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Abstract. Adapting a method developed for the study of quantum chaos on quantum

(metric) graphs [1], spectral ζ functions and trace formulae for discrete Laplacians on

graphs are derived. This is achieved by expressing the spectral secular equation in

terms of the periodic orbits of the graph, and obtaining functions which belongs to the

class of ζ functions proposed originally by Ihara [2], and expanded by subsequent

authors [3, 4]. Finally, a model of “classical dynamics” on the discrete graph is

proposed. It is analogous to the corresponding classical dynamics derived for quantum

graphs [1].

1. Introduction and preliminaries

Some ten years ago quantum (metric) graphs were proposed as a convenient paradigm

for the study of quantum chaos in compact [1] and scattering [5] systems. The

crucial point which highlighted the close similarity between metric graphs - whose only

claim to complexity is their topology - and chaotic Hamiltonian flows is the formal

similarity between the trace formulae [6, 7] which express the spectral densities as

sums over periodic orbits. Requiring additionally that the lengths of the bonds are

rationally independent, and that the graph is well connected, render the spectrum of
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the Schrödinger operator on graphs sufficiently disordered to display spectral statistics

which are consistent with the predictions of Random Matrix Theory. Another important

contact point was the identification of the classical dynamics on the graph, which is

derived from the quantum evolution, and which describes, under certain conditions, an

exponential approach to equilibrium, in analogy with mixing Hamiltonian flows. The

ζ function for the Peron-Frobenius operator on the graph, can be written in terms

of the same periodic orbits which are used for the quantum spectral ζ function - in

close similarity with the expansion of the Ruelle ζ function as a sum over periodic

orbits for chaotic Hamiltonian flows. The derivation of the trace formula for quantum

graphs which was presented in [1] differs from the original method [6]. It uses another

approach (called sometimes the “scattering approach”), which reveals in a natural way

the underlying classical dynamics.

Discrete graphs, where only the graph topology and not its metric plays a rôle

are mostly studied in number theory, combinatorics etc. There is abundant literature

relating to various aspects of graphs. Much of the relevant material to the present

discussion can be found in [8, 9]. Audrey Terras’ review [10] surveys the field, and

its relation to quantum chaos. The present work attempts to highlight further this

quantum chaos connection, by proposing trace formulae and spectral ζ functions, and

linking them with the Ihara ζ function [2] and some of its recent generalizations. To

introduce these concepts, a few preliminaries and definitions are necessary, and they are

provided below.

A graph G consists of V vertices connected by B bonds. The V × V connectivity

(or adjacency) matrix C is defined such that Ci,j = 1(0) if the vertices i, j are connected

(disconnected). Graphs with parallel bonds or loops are excluded. The valency (some

times referred to as the degree) of a vertex is the number of bonds which emanate from

a vertex. It is denoted by vi =
∑V

j=1 Ci,j. To any bond b = (i, j) one can assign an

arbitrary direction, resulting in two directed bonds, d = (i, j) and d̂ = (j, i). Thus,

the graph can be viewed as V vertices connected by bonds b = 1, · · · , B or by 2B
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directed bonds d = 1, · · · , 2B. (The notation b for bonds and d for directed bonds will

be kept throughout). It is convenient to associate with each directed bond d = (j, i)

its origin o(d) = i and terminus t(d) = j so that d points from the vertex i to the

vertex j. The bond d′ follows d if t(d) = o(d′). A periodic orbit (cycle) of length n is a

sequence of n successively following directed bonds d1, · · · , dn and d1 follows dn. Cyclic

permutations of the bonds generate the same periodic orbit. A primitive periodic orbit

is an orbit which cannot be written as a repetition of a shorter periodic orbit. The set of

primitive n-periodic orbits will be denoted by P(n), and P =
⋃∞

n=2P(n). An important

subset of P(n) is the set of n primitive periodic orbits without back-scatter, namely,

periodic orbits where di+1 6= d̂i. The corresponding sets will be denoted by C(n) and

C =
⋃∞

n=2 C(n).

The Laplacian of a discrete graph is defined as

L ≡ −C + D, (1)

where C is the connectivity matrix, and D is a diagonal matrix with Di,i = vi. It is

a self-adjoint operator whose spectrum consists of V non negative real numbers. The

spectrum is determined as the zeros of the secular function (characteristic polynomial)

ZL(λ) ≡ det(λI(V ) − L) . (2)

Here, λ is the spectral parameter and I(V ) is the unit matrix in V dimensions. The

lowest eigenvalue is 0, and it is simple if and only if the graph is connected.

