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Abstract

Finite-order weights have been introduced in recent years to de-
scribe the often occurring situation that multivariate integrands can
be approximated by a sum of functions each depending only on a small
subset of the variables. The aim of this paper is to demonstrate the
danger of relying on this structure when designing lattice integration
rules, if the true integrand has components lying outside the assumed
finite-order function space. It does this by proving, for weights of order
two, the existence of 3-dimensional lattice integration rules for which
the worst case error is of order O(N−1/2), where N is the number of
points, yet for which there exists a smooth 3-dimensional integrand
for which the integration rule does not converge.

1 Introduction

Recent years have seen a rising interest in using lattice rules for the numerical
integration of high-dimensional integrals over the unit cube,

Idf :=

∫

[0,1]d

f(x)dx ,

with d in the hundreds or even thousands. The two main drivers of this
developments have been, on the one hand, the demonstration by Paskov
and Traub [11] that some key problems of mathematical finance can be suc-
cessfully approximated by equal weight (i.e. quasi-Monte Carlo or QMC)
integration rules of the form

Qd,Nf :=
1

N

N−1
∑

j=0

f(t(j)), (1)
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with well chosen deterministic points t(j) ∈ [0, 1]d, j = 1, . . . , N ; and on
the other hand, the development of fast component-by-component (or CBC)
algorithms for the determination of good rank-1 lattice points, i.e. point sets
of the form

t(j) =
{

j
z

N

}

, j = 1, . . . , N, (2)

where z is a well chosen integer vector of length d, and the braces indicate
that each component of jz/N is to be replaced by its fractional part. For an
account of the recent lattice rule developments see [8]. The CBC construction
of rank-1 lattice rules first appeared in [14], and the fast FFT implementation
of the CBC construction in [10].

It is by now well understood that the high-dimensional integrands f that
can be successfully treated in this way are rather special. In particular,
their effective dimensionality is quite small: either f(x) = f(x1, x2, . . . , xd)
depends mainly on the first few variables x1, x2, . . . (in which case the “trun-
cation dimension” is small); or f can be well approximated by a sum of
functions of at most say two or three variables at a time (in which case the
“superposition dimension” is small). These concepts were introduced in [1];
see that paper for a precise definition of effective dimension.

These special features of typical integrands can be modelled by intro-
ducing “weights” into the underlying function spaces. The earliest weights,
in the paper [15], were of the “product” form, while a more recent way of
reflecting low effective dimensionality in the superposition sense is to use
“finite-order” weights, introduced in [4]; these concepts are described below.
The weights then appear as parameters in the CBC algorithms.

The purpose of the present paper is to argue that the use of finite-order
weights can be dangerous in applications. But before this question can be
addressed, it is necessary to describe the function spaces and the role of the
“weights” in more detail.

The function spaces that underlie the CBC constructions are reproducing
kernel Hilbert spaces, for which in the unweighted case the kernel takes the
form of a product,

Kd(x,y) =
d

∏

i=1

(1 + κ(xi, yi)), x = (x1, . . . , xd), y = (y1, . . . , yd),

where κ(x, y) is a 1-dimensional kernel whose choice we leave free for the
moment. The unweighted kernel Kd(x,y) can be rewritten as a sum over
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subsets of the variables,

Kd(x,y) =
∑

u⊆{1,...,d}

∏

i∈u

κ(xi, yi), x = (x1, . . . , xd), y = (y1, . . . , yd). (3)

We let Hd denote the unweighted Hilbert space whose kernel is Kd. The cor-
responding “weighted” space HΓ

d , in its most general form, is the reproducing
kernel Hilbert space with the reproducing kernel KΓ

d , given by

KΓ
d (x,y) :=

∑

u⊆{1,...,d}

Γu

∏

i∈u

κ(xi, yi), x = (x1, . . . , xd), y = (y1, . . . , yd),

(4)
where Γu, for u ⊆ {1, . . . , d}, are prescribed non-negative “weights”. The
unweighted case is of course recovered by setting Γu = 1 for all subsets u.

In essence, the weight Γu reflects the relative importance in the function
space HΓ

d of the subset u ⊆ {1, . . . , d} of the variables. For the specific
spaces considered here (see Section 3) it is easily seen that the space HΓ

d is
equivalent to Hd if Γu > 0 for all u ⊂ {1, . . . , d}. This equivalence fails if
Γu = 0 for some u ⊆ {1, . . . , d}.

In (4) we allow the most general form of weights, as introduced by [6].
In practice, however, simplified models of the weights must be used, both
to reduce the number of free parameters, and to make feasible the CBC
construction of the integer vector z in (2). In the original “product” form of
weights, see [15], the Γu take the form

Γu =
∏

i∈u

γi, u ⊆ {1, . . . , d} , (5)

where the γi are prescribed non-negative parameters (which are also called
“weights”). In this case the reproducing kernel (4) can be written as a
product,

KΓ
d (x,y) =

d
∏

i=1

(1 + γiκ(xi, yi)), x = (x1, . . . , xd), y = (y1, . . . , yd).

