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1. Introduction

There are several reasons why the study of the spectrum of the Lapla-
cian in a narrow neighborhood of an embedded graph is interesting.
The graph can be embedded into a Euclidean space or it can be em-
bedded into a manifold. In his pioneering work [3], Colin de Verdière
used Riemannian metrics concentrated in a small neighborhood of a
graph to prove that for every manifold M of dimension greater than
two and for every positive number N there exists a Riemannian metric
g such that the multiplicity of the smallest positive eigenvalue of the
Laplacian on (M, g) equals N . Recent interest to the problem is, in
particular, motivated by possible applications to mesoscopic systems.
Rubinstein and Schatzman studied in [10] eigenvalues of the Neumann
Laplacian in a narrow strip surrounding an embedded planar graph.
The strip has constant width ε everywhere except neighborhoods of
vertices. Under some assumptions on the structure of the strip near
vertices, they proved that eigenvalues of the Neumann Laplacian con-
verge to eigenvalues of the Laplacian on the graph. Kuchment and
Zheng extended in [6] these results to the case when the strip width is
not constant.

The Dirichlet boundary condition turns out to be more complicated
than the Neumann condition. Eigenvalues of a domain of width ε are
bounded from below by π2/ε2. Post studied in [9] eigenvalues λj(ε) of
the Dirichlet Laplacian in a neighborhood of a planar graph that has
constant width ε near the edges and that narrows down toward the
vertices. He proved that λj(ε) − π2/ε2 converge to the eigenvalues of
the direct sum of certain Schrödinger operators on the edges with the
Dirichlet boundary conditions. We show that this result can not be ex-
tended to neighborhoods of variable width. If the width is not constant
then the spectrum of the Dirichlet Laplacian is basically determined
by the points where it is the widest. In the paper, we treat a simple
model case: the graph is a straight segment, and the strip is the widest
in one cross-section. In this case, we derive a two-term asymptotics for
λj(ε).

We will formulate now main results of the paper. Let h(x) > 0 be a
continuous function defined on a segment I = [−a, b], where a, b > 0.
We assume that

(i) x = 0 is the only point of global maximum of h(x) on I;
1
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(ii) The function h(x) is C1 on I \ {0}, and in a neighborhood of
x = 0 it admits an expansion

(1.1) h(x) =

{
M − c+x

m +O
(
xm+1

)
, x > 0,

M − c−|x|m +O
(
|x|m+1

)
, x < 0

where M,m, c± are real numbers and M, c± > 0, m ≥ 1.
If h(x) is C∞ on the whole of I, then necessarily m is even and

c− = c+. Another interesting case is m = 1 (profile of a ‘broken line’).

For a positive ε, let

Ωε = {(x, y) : x ∈ I, 0 < y < εh(x)}.
Below ∆ε stands for the (positive) Dirichlet Laplacian in Ωε and λj(ε)
for its eigenvalues. Our main goal in this paper is to find the asymp-
totics of λj(ε) as ε→ 0.

In theorems 1.1 – 1.3 below the conditions (i) and (ii) are supposed
to be satisfied.

Theorem 1.1. Let α = 2(m+ 2)−1. Then the limits

(1.2) µj = lim
ε→0

ε2α

(
λj(ε)−

π2

M2ε2

)
exist, and µj are eigenvalues of the operator on L2(R) given by

(1.3) H = − d2

dx2
+ q(x), q(x) =

{
2π2M−3c+x

m, x > 0,

2π2M−3c−|x|m, x < 0.

Note that if m = 2 and c+ = c−, the operator H turns into the
harmonic oscillator.

Our second goal is to show that the eigenvalue convergence, de-
scribed by (1.2), can be obtained as a consequence of a sort of uni-
form convergence (i.e., convergence in norm) of the family of operators(
∆ε − π2

M2ε2

)−1

. The usual notion of uniform convergence does not

make sense here, since for different values of ε the operators act in
different spaces; one needs to interpret it in an appropriate way.

In L2(Ωε) consider the subspace Lε that consists of functions

ψ(x, y) = ψχ(x, y) = χ(x)

√
2

εh(x)
sin

πy

εh(x)
;

then

‖ψχ‖2
L2(Ωε)

=

∫
I

χ2(x)dx.
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The mapping χ 7→ ψχ is an isometric isomorphism between Lε and
L2(I). With some abuse of notations, we will identify operators acting
in Lε with operators acting in L2(I). Obviously, ψχ ∈ H1,0(Ωε) if
χ ∈ H1,0(I). A direct (though, rather lengthy) computation shows
that∫

Ωε

|∇ψχ|2dxdy =

∫
I

χ′(x)2dx+

∫
I

(
π2

ε2h2(x)
+ v(x)

)
χ2(x)dx,

where

v(x) =

(
π2

3
+

1

4

)
h′(x)2

h2(x)
.

