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Abstract. We analyze the problem of boundary observability of the finite-difference space
semi-discretizations of the 2-d wave equation in the square. We prove the uniform (with
respect to the mesh size) boundary observability for the solutions obtained by the two-grid
preconditioner introduced by Glowinski [6]. Our method uses previously known uniform
observability inequalities for low frequency solutions and a dyadic spectral time decomposi-
tion. As a consequence we prove the convergence of the two-grid algorithm for computing
the boundary controls for the wave equation. The method can be applied in any space
dimension, for more general domains and other discretization schemes.

1. Introduction

Let us consider the wave equation

(1.1)





y′′ −∆y = 0 in Ω× (0, T ),

y = v1Γ0(x) on Γ× (0, T ),

y(0, x) = y0(x), y′(0, x) = y1(x) in Ω,

where Ω is the unit square Ω = (0, 1) × (0, 1) of R2 and its boundary Γ is decomposed as
Γ = Γ0 ∪ Γ1 with

{
Γ0 = {(x1, 1) : x1 ∈ (0, 1)} ∪ {(1, x2) : x2 ∈ (0, 1)},
Γ1 = {(x1, 0) : x1 ∈ (0, 1)} ∪ {(0, x2) : x2 ∈ (0, 1)}.

In equation (1.1), y = y(t, x) is the state, ′ is the time derivative and v is a control
function which acts on the system through the boundary Γ0. Classical results of existence
and uniqueness for solutions of nonhomogeneous evolution equations (see for instance [16])
show that for any v ∈ L2((0, T ) × Γ0) and (y0, y1) ∈ L2(Ω) × H−1(Ω) equation (1.1) has a
unique weak solution (y, y′) ∈ C([0, T ], L2(Ω)×H−1(Ω)).

Concerning the controllability of the above system the following exact controllability result
is well known (see Lions [15]): Given T > 2

√
2 and (y0, y1) ∈ L2(Ω)×H−1(Ω) there exists a

control function v ∈ L2((0, T )× Γ0) such that the solution y = y(t, x) of (1.1) satisfies

(1.2) y(T, ·) = y′(T, ·) = 0.

In fact, given (y0, y1) ∈ L2(Ω)×H−1(Ω) a control function v of minimal L2((0, T )×Γ0)-norm
may be obtained by the so-called Hilbert Uniqueness Method (HUM, see [15]). It reduces the
exact controllability problem to an equivalent observability property for the adjoint problem:

(1.3)





u′′ −∆u = 0 in Ω× (0, T ),
u = 0 on Γ× (0, T ),
u(0, x) = u0(x), ut(0, x) = u1(x) in Ω.

1
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Γ0Γ
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Figure 1. Boundary of the domain Ω under consideration. Γ0 is the subset
where the control acts while Γ1 is the one that remains uncontrolled.

More precisely, the equivalent observability property is the following: For any T > 2
√

2 there
exists C(T ) > 0 such that

(1.4) ‖(u0, u1)‖2
H1

0 (Ω)×L2(Ω) ≤ C(T )
∫ T

0

∫

Γ0

∣∣∣∣
∂u

∂n

∣∣∣∣
2

dσdt

for any (u0, u1) ∈ H1
0 (Ω) × L2(Ω) where u is the solution of (1.3) with initial data (u0, u1).

Note that, rigorously speaking, the adjoint system should take the initial data at t = T . But,
the wave equation being time reversible, this is irrelevant in what concerns the observability
inequality (1.4).

The lower bound 2
√

2 on the observability time T is due to the fact that, in this model, the
velocity of propagation of waves is one and then, in order for (1.4) to be true, any perturbation
of the initial data needs some time to reach the observation zone. The minimal time for this
geometric configuration, 2

√
2, is twice the diameter of the domain, which is the largest travel

time along the diagonal that needs a wave to get into the control region after bouncing on
the opposite vertex.

The main objective of this paper is to prove the convergence of a numerical approximation
algorithm for computing the control function v of equation (1.1). This issue has been the
object of intensive research in the past years. It is by now well known that the control of
a stable numerical approximation scheme for (1.1) may diverge when the mesh-size tends to
zero. This is due to the unstabilizing effect of the high frequency numerical solutions [29].
Several techniques have been introduced as possible remedies to the instabilities produced
by the high frequency spurious oscillations: Tychonoff regularization [6], filtering of the high
frequencies [11], [28], [29], mixed finite elements [7], [4], [5] and the two-grid algorithm [22],
[17].

Possibly the one which is more systematic and convenient for practical implementations
is the two-grid algorithm proposed by Glowinski in [6]. The method consists in relaxing
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the controllability requirement on numerical solutions by considering only its projection over
a coarser grid. In what concerns the observability inequality (1.4) the method consists in
analyzing the discrete or semidiscrete version of (1.4) for the solutions of the numerical
approximation scheme, but only for initial data obtained through a two-grid preconditioning.
To be more precise, the two-grid method consists in using a coarse and a fine grid, and
interpolating the initial data for the numerical approximation of (1.3) from the coarse Gc

grid to the fine one Gf . This method attenuates the short wave-length components of the
initial data, which are responsable for the spurious high frequency oscillations.

The main goal of the paper is to rigorously prove the convergence of this algorithm in the
context of the semidiscrete finite-difference approximation scheme for the wave equation in
the square. The key ingredient of the proof is the obtention of an inequality similar to (1.4) at
the semidiscrete level, independent of the mesh-size, for the two-grid data mentioned above.

Through the paper we deal with the two-dimensional case but all the arguments we present
here work in any space dimension and can be also applied to other numerical schemes both
semi-discrete and fully discrete ones.

Our main contribution is to develop a dyadic decomposition argument that allows reducing
the problem to considering classes of solutions in which the high frequency components have
been filtered, a situation that was already dealt with in the literature.

To fix the ideas let us consider the finite-difference semi-discretization of (1.3). Given
N ∈ N we set h = 1/(N +1), Ωh = Ω∩hZ2 and Γh = Γ∩hZ2. In the same manner we define
Γ0h and Γ1h. The finite-difference semi-discretization of system (1.1) is as follows:

(1.5)





y′′h −∆hyh = 0 in Ωh × (0, T ),
yh = vh1Γ0h

on Γh × (0, T ),
yh(0) = y0

h, y′h(0) = y1
h in Ωh,

where the initial data (y0
h, y1

h) are approximations of (y0, y1) and ∆h is the five-point approx-
imation of the laplacian:

(∆hu)j,k =
uj−1,k − 2uj,k + uj+1,k

h2
+

uj,k−1 − 2uj,k + uj,k+1

h2
.

For the homogeneous wave equation (1.3) we consider the following numerical scheme:

(1.6)





u′′h −∆huh = 0 in Ωh × [0, T ],
uh = 0, on Γh × (0, T )
uh(0) = u0

h, u′h(0) = u1
h in Ωh.

To simplify the presentation, whenever it is not strictly necessary, we will avoid the subscript
h in the notation of the solution uh.

Let us now introduce the discrete energy associated with system (1.6):

(1.7) Eh(t) =
h2

2

N∑

j,k=0

[
|u′j,k(t)|2 +

∣∣∣∣
uj+1,k(t)− uj,k(t)

h

∣∣∣∣
2

+
∣∣∣∣
uj,k+1(t)− uj,k(t)

h

∣∣∣∣
2
]

.

It is easy to see that the energy remains constant in time, i.e.

(1.8) Eh(t) = Eh(0), ∀ 0 < t < T

for every solution of (1.6).
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Following [1], the discrete version of the energy observed on the boundary Γ0 is given by:

(1.9)
∫ T

0

∫

Γ0

∣∣∣∣
∂u

∂n

∣∣∣∣
2

dσdt '
∫ T

0


h

N∑

j=1

∣∣∣uj,N

h

∣∣∣
2
+ h

N∑

k=1

∣∣∣uN,k

h

∣∣∣
2


 dt.

In the following for any j = 1, ..., N and k = 1, ..., N , we denote

(∂h
nu)j,N+1 := −uj,N

h
, (∂h

nu)N+1,k := −uN,k

h
, (∂h

nu)j,0 := −uj,1

h
, (∂h

nu)0,k := −u1,k

h
.

Also, in order to simplify the presentation, we shall use integrals to denote discrete sums,
i.e. ∫

Ωh

udΩh = h2
∑

jh∈Ωh

uj,

∫

Γh

udΓh := h
∑

jh∈Γh

uj.

and

(1.10)
∫

Γ0h

|∂h
nu|2dΓ0h := h

N∑

j=1

∣∣∣uj,N

h

∣∣∣
2
+ h

N∑

k=1

∣∣∣uN,k

h

∣∣∣
2
.

The discrete version of (1.4) is then an inequality of the form

(1.11) Eh(0) ≤ Ch(T )
∫ T

0

∫

Γ0h

|∂h
nu|2dΓ0hdt.

System (1.6) being finite dimensional, it is easy to see that the so-called Kalman rank
condition is satisfied and, consequently, for all T > 0 and h > 0 there exists a constant Ch(T )
such that inequality (1.11) holds for all the solutions of equation (1.3). But, as it was proved
in [28], for all T > 0 the best constant Ch(T ) necessarily blows-up as h → 0. The blow-up of
the observability constant is due to two main reasons. First, the discrete version of the normal
derivative in (1.9) is too weak to capture the energy of the high frequency monochromatic
waves. This fact could be compensated by making stronger boundary measurements, but this
would not suffice due to the fact that the numerical scheme develops high frequency wave
packets whose group velocity is of the order of h. These high frequency solutions are such
that the energy concentrated on the boundary Γ0h is asymptotically smaller than the total
one. This phenomenon was already observed by R. Glowinski et al. in [6], [8] and [9]. Using
a wave-packet construction is can be shown that the observability constant Ch(T ) blows-up
exponentially as h → 0. We refer to Micu [19] for a detailed proof in the 1-d case based on
explicit estimates of biorthogonal families to the complex exponentials entering in the Fourier
development of solutions.

As proved in [28], inequality (1.11) holds uniformly in a class of low frequency solutions
(initial data where the spurious high frequency modes have been filtered) provided the time
T is large enough depending on the frequencies under consideration. In Section 2 we will
make this concept precise and recall this result. The main result of this paper, stated in
Section 2, guarantees that, once (1.11) holds uniformly for a class of low frequency solutions,
it also holds for all solutions in an extended class of initial data whose energy is controlled
by their projection on the previous low frequency components. As we shall see, the class
of initial data for (1.6) obtained through the two-grid approach fulfills these requirements.
Accordingly, we shall deduce that for T > 0 large enough inequality (1.11) holds uniformly
(i.e. with a constant Ch(T ) which is independent of h) in this class of two-grid data. As a
consequence of this, we will conclude that system (1.5) is uniformly controllable in the sense
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that the projections of the states onto the coarse grid are controllable with controls that
remain bounded as h → 0. Furthermore these controls converge to those of (1.1) as the mesh
size h → 0.

In the one-dimensional case, the two-grid method was analyzed by Negreanu and Zuazua
in [22] with a discrete multiplier approach. The authors considered two meshes with quotient
1/2 and proved the convergence of the method as h → 0 for T > 4. The same two-grid
method has been considered in a more recent work by Loreti and Mehrenberer [17], where
the authors use a fine extension of Ingham’s inequality to obtain a sharp time of uniform
observability, namely T > 2

√
2. However, as far as we know, there is no proof of the uniform

observability in the two-dimensional case. The main goal of this paper is to give the first
complete proof of convergence of the method in the multidimensional setting.

