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Abstract. Previously, it has been shown that discretising a multi-Hamiltonian PDE in space
and time with partitioned Runge–Kutta methods gives rise to a system of equations that formally
satisfy a discrete multisymplectic conservation law. However, these studies use the same partitioning
of the variables into two partitions in both space and time. This gives rise to a large number of cases
to be considered, each with its own set of conditions to be satisfied. We present here a much simpler
set of conditions, covering all of these cases, where the variables are partitioned independently in
space and time into an arbitrary number of partitions.

In general, it is not known when such a discretisation of a multi-Hamiltonian PDE will give rise to
a well defined numerical integrator. However, a numerical integrator that is explicit will typically be
well defined. In this paper, we give sufficient conditions on a multi-Hamiltonian PDE for a Lobatto
IIIA–IIIB discretisation in space to give rise to explicit ODEs and an algorithm for constructing
these ODEs.

1. Introduction. A multi-Hamiltonian PDE in one time and one space dimen-
sion is a PDE which can be written as a first order system in the form

Kzt + Lzx = ∇zS(z), (1.1)

where z ∈ Rn, K and L are non-zero skew-symmetric matrices and S(z) is a smooth
function [4].

Along solutions, z(t, x), to Eq. (1.1) the multisymplectic conservation law,

ωt + κx = 0, (1.2)

holds, where ω = 1
2Kdz∧ dz and κ = 1

2Ldz∧ dz are 2-forms and dz satisfies the first
variation of the PDE,

Kdzt + Ldzx = DzzS(z)dz (1.3)

where DzzS(z) is a symmetric matrix.
One definition of a multisymplectic integrator is a numerical method that ex-

actly preserves a discrete analogue of Eq. (1.2) (a so-called discrete multisymplectic
conservation law) by applying a symplectic one-step method in space and time [9].
An important fact here is that multisymplectic integrators do not conserve Eq. (1.2)
exactly, but rather different multisymplectic integrators preserve different discrete
multisymplectic conservation laws, i.e. different discretisations of Eq. (1.2). This is
in contrast to symplectic integrators for ODEs, which conserve symplecticity exactly.
Some of the consequences of preserving a discrete multisymplectic conservation law
are:

(i) exact preservation of some integrals, e.g. potential vorticity [12];
(ii) both energy and momentum are approximately locally conserved [16, 17, 6];
(iii) quasi-periodic orbits and chaotic regions are preserved (KAM theory) [21];
(iv) the ability to take comparatively large time-steps and retain long-time sta-

bility [10].
In the past several authors [6, 11, 15, 17] have given discretisations of Eq. (1.1)

which they have shown to formally satisfy a discrete multisymplectic conservation
law. What these authors typically fail to consider is whether the resulting system of
equations forms a well defined numerical integrator. Some problems that may occur
in such discretisations are [19]:

1



2 B. N. Ryland and R. I. McLachlan

(i) there may be no obvious choice of dependent variables;
(ii) the discrete equations may not be well defined locally (i.e. there may not

be one equation per dependent variable per cell);
(iii) the discrete equations may not be well defined globally (i.e. there may not

be one equation per dependent variable across all spatial grid points when boundary
conditions are imposed);

(iv) the discrete equations may not have a solution, or may not have a unique
solution or isolated solutions.

Difficulties due to these problems already occur for the most popular multisymplectic
integrator, the Preissman box scheme. With periodic boundary conditions in one
space dimension, the discrete equations typically only have solutions with an odd
number of grid points, while with an even number of grid points they have no solution
(nonlinear problems) or an infinite number of solutions (linear problems). With higher
order Runge–Kutta (RK) methods these problems are even worse [18].