Subtracting from
∫

Ωε
|∇ψχ|2dxdy the lower bound of the resulting po-

tential, we obtain the quadratic form (defined on H1,0(I))

(1.4) qε[χ] :=

∫
I

(
χ′(x)2 +Wε(x)χ

2(x)
)
dx,

where

(1.5) Wε(x) =
π2

ε2

(
1

h2(x)
− 1

M2

)
+ v(x).

Since the potential Wε(x) is non-negative, and it is positive for non-
zero values of x, the quadratic form (1.4) is positive definite in L2(I).
The self-adjoint operator on L2(I), associated with qε, is given by

(1.6) Qεu = −d
2u

dx2
+Wε(x)u, u(−a) = u(b) = 0.

The result of theorem 1.2 below can be interpreted as two-term
asymptotics, in a certain sense, of the operator-valued function ∆ε

as ε → 0. In its formulation, Iε stands for the identity operator on
L2(Ωε).

Theorem 1.2. There exist numbers R0 > 0 and ε0 > 0, depending on
the function h and such that

(1.7)

∥∥∥∥∥
(

∆ε −
π2

M2ε2
Iε

)−1

−Q−1
ε ⊕ 0

∥∥∥∥∥ ≤ R0ε
3α, ∀ε ∈ (0, ε0).

Here 0 is the zero operator on the subspace L⊥
ε ⊂ L2(Ωε).

The next statement describes, in what sense the operators Qε ap-
proximate the operator H given by (1.3). Introduce the family of seg-
ments

Iε = (−aε−α, bε−α), ε > 0
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and define the isometry operator Jε : L2(I) → L2(Iε) generated by the
dilation x = tεα. We identify L2(Iε) with the subspace

{u ∈ L2(R) : u(x) = 0 a.e. on R \ Iε}.
If Qε is the operator (1.6) in L2(I), then

(1.8) Q̂ε := ε2αJεQεJ
−1
ε

is a self-adjoint operator acting in L2(Iε).

Theorem 1.3. One has

(1.9)
∥∥∥Q̂−1

ε ⊕ 0−H−1
∥∥∥ → 0, ε→ 0.

were 0 is the zero operator on the subspace L2(R \ Iε).

Let us present another formulation of the latter result. It suggests
an interpretation that seems to be more transparent. However, the
formulation as in theorem 1.3 is more convenient for the proof.

Along with the operator H defined in (1.3), let us consider the op-
erator family

Hε = − d2

dx2
+ ε−2q(x), ε > 0

on L2(R), so that in particular H1 = H. The substitution x = tεα

shows that ε2αHε is an isospectral family of operators. The result of
theorem 1.3 can be rewritten as

‖(ε2αQε)
−1 ⊕ 0− (ε2αHε)

−1‖ → 0, ε→ 0.

This shows that the family (ε2αQε)
−1 of operators on L2(I), comple-

mented by the zero operator outside I, approaches an isospectral family
in the norm topology.

A similar effect, in a more complicated problem of the behavior of
the essential spectra of certain operator families, was studied by Last
and Simon in [7].

We will show now that theorems 1.2 and 1.3 imply theorem 1.1.
Indeed, the non-zero eigenvalues of the operator Q−1

ε ⊕ 0 are the same
as those of Q−1

ε . By theorem 1.2 we have for all j ∈ N and ε < ε0:∣∣∣∣∣
(
λj(ε)−

π2

M2ε2

)−1

− λ−1
j (Qε)

∣∣∣∣∣ ≤
∥∥∥∥∥
(

∆ε −
π2

M2ε2
Iε

)−1

−Q−1
ε ⊕ 0

∥∥∥∥∥
≤ R0ε

3α;

therefore ∣∣∣∣∣ 1

ε2α
(
λj(ε)− π2

M2ε2

) − 1

ε2αλj(Qε)

∣∣∣∣∣ ≤ R0ε
α.
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Further, λj(Q̂ε) = ε2αλj(Qε), so that theorem 1.3 implies

ε2αλj(Qε) → µj

which coincides with (1.2).

Theorems 1.2 and 1.3 also allow one to make some conclusions about
the behavior of the eigenfunction of the operator ∆ε as ε→ 0.