In contrast with the strategy adopted in [22] we choose two grids with the quotient of their
sizes to be 1/3. This is done for merely technical reasons, that we shall describe in the last
section, and one may expect the same result to hold when the ratio of the grids is 1/2. The
problem is open in the multidimensional case for the mesh-ratio 1/2.

Our method, which consists in using the already well known observability inequality for a
class of low frequency data and a dyadic time spectral decomposition of the solutions, works
in any space dimension and for other discretization schemes.

The two-grid method has also been used in other contexts to filter the unwanted effect of
high-frequency numerical solutions. For instance, in [10], it was employed with two meshes
of mesh-ratio 1/4 when proving dispersive estimates for conservative semi-discrete approxi-
mation schemes of the Schrödinger equation. There, using the mesh-ratio 1/4 was necessary.
Here, as mentioned above, the result might well hold for 1/2 as in 1-d but here, for technical
reasons, we prove it only for 1/3. Our techniques allow also showing the convergence of the
method for meshes with mutual ratio 1/p for any p ≥ 3. We present here the case 1/3 since
it is the one in which the amount of filtering is minimal.

Indeed, when diminishing the ratio between grids, the attenuation that the two-grid algo-
rithm introduce on the high frequency component of the solutions is enhanced and the energy
is then concentrated on lower frequencies for which the velocity of propagation becomes closer
to that of the continuous wave equation. It is therefore natural to expect that proving the
uniform observability will be easier for smaller grid ratios. When doing that one may also
expect that the time of control will get closer to the optimal one of the continuous wave
equation. Both facts will be explicitly established through our analysis.

The rest of the paper is organized as follows. In section 2 we introduce the spaces KM
h (γ)

consisting in all the discrete functions (ϕ,ψ) such that their norm is controlled by the one of
its projection on a suitable low frequency component and state the core result of this paper:
the uniform observability inequality for data that belong to these spaces. In Section 3 we
will introduce the space V h of functions defined on the fine grid Gh as linear interpolation
of functions defined on the coarse one G3h. We prove that (1.11) holds uniformly for all
T > 4

√
2, in the class of two-grid initial data V h × V h. Section 4 is devoted to the proof of

the main result of this paper, namely Theorem 2.1, using the dyadic decomposition argument.
The last sections are devoted to prove the convergence of controls. More precisely, in Section 5
we construct semi-discrete control functions vh for (1.5) that approximate the control function
v in (1.1). Section 6 contains convergence results for the uncontrolled problem that will be
used in Section 7 to prove the convergence in L2((0, T ) × Γ0) of functions vh, constructed
before, towards the continuous one v. In the last section we comment on the main result
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of the paper, about how it can be used or improved, what are its limitations and we also
formulate a number of open problems. The paper also has two appendices containing some
technical lemmas and the Fourier analysis of the discrete functions obtained by a two-grid
algorithm.

2. The observability problem

To make our statements precise, let us consider the eigenvalue problem associated to (1.6):

(2.1)
{ −∆hϕh = λϕh inΩh,

ϕh = 0 onΓh.

Denoting ΛN := [1, N ]2 ∩ Z2, the eigenvalues and eigenvectors of system (2.1) are

(2.2) λj(h) =
4
h2

[
sin2

(
j1πh

2

)
+ sin2

(
j2πh

2

)]
, j = (j1, j2) ∈ ΛN

and

ϕj
h(k) = 2 sin(j1k1πh) sin(j2k2πh), k = (k1, k2) ∈ [0, N + 1]2 ∩ Z2, j = (j1, j2) ∈ ΛN .

The vectors {ϕj
h}j∈ΛN

form a basis for the discrete functions φh defined on Gh = Ωh∪Γh and
vanishing on its boundary, allowing us to write, for any discrete function φh,

φh =
∑

j∈ΛN

φ̂h(j)ϕj
h,

where φ̂(j) = (φh, ϕj
h)h, (·, ·)h being the inner product in l2(Ωh):

(u, v)h = h2
∑

kh∈Ωh

u(k)v(k).

In view of this representation, for every s ∈ R, we will denote by Hs
h(Ωh) the space of all

functions defined on the grid Gh, endowed with the norm

‖φh‖s,h =
( ∑

j∈ΛN

λ2s
j (h)|φ̂h(j)|2

)1/2
.

Let us consider {û0
h(j)}j∈ΛN

and {û1
h(j)}j∈ΛN

the coefficients of the initial data (u0
h, u1

h) of
system (1.6) in the basis {ϕj

h}j∈ΛN
. Then the solution uh is given by

(2.3) uh(t) =
1
2

∑

j∈ΛN

[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h,

where ωj(h) =
√

λj(h) and

ûh
j± = û0

h(j)± û1
h(j)

i
√

λj(h)
.

Using the above notations, the energy of the system introduced in (1.7) is conserved in
time and satisfies

Eh(uh) =
∑

j∈ΛN

ω2
j (h)(|ûh

j+|2 + |ûh
j−|2).
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Figure 2. The three dashed corners contain solutions whose group velocity
is of order of h

Let us introduce the class of filtered solutions of (1.6) in which the high frequencies have
been truncated or filtered. More precisely, for any 0 < γ ≤ 2

√
2 we set

(2.4) Ih(γ) =
{

uh : uh =
∑

ωj(h)≤γ/h

ûh
j ϕj

h with ûh
j ∈ C

}
.

The class Ih(γ) has been intensively used for control problems ([12], [2], [13]) and the
dispersive properties of PDE’s ([3]). For any solution uh of equation (1.6) we denote by Πγ

huh

its projection on the space Ih(γ), which consists simply in restricting the Fourier expansion
(2.3) to the class of indices entering in Ih(γ) for which ωj(h) ≤ γ/h.

The uniform observability in the class Ih(γ) has been analyzed in [28] by the multiplier
technique. In that article it is shown that for any 0 < γ < 2 and

(2.5) T > T (γ) =
8
√

2
4− γ2

there exists C(γ, T ) > 0 such that

(2.6) Eh(uh) ≤ C(γ, T )
∫ T

0

∫

Γ0h

|∂h
nuh(t)|2dΓ0hdt

holds for every solution u of (1.6) in the class Ih(γ) and h > 0. This observability result will
be systematically used along the paper. The choice of the filtering parameter γ < 2 in [28] is
sharp. More precisely, for γ = 2 and any T > 0 it was shown that there is no constant C(T )
(see [28]) such that (2.6) holds for all solutions uh of (1.6), uniformly on h:

sup
uh∈Ih(2)

Eh(uh)∫ T

0

∫

Γ0h

|∂h
nuh(t)|2dΓ0hdt

→∞, h → 0.

This is a consequence of the presence of solutions which have group velocity of order h and
spend a time of order 1/h to reach the boundary. In Figure 2 we can see the areas of the
spectrum in which these solutions with group velocity of order h can occur and in Figure
3 we illustrate how, some of them, enter in the class of filtered solutions Ih(γ) for γ = 2.
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Figure 3. The dashed area below the diagonal of the square represents the
frequencies involved in Ih(2). The two circles on the corners correspond to
frequencies with group velocity of order h that enter in the class Ih(2) but
that are exluded for filtering parameter γ < 2.

The classes Ih(γ) make sense for all 0 < γ ≤ 2
√

2 in view of the obvious spectral bound
λj(h) ≤ 8/h2 that immediately holds as a consequence of the explicit expression (2.2). But,
obviously, the observability estimate (2.6) fails to be uniform in Ih(γ) for all 2 ≤ γ ≤ 2

√
2

because it actually fails for γ = 2.
The main goal of this paper is to extend this uniform observability inequality to a more

general class of initial data obtained through the two-grid filtering strategy. In this class the
high frequency components do not vanish but a careful analysis shows that their energy is
dominated by the low frequency ones.

To be more precise, let Πγ
h be the orthogonal projection of discrete functions over the

subspace Ih(γ). Let us now fix M > 0. For any 0 < γ ≤ 2
√

2 we define KM
h (γ) as the

subspace of H1
h(Ωh) × H0

h(Ωh) consisting in all the discrete functions (ϕ,ψ) such that their
square norm is controlled by the one of its projection on Ih(γ) by a factor of M :

(2.7) KM
h (γ) = {(ϕ,ψ) : ‖ϕ‖2

1,h + ‖ψ‖2
0,h ≤ M(‖Πγ

hϕ‖2
1,h + ‖Πγ

hψ‖2
0,h)}.

We point out that the conservation of energy (1.8) guarantees that the solutions of equation
(1.6) with initial data (u0

h, u1
h) ∈ KM

h (γ) satisfy

(2.8) Eh(uh) ≤ MEh(Πγ
huh).

Therefore KM
h (γ) is stable under the flow and (uh(t), u′h(t)) ∈ KM

h (γ) for any t ≥ 0.

The main result of this section is given by the following theorem.

Theorem 2.1. Let γ > 0 and M > 0 be given. Assume the existence of a time T (γ) such
that for all T > T (γ) there exists a positive constant C = C(γ, T ), independent of h, such
that

(2.9) Eh(uh) ≤ C

∫ T

0

∫

Γ0h

|∂h
nuh(t)|2dΓdt
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holds for all (u0
h, u1

h) ∈ Ih(γ). Then for all T > T (γ) there exists a positive constant C =
C1(γ, T, M), such that (2.9) holds for all the solutions uh of problem (1.6) with initial data
(u0

h, u1
h) ∈ KM

h (γ) and h > 0.

Remark 2.1. According to Theorem 2.1 the uniform observability inequality can be automat-
ically transferred from Ih(γ) to KM

h (γ). Let us briefly explain the main difficulty of the proof
of Theorem 2.1. Inequalities (2.8) and (2.9) show that the uniform boundary observability
inequality

Eh(uh) ≤ C(T )
∫ T

0

∫

Γ0h

|∂h
nΠγ

huh|2dΓ0hdt

holds in the class KM
h (γ) as well. But, unfortunately, the right side term cannot be estimated

directly in terms of the energy of the solution uh measured at the boundary Γ0h:∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt.

A careful analysis is required to show that estimate. The essential contribution of this article
is to show how this may be done by means of a dyadic decomposition.

Remark 2.2. In the proof of the above theorem we use that the so-called “direct inequality”
holds. In fact it is well known that (see [28]) for any T > 0 there exists a constant C(T ),
independent of h, such that

(2.10)
∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt ≤ C(T )Eh(uh).

for all solutions u of the semi-discrete system (1.6) and for all h > 0.

Remark 2.3. The same result holds if the two-grid filtered initial data are taken at any time
t0 ∈ [0, T ]. In this sense our method of proof is more robust that that in [17] that makes a
distinction between observability in the interval [0, T ] or [−T/2, T/2] that our arguments show
is not necessary.

Since the proof of Theorem 2.1 is quite laborious it will be postponed until Section 4.

3. A Two-grid Method

In this section we describe a two-grid method that naturally produces classes of initial
data of the form KM

h (γ). In view of Theorem 2.1 this will allow to show immediately uniform
observability estimates for these classes of two-grid data.

The two-grid algorithm we propose is the following: Let N be such that N ≡ 2 (mod 3)
and h = 1/(N + 1). We introduce a coarse grid of mesh-size 3h:

G3h : xj, xj = 3jh, j ∈
[
0,

N + 1
3

]2

∩ Z2

and a fine one of size h:

Gh : yj, yj = jh, j ∈ [0, N + 1]2 ∩ Z2.