It is sometimes convenient to generalize the Laplacian (1) by replacing the matrix

C by a matrix C̃ whose zero entries coincide with those of C, but arbitrary, strictly

positive weights wi,j (= wj,i) replace the values 1 where Ci,j = 1. One then defines

D̃i,i ≡ ui =
∑

j C̃i,j and the generalized Laplacian is

L̃ ≡ −C̃ + D̃. (3)

The spectrum of L̃ consists of the zeros of the secular equation (characteristic

polynomial) ZL̃(λ) ≡ det(λI(V )−L̃). The spectrum is non negative, 0 is in the spectrum

and it is a simple eigenvalue if and only if the graph is connected.
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The focus of the present work is on ζ functions and trace formulae for discrete

graphs. This research subject was initiated by Ihara [2] who defined a ζ function for a

graph as

ζ(u)−1 ≡
∏
n

(1− un)|C(n)| , (4)

where |C(n)| is the cardinality of the set C(n), and u ∈ C with |u| sufficiently small to

ensure the convergence of the infinite product. Following Ihara’s original work, several

authors (see e.g., [11] for a survey of the methods) have proved that

ζ(u)−1 = (1− u2)r−1 det(I(V ) − uC + u2Q) . (5)

Here, r ≡ B − V + 1 is the rank of the graph (the number of independent cycles on

the graph or equivalently, the rank of its fundamental group). I(V ) is the unit matrix

in V dimensions, C is the connectivity matrix, and the diagonal matrix Q ≡ D − I(V ).

If the graph is v-regular, that is vi = v ∀i, the non trivial poles of the Ihara ζ (the

trivial poles are at u = ±1) can be easily computed from the eigenvalues of the graph

Laplacian (1).

The following ζ function defined by H.M. Stark [12] will serve as an example of the

more recent developments in the field. Consider a matrix Y in the space of directed

bonds

Yd′,d ≡ ηd′,d δo(d′),t(d) (1− δd′,d̂). (6)

where ηd′,d are arbitrary. Note that matrix elements between reversed bonds are

excluded. Associate with any primitive periodic orbit c ∈ C the amplitude

fc ≡ ηdn,dn−1 ηdn−1,dn−2 , · · · ηd2,d1 ηd1,dn . (7)

Then,

ζE(Y )−1 ≡
∏
c∈C

(1− fc) = det(I(2B) − Y ), (8)

where I(2B) is the unit matrix in 2B dimensions. This result will be used in the last

section.
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In the next section, other ζ functions are defined, discussed, and expressed as

rational functions which are reminiscent of (5) and (8), but are different in many

respects. Trace formulae for the spectra of the Laplacians (1,3) will also be derived.

In the last section, the approach developed here will be compared with its analogues in

the theory of quantum graphs, and the “classical dynamics” on the discrete graph will

be proposed.

2. Secular functions, ζ functions and trace formulae

To start, an alternative form of the secular equations for the Laplacians (1,3) will be

derived. It is convenient to begin with a detailed derivation for the traditional Laplacian

(1). The necessary modifications for the generalized form will be indicated later. For

both Laplacians, the secular function will be shown to take the form

ZS(λ) =
1

2B
(det U(λ))−

1
2 det

(
I(2B) − U(λ)

)
(9)

where U(λ) is a unitary matrix of dimension 2B which depends on the spectral parameter

λ. By construction, ZS(λ) is real for λ ∈ R, and its zeros will be shown to coincide

(with their multiplicity) with the spectrum of the Laplacian. Thus ZS(λ) and ZL(λ) can

differ at most by a multiplicative function of λ which does not vanish for real λ. This

construction of the secular function paraphrases the “scattering approach” introduced

in [1] for quantum graphs. (Derivations which are similar in spirit were discussed in

[13, 14, 15], see also [16] and references cited therein).

To compute an eigenvector ψ = (ψ1, · · · , ψV ) of L, corresponding to an eigenvalue

λ, the following steps are taken. To each bond b = (i, j) one associates a bond wave

function

ψb(x) = ab ei π
4
x + ab̂ e−i π

4
x , x ∈ {±1} (10)

subject to the condition

ψb(1) = ψi , ψb(−1) = ψj . (11)
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Consider any vertex indexed by i, and the bonds (b1, b2, ...bvi
) which emanate from i.