The space HΓ
d is then a tensor product of 1-dimensional Hilbert spaces.

The finite-order weights which are the main subject of this paper have
the defining property that for some natural number q > 0 the weights vanish
for |u| > q, that is

Γu = 0 for |u| > q. (6)
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The number q in (6) is the “order” of the finite order weights. The finite-
order weights used in practice usually have a further drastic simplification,
see [4] Section 6, namely that the weight Γu depends on u only through its
cardinality, that is

Γu = Γ|u|, 1 ≤ |u| ≤ q.

Because the superposition dimension for some financial problems is ap-
proximately 2 (see [17]), it has sometimes been suggested that weights of
order 2 (i.e. with q = 2 in (6)) might be used in the construction of practical
lattice rules for such problems. Of course the order-2 weights are indeed
suitable if the integrand is exactly expressible in the form

f(x) = f(x1 . . . , xd) =
∑

1≤i<j≤d

fij(xi, xj) , (7)

that is, if f is a sum of functions of at most two variables at a time. In real
applications, however, f will also contain (possibly small) components that
cannot be expressed in this form. The underlying hope of those (including
this author) who have advocated order-2 weights has been that such func-
tions, even though not strictly covered, will nevertheless be integrated well
enough by lattice rules constructed with order-2 weights. We shall argue in
this paper that this hope is forlorn.

By definition, the “worst-case error” of the QMC rule (1) is

eΓ
d,N(Qd,N) := sup{|Qd,Nf − Idf | : ‖f‖HΓ

d

≤ 1}. (8)

The nature of the CBC algorithm for the lattice rule with points given by (2)
is that it successively chooses the components z1, z2, . . . , zd of the vector z in
such a way as to minimize eΓ

s,N(Qs,N) for s = 1, . . . , d, where Qs,N denotes the
s-dimensional lattice rule generated by z1, . . . , zs. It is a “greedy” algorithm,
in that once a component zs is determined it is never changed.

It was shown in [14], for the particular case of the unweighted “Korobov”
space, that the worst case error of the corresponding CBC rules have an order
of convergence of O(N−1/2). By now similar results are known for product
weights in Korobov and Sobolev spaces, and it is even known, (see [7, 2]) that
the convergence order for the case of product weights and Sobolev spaces
can be improved to O(N−1+δ) for arbitrary δ > 0, with the implied constant
depending on δ. (Much of the recent interest has been on the d-dependence
of the constants, but that is not our concern here.)
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Now we come to the central thesis of this paper, which is that CBC
rules constructed with finite-order weights can be dangerously unreliable in
practical situations. Suppose we take as our integrand an arbitrary function
f ∈ Hd. In the case of product weights, provided that (as usual) we take all
weights positive, i.e. γj > 0 for all j ≥ 0, a function f in Hd also belongs to
HΓ

d , albeit with a different norm. That means that Qd,nf−Idf automatically
converges with the same O(N−1+δ) rate of convergence as eΓ

d,n, since from (8)

|Qd,nf − Idf | ≤ eΓ
d,n(Qd,N)‖f‖HΓ

d

.

The situation with finite-order weights Γ is very different. Formally, the
problem is that an arbitrary f ∈ Hd does not in general lie in HΓ

d . More
pointedly, we shall show that rules that perform well for f ∈ HΓ

d need not
converge at all for f ∈ Hd\HΓ

d .
The problem arises even for very small values of d, even d = 3. We shall

show in Section 4 that for weights of order 2 there exist sequences of
3-dimensional lattice rules Q3,N for which eΓ

3,N
(Q3,N) ≤ c/

√
N , yet

which converge to the wrong answer for some f ∈ H3.
In this way we are able to demonstrate that, for the case of finite-order

weights, small values of the worst-case error do not guarantee convergence for
an integrand in Hd but not in HΓ

d . Since the CBC algorithm relies entirely on
minimising the worst-case error, we conclude that the general use of finite-
order weights cannot be recommended.

In Section 2 we introduce some machinery (“u-discrepancies”) that will
assist us when looking at different choices of weights (the u-discrepancies
having the advantage of being independent of weights). In Section 3 we
specialise to two choices of function space, one a Korobov space of periodic
fucntions with square integrable mixed first derivatives, the other a Sobolev
space of non-periodic functions with square integrable mixed first derivatives.
In Section 4 we state the main results of the paper, Theorems 4.1 and 4.2.
The theorems are proved in Sections 5 and 6. A final discussion in Section 7
considers the implications for integrals in higher dimensions.