We consider the space V h of all functions ϕ defined on the fine grid Gh as a linear interpo-
lation of the functions ψ defined on the coarse grid G3h. To be more precise let us consider
the spaces Gh and G3h of all the functions defined on the fine and coarse grids Gh and G3h
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Figure 4. The dashed line is the original discrete function u. From left to
write the new functions Π2h

h u, Π3h
h u, Π4h

h u respectively.

respectively. We also introduce the extension operator Π3h
h which associates to any function

ψ ∈ G3h a new function Π3h
h ψ ∈ Gh obtained by an interpolation process:

(Π3h
h ψ)j = (P1

3hψ)(jh), j ∈ Z2,

where P1
3hψ is the piecewise multi-linear interpolator of ψ ∈ G3h. We then define V h =

Π3h
h (G3h), the image of operator Π3h

h . Obviously this constitutes a subspace of slowly oscil-
lating discrete functions defined on the fine grid Gh. Examples of this interpolation process
are given in Figure 4.

We define now another class of filtered functions, better adapted to the spectral analysis of
the two-grid ones. In the sequel we denote for any j = (j1, j2) ∈ Z2, its maximal component
by ‖j‖∞ = max{j1, j2}. For any 0 < η ≤ 1 we set

(3.1) Jh(η) =



uh : uh =

∑

‖j‖∞≤η(N+1)

ûh
j ϕj

h with ûh
j ∈ C



 ,

and for any solution uh of (1.6) we denote by Υη
huh, its projection on the space Jh(η).

The class of filtered solutions Iγ(h), introduced in Section 2, is obtained through a filtering
process along the level curves of ωj(h). The second one, leading to the space Jh(η), consists in
filtering the range of indices j to a square with length side η(N+1). Observe that, in dimension
one there exists a one-to-one correspondence between the two classes. In dimension two,
excepting the case γ = 2

√
2, that corresponds to η = 1, there is no one-to-one correspondence.

However the two classes can be easily compared with each other by analyzing the shape of
the level curves of ωj(h). In Figure 5 we can see the support of the discrete functions in
the frequency domain for the classes Jh(1/3) and Ih(

√
2) that occur in the analysis of our

two-grid method.
The second class of filtered data Jh(η) is better adapted to analyze the two-grid discrete

functions. In fact we will prove that the total energy of a solution uh of (1.6) with initial data
in the space V h × V h is bounded above by the energy of its projection on the space Jh(1/3):

(3.2) Eh(uh) ≤ MEh(Υ1/3
h uh),

for some positive constant M , independent of h. We point out that it is sufficient to prove this
bound for t = 0, i.e. for the initial data, and use that the space Jh(1/3) remains invariant
under the semidiscrete flow to deduce that (3.2) holds for all t > 0. More precisely, it is
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Figure 5. On the left, the dashed area represents the frequencies ωj(h), j ∈
Λ(N+1)/3; On the right, the dashed area represents the frequencies involved in
Ih(
√

2).

sufficient to show that, for (u0
h, u1

h) ∈ V h × V h:

(3.3) ‖u0
h‖2

1,h ≤ M‖Υ1/3
h u0

h‖2
1,h

and

(3.4) ‖u1
h‖2

0,h ≤ M‖Υ1/3
h u1

h‖2
0,h.

Observe that any ωj(h) with ‖j‖∞ ≤ (N + 1)/3 satisfies

ωj(h) ≤
(

8
h2

sin2
(π

6

))1/2

≤
√

2
h

,

and thus, in view of (3.2), the energy of uh is bounded above by the energy of its projection
on the space Ih(

√
2):

(3.5) Eh(uh) ≤ MEh(Υ1/3
h uh) ≤ MEh(Π

√
2

h uh),

i.e. (uh, u′h) ∈ KM
h (γ) with γ =

√
2.

The following theorem gives us the property of uniform boundary observability for the
solutions uh of system (1.6) with initial data (u0

h, u1
h) ∈ V h × V h. This theorem is in fact a

consequence of Theorem 2.1, estimate (3.5) and the well-known results for observability in
classes of the form Ih(γ) from [28] mentioned above.

Theorem 3.1. Let T > 4
√

2. There exists a constant C(T ) such that

(3.6) Eh(uh) ≤ C(T )
∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt

holds for all solutions uh of (1.6) with (u0
h, u1

h) ∈ V h × V h, uniformly on h > 0, V h being the
class of the two-grid data obtained with grids of mesh-size ratio 1/3.
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Figure 6. On the left, the black area represents the frequencies involved in
Jh(1/2); On the right the dashed area represents the the frequencies involved
in Ih(2).

Remark 3.1. The time T > 4
√

2 is the one corresponding to the class of solutions belonging
to Ih(

√
2), the smallest class Ih that contains Jh(1/3), as obtained in [28]. Indeed, in view of

(2.5) the known observability time for the above class of solutions is given by T (
√

2) = 4
√

2.
In fact, Theorem 3.1 would hold for all T > T ∗, T ∗ being the optimal time for uniform

observability in the class Ih(
√

2). Very likely the estimate T ∗ = 4
√

2 given in [28] is not
optimal. An analysis of the velocity of propagation of the associated bicharacteristic rays
shows that, according to [29], the expected minimal time T ∗ should be

(3.7) T ∗ =
2
√

2
cos(π/6)

=
4
√

2√
3

.

Although the uniform observability inequality in the class Ih(
√

2) for all T > T ∗ with T ∗ as
in (3.7) is very likely to hold, as far as we know, it has not been rigourously proved so far.
Thus, improving the optimal time in Theorem 3.1 from T > 4

√
2 to T > T ∗ as in (3.7) is an

open problem. This improvement would automatically lead to an improvement of the minimal
time in Theorem 3.1 too.

Remark 3.2. We could apply the same two-grid algorithm with grids of mesh sizes ratio 1/2,
i.e. Gh and G2h. In this case we would get, for some constant C, independent of h,

Eh(uh) ≤ CEh(Υ1/2
h uh) ≤ CEh(Π2

huh)

for all solutions uh obtained by this two-grid method. Indeed, the smallest γ such that Ih(γ)
contains all the frequencies ωj(h) with ‖j‖∞ ≤ (N + 1)/2 is γ = 2. Unfortunately, as we
pointed before, inequality (2.9) does not hold in the class Ih(2). This is why we have chosen
the ratio between the fine and coarse grids in the two-grid method to be 1/3. This will guarantee
that the two hypotheses (2.8) and (2.9) are verified.

Remark 3.3. The method also works for size meshes ratio 1/p with p ≥ 3. In this case,

Jh

(1
p

)
⊂ Ih

(
2
√

2 sin
( π

2p

))
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and thus the observability time given by Theorem 3.1 is

T

(
2
√

2 sin
( π

2p

))
=

2
√

2
cos(π/p)

.

Remark 3.4. The two-grid method proposed here has always a mesh-ratio of the form 1/p.
The same two-grid algorithm makes sense for ratios m/n with m < n. One could expect the
uniform observability to hold in 1-d for any mesh-ratio m/n < 1, in the multidimensional
case, when m/n < 1/2. But, by now, these are open problems. As we shall see, the only
difficulty for doing that is to prove the following estimate for the functions u0

h belonging to
Πn/mh

h Gh:

‖u0
h‖s,h ≤ C(m/n, s)‖Υm/n

h u0
h‖s,h, s ∈ {0, 1}.

Proof of Theorem 3.1. As we shall see Theorem 3.1 is an easy consequence of Theorem 2.1.
Let uh be the solution of system (1.6) with initial data (u0

h, u1
h) ∈ V h × V h. Using that

Jh(1/3) ⊂ Ih(
√

2) we obtain that

Eh(Υ1/3
h uh) ≤ Eh(Π

√
2

h uh).

To apply Theorem 2.1 with γ =
√

2 it remains to prove (3.2), i.e. (3.3) and (3.4).
We make use of the following lemma, which will be proved in Appendix B.

Lemma 3.1. Let p ≥ 2 and V h = Πph
h (Gph). For any s ∈ [0, 2] there exists a positive constant

C(p, s) such that the following

(3.8) ‖v‖s,h ≤ C(p, s)‖Υ1/p
h v‖s,h, 0 ≤ s ≤ 2.

holds for any v ∈ V h.

Applying this Lemma with p = 3 to u0
h ∈ V h and u1

h ∈ V h we get the existence of a positive
constant M = max{C(3, 0), C(3, 1)}2 such that

‖u0
h‖2

1,h ≤ M‖Υ1/3
h u0

h‖2
1,h and ‖u1

h‖2
0,h ≤ M‖Υ1/3

h u1
h‖2

0,h.

This proves (3.2) and finishes the proof of Theorem 3.1.
¤

4. Proof of Theorem 2.1

First of all we introduce the projectors Pk that we shall use. Let us consider a function
P ∈ C∞

c (R) and c > 1. For any function f ∈ L1(R) and k ≥ 0 we define the projector Pkf as
follows:

(4.1) (Pkf)(t) =
∫

Rτ

∫

Rs

P (c−kτ)f(s)ei(t−s)τdsdτ, t ∈ R.

In view (2.6), for any T > T (γ) there exist two positive constants δ and ε such that

(4.2) Eh(vh) ≤ C(T, γ, ε, δ)
∫ T−2δ

2δ

∫

Γ0h

|∂h
nvh|2dΓ0hdt

for all vh ∈ Ih(γ + ε). More precisely, using the continuity of the map γ → T (γ) we obtain
the existence of a small constant ε such that T > T (γ + ε). We then choose a positive δ such
that T − 4δ > T (γ + ε). Then, the invariance by time translation guarantees that (4.2) holds.



14 L. I. IGNAT AND E. ZUAZUA

With ε verifying (4.2) let us choose positive constants a, b, c and µ satisfying

(4.3) 1 < c <
b− µ

a + µ
and

b

a + µ
<

γ + ε

γ
.

Let F ∈ C∞
c (R) be supported in (a, b), 0 ≤ F ≤ 1 such that F ≡ 1 in [a + µ, b − µ]. Set

P (τ) = F (τ) + F (−τ) and then consider Pk as in (4.1).
In view of (2.3) the Fourier transform of uh, in the t variable, reads

ûh(τ) =
∑

j∈ΛN

[
δ(τ − ωj(h))ûh

j+ + δ(τ + ωj(h))ûh
j−

]
ϕj

h.

Therefore, the projector Pkuh is given by

(4.4) Pkuh(t) =
∑

j∈ΛN

F (c−kωj(h))
[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h

and its energy satisfies

(4.5) Eh(Pkuh) =
∑

j∈ΛN

F 2(c−kωj(h))ω2
j (h)(|ûh

j+|2 + |ûh
j−|2).

Conditions (4.3) guarantee the existence of an index kh such that {Pkuh}kh
k=0 covers all

the frequencies occurring in the representation of Πγ
huh and all these projections belong to

Ih(γ + ε).

Step I. Sketch of the main steps. We first give the main ideas of the proof. We choose
kh as above and k0 ≤ kh, k0 independent of h, such that {Pkuh}kh

k=k0
covers, except possibly

for a finite number, all the frequencies occurring in Πγ
huh, the projection of uh on the space

Ih(γ) defined in (2.4):

Πγ
huh =

1
2

∑

ωj(h)≤γ/h

[
eitωj(h)ûh

j+ + e−itωj(h)ûh
j−

]
ϕj

h.