Let Ψj,ε(x, y) and Ψ̃j,ε(x) be the j-s normalized eigenfunctions of the
operators ∆ε and Qε respectively. Then theorem 1.2 implies that if the
signs of both eigenfunctions are chosen appropriately, then

(1.10)

∫
I

∣∣∣(PεΨj,ε

)
(x)− Ψ̃j,ε(x)

∣∣∣2 dx ≤ C2
j ε

6α.

Here Pε is the orthogonal projection in L2(Ωε) onto the subspace Lε.
See (3.2) for the explicit formula for Pε.

Similarly, theorem 1.3 yields

(1.11)

∫
I

∣∣∣Ψ̃j,ε(x)− ε−α/2Xj(xε
−α)

∣∣∣2 dx→ 0.

where Xj is the j-s normalized eigenfunction of the operator H.
Grieser and Jerison proved in [4] much stronger an estimate for the

first eigenfunction in a convex, narrow domain (in our setting, the
function h(x) is concave.) Similar problems are discussed in a survey
paper [8] by Nazarov.

In the next three sections we prove theorems 1.2 and 1.3. In section
5 we explain the derivation of the inequalities (1.10) and (1.11), and in
the last section 6 we describe possible extensions of our main results.
Acknowledgements. The bulk of the work was done when the first
author was the Weston Visiting Professor in the Weizmann Institute of
Science in Rehovot, Israel. He thanks the Institute for its hospitality.
The work was finished when both authors visited the Isaac Newton
Institue for Mathematical Sciences in Cambridge, UK. We acknowl-
edge the hospitality of the Newton Institute. We are also grateful
to V. Maz’ya and S. Nazarov for their bibliographical advice and to
A. Sobolev for discussions.

2. Upper bound for ‖Q−1
ε ‖

As the first step, we find an upper bound for the quantity ‖Q−1
ε ‖

as ε → 0. Notice that theorem 1.3 implies ‖Q−1
ε ‖ ∼ µ−1

1 ε2α, which is
stronger a result than the following lemma.
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Lemma 2.1. Let h(x) meet the properties (i), (ii) of section 1. Then
there exists a number R1 > 0 such that

(2.1) ‖Q−1
ε ‖ ≤ R1ε

2α, ∀ε > 0.

Proof. One has (see (1.5))

ε2Wε(x)

|x|m
≥ π2

|x|m

(
1

h2(x)
− 1

M2

)
.

The function on the right in the last inequality is strictly positive on I
and continuous on [−a, 0] and on [0, b] (it equals 2π2c±M

−3 at x = 0±;
M and c± are numbers from (1.1)). Hence, there exists σ > 0 such
that

(2.2) Wε(x) ≥ σε−2|x|m, ∀ε > 0, x ∈ I.

The operator − d2

dx2 + σ|x|m on L2(R) is positive definite; so∫
R
(χ′(x)2 + σ|x|mχ2(x))dx ≥ R−1

1

∫
R
χ2(x)dx, ∀χ ∈ H1(R)

for some positive number R1. By scaling x 7→ ε−αx we get∫
R
(χ′(x)2 +σε−2|x|mχ2(x))dx ≥ R−1

1 ε−2α

∫
R
χ2(x)dx, ∀χ ∈ H1(R).

In particular, this inequality is satisfied for any function χ ∈ H1,0(I),
extended to the whole of R by zero. It follows from here and (2.2) that

(2.3) qε[χ] ≥ R−1
1 ε−2α

∫
I

χ2dx, ∀χ ∈ H1,0(I),

which implies (2.1). �

3. Proof of Theorem 1.2

We will systematically use the orthogonal decomposition

(3.1) L2(Ωε) = Lε ⊕ L⊥
ε ,

and write, for ψ ∈ L2(Ωε),

ψ = ψχ + U, ψχ = Pεψ, U ⊥ Lε.

Here Pε stands for the orthogonal projection in L2(Ωε) onto the sub-
space Lε. This projection is given by

(3.2) Pεψ = ψχ, where χ(x) =

√
2

εh(x)

∫ εh(x)

0

ψ(x, y) sin
πy

εh(x)
dy.

Note that
PεH

1,0(Ωε) = H1,0(I).
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The inclusion U ∈ L⊥
ε means that

(3.3)

∫ εh(x)

0

U(x, y) sin
πy

εh(x)
dy = 0, for a.a. x ∈ I.