2 Worst-case errors and u-discrepancies

For the point set of the QMC rule (1) we use the notation

TN := {t(0), . . . , t(N−1)} ⊆ [0, 1]d.
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In a reproducing kernel Hilbert space Hd with reproducing kernel Kd it
is well known that the squared worst-case error ed,N(TN) for the QMC rule
can be written as

ed,N(TN)2 =

∫

[0,1]2d

Kd(x,y)dxdy

− 2

∫

[0,1]d

1

N

N−1
∑

j=0

Kd(x, t(j))dx +
1

N2

N−1
∑

j=0

N−1
∑

ℓ=0

Kd(t
(j), t(ℓ)). (9)

It follows that for the weighted space HΓ
d with kernel KΓ

d given by (4) we can
write the squared worst-case error as the sum

eΓ
d,N(TN)2 =

∑

∅6=u⊆{1,...,d}

ΓuDu(TN)2 , (10)

where Du(TN) (which we shall call the “u-discrepancy” of the point set TN)
is given by

Du(TN)2 :=

∫

[0,1]2|u|

ku(xu,yu)dxudyu

− 2

∫

[0,1]|u|

1

N

N
∑

j=1

ku(xu, t
(j)
u )dxu +

1

N2

N−1
∑

j=0

N−1
∑

ℓ=0

ku(t
(j)
u , t(ℓ)

u ), (11)

and where for a given vector x ∈ [0, 1]d we use the notation xu for the |u|-
dimensional vector with components xi for i ∈ u, and

ku(xu,yu) :=
∏

i∈u

κ(xi, yi), ∅ 6= u ⊆ {1, . . . , d} .

The u-discrepancies Du(TN) have been discussed in [5, 18]. A useful feature
of these quantities is that they are independent of the weights Γu.

For the particular case of weights of finite order q, we note that (10) can
be written as

eΓ
d,N(TN)2 =

∑

u⊆{1,...,d},
0<|u|≤q

ΓuDu(TN)2. (12)
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The worst-case error eΓ
d,N(TN) now depends only on the projections of the

point set TN which involve at most q components at a time. Thus if q = 2
then the progress of the CBC algorithm is completely unaffected by the
quality of 3-dimensional projections or higher.

3 Specific function spaces

In this section we specialise the choice of reproducing kernel, so that we may
later state precise convergence results.

We consider here two commonly used function spaces: first, a Korobov
space, in which the functions are 1-periodic with respect to each variable;
and second, a non-periodic Sobolev space. In both cases the elements of the
space have square-integrable mixed first derivatives. In the second case we
extend the lattice rule by allowing a shift ∆ ∈ [0, 1]d; that is, our rule is now
the shifted lattice rule

Qd,N(z,∆)f :=
1

N

N−1
∑

j=0

f
({

j
z

N
+ ∆

})

. (13)

In the Korobov case we take the 1-dimensional kernel κ(x, y) in (4) to be
given by

κ(x, y) :=
1

2π2

∑

h 6=0

e2πih(x−y)

h2
(14)

= B2({x − y}), x, y ∈ [0, 1],

where B2 is the Bernoulli polynomial of degree 2,

B2(x) := x2 − x +
1

6
.

(More general Korobov spaces, with the exponent of h, instead of being 2,
replaced by α with α > 1, are often considered. For the present purposes
the case α = 2 suffices.) We note that the normalisation constant (2π2)−1

in (14) is unconventional; it is introduced here to simplify the subsequent
relationship with Sobolev spaces.

The inner product in the unweighted 1-dimensional Korobov space H1 is

(f, g)H1
:= f̂(0)ĝ(0) + 2π2

∑

h 6=0

h2f̂(h)ĝ(h),
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where

f̂(h) :=

∫ 1

0

f(x)e−2πihxdx.

This ensures that the reproducing property,

(f,K1(·, y))H1
= f̂(0) +

∑

h 6=0

f̂(h)e2πihy = f(y),

for all f ∈ H1. This inner product may be written in terms of derivatives of
f and g as

(f, g)H1
=

∫ 1

0

f(x)dx

∫ 1

0

g(x)dx +
1

2

∫ 1

0

f ′(x)g′(x)dx.

Thus H1 contains the absolutely continuous 1-periodic functions on [0, 1]
whose first derivatives are in L2(0, 1). Similarly, since the unweighted space
Hd is a tensor product space, it contains all 1-periodic functions on [0, 1]d

whose mixed first derivatives are square integrable on [0, 1]d.

In this Korobov case (because
∫ 1

0
κ(x, y)dy = 0 ∀x) the expression (11)

for the squared u-discrepancy simplifies to

Du(TN)2 =
1

N2

N−1
∑

j=0

N−1
∑

ℓ=0

∏

i∈u

B2({t(j)i − t
(ℓ)
i }), ∅ 6= u ⊆ {1, . . . , d}.

When the integration points are given by the lattice formula (2) with gener-
ating vector z the last formula simplifies to a single sum,

D|u|,N(zu)
2 =

1

N

N−1
∑

j=0

∏

i∈u

B2

({

jzi

N

})

. (15)

Note that for this lattice-rule case we use in (15) a different notation for the
u-discrepancy on the left side, as the discrepancy depends only on N and the
cardinality |u| of the set u, and on the components zj of z for which j ∈ u.