Problems (iii) and (iv) will, in general, be avoided if a discretisation method is
used which gives rise to explicit multisymplectic integrators. In order to construct
an explicit multisymplectic integrator, it is necessary for the discretisation in each
dimension to be explicit and symplectic. For PDEs in one space and one time di-
mension, this condition means that a symplectic spatial discretisation must give rise
to explicit ODEs in time (or vice-versa since space and time are treated on an equal
footing). This rules out discretisation by symplectic RK methods. However, for some
partitioned Runge–Kutta (PRK) methods this is possible, e.g. the well-known 5-
point method obtained by applying leapfrog in space and time to the nonlinear wave
equation, utt − uxx = −V ′(u), gives the explicit multisymplectic integrator [6]:

1

(∆t)2




1
−2
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

u−
1

(∆x)2
[

1 −2 1
]
u = −V ′(u), (1.4)

where we have used the notation of centred stencils.

Thus, in this paper we will be concerned with applying a PRK discretisation
in space to obtain explicit ODEs in time. In particular we will consider the Lobatto
IIIA–IIIB class of PRK discretisation, which, under certain requirements on the PDE,
avoids problems (i) and (ii) and allows explicit ODEs to be obtained.

The remainder of this paper consists of four sections. In Section 2 we will describe
a PRK discretisation with an arbitrary number of partitions and show that such
a discretisation in time and space gives rise to a natural discrete multisymplectic
conservation law which is formally satisfied. In Section 3 we give the conditions on
the coefficients of a PRK discretisation to be of Lobatto IIIA–IIIB type and specify our
reasons for considering the Lobatto IIIA–IIIB class of PRK discretisation. In Section
4 we give the conditions on a multi-Hamiltonian PDE such that the application of
a Lobatto IIIA–IIIB discretisation in space allows one to construct explicit ODEs
and then present an algorithm for constructing these ODEs. We follow this with
several examples of PDEs that satisfy these conditions (such as the nonlinear wave
equation and the nonlinear Schrödinger equation) and some examples of PDEs that
do not. In Section 5 we will discuss some properties of the ODEs formed through our
construction algorithm and give a shortcut for constructing these ODEs. We will also
discuss the discretisation of these ODEs in time and their behaviour with respect to
boundary conditions.
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2. Partitioned Runge–Kutta Discretisation. When a differential equation,

zt = f(z), (2.1)

is discretised with a PRK discretisation, the vector of dependent variables z ∈ Rn

is partitioned into several partitions, z(γ) ∈ Rnγ with
∑

γ nγ = n. Typically, the
number of partitions is two but it is possible for the number of partitions to be as
high as n. A grid is then introduced where we take the grid points (or nodes) (for
convenience only) to have equal spacing ∆t and we adopt the following notation: let
cell i be the region in the domain defined by t ∈ [i∆t, (i+ 1)∆t), let zγ be the entry

γ in z, let z
(γ)
i ∈ Rnγ be the vector of variables in partition γ at the node in cell i,

let Z
(γ)
i,j ∈ Rnγ be the vector of variables in partition γ at stage j in cell i and let the

lack of a raised index (γ) indicate the unpartitioned variable.
For an r-stage PRK discretisation of Eq. (2.1) one obtains a set of equations

coupling the node values zi to the stage values Zi,j at r internal stages given by

Z
(γ)
i,j = z

(γ)
i + ∆t

r∑

k=1

a
(γ)
jk ∂tZ

(γ)
i,k , j = 1, . . . , r,

z
(γ)
i+1 = z

(γ)
i + ∆t

r∑

j=1

b
(γ)
j ∂tZ

(γ)
i,j ,

(2.2)

for each γ, where the new variables ∂tZi,j satisfy Eq. (2.1), i.e.

∂tZi,j = f(Zi,j), (2.3)

and the coefficients b
(γ)
j and a

(γ)
jk are chosen to satisfy certain order conditions.

The conditions for a two-partition PRK discretisation of a canonical Hamiltonian
ODE, with partitioning z(1) = q and z(2) = p, to be symplectic are [1]

−a
(1)
kj b

(2)
k − b

(1)
j a

(2)
jk + b

(1)
j b

(2)
k = 0 for all j, k, (2.4)

while the conditions for an RK discretisation (i.e. a one-partition PRK discretisation
with z(1) = z, n1 = n) of the same ODE to be symplectic are [20]

−a
(1)
kj b

(1)
k − b

(1)
j a

(1)
jk + b

(1)
j b

(1)
k = 0 for all j, k. (2.5)

Generally, for a PRK discretisation with coefficients satisfying Eq. (2.4), the coeffi-
cients will not satisfy Eq. (2.5).

