3) with λ = k2 + q0 having the following properties: (1) f(x, ·) and
f ′(x, ·) are analytic for Im k > 0 and continuous for Im k ≥ 0, k 6= 0;
(2) f(x, k) ∼ eikx and f ′(x, k) ∼ ikeikx as x →∞.

This is standard. It is easily proved by first writing the equation
for g(x, k) = f(x, k)e−ikx as g′′ + 2ikg′ = (q − q0 − (k2 + q0)(w − 1))g
and then solving this equation by successive approximations from its
desired initial values g(∞) = 1, g′(∞) = 0 at ∞ using the estimate
|e2ik(t−x) − 1| ≤ 2. See, for instance, Deift and Trubowitz [11].

If Im k > 0 then f(·, k) ∈ H1. Thus, if λ /∈ R (i.e., also Re k 6= 0)
then

f(x, k) = F (k)ψ(x, λ)

for some function F defined in Im k > 0, Re k 6= 0.
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Let [u, v] = u′v− uv′ denote the Wronskian of the functions u and v
and recall that Wronskians of solutions to (1.3) are independent of x.
Since

(6.1) [λϕ(·, λ), f(·, k)] = F (k)[λϕ(·, λ), ψ(·, λ)] = F (k)

is analytic for Im(k) > 0 we find that F is analytic and can be ex-
tended analytically to the positive imaginary axis. Moreover, since
[λϕ(·, λ), f(·, k)] is continuous in Im(k) ≥ 0, k 6= 0, the function F
extends continuously to the positive and negative real line. The zeros
of F are located exactly where ϕ and f are linearly dependent, i.e.,
when λ = q0 + k2 is an eigenvalue.

Equation (6.1) gives also that F (−k) = F (k) for real k 6= 0 and
that F has no zeros on either the positive or the negative real line
since ϕ(·, λ) is real for real λ and the real and imaginary parts of
f(x, k) ∼ eikx are linearly independent.

For k > 0 and thus λ = k2 + q0 > q0 define

ψ±(·, λ) = lim
ε→0

ψ(·, (±k + iε)2 + q0)

and
m±(λ) = lim

ε→0
m((±k + iε)2 + q0).

Since m(λ) = m(λ) when λ is not real we find that m+(λ) = m−(λ)
when λ is real. Therefore

2ikλ

|F (k)|2 = λ[ψ+(·, λ), ψ−(·, λ)] = m+(λ)−m−(λ) = 2i Im m+(λ)

when k > 0 so that λ > q0. This in turn implies

πρ′(λ) = Im m(λ + i0) =
kλ

|F (k)|2
for λ > q0. Thus the restriction of F to the positive real line determines
the spectral measure on the interval (q0,∞). It follows from this that
the spectrum of T is absolutely continuous4 in (q0,∞).

In the interval (−∞, q0), where λ corresponds to the positive half
of the imaginary axis for k, the spectrum is discrete since F is an-
alytic there. There might also be an eigenvalue for k = 0, λ =
q0. Suppose λ 6= 0 is an eigenvalue. Then ϕ(·, λ) is a correspond-
ing eigenfunction, and its Fourier transform ϕ̂(λ) is a multiple of the
characteristic function of the set {λ}. The inversion formula gives
ϕ(x, λ) = ϕ̂(λ)ϕ(x, λ)ρ{λ}, where ρ{λ} is the spectral measure of the
set {λ}. Thus ϕ̂(λ) = 1/ρ{λ}. Parseval’s formula gives ‖ϕ(·, λ)‖2 =
|ϕ̂(λ)|2ρ{λ} = 1/ρ{λ}. On the interval (−∞, q0] we therefore know the
spectral measure if we know all eigenvalues λ and the corresponding
normalisation constants ‖ϕ(·, λ)‖2. Similarly, if α = 0 then by Lemma

4For q0 < s < t we have
∫ t

s
Im m(µ + iε) dµ → π(ρ(t) − ρ(s)) as ε ↓ 0. But the

left hand side converges to
∫ t

s
Imm(µ + i0) dµ so ρ is absolutely continuous.
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3.5 also λ = 0 is an eigenvalue, and 1/ρ{0} is the normalisation con-
stant for the eigenfunction ψ0. We obtain the following theorem.