In the unweighted Korobov space Hd the worst-case error corresponding
to (15) is given by, using (10) with Γu = 1 for all u, and again using a special
notation for this lattice rule case,

ed,N(z)2 =
1

N

N−1
∑

j=0

d
∏

i=1

(

1 + B2

({

jzi

N

}))

− 1, (16)
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a formula which we shall find useful later.
The second space we consider is sometimes called the “unanchored” Sobolev

space. (See [16] for a detailed discussion.) In this case the 1-dimensional ker-
nel takes the form

κ(x, y) =
1

2
B2({x − y}) +

(

x − 1

2

)(

y − 1

2

)

, x, y ∈ [0, 1),

while the corresponding inner product is for real functions f, g

(f, g)H1
=

∫ 1

0

f(x)dx

∫ 1

0

g(x)dx +

∫ 1

0

f ′(x)g′(x)dx.

The u-discrepancy for the Sobolev space is

Du(TN)2 =
1

N2

N−1
∑

j=0

N−1
∑

ℓ=0

∏

i∈u

(

1

2
B2({t(j)i − t

(ℓ)
i }) +

(

t
(j)
i − 1

2

)(

t
(ℓ)
i − 1

2

))

.

In the case of the shifted lattice rule (13) (and again introducing an obvious
notation) this becomes

D|u|,N(zu,∆u)2 =
1

N2

N−1
∑

j=0

N−1
∑

ℓ=0

∏

i∈u

(

1

2
B2

({

(j − ℓ)zi

N

}))

+

({

jzi

N
+ ∆i

}

− 1

2

)({

ℓzi

N
+ ∆i

}

− 1

2

)

. (17)

It is well known that the Sobolev space result simplifies dramatically if, as
in [12], we treat the components of the shift ∆ as random variables uniformly
distributed on [0, 1]d. In that case it is appropriate to consider, instead of the
worst-case error eΓ

d,N(z,∆) := eΓ
d,N(TN(z,∆)) the shift-averaged worst-case

error

eΓ,sh
d,N (z) :=







∫

[0,1]d

eΓ
d,N(z,∆)2d∆







1/2

.

Replacing (10) we then have

eΓ,sh
d,N (z)2 =

∑

∅6=u⊆{1,...,d}

ΓuD
sh
|u|,N(zu)

2 ,
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where Dsh
|u|,N denotes the shift-averaged u-discrepancy defined by

Dsh
|u|,N(zu)

2 :=

∫

[0,1]|u|

D|u|,N(zu,∆u)
2d∆u

=
1

N

N−1
∑

j=0

∏

i∈u

B2

({

jzi

N

})

,

which is exactly the same as the Korobov u-discrepancy given by (15). This
well known connection between the Sobolev and Korobov cases allows us to
consider the Korobov and Sobolev cases at the same time.

Thus we now let eΓ
d,N(z) denote the worst-case error for the N -point lattice

rule with vector z ∈ {0, 1, . . . , N −1}d in the Korobov case, or the root mean
square worst-case error (averaged over shifts) in the Sobolev case. Then we
have

eΓ
d,N(z)2 =

∑

∅6=u⊆{1,...,d}

ΓuD|u|,N(zu)
2 , (18)

with D|u|,N(zu) given by (15). We shall for simplicity assume from now on
that N is prime. Then with Z

+
N := {1, . . . , N −1}, we denote the root-mean-

square average over z of eΓ
d,N(z) by MΓ

d,N ; that is

(

MΓ
d,N

)2
:=

1

(N − 1)d

∑

z∈(Z+

N
)d

eΓ
d,N(z)2.

The evaluation of averages of this kind traces back at least to Korobov in
the 1950s.

For the unweighted case, starting from (16), or using [4], Theorem 1, we
find explicitly

M2
d,N = −1 +

1

N

(

7

6

)d

+
N − 1

N

(

1 − 1

6N

)d

≤ 1

N

(

7

6

)d

. (19)

4 The danger of finite-order weights

In this section we restrict attention to weights of finite order 2, i.e.

Γu = 0 for |u| > 2, u ⊆ {1, . . . , d}.
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The following theorems show that weights of order 2 can give wrong answers
even for d = 3. While we have limited the statements to d = 3 and weights
of order 2, it seems reasonable to suppose that the problem here revealed
will not be solved by going to finite-order weights of higher order or higher
values of d. The first theorem is for the case of weighted Korobov spaces,
the second for weighted Sobolev spaces.

Theorem 4.1 Let d = 3 and take the space HΓ
3 to be a weighted Korobov

space of order 2, i.e. Γ{1,2,3} = 0, and H3 to be the unweighted Korobov

space. Let N be prime. Then there exists z ∈ {1, · · · , N − 1}3 such that the

worst-case error in HΓ
3 satisfies

eΓ
3,N(z) ≤ cΓ√

N
(20)

for some cΓ independent of N , yet such that for some g ∈ H3 the lattice rule

Q3,N(z)g does not converge to the exact integral I3g.