When the PDE (1.1) is discretised in space with an r-stage PRK discretisation,
the set of equations that one obtains are given by

Z
(γ)
i,j = z

(γ)
i + ∆x

r∑

k=1

a
(γ)
jk ∂xZ

(γ)
i,k , j = 1, . . . , r,

z
(γ)
i+1 = z

(γ)
i + ∆x

r∑

j=1

b
(γ)
j ∂xZ

(γ)
i,j ,

(2.6)

for each γ, where the new variables ∂xZi,j satisfy Eq. (1.1), i.e.

K∂tZi,j + L∂xZi,j = ∇zS(Zi,j). (2.7)
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Eqs. (2.6) and (2.7) form a differential-algebraic equation (DAE) for Zi,j and zi.
However, in this DAE there are no ODEs for the node values and the constraints only
apply to LZi,j , not Zi,j . Furthermore, L may not have full rank, which may prevent
one from obtaining a system of explicit ODEs for the Zi,j .

Previous studies of the PDE (1.1) discretised in space and time with PRK methods
have concluded that such discretisations satisfy a natural discrete approximation of
the multisymplectic conservation law (1.2) [11]. However, these studies use the same
partitioning of the variables for both the space and time discretisations, which leads
to a large number of cases to be considered, each with its own set of conditions to be
satisfied. This choice of partitioning in each dimension is important as the conditions
for the discretised equations to satisfy the discrete multisymplectic conservation law
depend upon K and L.

For example, given a multi-Hamiltonian PDE and a two-partition PRK discreti-
sation in time with coefficients satisfying Eq. (2.4), if the PDE has no time derivatives
of the variables in the second partition, then the discretisation is in fact an RK dis-
cretisation with the same coefficients as the first of the PRK pair, which will not in
general satisfy Eq. (2.5).

To consider the most general case, we will now assume the finest possible par-
titioning of the variables, namely n partitions where, for each entry γ in z we have
that nγ = 1 and the partition z(γ) consists simply of the variable zγ . We will use the
notation dZγ,n,m

i,j to represent the entry γ in z at stage j of cell i in space and stage m
of cell n in time, where a lack of either the index j or m indicates the node variable of

cell i in space or cell n in time respectively. Also, let b
(γ)
j and a

(γ)
ij be the coefficients

of the spatial PRK discretisation for the partitioning associated with the variable zγ

and let B
(γ)
m and A

(γ)
nm be the coefficients of the temporal PRK discretisation for the

partitioning associated with the variable zγ .
The following theorem gives a much simpler set of conditions for PRK discretisa-

tions of Eq. (1.1) in space and time to satisfy a discrete multisymplectic conservation
law. Since it immediately applies to any other partitioning of the variables by simply

equating the b
(γ)
j and a

(γ)
ij coefficients of the appropriate partitions in space or time,

this set of conditions encompasses all of the cases considered in previous studies.
Theorem 2.1. A multi-Hamiltonian PDE (1.1) discretised by a PRK method in

space and another PRK method in time has a discrete multisymplectic conservation
law, given by

∆x
∑

j

bj(ω
n+1
i,j − ωn

i,j) + ∆t
∑

m

Bm(κn,m
i+1 − κ

n,m
i ) = 0, (2.8)

where ωn
i,j = 1

2

∑
β,γ KβγdZγ,n

i,j ∧ dZβ,n
i,j and κ

n,m
i = 1

2

∑
β,γ LβγdZγ,n,m

i ∧ dZβ,n,m
i

when the following conditions hold:

b
(γ)
j = bj ,

−a
(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k = 0

(2.9)

for all j, k and pairs (β, γ) such that Lβγ 6= 0 and

B(γ)
m = Bm,

−A(γ)
nmB

(β)
n −B(γ)

m A(β)
mn +B(γ)

m B(β)
n = 0

(2.10)

for all m,n and pairs (β, γ) such that Kβγ 6= 0.
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Proof.