The corresponding bond wave functions have to satisfy three requirements in order to

form a proper eigenvector of L.

I. Uniqueness: The value of the eigenvector at the vertex i, ψi, computed in terms of

the bond wave functions is the same for all the bonds emanating from i. The following

vi − 1 independent equalities express this requirement.

ab1 ei π
4 + ab̂1

e−i π
4 = ab2 ei π

4 + ab̂2
e−i π

4 = · · · = abvi
ei π

4 + ab̂vi
e−i π

4 . (12)

II. ψ is an eigenvector of L : At the vertex i,
∑vi

j=1 Li,jψj = λψi. In terms of the bond

wave functions this reads,

−
vi∑

l=1

[
abl

e−i π
4 + ab̂l

e+i π
4

]
= (λ− vi)

1

vi

vi∑
m=1

[
abm ei π

4 + ab̂m
e−i π

4

]
. (13)

To get the equation above, ψi was presented as

ψi =
1

vi

vi∑
j=1

(
abj

ei π
4 + ab̂j

e−i π
4

)
. (14)

Together, (12) and (13) provide vi homogeneous linear relations between the 2vi

coefficients ad, where d stand for directed bonds which are either incoming to (t(d) = i)

or outgoing from (o(d) = i) the vertex i. Using these equations, the outgoing coefficients

are expressed in terms of the incoming ones,

ad =
∑

d′ : t(d′)=i

σ
(i)
d,d′(λ) ad′ ∀ d : o(d) = i , (15)

where,

σ
(i)
d,d′(λ) = i

(
δd̂,d′ −

2

vi

1

1− i(1− λ
vi

)

)
= i

(
δd̂,d′ −

1

vi

(1 + eiαi(λ))

)

eiαi(λ) =
1 + i(1− λ

vi
)

1− i(1− λ
vi

)
. (16)

The vertex scattering matrices σ(i)(λ) are the main building blocks of the present

approach. They distinguish clearly between back-scatter transitions (d̂ = d′) and the

transitions to other bonds, for which the same strength is given, independently of the

original and the final bonds. A straight forward computation shows that for real λ the
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vertex scattering matrices are unitary matrices. They are the discrete analogues of the

vertex scattering matrices derived for the Schrödinger equation on graphs [1].

III. Consistency : The linear relation between the incoming and the outgoing coefficients

(15) must be satisfied simultaneously at all the vertices. However, a directed bond (i, j)

when observed from the vertex j is outgoing, while when observed from i it is incoming.

This consistency requirement is implemented by introducing the Evolution Operator

Ud′.d(λ) in the 2B dimensional space of directed bonds,

Ud′,d(λ) = δt(d),o(d′) σ
(t(d))
d′,d (λ) . (17)

(U is also referred to in the literature as the Bond Scattering Matrix [1]). The evolution

operator is unitary U U † = I(2B) for λ ∈ R due to the unitarity of its constituents σ(i).

Denoting by a the 2B dimensional vector of the directed bonds coefficients ad defined

above, the consistency requirement reduces to,

U(λ) a = a . (18)

This can be satisfied only for those values of λ for which

ξ(λ) ≡ det
(
I(2B) − U(λ)

)
= 0 . (19)

For real λ the spectrum of U(λ) is restricted to the unit circle. Therefore |ξ(λ)| is finite

for all λ ∈ R. Due to (16) the matrix elements of U(λ) are ratios of monomials in λ.

These two properties imply that ξ(λ) = p(λ)/q(λ) where p and q are polynomials of

the same degree in λ, and their degree is at most 2B. The zeros of q(λ) coincide with

the poles of det U(λ). They are complex because | det U(λ)| = 1 for λ ∈ R. A straight

forward computation yields,

det U(λ) =
V∏

j=1

1 + i(1− λ
vj

)

1− i(1− λ
vj

)
, ⇒ q(λ) = Const

V∏
j=1

(
1− i(1− λ

vj

)

)
. (20)

Thus, det U has exactly V complex poles, implying that the degree of p(λ) which equals

the degree of q(λ) is also V . Note finally that the zeros of p(λ) coincide with the zeros

of the secular function ZL(λ) = det(λI(V ) − L) which is also a polynomial of degree

V . Hence, p(λ) and ZL(λ) are identical up to a constant factor. It is convenient to
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define the secular equation so that it is real on the real axis. This can be achieved

by multiplying ξ(λ) by (det U(λ))−
1
2 . A further factor of 2−B normalizes the resulting

function to approach 1 as |λ| → ∞. The resulting secular equation reads

ZS(λ) =
1

2B
(det U(λ))−

1
2 det

(
I(2B) − U(λ)

)
(21)

=
1

2B

V∏
j=1

(
1 + i(1− λ

vj
)

1− i(1− λ
vj

)

) 1
2

p(λ)

q(λ)
=

det (λI(V ) − L)∏V
j=1(v

2
j + (vj − λ)2)

1
2

.