Theorem 4.2 Let d = 3 and take the space HΓ
3 to be a weighted Sobolev

space of order 2, i.e. Γ{1,2,3} = 0, and H3 to be the unweighted Sobolev

space. Let N be prime. Then there exists z ∈ {1, · · · , N − 1}3 such that the

shift-averaged worst-case error in HΓ
3 satisfies

eΓ,sh
3,N (z) ≤ cΓ√

N
(21)

for some cΓ independent of N , yet such that for some g ∈ H3 the mean-

square expected error E[(Q3,N(z,∆)g − I3g)2] of the randomly shifted lattice

rule Q3,N(z,∆)g does not converge to zero.

The proofs are given in the next sections. In the remainder of this section
we discuss the implications of the results.

A 3-dimensional lattice rule Q3,N(z) automatically generates three 2-
dimensional lattice rules and three 1-dimensional lattice rules, simply by
omitting one or two of the variables. The rules so obtained are referred to
as “projections” of the original rule. The 2-dimensional projections onto
the xy, xz, and yz planes, respectively, are the N -point lattice rules (pos-
sibly with not all points distinct) generated by (z1, z2), (z1, z3) and (z2, z3)
respectively. Similarly, the three 1-dimensional projections onto the x, y, z
axes are the N -point rules generated by z1, z2, z3 respectively. The quality of
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the projections of the rule Q3,N(z) onto the subspace corresponding to the
non-empty subsets u ⊆ {1, 2, 3} of the variables may be measured by the
corresponding u-discrepancies D|u|,N(z) = D|u|,N(zu).

The worst-case error eΓ
3,N(z) (or the shift-averaged worst-case error eΓ,sh

3,N (z)
in the Sobolev case) for general weights Γ depends on the quality of all seven
of the projections corresponding to the non-empty subsets of {1, 2, 3}, since
(18) gives for d = 3

eΓ
3,N(z)2 =

∑

∅6=u⊆{1,2,3}

ΓuD|u|,N(zu)
2. (22)

For the case specified in the theorems, with Γ{1,2,3} = 0, this reduces to

eΓ
3,N(z)2 =Γ{1}D1,N(z1)

2 + Γ{2}D1,N(z2)
2 + Γ{3}D1,N(z3)

2

+Γ{1,2}D2,N(z1, z2)
2 + Γ{2,3}D2,N(z2, z3)

2 + Γ{1,3}D2,N(z1, z3)
2.
(23)

Thus for the theorem to hold for general weights Γu with |u| ≤ 2 we must
have

D|u|,N(zu) ≤
c√
N

∀ u ⊆ {1, 2, 3}, 0 < |u| ≤ 2, (24)

for some c > 0. That is, every 1-dimensional and 2-dimensional projection of
Q3,N(z) must be a “good” rule, in the sense of (24). Yet from the last part
of the theorem we must have, for the 3-dimensional discrepancy,

D3,N(z) 6→ 0 as N → ∞.

For suppose the contrary, that D3,N(z) → 0 as N → ∞. Then even in the
unweighted case (i.e. Γu = 1 ∀u) we would have, from (22), e3,N(z) → 0 as
N → ∞, which in turn would imply (since g ∈ H3) that Q3,Ng → I3g (or
E[(Q3,Ng− I3g)2] → 0 in the Sobolev case), contradicting the last part of the
theorem.

Thus to prove the theorem we must prove the existence of a finite sequence
of three-dimensional lattice rules which are very bad as 3-dimensional rules,
yet for which all of the 1-dimensional and 2-dimensional projections are good
in the sense of (24). This is our next task.

5 Proof of Theorem 4.1

In the proof we make use of the following well known property of lattice rules
with a prime number of points.
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Lemma 5.1 Let N be prime and z ∈ Z
d. If a 6≡ 0 (mod N) then

Qd,N(az) = Qd,N(z).

Proof: By definition,

Qd,N(az)f =
1

N

N−1
∑

j=0

f

({

jaz

N

})

.

Because N is prime and a 6≡ 0 (mod N) we have

{ja : j = 0, . . . , N − 1} = {j : j = 0, . . . , N − 1} (mod N),

thus

Qd,N(az)f =
1

N

N−1
∑

j=0

f

({

jz

N

})

= Qd,N(z)f,

completing the proof. 2

It follows from this lemma that without loss of generality the first com-
ponent of the generating vector can be chosen to be 1: provided z1 6≡ 0
(mod N), we can replace the generating vector z by z−1

1 z, where z−1
1 denotes

the unique integer in {1, . . . , N − 1} that satisfies

z−1
1 z1 ≡ 1 (mod N).

We prove Theorem 4.1 by way of a construction and a series of lemmas.
For the construction, we assume N ≥ 3 and take the 3-dimensional lattice
vector z to be of the form

(z1, z2, z3) = (1, v, w),

with v ∈ {1, 2, . . . , N − 1}, and

w ≡ v + 1 (mod N).