Theorem 6.3. Given the absolute value of the coefficient F (k) for
positive k, all eigenvalues, the corresponding normalisation constants,
and either q or |w|, the coefficients q and w and the boundary value
parameter α are uniquely determined.

Proof. We have already seen that the given data determine the spectral
measure, and may now apply Corollaries 4.5, 4.6 to draw the desired
conclusion. ¤

7. Eigenvalues

This section is devoted to the proof of the following theorem. Part
of the proof is an adaptation of Marchenko [13].

Theorem 7.1. Assume that q and w satisfy Assumption 6.1. Then

(1) The eigenvalues of T are isolated and can accumulate only at
q0 or negative infinity.

(2) There will be infinitely many negative eigenvalues if and only if
w is negative on a set of positive measure.

If in addition we have
∫∞

0
t|q(t)− q0w(t)|dt < ∞ we also have

(3) Eigenvalues will not accumulate at q0.
(4) q0 is not an eigenvalue unless q0 = 0 and α = 0.

To prove this we need the following strengthening of Proposition 6.2.

Proposition 7.2. Suppose q and w satisfy Assumption 6.1 and the
integral

∫∞
0

t|q(t)− q0w(t)|dt is finite. Then, for every x ∈ [0,∞), the
function f(x, ·) and its x-derivative, which were previously defined for
Im(k) ≥ 0, k 6= 0 extend continuously to k = 0.

The additional assumption and the improved estimate |e2ik(t−x)−1| ≤
min(2|k|t, 2) allows us to perform the successive approximations also
near k = 0. The proposition follows from this.

Proof of Theorem 7.1. If µ = k2 + q0 < q0 is an eigenvalue of T then,
since F is analytic in the upper half plane, eigenvalues are isolated and
hence cannot accumulate at any point in (−∞, q0). This proves (1).

To prove the second statement we make first the assumption that
q0 > 0 and α 6= 0. In this case 0 is not in the spectrum of T so that the
range of T is H and we may define a bilinear form Q on H by setting

Q(u, v) =

∫

R

1

t
û(t)v̂(t)dρ(t).

Note that Q(u, v) = 0 if the supports of û and v̂ do not intersect,
which happens, for instance, if u and v are eigenvectors for different
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eigenvalues. Furthermore, we get Q(u, Tv) =
∫
R û(t)v̂(t)dρ(t) = 〈u, v〉.

An integration by parts gives∫ x

0

(u′v′ + quv) = u(x)v′(x)− u(0)v′(0) +

∫ x

0

wuTv

for u ∈ H and v ∈ DT . Hence if v is in the range of T and u is finite,
or if u and v are exponentially decaying eigenfunctions, then we obtain

(7.1) Q(u, v) =

∫ ∞

0

wuv + cot(α)u(0)v(0)

taking into account the boundary condition satisfied by (T−1v, v).
Now assume that w ≥ 0. If cot(α) ≥ 0 there can be no negative

eigenvalue since Tv = λv, λ < 0, ‖v‖ 6= 0 would imply that

0 ≤
∫ ∞

0

w|v|2 + cot α|v(0)|2 =
1

λ
Q(v, Tv) =

1

λ
‖v‖2 < 0,

giving a contradiction. If cot α < 0 there can be at most one negative
eigenvalue as we shall show now. If there were two distinct negative
eigenvalues λ1 and λ2 with associated eigenvectors v1 and v2, we could
assume that v1(0) = v2(0). This would entail that

0 ≤
∫ ∞

0

w|v1 − v2|2 = Q(v1 − v2, v1 − v2) = Q(v1, v1) + Q(v2, v2) < 0

since eigenfunctions decay exponentially so that we are allowed to em-
ploy equation (7.1).