(
κ

n,m
i+1 − κ

n,m
i

)

=
1

2

∑

β,γ

(
LβγdZγ,n,m

i+1 ∧ dZβ,n,m
i+1 − LβγdZγ,n,m

i ∧ dZβ,n,m
i

)

=
1

2

∑

β,γ

Lβγ

((
dZγ,n,m

i + ∆x
∑

j

b
(γ)
j ∂xdZγ,n,m

i,j

)
∧
(
dZβ,n,m

i

+ ∆x
∑

k

b
(β)
k ∂xdZβ,n,m

i,k

)
− dZγ,n,m

i ∧ dZβ,n,m
i

)

=
1

2

∑

β,γ

Lβγ

(
∆x
(
dZγ,n,m

i ∧
∑

k

b
(β)
k ∂xdZβ,n,m

i,k

+
∑

j

b
(γ)
j ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i

)
+ (∆x)2

∑

j,k

b
(γ)
j b

(β)
k ∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

=
1

2

∑

β,γ

Lβγ

(
∆x
∑

k

(
dZγ,n,m

i,k − ∆x
∑

j

a
(γ)
kj ∂xdZγ,n,m

i,j

)
∧ b

(β)
k ∂xdZβ,n,m

i,k

+ ∆x
∑

j

b
(γ)
j ∂xdZγ,n,m

i,j ∧
(
dZβ,n,m

i,j − ∆x
∑

k

a
(β)
jk ∂xdZβ,n,m

i,k

)

+ (∆x)2
∑

j,k

b
(γ)
j b

(β)
k ∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

=
1

2

∑

β,γ

Lβγ

(
∆x
(∑

k

b
(β)
k dZγ,n,m

i,k ∧ ∂xdZβ,n,m
i,k +

∑

j

b
(γ)
j ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

)

+ (∆x)2
∑

j,k

(
− a

(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k

)
∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k

)

= ∆x
∑

β,γ,j

b
(γ)
j Lβγ∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

+
1

2
(∆x)2

∑

β,γ

Lβγ

∑

j,k

(
− a

(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k

)
∂xdZγ,n,m

i,j ∧ ∂xdZβ,n,m
i,k .

(2.11)
When Lβγ is non-zero, the (∆x)2 term above is zero if

−a
(γ)
kj b

(β)
k − b

(γ)
j a

(β)
jk + b

(γ)
j b

(β)
k = 0 for all j, k. (2.12)

Similarly,

(
ωn+1

i,j − ωn
i,j

)
= ∆t

∑

β,γ,m

B(γ)
m Kβγ∂tdZ

γ,n,m
i,j ∧ dZβ,n,m

i,j

+
1

2
(∆t)2

∑

β,γ

Kβγ

∑

m,l

(
−A

(γ)
lmB

(β)
l −B(γ)

m A
(β)
ml +B(γ)

m B
(β)
l

)
∂tdZ

γ,n,m
i,j ∧ ∂tdZ

β,n,m
i,k

(2.13)

and when Kβγ is non-zero, the (∆t)2 term is zero if

−A(γ)
nmB

(β)
n − B(γ)

m A(β)
mn +B(γ)

m B(β)
n = 0 for all m,n. (2.14)
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Now, writing Eq. (1.3) in components and taking its wedge product with dzβ

gives

∑

γ

(
Kβγ∂tdz

γ ∧ dzβ + Lβγ∂xdzγ ∧ dzβ
)

= 0 for all β (2.15)

since DzzS(z) is symmetric. Thus, in general

∑

γ,j,m

b
(γ)
j B(γ)

m Lβγ

(
∂xdZγ,n,m

i,j ∧ dZβ,n,m
i,j

)
= −

∑

γ,j,m

b
(γ)
j B(γ)

m Kβγ

(
∂tdZ

γ,n,m
i,j ∧ dZβ,n,m

i,j

)

(2.16)

when b
(γ)
j = bj and B

(γ)
m = Bm for all j, m and γ.