(Later we shall show that v = N − 1 can be excluded, but it is convenient to
allow this value of v in the following technical arguments.)

Thus our 3-dimensional lattice rule is

Q3,Nf =
1

N

N−1
∑

j=0

f

(

j

N
,

{

jv

N

}

,

{

j(v + 1)

N

})

=
1

N

N−1
∑

j=0

f(t
(j)
1 , t

(j)
2 , t

(j)
3 ), (25)
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with

t
(j)
1 =

j

N
, t

(j)
2 =

{

jv

N

}

, t
(j)
3 = {t(j)1 + t

(j)
2 }, j = 0, . . . , N − 1.

(26)
We first observe that this is a very bad 3-dimensional rule. This is so

because, for arbitrary N and arbitrary v, all the points t(j) =
(

t
(j)
1 , t

(j)
2 , t

(j)
3

)

lie on two planes: since t
(j)
1 + t

(j)
2 ∈ [0, 2), from the last equation in (26) we

must have either t
(j)
3 = t

(j)
1 + t

(j)
2 or t

(j)
3 = t

(j)
1 + t

(j)
2 − 1. In other words, all

N points t(j) lie on one or other of the planes in R
3 defined by

x1 + x2 − x3 = 0, x1 + x2 − x3 = 1.

Now consider the function

g(x1, x2, x3) := (x1 + x2 − x3)
2(x1 + x2 − x3 − 1)2

× sin(πx1) sin(πx2) sin(πx3) . (27)

It is easy to see that g has a continuous periodic extension to R
3, and that it

belongs to the Korobov space H3. It is also clear (since g(x) ≥ 0 ∀ x ∈ [0, 1]3)
that I3g > 0; yet (since g vanishes on both of the planes that contain all the
points t(j)) we have Q3,N(1, v, v + 1)g = 0. Thus the existence of g ∈ H3

for which Q3(z)g 6→ I3g, as needed in the last part of the theorem, has been
proved for every v ∈ {1, . . . , N − 1}.

To show that (20) holds for some v ∈ {1, . . . , N − 1}, we make use of
(23), which expresses the worst-case error in terms of the u-discrepancies
of the projections of the lattice rule. It proves convenient to replace the 2-
dimensional discrepancies in this expression by the 2-dimensional worst-case
errors for the unweighted case, which we do by using the three identities
typified by (from (18))

e2,N(z1, z2)
2 = D1,N(z1)

2 + D1,N(z2)
2 + D2,N(z1, z2)

2.

In this way (23) is replaced by

eΓ
3,N(z1, z2, z3)

2 = (Γ{1} − Γ{1,2} − Γ{1,3})D1,N(z1)
2

+ (Γ{2} − Γ{1,2} − Γ{2,3})D1,N(z2)
2

+ (Γ{3} − Γ{1,3} − Γ{2,3})D1,N(z3)
2

+ Γ{1,2}e2,N(z1, z2)
2 + Γ{2,3}e2,N(z2, z3)

2 + Γ{1,3}e2,N(z1, z3)
2.
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The three 1-dimensional projections of the rule (25) are

1

N

N−1
∑

j=0

f

(

j

N

)

, (28)

1

N

N−1
∑

j=0

f

({

jv

N

})

, (29)

1

N

N−1
∑

j=0

f

({

j(v + 1)

N

})

. (30)

The discrepancy corresponding to the first 1-dimensional projection, given
by (28), is from (15) and (14),

D1,N(1) =

[

1

N

N−1
∑

j=0

B2

(

j

N

)

]1/2

=

[

1

N

N−1
∑

j=0

∑

h 6=0

e2πihj/N

2π2h2

]1/2

=









∑

h 6=0
h≡0(mod N)

1

2π2h2









1/2

=

(

B2(0)

N2

)1/2

=
1√
6N

.

(31)

The second 1-dimensional projection (29) is (by Lemma 5.1) the same as
the first, and so has the same discrepancy. So too has the third projection
(30), unless v = N − 1 in which case the discrepancy is

D1,N(0) =

[

1

N

N−1
∑

j=0

B2(0)

]1/2

=
1√
6
. (32)
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Now we turn to the 2-dimensional projections. The three 2-dimensional
projections of (25) are

1

N

N−1
∑

j=0

f

(

j

N
,

{

jv

N

})

,

1

N

N−1
∑

j=0

f

(

j

N
,

{

j(v + 1)

N

})

,

1

N

N−1
∑

j=0

f

({

jv

N

}

,

{

j(v + 1)

N

})

,

and the three corresponding 2-dimensional worst-case errors in the unweighted
case are e2,N(1, v), e2,N(1, v +1) and e2,N(v, v +1). Denoting the correspond-
ing root-mean-square averages of the unweighted worst case errors over all
values of v ∈ {1, . . . , N −1} by Mxy

2,N ,Mxz
2,N and Myz

2,N , we prove the following
lemma:

Lemma 5.2 Let N be prime. Then

max(Mxy
2,N ,Mxz

2,N ,Myz
2,N) <

√
2√
N

.