This expression for the secular equation is the basis for the further results of the present

work. To begin, use is made of the fact that the spectrum of U(λ) for Im(λ) < 0 is

confined to the interior of the unit circle. Thus, for for any λ with an arbitrarily small

(but finite) negative imaginary part, we expand

log det(I(2B) − U(λ)) = −
∞∑

n=1

1

n
trUn(λ) , (22)

and

trUn(λ) =
∑

m:m|n
m

∑

p∈P(m)

ap(λ) . (23)

The sum above is over all the primitive periodic orbits p with period m which is a divisor

of n, p = d1, · · · , dm and

ap(λ) = σd1,dm(λ) · · · σd2,d1(λ) . (24)

The explicit dependence of ap(λ) on λ is obtained from the following expressions for the

vertex scattering matrix elements,

σd′,d =





[
4

v2
j +(vj−λ)2

] 1
2

e
i[arctan(1− λ

vj
)]/2

for d′ 6= d̂ ,
[
1− 4(vj−1)

[v2
j +(vj−λ)2]

] 1
2
e
−i arctan

2(vj−λ)

(vj−1)2+(vj−λ)2−1 for d′ = d̂ ,

(25)

where j = t(d) = o(d′). The explicit expressions above were written so that for real λ

the absolute square of the ap is a product of “transition probabilities”, while the phase of

ap is a sum which plays the rôle of the “action” or “length” associated with the periodic

orbit. Substituting (23) in (22), and summing over the repetition numbers n
m

one gets,

det(I(2B) − U(λ)) =
∏
p∈P

(1− ap(λ)) . (26)
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The ζ function which is introduced in the present work is defined as

ζS(λ)−1 =
∏
p∈P

(1− ap(λ)) . (27)

Combining (22) and (26) with the definition of ζS(λ) gives

ζS(λ)−1 =
det(λI(V ) − L)∏V

j=1 (vj + i(vj − λ))
. (28)

This is one of the main results of the present work. It provides a “Ihara” - like identity

which expresses an infinite product over primitive periodic orbits on the graph in terms

of the characteristic polynomial of the graph discrete Laplacian. The main difference

is that here, all the periodic orbits, including orbits with back-scattering, contribute to

the product, and that the amplitudes ap depend on the spectral parameter in a more

complicated way. To get a closer look at the ζS function and its relation to the Ihara ζ

function, it is instructive to write ζS for a general v-regular graph. For this purpose, it

is convenient to define a new complex variable,

z =
1 + i(1− λ

v
)

1− i(1− λ
v
)

(29)

which is a 1 ↔ 1 map of R to the unit circle in C. With these simplifications, ζS(z) (28)

reduces to

ζS(z)−1 =

(
2z

z + 1

)V

det

(
C + iv

z − 1

z + 1
I(V )

)
. (30)

It is convenient to define γS(z) = z
V
2 ζS(z), in terms of which a functional equation for

ζS can be written as

γS(z−1) = (γS(z∗))∗ , (31)

where (·)∗ stands for complex conjugation. Functional equations of similar type

are satisfied also by the Ihara ζ function (for v-regular graphs) as well as by most

other functions of this genre. Typically, functional equations enable the analytical

continuation of ζ functions which are defined by infinite products, beyond their radius

of convergence. Here also it provides the analytic continuation of ζS(z) to the exterior

of the unit disc.
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The periodic amplitudes ap(z) simplify considerably for v-regular graphs. Denote

by np the period of the primitive periodic orbit p, and by βp the number of vertices in

p where back-scattering occurs: βp = ]
{

i : di = d̂i+1, di ∈ p, dnp+1 = d1

}
. Then,

ap(z) = e−i π
2
np

(
1 + z

v

)np−βp

(−1)βp

(
1− 1 + z

v

)βp

. (32)

The results above pave the way to the derivation of trace formulae for the discrete

Laplacians. Trace formulae provide a powerful tool in spectral theory. They express

the spectral density (written down formally as a sum of Dirac δ functions located at the

spectral set) in terms of information derived from the manifold metric. The spectral

density is written as a sum of two contributions - both of which have a geometric origin.