If U ∈ H1,0(Ωε), then integration by parts gives

(3.4)

∫ εh(x)

0

U ′
y(x, y) cos

πy

εh(x)
dy = 0, for a.a. x ∈ I.

Because U satisfies the Dirichlet boundary condition, (3.3) implies∫ εh(x)

0

U2(x, y)dy ≤ ε2h2(x)

4π2

∫ εh(x)

0

U ′
y(x, y)

2dy

≤ M2ε2

4π2

∫ εh(x)

0

U ′
y(x, y)

2dy

and therefore, for U ∈ L⊥
ε ∩H1,0(Ωε)

(3.5) ‖U‖2
L2(Ωε)

≤ M2ε2

3π2

∫
Ωε

(
|∇U |2 − π2

M2ε2
|U |2

)
dxdy.

In addition, if U ∈ H1,0(Ωε) then one can differentiate (3.3) with
respect to x to get
(3.6)∫ εh(x)

0

U ′
x(x, y) sin

πy

εh(x)
dy =

π

ε
h̃(x)

∫ εh(x)

0

yU(x, y) cos
πy

εh(x)
dy.

Here and later, we use the notation

h̃(x) =
h′(x)

h2(x)
;

this function repeatedly appears in our calculations.

For the proof of theorem 1.2 we compare the quadratic forms of the
operator

Aε = ∆ε −
π2

M2ε2
Iε

appearing in (1.7), and of its diagonal part with respect to the decom-
position (3.1), which is

(3.7) Bε = Qε ⊕
(
(I−Pε)Aε �L⊥

ε

)
.

The quadratic form of Bε is (again, for ψ = ψχ + U)

bε[ψ] = qε[χ] +

∫
Ωε

(
|∇U |2 − π2

M2ε2
|U |2

)
dxdy,
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where qε is given by (1.4). From (2.3) and (3.5) we conclude that with
some C > 0

(3.8) bε[ψ] ≥ Cε−2α‖ψ‖2, ∀ψ ∈ H1,0(Ωε).

The quadratic form of Aε is

aε[ψ] = bε[ψ] + 2mε[ψ]

where (one half of) the off-diagonal term is

mε[ψ] =

∫
Ωε

(
∇ψχ · ∇U −

π2

M2ε2
ψχU

)
dxdy =

∫
Ωε

(ψχ)′xU
′
xdxdy;

the integral containing (ψχ)′yU
′
y vanishes because of (3.4) and the one

containing ψχU vanishes because ψχ and U belong to orthogonal sub-
spaces of L2(Ωε).

We will now estimate mε[ψ]. It is convenient to work with the func-
tion

φ(x) = h−1/2(x)χ(x).

instead of χ. It is easy to see that for each χ ∈ H1(I) we have

(3.9) ‖φ‖ � ‖χ‖, ‖φ′‖2 + ‖φ‖2 � ‖χ′‖2 + ‖χ‖2 ≤ Cqε[χ];

the symbol � stands for two-sided inequality. Taking (3.6) into ac-
count, we find that

(3.10) mε[ψ] =

√
2π

ε3/2

∫
Ωε

h̃(x) cos
πy

εh(x)
(φ′U − φU ′

x) ydxdy.

The next estimate follows immediately:

m2
ε [ψ]

≤ Cε−3

(
‖U‖2

L2(Ωε)

∫
Ωε

φ′(x)
2
y3dxdy + ‖U ′

x‖2
L2(Ωε)

∫
Ωε

φ2(x)y3dxdy

)
≤ C

(
‖U‖2

L2(Ωε)
‖φ′‖2

L2(I) + ‖U ′
x‖2

L2(Ωε)
‖φ‖2

L2(I)

)
.

Now we conclude from (3.5), (3.9), and (2.3) that

m2
ε [ψ] ≤ C

(
ε2bε[U ]qε[χ] + ε2αbε[U ]qε[χ]

)
,

whence

(3.11) |mε[ψ]| ≤ C ′εαbε[ψ].

It is important that the constant C ′ does not depend on ε.
The quadratic form bε is positive definite. Choosing ε0 = (4C ′)−1/α,

we conclude from (3.11) that

(1− C ′εα)bε[ψ] ≤ aε[ψ] ≤ (1 + C ′εα)bε[ψ], ∀ε < ε0
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for all ψ ∈ H1(Ωε). Hence, for ε < ε0 the quadratic form aε is also
positive definite. Taking (3.8) into account, we find that there exists a
positive constant C such that

aε[ψ] ≥ C−1ε−2α‖ψ‖2, bε[ψ] ≥ C−1ε−2α‖ψ‖2, ∀ε < ε0,

or, equivalently,

(3.12) ‖A−1
ε ‖ ≤ Cε2α, ‖B−1

ε ‖ ≤ Cε2α, ∀ε < ε0.