Proof Since
(

Mxy
2,N

)2
=

1

N − 1

N−1
∑

v=1

e2,N(1, v)2,

we already know from (19) that

Mxy
2,N ≤ 7

6
√

N
<

√
2√
N

.

For the second mean we have

(Mxz
2,N)2 =

1

N − 1

N−1
∑

v=1

e2,N(1, v + 1)2

=
1

N − 1

[

N−1
∑

w=1

e2,N(1, w)2 + e2,N(1, 0)2 − e2,N(1, 1)2

]

≤
(

Mxy
2,N

)2
+

1

N − 1
e2,N(1, 0)2.
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From (16) we have

e2,N(1, 0)2 = −1 +
1

N

N−1
∑

j=0

(

1 + B2(0)
)

(

1 + B2

(

j

N

))

= −1 +
7

6
+

7

6N

N−1
∑

j=0

B2

(

j

N

)

=
1

6
+

7

36N2
,

where we used B2(0) = 1/6, and used (31) for the sum
∑N−1

j=0 B2(j/N) =
1/(6N). Using N ≥ 2 and the bound for Mxy

2,N we obtain easily

(

Mxz
2,N

)2 ≤ 49

36N
+

1

4N
+

7

6 × 36N
<

2

N
.

Finally, for the third mean we have,

(

Myz
2,N

)2
=

1

N − 1

N−1
∑

v=1

e2,N(v, v + 1)2

and using Lemma 5.1

(Myz
2,N)2 =

1

N − 1

N−1
∑

v=1

e2,N(1, v−1(v + 1))2

=
1

N − 1

N−1
∑

v=1

e2,N(1, v−1 + 1)2

=
1

N − 1

N−1
∑

w=1

e2,N(1, w + 1)2

=
(

Mxz
2,N

)2
<

2

N
,

where we used the fact that with N prime

{v−1 : 1 ≤ v ≤ N − 1} = {w : 1 ≤ w ≤ N − 1}.
This completes the proof of the lemma. 2

The next step is to show that there is at least one value of v ∈ {1, 2, . . . , N−
1} for which all three 2-dimensional worst-case errors are small simultane-
ously. To that end we use the following elementary lemma.
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Lemma 5.3 Let {a1, . . . , an} ⊆ R be a sequence of non-negative numbers,

and let ā be their mean. Then for all λ > 1

|{i ∈ {1, . . . , n} : ai ≤ λā}| ≥
(

1 − 1

λ

)

n.

Proof. Suppose the contrary. Then for some λ > 1 we have

|{i ∈ {1, . . . , n} : ai ≤ λā}| <

(

1 − 1

λ

)

n,

or equivalently

|{i ∈ {1, . . . , n} : ai > λā}| ≥ n −
(

1 − 1

λ

)

n =
n

λ
,

and hence

ā =
1

n

n
∑

i=1

ai ≥
1

n

∑

i:ai>λā

ai >
1

n

n

λ
λā = ā,

which is a contradiction. 2

Corollary 5.4 Let N be prime and λ > 3. Then

∣

∣

∣

∣

{

v ∈ {1, . . . , N − 1} : max
(

e2,N(1, v)2, e2,N(1, v + 1)2, e2,N(v, v + 1)2
)

≤ 2λ

N

}∣

∣

∣

∣

≥
(

1 − 3

λ

)

(N − 1).

Proof. It follows from the last lemma that

|{v ∈ {1, . . . , N − 1} : e2,N(1, v)2 ≤ λ(Mxy
2,N)2}| ≥

(

1 − 1

λ

)

(N − 1) ,

and hence from Lemma 5.2
∣

∣

∣

∣

{

v ∈ {1, . . . , N − 1} : e2,N(1, v)2 ≤ 2λ

N

}∣

∣

∣

∣

≥
(

1 − 1

λ

)

(N − 1) ,

Similarly,
∣

∣

∣

∣

{

v ∈ {1, . . . , N − 1} : e2,N(1, v + 1)2 ≤ 2λ

N

}∣

∣

∣

∣

≥
(

1 − 1

λ

)

(N − 1) ,
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and
∣

∣

∣

∣

{

v ∈ {1, . . . , N − 1} : e2,N(v, v + 1)2 ≤ 2λ

N

}∣

∣

∣

∣

≥
(

1 − 1

λ

)

(N − 1).