The precise value of k0 and kh will be specified later.
Our hypothesis on the initial data (u0

h, u1
h) ∈ Kh

γ (M) guarantees (see (2.7) for the definition
of the spaces Kh

γ (M)) that the total energy uh is controlled by the energy of Πγ
huh:

(4.6) Eh(uh) ≤ MEh(Πγ
huh).

Firstly we will prove that

(4.7) Eh(Πγ
huh) ≤

kh∑

k=k0

Eh(Pkuh) + LOT

where LOT is a lower order term involving only a fixed number of Fourier components. In
particular this LOT will be compact when passing to the limit h → 0.

Next we use that each projection Pkuh, k0 ≤ k ≤ kh belongs to the class Ih(γ + ε) and,
consequently, according to (4.2), satisfies the observability inequality:

(4.8) Eh(Pkuh) ≤ C(T, γ, δ, ε)
∫ T−2δ

2δ

∫

Γ0h

|∂h
nPkuh|2dΓ0hdt.
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Thus, combining (4.7) and (4.8) we obtain the following estimate:

(4.9) Eh(Πγ
huh) ≤ C(T, γ, δ, ε)

kh∑

k=k0

∫ T−2δ

2δ

∫

Γ0h

|∂h
nPkuh|2dΓ0hdt + LOT.

Using ideas previously developed in [12] and [2] the right hand side sum can be estimated
in terms of the energy of uh measured on Γ0h. More precisely, we will prove the existence of
constants C(P, c) and C(ε, δ, T ) such that

(4.10)
∑

k≥k0

∫ T−2δ

2δ

∫

Γh

|∂h
nPkuh|2dΓhdt ≤ C(P, c)

∫ T

0

∫

Γ0h

|∂h
nuh|2dΓhdt +

C(ε, δ, T )
c2k0

Eh(uh)

holds for any k0 ≥ 0 and uh solution of (1.6), uniformly on h > 0. Then combining (4.6),
(4.9) and (4.10) the following holds:

Eh(uh) ≤ C(T, P, γ, δ, ε, c)
∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt +

C(ε, δ, T )
c2k0

Eh(uh) + LOT.(4.11)

Choosing h small and k0 sufficiently large, but still independent of h, the energy term from
the right side may be absorbed and then we obtain

(4.12) Eh(uh) ≤ C(T, P, γ, δ, ε, c)
∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt + LOT.

Finally, classical arguments of compactness-uniqueness allow us to get rid of the lower order
term. For a complete development of this argument we refer to [28].

In the following we give the details of the proofs of the above steps.

Step II. Upper bounds of Eh(Πγ
huh) in terms of {Eh(Pkuh)}k≥0.

Let us choose a positive integer kh such that

(4.13) ckh(a + µ) ≤ γ/h < ckh+1(a + µ).

The choice of kh is always possible for small enough h. Also let us fix a positive integer
k0 ≤ kh independent of h. Its precise value will be chosen later on in the proof. Using that
c < (b− µ)/(a + µ) (see (4.3)) we obtain that the following inequality holds:

ckh(a + µ) ≤ γ/h ≤ ckh+1(a + µ) ≤ ckh(b− µ).

Then any frequency ωj(h) belonging to [(a + µ)ck0 , γ/h] is contained in at least one interval
of the form [ck(a + µ), ck(b− µ)] with k0 ≤ k ≤ kh where the function F (c−k·) ≡ 1. Thus for
any frequency ωj(h) ∈ [(a + µ)ck0 , γ/h] we have

(4.14) 1 ≤
kh∑

k=k0

F (c−kωj(h))2.

In view of (4.5) and (4.14) the energy of Πγ
huh excepting a lower order term involving a finite

number of Fourier components only, can be bounded from above by the energy of all the
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projections (Pkuh)kh
k=k0

:

Eh(Πγ
huh) ≤ c2k0(a + µ)2

∑

ωj(h)<(a+µ)ck0

(
|ûh

j+|2 + |ûh
j−|2

)
(4.15)

+
kh∑

k=k0

∑

j∈ΛN

F 2(c−kωj(h))ω2
j (h)

(
|ûh

j+|2 + |ûh
j−|2

)

= C(a, k0, µ)
∑

ωj(h)<(a+µ)ck0

(
|ûh

j+|2 + |ûh
j−|2

)
+

kh∑

k=k0

Eh(Pkuh).

Step III. Observability inequalities for the projections Pkuh, k ≤ kh.
The next step is to apply the observability inequality (4.2) to each projection Pkuh, k ≤ kh.

We show that each of them belongs to the class Ih(γ + ε) where (4.2) holds. We remark that
the projector Pkuh contains only the frequencies ωj(h) ∈ (cka, ckb). In view of (4.13) any
frequency ωj(h) involved in the decomposition of Pkuh, k ≤ kh, satisfies

ωj(h) < ckhb ≤ γb

h(a + µ)
<

γ + ε

h
,

which shows that Pkuh ∈ Ih(γ + ε). Then for any k ≤ kh the following holds:

(4.16) Eh(Pkuh) ≤ C(T, δ, ε, γ)
∫ T−2δ

2δ

∫

Γ0h

|∂h
n(Pkuh)|2dΓ0hdt.

Using (4.15) and the above inequalities we obtain that

Eh(Πγ
huh) ≤ C(T, γ, δ, ε)

kh∑

k=k0

∫ T−2δ

2δ

∫

Γ0h

|∂h
n(Pkuh)|2dΓ0hdt(4.17)

+C(a, k0, µ)
∑

ωj(h)<(a+µ)ck0

[
|ûh

j+|2 + |ûh
j−|2

]
.

It remains to prove (4.10). Once this inequality holds then (4.11) and (4.12) hold as well,
which finishes the proof.

The key point is the following lemma which will be proved in Appendix A.

Lemma 4.1. Let µ be a Borel measure, Ω a µ-measurable set such that µ(Ω) < ∞, P ∈
C∞

c (R), c > 1 and 1 ≤ p ≤ ∞. We set X = Lp(Ω, dµ) and Pk as in (4.1). For any positive T
and δ < T/4 there are positive constants C(P, c) and C(δ, T, P ) such that the following holds

(4.18)
∑

k≥k0

∫ T−2δ

2δ
‖Pkw‖2

Xdt ≤ C(P, c)
∫ T

0
‖w‖2

Xdt +
C(δ, T, P )

c2k0
sup
l∈Z

‖w‖2
L2((lT,(l+1)T ), X)

for all positive integer k0 and w ∈ L2
loc(R, X).

We now apply Lemma 4.1 with X = l2(Γ0h) and w = ∂h
nuh. Using that Pk(∂h

nuh) =
∂h

n(Pkuh), we obtain the existence of a constant C(δ, T, P ) such that
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∑

k≥k0

∫ T−2δ

2δ

∫

Γ0h

|∂h
nPkuh(t)|2dΓ0hdt ≤ C(P, c)

∫ T

0

∫

Γ0h

|∂h
nuh(t)|2dΓ0hdt

+
C(δ, T, P )

c2k0
sup
l∈Z

∫ (l+1)T

lT

∫

Γ0h

|∂h
nuh(t)|2dΓ0hdt.

At this point we apply the so-called “direct inequality” (2.10), which holds for all solutions
uh of system (1.6). Thus, a translation in time in (2.10) together with the conservation of
energy shows that

(4.19) sup
l∈Z

∫ (l+1)T

lT

∫

Γ0h

|∂h
nuh(t)|2dΓ0hdt ≤ C(T )Eh(uh).

and then (4.10) holds.

5. Construction of the Control

In this section we introduce a numerical approximation for the HUM control v of the
continuous wave equation (1.1) based on the two-grid method.

First, we define a restriction operator which carries any function of Gh to G3h. The most
natural way is to define it as the formal adjoint of the Π3h

h operator:

(ψ,Π3h
h φ)h = (Π3h,∗

h ψ, φ)3h, ∀ φ ∈ G3h.

To obtain the control vh in (1.5) that is intended to approximate the control of (1.1),
it would be rather natural to approximate the initial data (y0, y1) by (y0

h, y1
h) and take the

corresponding controls vh. But this has to be done carefully taking into account the high
frequency pathologies. In fact not all the approximation of the initial data has to be done
carefully but also the final requirement (1.2) has to be relaxed conveniently. To do this we
shall consider controls vh for which Π3h,∗

h yh, the projection of solutions over the coarse grid
G4h, vanishes at the time t = T .

The following holds:

Theorem 5.1. Let be T > 4
√

2. There exists a constant C(T ) such that for any h > 0 and
(y0

h, y1
h), there exists a function vh satisfying

(5.1) ‖vh‖2
L2((0,T )×Γ0h) ≤ C(T )(‖y0

h‖2
0,h + ‖y1

h‖2
−1,h)

such that the solution uh of system (1.5) with (y0
h, y1

h) as initial data and vh acting as control
satisfies:

(5.2) Π3h,∗
h yh(T ) = Π3h,∗

h y′h(T ) = 0.

In order to construct the function vh we need some notations and preliminary results. We
define the duality product between L2(Ω)×H−1(Ω) and H1

0 (Ω)× L2(Ω) by

〈(ϕ0, ϕ1), (u0, u1)〉 = (ϕ1, u0)−1,1 − (ϕ0, u1).

Also for the discrete spaces H0
h(Ωh)×H−1

h (Ωh) and H1
h(Ωh)×H0

h(Ωh) we introduce a similar
duality product

〈(ϕ0, ϕ1), (u0, u1)〉h = (ϕ1, u0)h − (ϕ0, u1)h.
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Let us introduce the adjoint discrete problem:

(5.3)





u′′h −∆huh = 0 in Ωh × (0, T ),
uh(t) = 0 on Γh × (0, T ),
uh(T ) = u0

h, ∂tuh(T ) = u1
h in Ωh.

Note that the system (5.3) can be transformed into (1.6) by reversing the sense of time
(t → T − t). Thus, all the previous estimates on (1.6) apply to (5.3) too.

Following the same steps as in the continuous case, i.e. multiplying the control problem
(1.5) by solutions of the adjoint problem (5.3) and integrating (summing) by parts we obtain
the following result for the solutions of system (1.5):

Lemma 5.1. Let yh be a solution of system (1.5). Then

(5.4)
∫ T

0

∫

Γ0h

vh(t)∂h
nuh(t)dΓ1hdt + 〈(yh, y′h), (uh, u′h)〉h

∣∣∣
T

0
= 0

for all solutions uh of the adjoint problem (5.3).

Proof of Lemma 5.1. Multiplying (1.5) and (5.3) by uh, respectively yh, integrating on [0, T ]
and summing on Ωh yields

(5.5)
∫ T

0

∫

Ωh

(y′′huh − u′′hyh)dΩhdt =
∫ T

0

∫

Ωh

[(∆hyh)uh − (∆huh)yh]dΩhdt.

Integration by parts in the left hand side term gives us

(5.6)
∫

Ωh

∫ T

0
(y′′huh − u′′hyh)dtdΩh =

∫

Ωh

(
y′huh

∣∣∣
T

0
− u′hyh

∣∣∣
T

0

)
dΩh = 〈(yh, y′h), (uh, u′h)〉h

∣∣∣
T

0
.