Therefore, if Eqs. (2.9) and (2.10) hold then we can see from Eqs. (2.11) and
(2.13) that the discrete multisymplectic conservation law (2.8) holds.

The discrete multisymplectic conservation law (Eq. (2.8)) is an approximation to
the integral

∫ (i+1)∆x

i∆x

(ω(x, (n+ 1)∆t) − ω(x, n∆t)) dx

+

∫ (n+1)∆t

n∆t

(κ((i+ 1)∆x, t) − κ(i∆x, t)) dt = 0, (2.17)

which is the integral of Eq. (1.2) over the cell with lower left corner at (i∆x, n∆t).

Now, suppose we have a two-partition PRK discretisation in space where the
coefficients satisfy Eq. (2.4) but not Eq. (2.5), then for Eq. (2.12) to be satisfied the
partitioning of the variables in space must be chosen such that κ only has terms of the
form dz(1) ∧ dz(2). Similarly, given a two-partition PRK discretisation in time where
the coefficients satisfy Eq. (2.4) but not Eq. (2.5), for Eq. (2.14) to be satisfied the
partitioning of the variables in time must be chosen such that ω only has terms of the
form dz(1) ∧ dz(2).

Theorem 2.1 shows that if the partitioning in space and time is chosen appro-
priately, then a PRK discretisation in space and time with coefficients satisfying Eq.
(2.4) will result in an integrator that formally satisfies a multisymplectic conservation
law given by Eq. (2.8). However, this does not guarantee that the integrator is well
defined. The approach we take to obtaining a well defined multisymplectic integrator
is to apply an explicit symplectic PRK discretisation in each dimension.

We define an explicit discretisation in space as a discretisation for which the
time derivatives of the dependent variables may be written explicitly in terms of
the dependent variables. Their derivation may involve solving linear systems, but
these must be independent of the PDE. An explicit local discretisation is an explicit
discretisation for which these ODEs depend only on nearby values of the dependent
variables.

In Section 4 we will give the conditions on a multi-Hamiltonian PDE such that one
can obtain an explicit local symplectic PRK discretisation in space based on Lobatto
IIIA–IIIB and we will give an algorithm for obtaining the explicit ODEs in time.

3. Lobatto IIIA–IIIB. The particular class of PRK discretisation that we con-
sider in this paper is a two-partition discretisation known as Lobatto IIIA–IIIB. For
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these methods, the coefficients a
(1)
ij , a

(2)
ij and b

(1)
j = b

(2)
j = bj are determined by [7]:

B(r) :

r∑

i=1

bic
k−1
i =

1

k
for k ≤ r

C(r) :
r∑

j=1

a
(1)
ij c

k−1
j =

1

k
cki for i = 1, . . . , r and k ≤ r,

D(r) :

r∑

i=1

bic
k−1
i a

(2)
ij =

1

k
bj(1 − ckj ) for j = 1, . . . , r and k ≤ r,

(3.1)

where the ci are zeros of the Lobatto quadrature polynomial

dr−2

dxr−2

(
xr−1(x− 1)r−1

)
. (3.2)

While the Lobatto IIIA and Lobatto IIIB classes of RK methods have each been
known since the mid 1960s, their coefficients do not satisfy Eq. (2.5) and it was
only discovered relatively recently that the Lobatto IIIA–IIIB class of PRK methods
formed by combining Lobatto IIIA and Lobatto IIIB has coefficients that satisfy
Eq. (2.4) [14, 22]. Thus for a discretisation of Eq. (1.1), if the partitioning of the
variables in each of the space and time dimensions can be chosen such that the two-
form associated with each dimension only has terms of the form dz(1) ∧ dz(2), then
the resulting integrator will satisfy a discrete multisymplectic conservation law.