The estimate (3.11) implies an estimate for the bilinear form mε[ψ1, ψ2]
which corresponds to the quadratic form mε[ψ], i.e.

mε[ψ1, ψ2] =

∫
Ωe

(ψχ1)
′
x(U2)

′
xdxdy.

Namely,

(3.13) |mε[ψ1, ψ2]| ≤ C ′εα (bε[ψ1]bε[ψ2])
1/2 ,

with the same constant C ′ as in (3.11).

Note that in the right-hand side of (3.13) each factor bε[ψj] can be
replaced by aε[ψj]; that will result in a change of the constant C ′, which
is not essential.

We have, for any ψ1, ψ2 ∈ H1,0(Ωε):∣∣(A1/2
ε ψ1,A

1/2
ε ψ2)− (B1/2

ε ψ1,B
1/2
ε ψ2)

∣∣ = |aε[ψ1, ψ2]− bε[ψ1, ψ2]|
= 2|mε[ψ1, ψ2]| ≤ Cεα(aε[ψ1]bε[ψ2])

1/2.

Take here ψ1 = B−1
ε f, ψ2 = A−1

ε g, where f, g ∈ L2(Ωε) are arbitrary.
Then we get by (3.12):

|(A−1
ε f, g)− (B−1

ε f, g)| ≤ Cεα
(
(A−1

ε g, g)(B−1
ε f, f)

)1/2 ≤ Cε3α‖f‖‖g‖;

therefore

(3.14) ‖A−1
ε −B−1

ε ‖ ≤ Cε3α.

It follows from (3.7) and (3.5) that

‖B−1
ε − (Q−1

ε ⊕ 0)‖ = ‖
(
(I−Pε)Aε �L⊥

ε

)−1‖ ≤M2ε2/3π2.

Together with (3.14), this completes the proof of theorem 1.2.
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4. Proof of theorem 1.3

In the course of the proof we rely upon the following statement.

Proposition 4.1. 1◦ Let V (x) ≥ 0 be a measurable function on R,
such that V (x) → ∞ as |x| → ∞, and let {Iε}, 0 < ε < 1, be an
expanding family of intervals:

Iε1 ⊂ Iε2 (ε1 > ε2), ∪0<ε<1Iε = R.
Consider the quadratic form

zV [u] =

∫
R
(u′

2
+ V u2)dx, u ∈ dV := {H1(R) : zV [u] <∞}

and a family of its restriction zV,Iε to the domains

dV,Iε = {u ∈ dV : u |∂Iε = 0} .
Let ZV ,ZV,Iε stand for the corresponding self-adjoint operators on L2(R).
Then

(4.1) ‖Z−1
V,Iε

− Z−1
V ‖ → 0, ε→ 0,

2◦ Let a potential V0 ≥ 0 be fixed, such that V0(x) →∞ as |x| → ∞.
Then the convergence in (4.1) is uniform in the class of all potentials
V such that

V (x) ≥ V0(x) on R.

Proof. 1◦ Under the assumptions of proposition the strong convergence
Z−1

V,Iε
→ Z−1

V is well known. For instance, it follows from theorem
VIII.1.5 in the book [5]. Its assumptions are evidently satisfied if we
take into account that C∞

0 (R) is a core for the operator ZV .
For each ε we have dV,Iε ⊂ dV and zV,Iε [u] = zV [u] for every u ∈ dV,ε.

By the definition of inequalities between self-adjoit operators (see e.g.
[1], section 10.2.3), this means that ZV,Iε ≥ ZV and, by theorem 10.2.6
from [1],

Z−1
V,Iε

≤ Z−1
V .

Since V (x) →∞ as |x| → ∞, the operator Z−1
V is compact.

Now, we get the statement 1◦ by applying theorem 2.16 in [11] (which
is an analogue of the classical Lebesgue theorem on dominated conver-
gence). In particular, the theorem says that if Tε, 0 < ε < ε0 is a fam-
ily of compact, self-adjoint operators such that Tε → T strongly, and
there exists a compact non-negative operator T0, such that |Tε| ≤ T0

for each ε, then ‖Tε −T‖ → 0.
2◦ Actually, this statement also is a consequence of theorem 2.16

in [11]. More exactly, it immediately follows from the last displayed
inequality in the proof of theorem. �
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Each operator ZV,Iε appearing in the formulation is the direct sum
of the operators inside and outside the interval Iε, generated by the
differential expression −d2/dx2 + V and the Dirichlet conditions at
∂Iε. Let us denote these operators as ZV,int(Iε), ZV,ext(Iε) respectively.