For the second term of (5.5) we have:
∫ T

0

∫

Ωh

[(∆hyh)uh − (∆huh)yh]dΩhdt(5.7)

=
N∑

i,j=1

[
(yi−1,j + yi+1,j)ui,j − (ui−1,j + ui+1,j)yi,j

]

+
N∑

i,j=1

[
(yi,j−1 + yi,j+1)ui,j − (ui,j−1 + ui,j+1)yi,j

]

=
N∑

j=1

(y0,ju1,j + yN+1,juN,j) +
N∑

i=1

(yi,0ui,1 + yi,N+1ui,N )

=
N∑

j=1

yN+1,juN,j +
N∑

i=1

yi,N+1ui,N = −
∫ T

0

∫

Γ0h

vh(t)∂h
nuh(t)dtdΓ1h.

Identities (5.6) and (5.7) prove (5.4). ¤
Proof of Theorem 5.1. Step I. Construction of vh. First, using variational methods we
will prove the existence of a function vh such that

(5.8)
∫ T

0

∫

Γ0h

vh(t)∂h
nuh(t)dΓ0hdt + 〈(y0

h, y1
h), (uh(0), u′h(0))〉h = 0
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for all solutions uh of the adjoint problem (5.3) with final state (u0
h, u1

h) ∈ V h × V h. This is
equivalent to (5.2) in view of (5.4).

To do this we consider the space Fh = V h × V h endowed with the norm

‖(u0
h, u1

h)‖Fh
=

(‖u0
h‖2

1,h + ‖u1
h‖2

0,h

)1/2

and the functional Jh : Fh → R defined by

(5.9) Jh((u0
h, u1

h)) =
1
2

∫ T

0

∫

Γ0h

|∂h
nuh|2dΓ0hdt + 〈(y0

h, y1
h), (uh(0), u′h(0))〉h

where uh is the solution of the adjoint problem (5.3) with final state (u0
h, u1

h). To construct
the control vh satisfying the relaxed controllability condition (5.8) for all (u0

h, u1
h) ∈ V h × V h

it is sufficient to minimize Jh over Fh.
In order to apply the fundamental theorem of the calculus of variations, guaranteeing the

existence of a minimizer for Jh, we prove that the functional Jh restricted to Fh which is
convex, it is also continuous and uniformly coercive (with respect to the parameter h).

The linear term in the right side of (5.9) satisfies

|〈(y0
h, y1

h), (uh(0), u′h(0))〉h| ≤ (‖y1
h‖−1,h + ‖y0

h‖0,h)‖(uh(0), u′h(0))‖Fh
.

Using the direct inequality (2.10) and the conservation of the energy Eh(uh) we get

|Jh((u0
h, u1

h))| ≤ ‖(u0
h, u1

h)‖Fh

(
C(T )‖(u0

h, u1
h)‖Fh

+ ‖y1
h‖−1,h + ‖y0

h‖0,h

)

which proves the continuity of the functional Jh.
In view of the observability inequality (3.6), for any T > 4

√
2, the functional Jh is uniformly

(with respect to h) coercive on Fh:

|Jh((u0
h, u1

h))| ≥ ‖(u0
h, u1

h)‖Fh

(
C(T )‖(u0

h, u1
h)‖Fh

− ‖y1
h‖−1,h − ‖y0

h‖0,h

)
,

for all (u0
h, u1

h) ∈ Fh, where C(T ) is a constant obtained in (3.6).
Applying the fundamental theorem of the calculus of variations we obtain the existence of

a minimizer (u0,∗
h , u1,∗

h ) ∈ Fh such that

Jh((u0,∗
h , u1,∗

h )) = min
((u0

h,u1
h))∈Fh

Jh((u0
h, u1

h)).

This implies that J ′
h, the Gateaux derivative of Jh, satisfies

J ′
h((u0,∗

h , u1,∗
h ))(u0

h, u1
h) = 0

for all (u0
h, u1

h) ∈ Fh and that u∗h, solution of (5.3) with final state (u0,∗
h , u1,∗

h ), satisfies
∫ T

0

∫

Γ0h

(∂h
nu∗h)∂h

nu(t)dΓ0hdt + 〈(y0
h, y1

h), (uh(0), u′h(0))〉h = 0

for all uh solution of the adjoint problem (5.3) with final state (u0
h, u1

h) ∈ Fh.
We set

vh(t) = ∂h
nu∗h(t), t ∈ [0, T ]

and then (5.8) holds.

Step II. Proof of property (5.2). In view of Lemma 5.1, the solution yh of system (1.5)
with the above function vh acting as control on Γ0h satisfies

(y′h(T ), u0
h)h − (yh(T ), u1

h)h = 0
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for all function (u0
h, u1

h) ∈ V h × V h. Using that V h = Π3h
h (G3h) we obtain

(yh(T ),Π3h
h w)h = (y′h(T ),Π3h

h w)h = 0

for all functions w ∈ G3h. Then

(Π3h,∗
h yh(T ), w)3h = (Π3h,∗

h y′h(T ), w)3h = 0

for all w ∈ G3h and obviously (5.2) holds.

Step III. Proof of estimate (5.1). Using that (u0,∗
h , φ1,∗

h ) is a minimizer of Jh we have
Jh((u0,∗

h , u1,∗
h )) ≤ Jh((0h, 0h)), where 0h is the function vanishing identically on the mesh Gh.

Consequently
∫ T

0

∫

Γ0h

|∂h
nu∗h|2dΓ0hdt ≤ (‖y1

h‖−1,h + ‖y0
h‖0,h)(‖u0,∗

h ‖1,h + ‖u1,∗
h ‖0,h).

Applying the observability inequality (3.6) to the solution u∗h we get

‖u0,∗
h ‖2

1,h + ‖u1,∗
h ‖2

0,h ≤ C(T )
∫ T

0

∫

Γ0h

|∂h
nu∗h|2dΓ0hdt.

We then find that

‖vh‖2
L2((0,T )×Γ0h) =

∫ T

0

∫

Γ0h

|∂h
nu∗h|2dΓ0hdt ≤ C(T )(‖y0

h‖−1,h + ‖y1
h‖0,h)2

where the constant C(T ) is independent of h.
The proof is now complete. ¤

6. Convergence of the uncontrolled problem

In this section, for the sake of completness, we prove the convergence of the solutions of
the uncontrolled problem (1.6). We also analyze the convergence of their normal derivatives
towards the continuous one. First we introduce the interpolators needed in our analysis.

6.1. Interpolators. We denote by P1
h the piecewise multi-linear and continuous interpolator

on Ω. We also consider the operators Ps
h defined for any u ∈ Hs

h(Ω) by

(6.1) Ps
huh = (−∆)−(s−1)/2(P1

h(−∆h)(s−1)/2uh),

that, for any s ∈ R, they continuously map Hs
h(Ωh) to Hs(Ω).

In the sequel we will denote by ∇+
h the following operator

(∇+
h u)j,k = (

uj+1,k − uj,k

h
,
uj,k+1 − uj,k

h
).

The representation of the operator P0
h in the Fourier space shows that this operator is

exactly the piecewise constant interpolator:

P0
huh(x) = ujk, x ∈ ((j − 1/2)h, (j + 1/2)h)× ((k − 1/2)h, (k + 1/2)h).

Concerning the operator P−1
h , it satisfies

‖P−1
h uh‖H−1(Ω) = ‖P1

h(−∆h)−1uh‖H1
0 (Ω) = ‖∇+

h (−∆h)−1uh‖H0
h(Ωh)

= ‖uh‖H−1
h (Ωh).
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Also for any pair of functions uh and wh defined on Gh and vanishing on Γh the following
holds:∫

Ω
P0

huhP0
hwh =

∫

Ωh

uhwhdΩh =
∫

Ωh

(−∆h)(−∆h)−1uhwhdΩh

=
∫

Ωh

∇h((−∆h)−1uh) · ∇hwhdΩ =
∫

Ω
∇(P1

h(−∆h)−1uh) · ∇(P1
hwh)

= 〈P−1
h uh,P1

hwh〉−1,1.

Lemma 6.1. The following holds for all h > 0 and all sequences uh:

(6.2) ‖P−1
h uh −P0

huh‖H−1(Ω) ≤ h‖uh‖0,h.

Proof. By the definition of the operators P−1
h and P0

h we get

(−∆)−1/2P0
huh = P1

h(−∆h)−1/2uh

and
P−1

h uh = (−∆)1/2P0
h(−∆)−1/2uh.

Thus we have

‖P−1
h uh −P0

huh‖H−1(Ω) = ‖(−∆)1/2P0
h(−∆h)−1/2uh −P0

huh‖H−1(Ω)

= ‖P0
h(−∆h)−1/2uh − (−∆)−1/2P0

huh‖L2(Ω)

= ‖P0
h(−∆h)−1/2uh −P1

h(−∆h)−1/2uh‖L2(Ω).

Using that the two interpolators P0
h and P1

h satisfy (see [24], Th. 3.4.1, p. 88)

‖P0
huh −P1

huh‖L2(Ω) ≤ h‖uh‖H1
h(Ω)

we obtain

‖P−1
h uh −P0

huh‖H−1(Ω) ≤ h‖(−∆h)−1/2uh‖H1
h(Ωh) = h‖uh‖l2(Ωh),

which finishes the proof. ¤

6.2. Convergence of the solutions. The following propositions describe how a uniformly
bounded family of solutions of (1.6) weakly converges (up to a subsequence) as h → 0 to a
solution of finite energy of the continuous wave equation (1.3).

Let us consider the family {uh}h>0 of solutions of (1.6) and let us denote by P1
huh their

piecewise linear interpolator, that belongs to H1
0 (Ω) for all 0 ≤ t ≤ T as the solution of the

continuous problem does.

Proposition 6.1. Let {uh}h>0 be a family of solutions of (5.3) depending on the parameter
h → 0, whose energies are uniformly bounded, i.e.

(6.3) Eh(0) ≤ C, ∀h > 0.

Then there exists a solution u ∈ C([0, T ],H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)) of problem (1.3) such

that, by extracting a suitable subsequence h → 0, we may guarantee that

P1
huh ⇀ u in L2([0, T ], H1

0 (Ω)),(6.4)

P0
hu′h ⇀ u′ in L2([0, T ], L2(Ω)).(6.5)
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Moreover, if the family {uh}h>0 is such that P1
huh(0) → u0 in H1

0 (Ω) and P0
hu′h(0) → u1

in L2(Ω) for some (u0, u1) ∈ H1(Ω) × L2(Ω) then all the above convergences hold in the
corresponding strong topologies.

Proof of Proposition 6.1. Step I. Weak convergence. In view of the uniform bound (6.3)
and the conservation of energy we deduce that

(6.6)





P1
huh is uniformly bounded inW 1,∞((0, T ), L2(Ω)),

P0
huh is uniformly bounded inW 1,∞((0, T ), L2(Ω)).

Using that

‖P1
huh −P0

huh‖L2((0,T ), L2(Ω)) ≤ h‖uh‖L2((0,T ),H1
h(Ωh))

h→0→ 0

we obtain the existence of a function u ∈ W 1,∞((0, T ), L2(Ω)) such that, up to subsequences,

(6.7)





P1
huh ⇀ u inH1((0, T ), L2(Ω)),

P0
hu′h ⇀ u′ in L2((0, T ), L2(Ω)).