The first is a smooth function of λ whose asymptotic limit at λ →∞ was first studied

by Weyl. The second contribution is an infinite sum over periodic geodesics on the

manifold. The equality between the spectral density and its geometric representation

should be understood only in the sense of distributions. An analogous trace formula will

be derived now for the discrete Laplacian. Making use of Cauchy theorem and the fact

that ZS(λ) is analytic in the vicinity of the real λ axis, and real on it, one can write,

d(λ) =
V∑

j=1

δ(λ− λj) (33)

=
1

π
lim

ε→0+
Im

d

dλ
log ZS(λ− iε) . (34)

Using

ZS(λ) =
1

2B
(det U(λ))−

1
2 det

(
I(2B) − U(λ)

)
, (35)

the explicit form of det U(λ) (20) and the periodic orbit expansion (23), one gets,

d(λ) =
1

π

V∑
j=1

1

vj

1

1 + (1− λ
vj

)2
− 1

π
Im

d

dλ

∞∑
r=1

∑
p∈P

1

n(p)
|ap(λ)|reirφp(λ) . (36)

The first term is the “smooth” (Weyl) contribution to the spectral density. It consists of

a sum of Lorenzians with poles at λj = vj(1±i). The second term is an infinite sum over

periodic orbits analogous in structure to the ”fluctuating” contributions which appear
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in any trace formula of this kind. The fluctuating part can be written down explicitly

using (25). Noting that the ap(λ) are complex numbers with λ dependent phases φp(λ),

the periodic orbit sum in the trace formula is a fluctuating function of λ. It is the term

which turns the r.h.s. of (36) to a distribution when ε → 0.

So far, the discussion was restricted to the Laplacians (1). The extension to the

generalized Laplacians, starts by modifying the definition of the bond wave functions

(10) to read,

ψb =
√

wb(abe
i π
4
x + ab̂e

−i π
4
x) . (37)

Then, following the same steps as above, the vertex scattering matrices are derived, and

they take the form

σ̃
(i)
d,d′(λ) = i

(
δd̂,d′ −

1

ui

(1 + eiαi(λ) )
√

wdwd′

)
; eiαi(λ) =

1 + i(1− λ
ui

)

1− i(1− λ
ui

)
, (38)

where uj =
∑

j wi,j as defined previously. The subsequent derivation follows the same

steps, resulting in the generalized ζS function,

ζS̃(λ)−1 ≡
∏
p∈P

(1− ap(λ)) =
det(λI(V ) − L̃)∏V

j=1 (uj + i(uj − λ))
. (39)

A trace formula is also derived in the same way,

d(λ) =
V∑

j=1

δ(λ− λ̃j) =
1

π
lim

ε→0+
Im

d

dλ
log ZS̃(λ− iε) (40)

=
1

π

V∑
j=1

1

uj

1

1 + (1− λ
uj

)2
− 1

π
Im

d

dλ

∞∑
r=1

∑
p∈P

1

n(p)
|ap|r eirφp(λ)

The expressions for ap(λ) can be derived by a simple modification of (25) and therefore

they will not be written down here.

3. Classical dynamics

The present approach emerges from the alternative secular function for the spectrum

of Laplacians, based on the quantum evolution operator U(λ) in the space of directed

bond amplitudes a ∈ l2(C2B). Consider U(λ) as a quantum map which maps this 2B

dimensional space onto itself. U is unitary and hence the map conserves the l2 norm -
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the quantum probability. The condition U(λ)a = a can be interpreted as a requirement

that λn is an eigenvalue if there exists a non trivial vector a which is stationary under the

action of the quantum map [17]. The requirement of stationarity is naturally associated

with the eigenvalue being in the spectrum of the underlying Hamiltonian.

The building blocks for the theory are the vertex scattering matrices. Similar

matrices appear in the theory of quantum graphs. There, they emerge when the

Schrödinger equation on the graph is augmented by vertex boundary conditions which

render the resulting operator self adjoint. The self adjoint extension is not unique, and

depends the spectral parameter k and on an arbitrary parameter κ which interpolates

between the “Dirichlet” (κ = 0) and the “Neumann” (κ = ∞) boundary conditions

[1, 18]. The scattering matrices for discrete graphs are obtained from their quantum

graph analogues by replacing κ/k by λ.