Next assume w < 0 on a set of positive Lebesgue measure. We
shall show that there are infinitely many negative eigenvalues. For any
integer n one can choose elements u1, ..., un in H, compactly supported
in (0,∞), such that Q(uj, uj) < 0 and Q(uj, uk) = 0 if j 6= k. To
achieve this one may for instance choose first bounded sets A1, ..., An

of positive measure and positive distances from zero and each other on
which w is negative. Then one lets uj be a suitable mollification of the
characteristic function of Aj. Equation (7.1) now guarantees that they
have the desired properties.

Thus Q(u, u) < 0 whenever u is in the linear span B of u1, ..., un. Let
P be the orthogonal projection of B into the negative spectral subspace
of H, i.e., Pu = F−1(uχ), where χ is the characteristic function of
(−∞, 0). Suppose now that n is larger than the number of negative
eigenvalues. Then the kernel of P cannot be trivial so that there is a
nontrivial u ∈ B such that û is supported in [0,∞). Hence

0 > Q(u, u) =

∫

R

1

t
|û(t)|2dρ(t) ≥ 0.

Since this is impossible the number of negative eigenvalues must be
infinite.

If we only have q0 ≥ 0, but still α 6= 0, then Q remains defined for
functions u, v with Fourier transforms bounded near 0, since in this case
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1/t ∈ L2
ρ by Lemma 3.11. But the Fourier transforms of eigenfunctions

to non-zero eigenvalues are supported away from 0, and the Fourier
transform of a finite function is entire and thus locally bounded. Also,
uj is in the range of T . To see this, solve −y′′+ qy = wuj with 0 initial
data at a point to the right of supp uj which yields a finite function y.
Adding an appropriate multiple of ψ0 (Proposition 2.7) gives a function
in DT . Thus the proof applies also in this case.

Allowing also α = 0 the form Q is still defined if û(t)v̂(t)/t is con-
tinuous at 0. This is the case if u and v are eigenfunctions to negative
eigenvalues. Also, if u is a finite function orthogonal to the eigenfunc-
tion ψ0, then û(0) = 0; so Q is defined for such functions. This last
condition is just one linear condition on the space B, so the remainder
can still have arbitrarily large dimension. All of the uj are in the range
of T , since the boundary condition now reads uj(0) = 0. Thus the
proof applies also in this case, and the proof of (2) is finished.

Now assume that
∫∞

0
t|q(t) − q0w(t)|dt is finite, and that, contrary

to our claim, there is a sequence µn = k2
n + q0 < q0 of eigenvalues

converging to q0. Since eigenfunctions are orthogonal and satisfy the
boundary condition an integration by parts shows

(7.2)

∫ ∞

0

wf(·, kn)f(·, km) = −f(0, kn)f(0, km) cot α

if n 6= m. If α = 0 the right hand side has to be replaced by zero.
Since

∫∞
0

t|q(t) − q0w(t)|dt < ∞, our construction of f shows that

f(x, k) ∼ eikx as x → ∞, uniformly for k ∈ i[0, 1]. This shows firstly
that (7.2) is bounded as n and m tend to infinity, secondly we may find
a positive c such that |f(x, k) − eikx| ≤ e−|k|x/4 if x ≥ c, k ∈ i[0, 1].
Simple estimates then show that

7

16
e−(|kn|+|km|)x ≤ Re(f(x, kn)f(x, km)) ≤ 25

16
e−(|kn|+|km|)x

if n and m are large. Since w − 1 is integrable this shows that the
integral

∫∞
c

Re(f(x, kn)f(x, km))w → +∞ as n, m tend to infinity.
Now, since f(x, k) is uniformly continuous on [0, c] × i[0, 1] it follows
that the integral over [0, c] is bounded, so the integral over [0,∞) tends
to infinity, contradicting the previously established boundedness and
proving (3).