Also, by (6.3) we get that {P1
huh}h is uniformly bounded inC([0, T ],H1

0 (Ω)). Using the clas-
sical Aubin-Lions’s compactness result (see for instance [27]) we deduce that {P1

huh}h is
relatively compact in C([0, T ], L2(Ω)). Thus we obtain that

(6.8) P1
huh ⇀ u in H1((0, T ), L2(Ω)) ∩ L2((0, T ), H1

0 (Ω)),

and

(6.9) P1
huh → u in C([0, T ], L2(Ω)).

Also we prove that

(6.10) (P0
hu′′h) is uniformly bounded in L2((0, T ), H−1(Ω).

For any function function ϕ ∈ L2((0, T ), H1
0 (Ω)) and t ∈ (0, T ) we have

〈P0
hu′′h(t), ϕ〉−1,1 =

∫

Ω
P0

hu′′h(t)ϕ =
N∑

j,k=1

∫ jh+h/2

jh−h/2

∫ kh+h/2

kh−h/2
(∆huh)jk(t)ϕ

=
N∑

j,k=1

(∆huh)jk(t)
∫ jh+h/2

jh−h/2

∫ kh+h/2

kh−h/2
ϕ :=

N∑

j,k=1

(∆huh)jk(t)ϕ̃h
jk

= −h2
N∑

j,k=0

(∇+
h uh)jk(t)(∇+

h ϕ̃)h
jk =

∫

Ω
∇(P1

huh)(t)∇(P1
hϕ̃h)

. ‖P1
huh(t)‖H1

0 (Ω)‖ϕ‖H1
0 (Ω).

Thus we obtain (6.10). Using (6.10), (6.7) and the compactness result mentioned above we
deduce that

(6.11) P0
hu′h → u′ in C([0, T ], L2(Ω)).

Observe that, according to the bounds (6.6), the subsequences may be extracted so that

P1
huh(0) ⇀ u0 in H1

0 (Ω) and P0
hu′h(0) ⇀ u1 in L2(Ω)
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for some (u0, u1) ∈ H1
0 (Ω) × L2(Ω). Note that, in view of (6.9) and (6.11), u(0) = u0 and

u′(0) = u1.

Step II. Equation solved by the limit. We prove that u solves the wave equation (1.3)
with initial data (u0, u1).

Let us choose w ∈ C2([0, T ], C3
c (Ω)). Using the following identity

∫ T

0

∫

Ωh

(∆huh)wdΩh = −
∫ T

0
h2

N∑

j,k=0

∇+
h uh · ∇+

h w,

integrating (1.5) on [0, T ] and summing on Ωh we get

∫ T

0
h2

∑

jh∈Ωh

(uh)jw′′j dt +
∫ T

0
h2

N∑

j,k=0

∇+
h uh · ∇+

h w = 〈(uh, u′h), (w, w′)〉
∣∣∣
T

0
.

Thus

(6.12)
∫ T

0

∫

Ω
P0

huhP0
hw′′ +

∫ T

0

∫

Ω
∇(P1

huh) · ∇(P1
hw) = 〈(P0

huh,P0
hu′h), (P0

hw,P0
hw′)〉

∣∣∣
T

0
.

Using that




P0
hw′′ → w′′ inL2((0, T ), L2(Ω)),

∇(P1
hw) → ∇w in L2((0, T ), L2(Ω2)),

(P0
hw,P0

hw′)(0) → (w(0), w′(0)) inL2(Ω)× L2(Ω),
(P0

hw,P0
hw′)(T ) → (w(T ), w′(T )) inL2(Ω)× L2(Ω)

and 



P0
huh ⇀ u in L2((0, T ), L2(Ω)),

∇(P1
huh) ⇀ ∇u inL2((0, T ), L2(Ω2)),

(P0
huh,P0

hu′h)(0) ⇀ (u(0), u′(0)) inL2(Ω)× L2(Ω),
(P0

huh,P0
hu′h)(T ) ⇀ (u(T ), u′(T )) inL2(Ω)× L2(Ω)

we obtain that the limit u satisfies

(6.13)
∫ T

0

∫

Ω
uw′′ +

∫ T

0

∫

Ω
∇u · ∇w = 〈(u, u′), (w, w′)〉

∣∣∣
T

0

for any function w ∈ C2([0, T ], H1
0 (Ω)). This shows that u is a solution of the homogenous

wave equation on Ω.
Under the assumption of strong convergence of the initial data (u0

h, u1
h), this together with

the conservation of the energy, gives us that
∫ T

0

[
‖P1

huh(t)‖2
H1

0 (Ω) + ‖P0
hu′h(t)‖2

L2(Ω)

]
dt →

∫ T

0

[
‖u(t)‖2

H1
0 (Ω) + ‖u′(t)‖2

L2(Ω)

]
dt.

Thus all the above weak convergences hold in the strong topology as well. ¤
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6.3. Convergence of the normal derivatives. In this subsection we prove that the in-
terpolated discrete normal derivatives Ph

0,Γ(∂h
nuh) converge to the continuous one ∂nu, where

Ph
0,Γ is the piecewise constant interpolator on the boundary Γh.

Proposition 6.2. Let {uh(t)}h be a family of solutions of (5.3) satisfying (6.3). Let u be
any solution of (1.6) obtained as limit when h → 0 as in the statement of Proposition 6.1.
Then

(6.14) Ph
0,Γ(∂h

nuh) ⇀ ∂nuweakly inL2((0, T )× Γ).

Moreover, if the family {uh}h>0 is such that P1
huh(0) → u0 in H1

0 (Ω) and P0
hu′h(0) → u1

in L2(Ω) for some (u0, u1) ∈ H1(Ω) × L2(Ω) then the above convergences hold in the strong
topologies.

Proof. For any functions u ∈ Gh such that u|Γh
= 0 and w ∈ Gh, explicit computations give

us
∫

Ωh

(∆hu)wdΩh + h2
N∑

j,k=0

(∇+
h u)jk(∇+

h w)jk =(6.15)

= h2
N∑

j,k=1

(∆hu)jkwjk + h2
N∑

j,k=0

(∇+
h u)jk(∇+

h w)jk =

= −
N∑

k=1

(uN,kwN+1,k + y1,kw0,k)−
N∑

j=1

(uj,Nwj,N+1 + uj,1wj,0)

=
∫

Γh

(∂h
nu)wdΓh.

Let us choose w ∈ C2([0, T ]× Ω). Applying identity (6.15) to the solution uh of equation
(5.3) and w|Gh

we find that
∫ T

0

∫

Ωh

uhw′′dΩhdt + h2
N∑

j,k=0

(∇+
h uh)jk(∇+

h w)jk = 〈(uh, u′h), (w,w′)〉
∣∣∣
T

0
+

∫

Γh

(∂h
nuh)wdΓh.

Rewriting the above identity in terms of the interpolators P0
h and P1

h we get
∫ T

0

∫

Ω
P0

huhP0
hw′′ +

∫ T

0

∫

Ω
∇(P1

huh) · ∇(P1
hw) = 〈(P0

huh,P0
hu′h), (P0

hw,P0
hw′)〉

∣∣∣
T

0

+
∫ T

0

∫

Γ
Ph

0,Γ(∂h
nuh)Ph

0,ΓwdΓdt.

Using that solution u of problem (1.3) satisfies
∫ T

0

∫

Ω
uw′′dxdt +

∫ T

0

∫

Ω
∇u · ∇w = 〈(u, u′), (w, w′)〉

∣∣∣
T

0
+

∫ T

0

∫

Γ
∂nuwdΓdt

for all w ∈ L2((0, T ),H1(Ω)) with w′′ ∈ L2((0, T ), L2(Ω)), and the convergences for P0
huh,

P1
huh and P0

hu′h given by Proposition 6.1, we obtain that

(6.16)
∫ T

0

∫

Γ
Ph

0,Γ(∂h
nuh)wdΓdt →

∫ T

0

∫

Γ
∂nuwdΓdt.
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This shows that
Ph

0,Γ(∂h
nuh) ⇀ ∂nu weakly on L2((0, T )× Γ).

The proof of the strong convergence is more subtle. For any ε > 0 we can choose smooth
functions (ũ0, ũ1) ∈ H2(Ω)×H1(Ω)) such that ‖ũ0 − u0‖H1(Ω) ≤ ε and ‖ũ1 − u1‖L2(Ω) ≤ ε.

We denote by (ũ0
h, ũ1

h) the approximations of (ũ0, ũ1). In this case the discrete solutions
(ũh, ũ′h) of equation (5.3) are smooth enough to guarantee that Ph

0,Γ(∂h
nũh) is compact in

L2((0, T )× Γ), and thus

(6.17) Ph
0,Γ(∂h

nũh) → ∂nũ in L2((0, T )× Γ).

Denoting ˜̃u = u− ũ, ˜̃uh = uh− ũh and using that the energy on the boundary is controlled
by the total energy both in the discrete and continuous setting we have

(6.18) ‖P0,Γ(∂h
n
˜̃uh)‖L2((0,T )×Γ) ≤ C(T )E(˜̃uh) ≤ C(T )ε

and

(6.19) ‖∂n
˜̃u‖L2((0,T )×Γ) ≤ C(T )E(˜̃u) ≤ C(T )ε.

Using now (6.17), (6.18) and (6.19) we obtain the strong convergence of P0,Γ(∂h
nuh) towards

∂nu in L2((0, T )× Γ). ¤

7. Convergence of the controlled problem

Concerning the convergence of the semidiscrete control of (1.5) we prove the following
result.

Theorem 7.1. Let (y0, y1) ∈ L2(Ω)×H−1(Ω) and (y0
h, y1

h) be such that

(7.1) P0
hy0

h ⇀ y0 in L2(Ω), P−1
h y1

h ⇀ y1 in H−1(Ω).

Then for any T > 4 the solution (yh, y′h) and its partial controls vh given by Theorem 5.1
satisfy

P0
hyh

∗
⇀ y in L∞([0, T ], L2(Ω)), (P0

hyh)′ ∗⇀ y′ in L∞([0, T ], H−1(Ω))

and
Ph

0,Γvh ⇀ v in L2([0, T ], L2(Γ0)),

where (y, yt) solves (1.1), with the limit control v, and satisfies (1.2). The limit control v is
given by

v = ∂nu∗ on Γ0,

where u∗ is solution of the adjoint system

(7.2)





u′′ −∆u = 0 in Ω× (0, T ),
u = 0 on Γ× (0, T ),
u(T, x) = u0(x), ut(T, x) = u1(x) in Ω,

with data (u0,∗, u1,∗) ∈ H1
0 (Ω)× L2(Ω) minimizing the functional

(7.3) J((u0, u1)) =
1
2

∫ T

0

∫

Γ0

|∂nu|2dt + 〈(y0, y1), (u0, u1)〉

in H1
0 (Ω)× L2(Ω).
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Proof. Step I. Weak convergence of vh. Theorem 5.1 gives us the function vh = ∂h
nu∗h(t),

that depends on (y0
h, y1

h) and satisfies (5.1). Recall that u∗h solves (5.3) with final state
(u0,∗

h , u1,∗
h ) ∈ V h × V h minimizing the function Jh.

Moreover, as a consequence of the observability inequality (3.6), we have

‖u0,∗
h ‖1,h + ‖u1,∗

h ‖0,h ≤ C(T )‖∂h
nu∗h‖L2((0,T )×Γ0h) ≤ C(T )(‖y1

h‖0,h + ‖y0
h‖−1,h) ≤ C(T ).

In these conditions, Proposition 6.1 guarantees the existence of a function u∗ that solves (1.3)
and, in addition,

Ph
0,Γvh(t) = Ph

0,Γ(∂h
nu∗h) ⇀ ∂nu∗ weakly in L2((0, T )× Γ0) as h → 0.