The unitary quantum evolution operator is the starting point for the construction

of a classical evolution on the discrete graph. The classical “phase space” in this case

are the probability vectors ρ ∈ l2(R2B) where the components of ρ are interpreted

as the probabilities to find the classical system on the corresponding directed bonds.

The classical transition matrix is constructed from the quantum probability to make a

transition from d to d′

Md′,d = |Ud′,d|2 . (41)

The unitarity of U implies that M is bi-stochastic, namely,
∑

d Md′,d =
∑

d′ Md′,d = 1.

This transition matrix induces a discrete, random walk dynamics in phase space. If n

denotes the discrete “time”,

ρ(n + 1) = Mρ(n) . (42)

This Markovian evolution preserves the l1 norm - the classical probability. The spectrum

of M is confined to the interior of the unit circle. 1 is always an eigenvalue corresponding

to an eigenvector with equal components which describes the system in an equilibrated

state. When the eigenvalue 1 is the only eigenvalue on the unit circle, the classical
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dynamics drives the system to equilibrium at a rate which depends on the distance of

the next highest eigenvalue to the unit circle. This classical dynamics is identical to the

one which was introduced in the study of quantum graphs [1]. It plays an important

rôle in the theory of spectral statistics on quantum graphs [1, 19, 20, 21]. Finally, the

analogue of the Ruelle ζ function for the evolution induced by P can be easily written

down starting with the secular function

ZM(µ) ≡ det(I(2B) − µM) (43)

The periodic orbit sum is identical to the trace formula (36) in which the amplitudes ap

are replaced by their absolute squares.

To emphasize the intricate connections between the concepts developed here and

their predecessors [2, 3, 4], consider a v-regular graph (v > 2), and the classical evolution

operator obtain for the spectral parameter λ = v + i(v− 2), corresponding to z = v− 1

in (29). At this value, σd,d̂ = 0 and σd′,d = 1 for d′ 6= d̂. The resulting classical evolution

matrix M ] needs to be multiplied by (v − 1)−1 to make it a legitimate (probability

conserving) evolution operator. The resulting evolution does not permit back-scatter,

and therefore, the secular equation (43) can be computed using Stark’s ζ function (8),

with Y = µ
v−1

M ]. The product over the set of non back-scattering primitive periodic

orbits becomes identical to the one appearing in the Ihara zeta function (4). Using (5),

one finally gets,

ZM](µ) =
∏
n

(
1− (

µ

v − 1
)n

)|C(n)|
(44)

=

(
1− (

µ

v − 1
)2

)r−1

det

(
I(V )(1 +

µ2

v − 1
)− µ

v − 1
C

)
.

Thus, the spectrum mj of M ] consists of r − 1 fold degenerate eigenvalues at m
(±)
j =

± 1
v−1

, and the rest which can be computed from the spectrum of the discrete Laplacian

λj

m±
j =

(v − λj)±
√

(v − λj)2 − 4(v − 1)

2(v − 1)
. (45)

The eigenvalue 0 of the Laplacian corresponds to the eigenvalues 1 and 1
v−1

of M ]. The
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gap in the classical evolution spectrum is determined by the first non zero eigenvalue of

L.

The comment above may have interesting and novel consequences going beyond its

anecdotal appearance. In quantum graphs, one can choose vertex scattering matrices

from a much larger variety than offered by the vertex scattering matrices (16). Thus, it

is possible to construct vertex scattering matrices which do not scatter backwards, but

with equal scattering probability to the other vertices. The unitarity is maintained by

a proper choice of the phases of the scattering amplitudes [23]. In such cases, and for

v-regular graphs, the classical analogues are identical with M ] and (44) is applicable.

Working with such systems is particularly interesting because in quantum chaos, the

gap between the eigenvalue 1 and the rest of the spectrum determines whether the

spectrum of the U matrix (and hence of the Schrödinger operator) display the statistics

predicted by Random Matrix Theory, in the limit of large graphs. For non back-

scattering dynamics (44) reduces the problem to the study of the spectrum of the

Laplacian. The behavior of the gap in the laplacian spectrum of large graphs is an

important subject in the theory of discrete graphs and number theory, related amongst

others to the Ramanujan conjecture [22]. A detailed discussion of this connection will

take the present manuscript far afield, and it is deferred to a future publication.
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