Finally, if q0 = 0 we already know q0 is an eigenvalue if and only if
α = 0. On the other hand, if q0 > 0, then f(·, q0) is asymptotic to
1, and any other solution to (1.3) is asymptotically linear, as is easily
seen from the well-known reduction of order method. Thus no such
solution is in H and there is no eigenfunction with eigenvalue q0. This
proves (4). ¤

Remark 7.3. If we allow w to be a general measure, then the negative
part of w could be a finite sum of Dirac measures. In this case one may
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in the same way show that the number of negative eigenvalues is equal
to the number of these Dirac measures if α 6= 0, cot α ≥ 0 and q0 > 0,
with suitable modifications in the other cases.

8. Appendix

For x = 0 the relation ψ(x, λ) = f(x)ψ̆(g(x), λ) gives

(8.1) cos α−m(λ) sin α = f(0){cos ᾰ− m̆(λ) sin ᾰ},
while ψ′(x, λ) = f ′(x)ψ̆(g(x), λ) + f(x)g′(x)ψ̆′(g(x), λ) for x = 0 gives
(8.2)

sin α+m(λ) cos α =
f ′(0)

λ
{cos ᾰ−m̆(λ) sin ᾰ}+ C

f(0)
{sin ᾰ+m̆(λ) cos ᾰ}.

From (8.1), (8.2) we obtain

1 = {f(0) cos α+
f ′(0)

λ
sin α}{cos ᾰ−m̆(λ) sin ᾰ}+C sin α

f(0)
{sin ᾰ+m̆(λ) cos ᾰ}

m(λ) = {−f(0) sin α +
f ′(0)

λ
cos α}{cos ᾰ− m̆(λ) sin ᾰ}

+
C cos α

f(0)
{sin ᾰ + m̆(λ) cos ᾰ},

which after rearranging gives

(8.3) 1− (f(0) cos α +
f ′(0)

λ
sin α) cos ᾰ− C sin α sin ᾰ

f(0)

= m̆(λ){−(f(0) cos α +
f ′(0)

λ
sin α) sin ᾰ +

C sin α cos ᾰ

f(0)
}

(8.4) (f(0) sin α− f ′(0)

λ
cos α) cos ᾰ− C cos α sin ᾰ

f(0)

= m̆(λ){(f(0) sin α− f ′(0)

λ
cos α) sin ᾰ +

C cos α cos ᾰ

f(0)
} −m(λ).

In (8.3) the left member and the coefficient of m̆ are linear in 1/λ,
while m̆(λ) is not constant or a Möbius transform (this would give a
one-dimensional transform space). From (8.3) we therefore obtain

(f(0) cos α +
f ′(0)

λ
sin α) cos ᾰ = 1− C sin α sin ᾰ

f(0)

(f(0) cos α +
f ′(0)

λ
sin α) sin ᾰ =

C sin α cos ᾰ

f(0)
,
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which gives

f(0) cos α +
f ′(0)

λ
sin α = cos ᾰ

C sin α

f(0)
= sin ᾰ.

From this it is (again) clear that sin α = 0 if and only if sin ᾰ = 0, so
that we have two cases.

• α = ᾰ = 0. We obtain f(0) = 1, and insertion in (8.4) shows

that f ′(0)
λ

= m(λ)− Cm̆(λ). The right member is (1− C)m(λ)
since m(iν) and m̆(iν) → 0 as ν → +∞ by Lemma 4.10, and
m, m̆ have the same spectral measure. Again by Lemma 4.10
it follows that C = 1, and thus f ′(0) = 0.

• α 6= 0 6= ᾰ. We obtain f ′(0) = 0, f(0) = C sin α/ sin ᾰ and
C sin(2α) = sin(2ᾰ). But we know that f(0) = sin α/ sin ᾰ so
that C = 1. Insertion in (8.4) gives m(λ)−m̆(λ) = cot α−cot ᾰ.

Since sin(2α) = sin(2ᾰ) we have either α = ᾰ or 0 < α =
π/2− ᾰ < π/2 or π/2 < α = 3π/2− ᾰ < π. If α = ᾰ we obtain
f(0) = 1 and m(λ) = m̆(λ). In the other cases we obtain
f(0) = | tan α| and m(λ)− m̆(λ) = 2 cot(2α).
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