Step II. Weak convergence of yh. Let us now consider equation (1.5) with initial data
(y0

h, y1
h) and vh as above. Then for any solution uh of the adjoint problem (5.3), the following

holds for all 0 < s < T :

(7.4)
∫ s

0

∫

Γ0h

vh(t)∂h
nuh(t)dΓ0hdt + 〈(yh, y′h), (uh, u′h)〉h

∣∣∣
s

0
= 0.

Thus, in view of the direct inequality (2.10) and the conservation of the energy applied to
uh, we get, for any s < T , that

|〈(yh(s), y′h(s)), (u0
h, u1

h)〉h| ≤ |〈(y0
h, y1

h), (uh(0), u′h(0))〉h|
+‖vh‖L2((0,T )×Γ0h)‖∂h

nuh‖L2((0,T )×Γ0h)

≤ C(T )(‖y0
h‖0,h + ‖y1

h‖−1,h)(‖u0
h‖1,h + ‖u1

h‖0,h).

This means that for any 0 ≤ s ≤ T the following holds:

(7.5) ‖yh(s)‖0,h + ‖y′h(s)‖−1,h ≤ C.

Using this estimate we claim the existence of a positive constant such that

(7.6)




‖P0

hyh‖L∞([0,T ], L2(Ω)) ≤ C,

‖P0
hy′h‖L∞([0,T ], H−1(Ω)) ≤ C

and

(7.7)





‖P−1
h yh‖L∞([0,T ], L2(Ω)) ≤ C,

‖P−1
h y′h‖L∞([0,T ], H−1(Ω)) ≤ C,

‖P−1
h y′′h‖L2([0,T ], H−2(Ω)) ≤ C.

The first four properties follow by the definition of the interpolators and property (7.5).
The last estimate follows by using that yh solves the discrete wave equation:

‖P−1
h y′′h‖L∞([0,T ], H−2(Ω)) := ‖(−∆)P1

h(−∆h)−1y′′h‖L2([0,T ], H−2(Ω))

≤ ‖(−∆h)−1y′′h‖L2([0,T ], L2(Ω))

≤ ‖yh‖L2([0,T ], L2(Ω)) + ‖yh‖L2([0,T ], L2(Γh))

≤ C + ‖vh‖L2([0,T ], L2(Γ0h)) ≤ 2C.

Lemma 6.1 gives us that

‖P0
hyh −P−1

h yh‖L2([0,T ], H−1(Ω)) ≤ hT‖yh‖0,h → 0
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as h → 0. Using estimates (7.6) and (7.7) we obtain the existence of a function y ∈
W 1,∞((0, T ),H−1(Ω)) such that, up to a subsequence,

(7.8)





P0
hyh ⇀ y in H1(0, T ),H−1(Ω)),

P−1
h y′h ⇀ y′ in L2(0, T ),H−1(Ω)).

Estimates (7.6) show that (see [27], Corollary 1), up to a subsequence, P0
hyh ⇀ y in

C([0, T ], H−1(Ω)). In particular P0
hyh(0) → y(0) in H−1(Ω). Using that P0

hyh(0) is uniformly
bounded in L2(Ω) we get P0

hyh(0) ⇀ y(0) in L2(Ω) and, by (7.1), we obtain y(0) = y0.
The last two estimates of (7.7) show that (see [27], Corollary 1), up to a subsequence,

P−1
h y′h → y′ strongly in C([0, T ], H−2(Ω)). In particular P−1

h y′h(0) → y′(0) in H−2(Ω)).
Using that P−1

h y′h(0) is uniformly bounded in H−1(Ω) we get P−1
h y′h(0) ⇀ y′(0) in H−1(Ω)

and, by (7.1), we obtain y′(0) = y1.
Let us choose (u0, u1) ∈ H1

0 (Ω) × L2(Ω) as final state in the adjoint equation (7.2). We
choose (u0

h, u1
h) in the adjoint discrete system (5.3) such that P1

hu0
h → u0 in H1

0 (Ω) and
P0

hu1
h → u1 in L2(Ω). In view of Proposition 6.1 we have the following strong convergence

properties

(7.9)

{
P1

huh → u in L2([0, T ], H1
0 (Ω)),

P0
hu′h → u′ in L2([0, T ], L2(Ω)),

where u is the solution of equation (1.3) with final states (u0, u1).
We write (7.4) as follows

∫ s

0

∫

Γ0

Ph
0,ΓvhPh

0,Γ(∂h
nuh)dσdt + 〈(P0

hyh,P−1
h y′h), (P1

huh,P0
hu′h)〉

∣∣∣
s

0
= 0.

Using that P0
hyh ⇀ y weakly in L2((0, T ), L2(Ω)) and P−1

h y′h ⇀ y′ weakly in L2((0, T ), H−1(Ω))
and letting h → 0 we obtain∫ s

0

∫

Γ0

∂nu∗∂nudσdt + 〈(y, y′), (u, u′)〉h
∣∣∣
s

0
= 0, ∀ s < T,

where u is solution of problem (7.2) with final state (u0, u1). Thus y is a solution by trans-
position of (1.1) with control v = ∂nu∗.

Step III. Final time control requirement. We prove that (1.2) holds. We consider the
case of y(T ) the other case being similar. Since (yh(T ), wh)h = 0 for all functions wh ∈ V h

we obtain that ∫

Ω
P0

hyh(T )P0
hwhdx = 0 for all h > 0.

Using that P0
hyh(T ) → y(T ) strongly in L2(Ω) and that P0

h(V h) is dense in L2(Ω) we get
∫

Ω
y(T )wdx = 0

for all functions w ∈ L2(Ω). Thus y(T ) ≡ 0.
Finally, using the uniqueness results for problem (1.1) we obtain that the control v obtained

before satisfies v = ∂nu∗ where u∗ is the solution of problem (7.2) with final state (u∗,0, u∗,1)
minimizing functional (7.3).

¤
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8. Concluding remarks

In this article we have developed a quite systematic approach to prove the convergence of the
controls obtained by two-grid methods. The key ingredient is to use the dyadic decomposition
argument to reduce the problem of observability to that of dealing with low frequency solutions
in which the high frequency components have been filtered. The method we propose works
on regular meshes, both for finite differences and finite elements and can be also adapted to
fully discrete approximation schemes.

In the following we comment about how it can be used or improved and what are its
limitations.

• Other models. The proof of the observability for filtered solutions has been the ob-
ject of several works, not only for the wave equation [11], [28], but also for Schrödinger
equations [18] and beam equations [14], among others. The method we have used here
can be applied to these conservative systems too.

• Other control mechanisms. This article has been devoted to the problem of bound-
ary observability. But, in fact, the method we develop applies in a much more general
context, and, in particular, in the problem of internal observability for which the
measurement on solutions is done in an open subset ω of the domain Ω.

• Control of nonlinear wave equations. In the case of nonlinear problems in dimen-
sion one, in [30] the convergence of the two-grid algorithm was proved for semilinear
wave equations with globally Lipschitz nonlinearities. The combination of the meth-
ods of this paper and [30] yield the same result in the multidimensional case too.

• Fully discrete schemes. In this article we have analyzed semidiscrete models but
the same analysis of uniform observability could be performed on fully discrete dis-
cretizations of the wave equation. In the one dimensional case these models have been
studied in [21] under a special assumption on the time and space steps ∆t = ∆x and
in [23] for general meshes using discrete versions of Ingham’s inequalities. Combin-
ing our techniques with those of [23] the same results of the convergence of two-grid
methods can be proved for fully discrete approximation schemes.

• More general meshes. However, the method presented here has its limitations.
We used intensively Fourier analysis techniques, which is not available for irregular
meshes, that require of further developments.

• Meshes with ratio m/n. The two-grid method we proposed here had a mesh-ratio
of the form 1/p. One could expect the uniform observability to hold in 1-d for any
mesh-ratio m/n < 1, in the multidimensional case, when m/n < 1/2. The only
difficulty for doing that is to prove a result similar to Lemma 3.1 for all the functions
in the image of Πn/mh

h Gh. As far as we know, these are open problems.
• Other boundary conditions. In the proof we use the so-called direct inequality

whose analogue fails for other closely related problems, as the boundary control of the
wave equation with Neumann boundary conditions.

• Spectral conditions for observability. In recent works Tucsnak [25], Miller [20]
(see also Russell and Weiss [26]), the authors give a spectral condition which guar-
antees the observability for infinite dimensional conservative systems. This type of
condition generalize the Hautus test for finite dimensional systems to infinitely dimen-
sional ones. It would be interesting to see if these spectral methods can be adapted in
order to guarantee uniform observability results for numerical methods based on the
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two-grid method. The main difficulty in applying these results is due to the fact that
the space V h of two-grid data is not invariant under the semidiscrete wave flow.

Appendix A. Proof of Lemma 4.1

In this Appendix we prove Lemma 4.1. The main ingredient is the following lemma inspired
in ideas of [12], [2] and adapted to our context. In the sequel X denotes the space Lp(Ω, dµ),
where µ is a Borel measure and µ(Ω) < ∞.

Lemma A.1. Let be c > 1, T > 0, P ∈ C∞
c (R) and (Pk)k≥0 as in (4.1). Also let ϕ ∈

C∞
0 (0, T ) and ψ ∈ L∞(R) be satisfying ψ ≡ 1 on (0, T ). There exists a positive constant

C = C(T, ϕ, ψ, P ) such that

(A.1)
∫

R
‖ϕ(t)Pk(w)(t)‖2

Xdt ≤ 2
∫

R
‖ϕ(t)Pk(ψw)(t)‖2

Xdt + Cc−2k sup
l∈Z

‖w‖2
L2((lT,(l+1)T ), X)

holds for all w ∈ L2
loc(R, X) and for all k ≥ 0.

Proof of Lemma A.1. We denote Il = [lT, (l +1)T ) and wl = 1Il
w. We claim the existence of

a positive constant C(P ) such that for all ϕ ∈ C∞
0 (R) and l ∈ Z with dist(Il, supp(ϕ)) > 0

the following holds:

(A.2) sup
t∈[0,T ]

‖ϕ(t)Pk(wl)‖X ≤ C(P )T 1/2c−k

dist(Il, supp(ϕ))2
‖ϕ‖L∞(R) sup

l∈Z
‖wl‖L2(R,X),

uniformly for all k ≥ 0.
Using estimate (A.2) we will prove the existence of a positive constant C = C(T, ϕ, ψ, P )

such that

(A.3) sup
t∈[0,T ]

‖ϕ(t)(Pk(w)− Pk(ψw))(t)‖X ≤ Cc−k sup
l∈Z

‖wl‖L2(R, X).

Then, (A.1) will be a consequence of Minkowsky’s and Cauchy’s inequality:
∫

R
‖ϕ(t)Pk(w)(t)‖2

Xdt ≤ 2
∫

R
‖ϕ(t)Pk(ψw)(t)‖2

Xdt + 2
∫

R
‖ϕ(t)Pk(w − ψw)(t)‖2

Xdt

≤ 2
∫

R
‖ϕ(t)Pk(ψw)(t)‖2

Xdt + 2T sup
t∈[0,T ]

‖ϕ(t)(Pk(w − ψw))(t)‖2
X

≤ 2
∫

R
‖ϕ(t)Pk(ψw)(t)‖2

Xdt + Cc−k sup
l∈Z

‖wl‖2
L2(R, X).