Corollary 4.2. Both statements of proposition 4.1 remain valid if we
replace each operator Z−1

V,Iε
by Z−1

V,int(Iε)
⊕0, where 0 is the zero operator

on the subspace {u ∈ L2(R) : u = 0 on R \ Iε}.

Indeed, this immediately follows from the fact that

(ZV,ext(Iε)u, u) ≥ ‖u‖2 inf
x∈R\Iε

V (x),

whence ‖Z−1
V,ext(Iε)

‖ → 0.

Proof of theorem 1.3. Let Wε be the function defined in (1.5) and

Vε(t) = ε2αWε(tε
α).

Then the quadratic form of the operator (1.8) is

q̂ε[u] =

∫
Iε

(
u′(t)2 + Vε(t)u

2(t)
)
dt.

The assumption (1.1), say for x > 0, can be written as

h(x) = M − c+x
m + ρ(x)xm+1, ρ ∈ L∞(0, b).

Hence,

1

h2(x)
− 1

M2
= 2c+M

−3xm + ρ1(x)x
m+1, ρ1 ∈ L∞(0, b);

therefore

Vε(t) = q(t) + π2ρ1(tε
α)tm+1εα + ε2αv(tεα), t ∈ (0, bε−α).

A similar equality is satisfied also for t ∈ (−aε−α, 0).

Along with {Iε}, we need a system {I ′ε} of narrower intervals, say

I ′ε = (−ε−β, ε−β).

Here β > 0 can be taken arbitrary; the only condition is β(m+1) < α.
Then for any η > 0 there exists a number ε(η) > 0, such that

(4.2) |Vε(t)− q(t)| < η for all t ∈ I ′ε, ε < ε(η).

In addition, it follows from (2.2) that

(4.3) Vε(t) ≥ σ|t|m for all t ∈ Iε, ε < 1.

It is useful to extend each function Vε(t) to the whole of R, taking
Vε(t) = σ|t|m for t /∈ Iε. With each (extended) function Vε we associate

three operators: Hε acting on L2(R), Q̂ε acting on L2(Iε), and Q̂′
ε
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acting on L2(I ′ε). Each operator acts as −d2/dt2 + Vε(t); the last two
operators are taken with the Dirichlet boundary conditions. To apply
proposition 4.1, one takes

Hε = ZVε ; Q̂ε = ZVε,int(Iε), Q̂′
ε = ZVε,int(I′

ε).

In particular, Q̂ε is nothing but the operator (1.8).
By proposition 4.1, 2◦ we have

‖Q̂−1
ε ⊕ 0−H−1

ε ‖ → 0, ‖Q̂′−1

ε ⊕ 0−Hε
−1‖ → 0

as ε→ 0. Here 0 stands for the zero operator on L2(R)	L2(Iε), or on
L2(R)	 L2(I ′ε). Therefore,

(4.4) ‖Q̂−1
ε ⊕ 0− Q̂′−1

ε ⊕ 0‖ → 0.

Note that the operators Q̂ε, Q̂′
ε depend on the parameter ε in two ways:

via the potential and via the interval. For this reason, the statement
1◦ of proposition 4.1 is insufficient for making these conclusions.

Consider also the family of operators H′
ε := Zq(t),int(I′

ε). They act on
L2(I ′ε) as

H′
εu = −u′′ + q(t)u,

with the Dirichlet conditions at ∂I ′ε. This time, the potential does not
involve the parameter ε, and we conclude from proposition 4.1, 1◦ that

(4.5) ‖H′
ε
−1 ⊕ 0−H−1‖ → 0.

In addition, one has

(4.6) ‖Q̂′−1

ε −H′
ε
−1‖ → 0, ε→ 0.

Indeed, by Hilbert’s resolvent formula,

Q̂′−1

ε −H′
ε
−1

= −Q̂′−1

ε (Vε(t)− q(t))H′
ε
−1
.

Here ‖Q̂′−1

ε ‖, ‖Ĥ′−1

ε ‖ ≤ C for all ε < 1 (this follows from (4.3)), and
by (4.2) the norm of the multiplication operator is smaller than an
arbitrary η, provided that ε is small.