The reason we consider the Lobatto IIIA–IIIB class of PRK discretisations is
because their coefficients are related in the following way:

a
(1)
1j = 0, a

(1)
rj = bj for all j, (3.3)

a
(2)
ir = 0, a

(2)
i1 = b1 for all i, (3.4)

and the (r − 2) × (r − 2) matrix C with entries

Ci−1,j−1 =
∑

k,l

a
(1)
ik (bl − δkl)a

(2)
lj for 2 ≤ i, j ≤ r − 1 (3.5)

is invertible.

The relations given in Eqs. (3.3) and (3.4) are a direct consequence of Eqs. (3.1)
and (3.2) and give us three properties which will be required in our algorithm for
constructing explicit ODEs in the next section. Firstly, from Eq. (3.3) we can see
that for γ = 1, a node value is equal to the first stage value associated with that node
and also equal to the last stage value associated with the previous node. Secondly,

Eq. (3.4) gives us that both
∑

j bja
(2)
jr and b1 −

∑
j bja

(2)
j1 are zero. Lastly, Eqs. (3.3)

and (3.4) together give

∑

k,l

a
(1)
ik (bl − δkl)a

(2)
lj = 0 if either i ∈ {1, r} or j ∈ {1, r}, (3.6)

where δkl is the Kronecker delta. Eq. (3.5) will be used in the construction algorithm
directly.
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The coefficients for Lobatto IIIA–IIIB methods can be written succinctly as pairs
of Butcher tableaux, we give below the coefficients for r = 2, 3 and 4.

r = 2 : IIIA:

0 0 0

1 1
2

1
2

1
2

1
2

, IIIB:

0 1
2 0

1 1
2 0
1
2

1
2

. (3.7)

Second order Lobatto IIIA–IIIB is often referred to as generalised leapfrog.

r = 3 : IIIA:

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

, IIIB:

0 1
6 − 1

6 0
1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

. (3.8)

r = 4 : IIIA:

0 0 0 0 0
5−

√
5

10
11+

√
5

120
25−

√
5

120
25−13

√
5

120
−1+

√
5

120
5+

√
5

10
11−

√
5

120
25+13

√
5

120
25+

√
5

120
−1−

√
5

120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

,

IIIB:

0 1
12

−1−
√

5
24

−1+
√

5
24 0

5−
√

5
10

1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
24

11+
√

5
24 0

1
12

5
12

5
12

1
12

.

(3.9)

4. Explicit ODEs. In the one dimensional situation (i.e. time integration),
the dependent variables are the zi; Eq. (2.2) determines the stage variables Zi,j and
defines a map from zi to zi+1. In contrast, for situations where the dimension is greater
than one (e.g. for PDEs of the form of Eq. (1.1)), if one applies a PRK discretisation
in space, then the dependent variables will typically be the stage variables Zi,j , while
the node variables zi and the new variables ∂xZi,j will be eliminated using the PDE
to yield a set of ODEs in time for the Zi,j . As we shall see in the following theorem
this elimination depends upon the structure of not only K and L, but also of S(z).

Theorem 4.1. Consider a multi-Hamiltonian PDE (1.1) where the K and L
matrices have the following structure:

K =




−I 1

2
(d1+d2)

I 1

2
(d1+d2)

0d1



 , L =




Id1

0d2

−Id1



 (4.1)

where d1 = n− rank(K), d2 = n− 2d1 ≤ d1, Id is the d× d identity matrix, 0d is the
d× d zero matrix.

Let the variables z be partitioned into two partitions z(1) ∈ Rd1+d2 and z(2) ∈ Rd1 ,
where we denote the first d1 components of z(1) by q, the last d2 components of z(1)
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by v and the components of z(2) by p such that the PDE may be written as




−I 1

2
(d1+d2)

I 1

2
(d1+d2)

0d1








q
v
p





t

+




Id1

0d2

−Id1








q
v
p





x

=




∇qS(z)
∇vS(z)
∇pS(z)



 . (4.2)

If the function S(z) can be written in the form

S(z) = T (p) + V (q) + V̂ (v) (4.3)

where T (p) = 1
2p

tβp and V̂ (v) = 1
2v

Tαv such that |β| 6= 0 and |α| 6= 0, then applying
an r-stage Lobatto IIIA–IIIB PRK discretisation in space to the PDE leads to a set
of explicit local ODEs in time in the stage variables associated with q.