Step I. Proof of (A.2). The definition of the projector Pk and integration by parts give
us

ϕ(t)Pk(wl)(t) =
∫

Rτ

∫

Rs

eiτ(t−s)P (c−kτ)ϕ(t)wl(s)dsdτ

=
∫

Rτ

∫

Rs

eiτ(t−s)i2∂2
τ [P (c−kτ)]

ϕ(t)wl(s)
(t− s)2

dsdτ.
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Thus, for any t in the support of ϕ we have dist(supp(ϕ), Il) > 0 and by Minkowsky’s
inequality yields

‖ϕ(t)Pk(wl)(t)‖X ≤ c−2k‖ϕ‖L∞(R)

∫

Rτ

|(∂2
τ P )(c−kτ)|dτ

∫

Il

‖wl(s)‖X

(t− s)2
ds

≤ c−k‖ϕ‖L∞(R)

(dist(supp(ϕ), Il))2

∫

Rτ

|(∂2
τ P )(τ)|dτ

∫

Il

‖wl(s)‖Xds.

≤ T 1/2c−k‖ϕ‖L∞(R)

(dist(supp(ϕ), Il))2

∫

Rτ

|(∂2
τ P )(τ)|dτ

(∫

Il

‖wl(s)‖2
Xds

)1/2

.

Step II. Proof of (A.3). Observe that on I0, w ≡ wψ. This yields the following
decomposition of the difference Pk(w)− Pk(ψw):

(A.4) Pk(w)− Pk(ψw) =
∑

|l|≥1

Pk(wl − (ψw)l) =
∑

|l|≥1

Pk(bl),

with bl = wl − (ψw)l. Let us choose δ > 0 such that ϕ is supported on (δ, T − δ). Thus
for all |l| ≥ 2, the function bl satisfies dist(supp(ϕ), Il) ≥ T (|l| − 1). Also, for |l| = 1:
dist(supp(ϕ), Il) ≥ δ. By (A.2) we obtain

(A.5) sup
t∈R

‖ϕ(t)Pk(bl)(t)‖X ≤ C(P )T 1/2c−k‖ϕ‖L∞(R) sup
l∈Z

‖bl‖L2(R, X)





1
T 2(|l|−1)2

, |l| ≥ 2,

1
δ2 , |l| = 1.

By (A.4) and (A.5) we obtain the existence of a constant C = C(T, ϕ, ψ, P ) such that for
any t ∈ [0, T ] the following holds

‖ϕ(t)[Pk(w)− Pk(ψw)]‖X ≤
∑

|l|≥1

‖ϕ(t)Pk(bl)‖X ≤ Cc−k sup
l∈Z

‖bl‖L2(R, X)

≤ Cc−k sup
l∈Z

‖w‖L2(R, X).

The proof is now complete. ¤
Proof of Lemma 4.1. Let us choose a function ϕ ∈ C∞

0 (0, T ) such that |ϕ| ≤ 1 and ϕ ≡ 1 on
[2δ, T − 2δ]. Applying Lemma A.1 to the function w and ψ = 1(0,T ), we obtain the existence
of a positive constant C(δ, T, P ) such that

∫ T−2δ

2δ
‖Pkw‖2

Xdt ≤
∫

R
ϕ2‖Pk(w)‖2

Xdt

≤ 2
∫

R
ϕ2‖Pk(ψw)‖2

Xdt +
C(δ, T, P )

c2k
sup
l∈Z

‖w‖2
L2((lT,(l+1)T ),X).

Summing all these inequalities we get
∑

k≥k0

∫ T−2δ

2δ
‖Pkw‖2

Xdt ≤ 2
∑

k≥k0

∫

R
ϕ2‖Pk(ψw)‖2

Xdt +
C(δ, T, P )

c2k0
sup
l∈Z

‖w‖2
L2((lT,(l+1)T ),X).

In the following we prove the existence of a positive constant C(P, c) such that
∑

k≥0

∫

R
ϕ2‖Pk(ψw)‖2

Xdt ≤ C(P, c)
∫ T

0
‖w(t)‖2

Xdt.
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Observe that any real number τ belongs either to a finite number of intervals of the form
(±ack,±bck) or to none of them. Then there is a positive constant C(P, c) such that

(A.6) sup
τ∈R

∑

k≥0

P 2(c−kτ) ≤ C(P, c).

Applying Plancherel’s identity in the time variable we obtain
∑

k≥0

∫

R
ϕ2(t)‖Pk(ψw)(t)‖2

Xdt ≤ ‖ϕ‖2
L∞(R)

∑

k≥0

∫

R
‖Pk(ψw)(t)‖2

Xdt

= ‖ϕ‖2
L∞(R)

∑

k≥0

∫

R
P 2(c−kτ)‖ψ̂w(τ)‖2

Xdτ

≤ ‖ϕ‖2
L∞(R) sup

τ∈R

∑

k≥0

P 2(c−kτ)
∫

R
‖ψ̂w(τ)‖2

Xdτ

≤ C(P, c)‖ϕ‖2
L∞(R)

∫

R
‖(ψw)(t)‖2

Xdt = C(P, c)‖ϕ‖2
L∞(R)

∫ T

0
‖w(t)‖2

Xdt.

¤

Appendix B. Spectral analysis of V h-functions

In this Section we analyze the Hs
h(Ωh)-norms of the functions belonging to V h, i.e. the

space of functions defined on the fine grid as a linear interpolation of the functions defined
on the coarse one, and we prove Lemma 3.1. We will consider periodic discrete functions
defined on the grid x0 = 0, x1 = h, · · · = x2N+1 = (2N + 1)h = 2 instead of vanishing at the
boundary, but all the results also apply to this case.

We first obtain in the following Lemma a description of the Fourier coefficients v̂(j) of a
periodic function v ∈ V h and then prove Lemma 3.1.

Lemma B.1. Let p ≥ 2, N, Ñ positive integers such that 2N = pÑ , h = 2/(2N + 1) and the
discrete function v(pk), k ∈ ΛÑ . Then the discrete function u(k), k ∈ Λ2N , obtained from
the linear interpolation of v, u = P1

hv, has the Fourier coefficients satisfying

û(j) = ei(p−1)(j1h+···+jlh)π
d∏

l=1

(
p−1

p−1∑

k=0

eikπjkh
)2

v̂(j), j = (j1, . . . , jd).

In particular for any j

(B.1) |û(j)| ' p−2d|v̂(j)|
d∏

r=1

∣∣∣∣
e−ipπjrh − 1
e−iπjrh − 1

∣∣∣∣
2

.

Proof. We will analyze the one-dimensional case. Iterating the same argument in each space
direction the same holds in several space dimensions. In this case, we write in an explicit
manner the function u:

u(kp + j) =
(p− j)v(kp) + jv((k + 1)p)

p
, k = 0, . . . , Ñ − 1, j = 0, . . . , p− 1.
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Figure 7. The multiplicative factors generated by the two-grid algorithm
with mesh-sizes ratio 1/2, 1/3, 1/4, 1/6 respectively.

The k-th Fourier coefficient of u is given by

û(j) = h
2N∑

k=0

uje
−iπjkh, k = −N, . . . , N.

Explicit computation give us:

û(j) = h

Ñ−1∑

k=0

p−1∑

r=0

e−iπj(kp+r)hu(kp + r) = h

Ñ−1∑

k=0

p−1∑

r=0

e−iπj(kp+r)h (p− r)v(kp) + rv((k + 1)p)
p

=
h

p

Ñ−1∑

k=0

e−iπjkphv(kp)
( p−1∑

r=0

e−2iπjrh(p− r) +
p−1∑

r=0

eiπj(p−r)hr
)

= v̂(j)eiπ(p−1)h
(
p−1

p−1∑

r=0

e−iπjrh
)2

.

In particular

|û(j)| ' p−2|v̂(j)|
∣∣∣∣
e−ipjπh − 1
e−iπjh − 1

∣∣∣∣
2

.

¤
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Proof of Lemma 3.1. Using that for any j with ‖j‖∞ ≤ N/p we have

p−2d
d∏

r=1

∣∣∣∣
e−ipπjrh − 1
e−iπjrh − 1

∣∣∣∣
2

' 1

we get
‖Υ1/p

h u‖2
Hs

h
'

∑

‖j‖∞≤N/p

λ2s
j |v̂(j)|2.

We split the Hs
h norm of u as follows:

‖u‖2
Hs

h
=

∑

‖j‖∞≤N

λ2s
j (h)p−4d

d∏

r=1

∣∣∣∣
exp(−ipπjrh)− 1
exp(−iπjrh)− 1

∣∣∣∣
4

|v̂(j)|2

≤ p−4d
∑

‖j‖∞≤N/p

λ2s
j (h)|v̂(j)|2 + p−4d

∑

N/p≤‖j‖∞≤N

λ2s
j (h)

d∏

r=1

∣∣∣∣
exp(−ipπjrh)− 1
exp(−iπjrh)− 1

∣∣∣∣
4

|v̂(j)|2

≤ c(p, d)
∑

‖j‖∞≤N/p

λ2s
j (h)|v̂(j)|2 + c(p, d)h−2s

∑

N/p≤‖j‖∞≤N

d∏

r=1

∣∣∣∣
exp(−ipπjrh)− 1
exp(−iπjrh)− 1

∣∣∣∣
4

|v̂(j)|2

≤ c(p, d)(I1 + I2).

We prove that for any j with N/p ≤ ‖j‖∞ ≤ N the following holds:
d∏

r=1

∣∣∣∣
exp(−ipπjrh)− 1
exp(−iπjrh)− 1

∣∣∣∣
4

≤
d∑

r=1

| exp(−ipπjrh)− 1|2s.

Let us suppose that j1 = ‖j‖∞ ≥ N/p. Thus | exp(−iπj1h)− 1| ≥ c0 > 0 with c0 independent
of h. Using that the following inequality∣∣∣∣

e−ipξ − 1
e−iξ − 1

∣∣∣∣ ≤ p

holds for any ξ ∈ (−π, π), we obtain that
d∏

r=1

∣∣∣∣
exp(−ipπjrh)− 1
exp(−iπjrh)− 1

∣∣∣∣
4

≤ pd−1

∣∣∣∣
exp(−ipπj1h)− 1
exp(−iπj1h)− 1

∣∣∣∣
4

≤ c(p, d)| exp(−ipπj1h)− 1|4

≤ c(p, d, s)| exp(−ipπj1h)− 1|2s

provided that s ≤ 2.
Then, using the periodicity of the coefficients v̂(j) and of exp(−ipπjrh), we get

I2 ≤ c(p, d, s)
∑

N/p≤‖j‖∞≤N

|v̂(j)|2
d∑

r=1

∣∣∣∣
exp(−ipπjrh)− 1

h

∣∣∣∣
2s

= (pd − 1)c(p, d, s)
∑

‖j‖∞≤N/p

|v̂(j)|2
d∑

r=1

∣∣∣∣
exp(−ipπjrh)− 1

h

∣∣∣∣
2s

≤ c(p, d, s)
∑

‖j‖∞≤N/p

|v̂(j)|2
d∑

r=1

∣∣∣∣
exp(−iπjrh)− 1

h

∣∣∣∣
2s

≤ c(p, d, s)
∑

‖j‖∞≤N/p

λ2s
j |v̂(j)|2.
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The proof is now complete. ¤
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