Theorem 1.3 (that is, eq. (1.9)) immediately follows from (4.4), (4.5),
and (4.6).

5. Eigenfunction convergence

5.1. We start from some elementary remarks from the Hilbert space
theory. Let e, f be normalized elements of a Hilbert space H, and

(5.1) K = (·, e)e− (·, f)f.
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A direct calculation shows that the Hilbert-Schmidt norm of the oper-
ator K is given by

‖K‖2
HS = 2(1− |(e, f)|2).

Suppose now that (e, f) is real, then ‖e ± f‖2 = 2(1 ± (e, f)) and
hence,

(5.2) min(‖e− f‖, ‖e+ f‖) ≤ (‖e− f‖‖e+ f‖)1/2 =
√

2 ‖K‖HS.

Further, let H be decomposed into an orthogonal sum of two sub-
spaces,

H = H0 ⊕H⊥
0

and let f ∈ H0. Then, along with (5.2), one has

(5.3) min(‖P0e− f‖, ‖P0e+ f‖) ≤
√

2 ‖K‖HS

where P0 is the operator of orthogonal projection onto H0.

Suppose now that S,T are two self-adjoint operators in H. We
assume that they are bounded, though this is actually not needed.
Suppose that, on some interval δ ∈ R, each operator has exactly one
point of spectrum, and this point is a simple eigenvalue. Say, λ0, µ0 are
these eigenvalues for S,T respectively, and e, f are the corresponding
normalized eigenvectors. Let φ(λ) be a smooth, real-valued function
on R, which vanishes outside δ and is such that

φ(λ0) = φ(µ0) = 1.

Then we conclude from Spectral Theorem that

φ(S) = (·, e)e; φ(T) = (·, f)f,

and therefore the operator K can be represented as

K = φ(S)− φ(T).

This representation allows us to apply the theory of double operator
integrals (see [2], and especially section 8 therein.) In particular, we
conclude from theorems 8.1 and 8.3 that

‖K‖ ≤ C‖S−T‖, C = C(φ).

Since rankK ≤ 2, we conclude that also

(5.4) ‖K‖HS ≤
√

2 ‖K‖ ≤ C
√

2 ‖S−T‖.
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5.2. Now we proceed to proving (1.10) and (1.11). We start from
(1.11). Then we take H = L2(R), H0 = L2(Iε). Recall that we iden-
tify L2(Iε) with the subspace in L2(R) formed by functions vanishing
outside Iε. The operator P0 acts as the restriction operator from R to
the interval Iε.

We apply the estimate (5.4) to the operators S = H−1 and T =

Q̂−1
ε ⊕ 0. Theorem 1.3 guarantees that for each j ∈ N there exists a

number ε∗j , such that for any ε < ε∗j there is a neighborhood δ of the

point µ−1
j , in which the spectrum of Q̂−1

ε reduces to a single and simple

eigenvalue. By (1.8), this eigenvalue is ε−2αλ−1
j (Qε).

The eigenfunction of S which corresponds to the eigenvalue µ−1
j is

Xj(t), and that of T which corresponds to the eigenvalue ε−2αλ−1
j (Qε)

is equal to εα/2Ψ̃j,ε(tε
α) on I and vanishes outside I. Under the appro-

priate choice of the sign of Ψ̃j,ε(x), we conclude from (5.4) that∫
Iε

∣∣∣Xj(t)− εα/2Ψ̃j,ε(tε
α)

∣∣∣2 dt→ 0.

Using the substitution t = xε−α, we get (1.11).

To get (1.10), we apply the estimate (5.4) to the operators

S = A−1
ε = (∆ε −

π2

M2ε2
Iε)

−1, T = Q−1
ε ⊕ 0.

Here H = L2(Ωε), H0 = Lε, and P0 is the operator Pε described in

(3.2). Eigenvalues of S are λj(S) = (λj(ε) − π2

M2ε2
)−1, and the corre-

sponding eigenfunctions are Ψj,ε(x, y). Recall that λj(ε) is our notation
for λj(∆ε). By theorem 1.2, for each j ∈ N there exists an ε∗j > 0, such
that for ε < ε∗j the point λj(S) has a neighborhood δ ⊂ R containing
exactly one eigenvalue of the operator T. This eigenvalue is simple
and necesarily coincides with λj(Qε). The corresponding eigenfunction

is ψχ(x, y) with χ(x) = Ψ̃j,ε(x). Now, the inequality (5.4) turns into
(1.10).