It follows that the cardinality of the set of the v ∈ {1, . . . , N − 1} such that

e2,N(1, v)2 ≤ 2λ

N
and e2,N(1, v + 1)2 ≤ 2λ

N

is at least

(

1 − 1

λ

)

(N − 1) +

(

1 − 1

λ

)

(N − 1) − (N − 1) = 1 − 2

λ
(N − 1),

since λ > 2. In turn it follows that the cardinality of the set of the v ∈
{1, . . . , N − 1} such that all three of the squared 2-dimensional worst-case
errors have the bound 2λ/N is at least

(

1 − 2

λ

)

(N − 1) +

(

1 − 1

λ

)

(N − 1) − (N − 1) =

(

1 − 3

λ

)

(N − 1)

since λ > 3, and the corollary is proved. 2

Now return to the proof of Theorem 4.1. Since z = (1, v, v +1), it follows
from the last corollary, provided (1 − 3/λ)(N − 1) ≥ 1, that there exists
z ∈ {1, . . . , N}3 satisfying (20). The condition is satisfied if, for example,
λ = 6 and N ≥ 3.

We have so far allowed v ∈ {1, . . . , N − 1} in the averaging arguments,
therefore leaving open the possibility that z3 = N . To show that v = N − 1
cannot occur except possibly for a finite number of values of N , first we
assume Γ{3} 6= 0. Suppose that v = N − 1 occurs for some unbounded
sequence of primes N . Then for such values of N we would have (see (32))

D1,N(z3) = D1,N(N) = D1,N(0) = 1/
√

6,

and hence from (23) e3,N(z) 6→ 0 as N → ∞, contradicting the bound (20)
in the theorem. If Γ{3} = 0 we carry out the construction again but with
the value of Γ{3} changed to 1, since the z so constructed will still have the
required properties even for the problem with Γ{3} = 0. The resulting v
cannot equal N −1 for an unbounded sequence of primes N . Thus the result
in Theorem 1 holds for all sufficiently large primes N . It therefore holds for
all primes N , possibly with a larger value of the constant cΓ. This completes
the proof of Theorem 4.1. 2
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6 Proof of Theorem 4.2

To prove Theorem 4.2, we may use exactly the same construction for the
vector z as in the previous section, thus

Q3,N(z,∆)f =
1

N

N−1
∑

j=0

f

({

j

N
+ ∆1

}

,

{

jv

N
+ ∆2

}

,

{

j(v + 1)

N
+ ∆3

})

,

where v is found exactly as in Section 5. The bound (21) then follows from
(20) using the equality of eΓ,sh

2,N with eΓ
2,N established in Section 3. For the

function g we may replace (27) by the simpler expression

g(x1, x2, x3) := (x1 + x2 − x3)
2(x1 + x2 − x3 − 1)2,

since the Sobolev space setting does not impose periodic boundary con-
ditions. The shifted lattice rule Q3,N(z,∆) from (13) is then an equal
weight sum of values ranging from 0 (achieved with ∆ = 0) to 4 (which
is the maximum value of g on the closed unit cube, almost achieved when
j = 0, ∆1 = ∆2 = 1−, ∆3 = 0). When N is large the distribution of the val-
ues of Q3,N(z,∆)g between these extremes becomes essentially independent
of N , from which it is clear that E[(Q3,N(z,∆)g − I3g)2] 6→ 0.

7 Discussion

Now we return to the case of general dimensionality d, and suppose that f
(in the Sobolev case) is a fixed function of d variables for which all mixed
first derivatives are square integrable, and also (in the Korobov case) that f
is periodic with respect to each of the d variables. The integral Idf is to be
integrated by a rank-1 lattice rule Qd,Nf constructed by the CBC algorithm.
The question is: how should the weights Γ be chosen?

If the weights are chosen to be of the classical product form (5) then
f ∈ HΓ

d , and it follows from [7] that

|Idf − Qd,Nf | ≤ CΓ,∆

N1−δ
‖f‖HΓ

d

, (33)

in the Korobov case, while in the Sobolev case the same result is obtained for
the root-mean-square error averaged over shifts. Thus we have a guaranteed
optimal rate of convergence no matter how the product weights are chosen.
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The choice of weights still matters, since it affects both the constant in (33)
and the size of the norm of f . One might reasonably try, in a similar manner
to [9, 3], to choose product weights that minimise the error bound (33).

In marked contrast, if the weights Γ are chosen to be of the order-2 form
(i.e. Γu = 0 for |u| ≥ 3) then because the CBC algorithm at each step tries
to minimise the worst-case error, which now has the form (see (10))

eΓ
d,N(z)2 =

∑

0<|u|≤2

ΓuD|u|,N(zu),

the algorithm completely ignores the quality of 3-dimensional and higher
dimensional projections. This observation tells us that there is no guarantee
of convergence: for example, Theorem 4.1 indicates for the Korobov case that
convergence could fail even for a function of just the first three variables, e.g.

f(x1, . . . , xd) = g(x1, x2, x3),

with g given by (27).
Similar concerns apply with equal force to finite-order weights of higher

order q, unless f is known to be exactly expressible as a sum of functions of
at most q variables at a time.

It seems a reasonable conclusion that for most applications the use of
finite-order weights in the CBC algorithm for constructing lattice integration
rules lacks theoretical justification, and can even be dangerous.
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