Proof. Due to the form of S(z), the central d2 rows of Eq. (4.2) allow us to write
entry i in v as

vi =

d2∑

j=1

(α−1)i,j∂tqj+ 1

2
(d1−d2) (4.4)

and hence

∂tvi =

d2∑

j=1

(α−1)i,j∂
2
t qj+ 1

2
(d1−d2). (4.5)

Substituting Eq. (4.5) into Eq. (4.2), we can eliminate the v variables in favour of
higher order derivatives in time of the q variables. This lets us write Eq. (4.2) as

Kzt + Lzx − Eztt = ∇zS(z), (4.6)

where z, K, L, E and S(z) are the new vectors, matrices and functions given below:

z =

[
q
p

]
, K =





−I 1

2
(d1−d2)

0d2

I 1

2
(d1−d2)

0d1



 ,

L =

[
Id1

−Id1

]
, E =





0 1

2
(d1−d2)

α−1

0 1

2
(d1−d2)

0d1





(4.7)

and S(z) = T (p) + V (q).

Note that if d2 = 0, then Eq. (4.2) and Eq. (4.6) are identical; i.e. V̂ (v) ≡ 0 and
E is a d1 × d1 matrix of zeros.

We shall now give a five step algorithm for constructing explicit local ODEs in
time from an r-stage Lobatto IIIA–IIIB PRK discretisation of Eq. (4.6). However,
before we begin, it is necessary to introduce the following notation which will be used
throughout the remainder of this text.
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(i) Zη
i,j is the stage variable at stage j in cell i for the entry η in z,

(ii) Zη
i is the vector of stage variables in cell i for the entry η in z,

(iii) Zi,j is Zη
i,j for all values of η,

(iv) ∂n
t Z

η
i,j is a variable representing the first (n = 1) and second (n = 2) time

derivatives of Zη
i,j ,

(v) zη
i is the node variable in cell i for the entry η in z,

(vi) ∂zηS(Zi) is the vector of stage values at cell i obtained by taking the deriva-
tive of the function S(z) with respect to the entry η in z,

(vii) A(1) is the r × r matrix of aij values for Lobatto IIIA,
(viii) A(2) is the r × r matrix of aij values for Lobatto IIIB,
(ix) b is the common vector of length r of bj values for Lobatto IIIA and IIIB,
(x) 1 is a vector of length r with all entries equal to 1.

Now, Eq. (4.6) discretised in space by an r-stage Lobatto IIIA–IIIB PRK dis-
cretisation results in the following system of implicit ODEs:

Qη
i = q

η
i 1 + ∆xA(1)(−∂pηT (Pi)), (4.8)

q
η
i+1 = q

η
i + ∆xbT (−∂pηT (Pi)), (4.9)

Pη
i = p

η
i 1 + ∆xA(2)(∂qηV (Qi) + g

η
i ), (4.10)

p
η
i+1 = p

η
i + ∆xbT (∂qηV (Qi) + g

η
i ), (4.11)

for 1 ≤ η ≤ d1, where

g
η
i =






∂tQ
η+ 1

2
(d1+d2)

i , 1 ≤ η ≤ 1
2 (d1 − d2),

−∂tQ
η− 1

2
(d1+d2)

i , 1
2 (d1 + d2) < η ≤ d1,∑d2

θ=1(α
−1)η− 1

2
(d1−d2),θ∂

2
t Q

θ+ 1

2
(d1−d2)

i , 1
2 (d1 − d2) < η ≤ 1

2 (d1 + d2).