Note that the interval δ appearing in this argument is quite narrow
for large values of j. Indeed, its length can not exceed the number(

λj−1(ε)−
π2

M2ε2

)−1

−
(
λj+1(ε)−

π2

M2ε2

)−1

.

This results in a very large constant C = Cj in the corresponding
inequality (1.10).
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6. Remarks on possible extensions

1. The result of theorem 1.1 extends to the case when h(x) is con-
tinuous on I, positive inside I, satisfies the condition (i), and in a
neighborhood of x = 0 admits the expansion (1.1); however, the func-
tion h(x) is allowed to vanish at endpoints of I. A simple but important
example of such a function is h(t) = 1−|x| on the segment I = [−1, 1].

This statement is easy to justify by using the variatonal principle in
its simplest form. Namely, we construct functions h± in such a way that
h+ satisfies the conditions (i) and (ii) on I, with the same coefficients in
the expansion (1.1), and the inequality h(x) ≤ h+(x), while h− satisfies

the conditions (i) and (ii) on a smaller segment Ĩ ⊂ I, also with the

same coefficients in (1.1), and the inequality h(x) ≥ h−(x), x ∈ Ĩ.
Denote

Ω+
ε = {(x, y) : x ∈ I, 0 < y < εh+(x)};

Ω−
ε = {(x, y) : x ∈ Ĩ , 0 < y < εh−(x)}.

Let λ±j (ε) stand for the eigenvalues of the Dirichlet Laplacian in Ω±
ε ,

then by the variatonal principle we have

λ+
j (ε) ≤ λj(ε) ≤ λ−j (ε).

By theorem 1.1, the equality (1.2) is valid for λ±j (ε); therefore it holds
also for λj(ε).

It remains to construct the functions h±(x). Let x > 0. It follows
from (1.1) that on some segment [0, η] we have

|M − h(x)− c+x
m| ≤ Kxm+1,

with some constant K > 0. The function h+(x) can be obtained (for
x > 0) as an appropriate extension of M − c+xm +Kxm+1 to [0, b], and
h−(x) can be obtained as the restriction of M − c+x

m − Kxm+1 to a
segment [0, η̃], where η̃ ≤ η is small enough, to guarantee h−(x) > 0
on [0, η̃]. For x < 0, we construct h±(x) in a similar way.

At the moment it is unclear to the authors, whether theorems 1.2
and 1.3 also extend to the case when h(x) vanishes at the endpoints of
the interval I. The main technical obstacle comes from the fact that
the function sin πy

εh(x)
oscillates very fast near the points where h(x)

vanishes.

2. The results of all three theorems 1.1 – 1.3 extend to the case when
the Dirichlet conditions at x = −a, x = b are replaced by the Neumann
conditions. The argument is basically the same as for the Dirichlet
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problem, except for two important points: the proofs of lemma 2.1 and
of proposition 4.1 do not apply to the Neumann case.

These obstacles can be overcome, so that the results survive under
the same assumptions (i), (ii) on the function h(x).

3. Theorems 1.2 and 1.3 extend to the case of an infinite strip, when
I is the whole line, or a half-line. Let, say, I = R. One has to impose
additional conditions on the behavior of h(x) as |x| → ∞. A simple
condition is

(iii) The function h(x) is such that

lim sup
|x|→∞

h(x) < M ;
h′

h
∈ L∞(R).

Theorem 6.1 below, which is an analogue of theorem 1.1, looks a
little bit more complicated than the latter, since the spectrum of the
Dirichlet Laplacian ∆ε in Ωε is now not necessarily discrete. In the
formulation of the theorem ν(ε) stands for the bottom of of the essential
spectrum of ∆ε, and we take ν(ε) = ∞ if the spectrum of ∆ε is discrete.
We denote by n−(ε), n−(ε) ≤ ∞, the number of eigenvalues λj(ε) <
ν(ε).

Theorem 6.1. If h(x) satisfies the conditions (i), (ii) and (iii), then
for ε small the spectrum of ∆ε below ν(ε) is non-empty and n−(ε) →∞
as ε→ 0. For each j ∈ N the equality (1.2) holds, where again, µj are
eigenvalues of the operator (1.3).

Proof of an analogue of theorem 1.3 turns out to be the crucial step
in the analysis of the case I = R. The main difficulty here is that
theorem 2.16 in [11] does not apply, since the operators involved may
be non-compact. However, an appropriate substitute can be proved,
and this leads to the desired result.

A detailed exposition of the material related to remarks 2 and 3 will
be given in a forthcoming paper.
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