(4.12)
It should be noted that for the simpler case where d2 = 0, the third option for gη

i

vanishes.

Construction Algorithm:
Step 1:

A special property of the Lobatto IIIA discretisation is that the first row of the
coefficient matrix A(1) is zero and the last row of A(1) is bT .

Due to this property, we can see that the first row of Eq. (4.8) gives qη
i = Q

η
i,1 and

comparing the last row of Eq. (4.8) with Eq. (4.9) gives qη
i+1 = Q

η
i,r. Furthermore,

from these two identities we can conclude that Qη
i,r = Q

η
i+1,1, ∂tQ

η
i,r = ∂tQ

η
i+1,1 and

∂2
tQ

η
i,r = ∂2

tQ
η
i+1,1.

Step 2:

Since T (p) = 1
2p

Tβp and |β| 6= 0 we have that Pi = β−1∇pT (Pi). Also a property
of all RK and PRK discretisations is that bT 1 = 1. Therefore we can substitute Pη

i

from Eq. (4.10) into Eq. (4.9) and rearrange to get

p
η
i = −

1

∆x

d1∑

ζ=1

(
(β−1)η,ζ(Q

ζ
i+1,1 −Q

ζ
i,1)
)
− ∆xbT A(2)(∂qηV (Qi) + g

η
i ). (4.13)

Note that this rearrangement is possible since β operates on the index η, while b
and A operate on the index j as given in the notation scheme.
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Step 3:
Substituting Pη

i from Eq. (4.10) into Eq. (4.8) and then substituting p
η
i from Eq.

(4.13) into the resulting equation gives

Qη
i = Q

η
i,11− ∆xA(1)




d1∑

ζ=1

βη,ζ(P
ζ
i )





= Q
η
i,11− ∆xA(1)




d1∑

ζ=1

βη,ζ(p
ζ
i 1 + ∆xA(2)(∂qζV (Qi) + g

ζ
i ))





= Q
η
i,11− ∆xA(1)

(
d1∑

ζ=1

βη,ζ

([
−

1

∆x

d1∑

ξ=1

(
(β−1)ζ,ξ(Q

ξ
i,r −Q

ξ
i,1)
)

− ∆xbT A(2)(∂qζV (Qi) + g
ζ
i )

]
1 + ∆xA(2)(∂qζV (Qi) + g

ζ
i )

))
.

(4.14)

Rearranging and applying β−1 gives

1

(∆x)2

d1∑

ζ=1

(β−1)η,ζ

[
Qζ

i −Q
ζ
i,11− A(1)(Qζ

i,r −Q
ζ
i,1)1

]

= A(1)
[
(bTA(2)(∂qηV (Qi) + g

η
i ))1 − A(2)(∂qηV (Qi) + g

η
i )
]
,

= A(1)(1bT − I)A(2)(∂qηV (Qi) + g
η
i ).

(4.15)

Now, the first and last rows of the left-hand side of Eq. (4.15) are zero as are the
first and last rows and columns of A(1)(1bT − I)A(2). Therefore, we denote rows 2

to r − 1 of
[
Qζ

i −Q
ζ
i,11− A(1)(Qζ

i,r −Q
ζ
i,1)1

]
by dζ

i , the block of A(1)(1bT − I)A(2)

from (2, 2) to (r − 1, r − 1) by C and rows 2 to r − 1 of ∂qηV (Qi) + g
η
i by eη

i .
Then, noting that C has full rank due to Eq. (3.5), we can write

1

(∆x)2

d1∑

ζ=1

(β−1)η,ζC
−1dζ

i = eη
i . (4.16)

Recalling the definition of gη
i , Eq. (4.16) immediately allows us to write down

explicit formulas for ∂tQ
η
i,k in terms of Qi for 1 < k < r and 1 ≤ η ≤ 1

2 (d1 − d2) or
1
2 (d1 + d2) < η ≤ d1 and for ∂2

tQ
η
i,k in terms of Qi for 1 < k < r and 1

2 (d1 − d2) <

η ≤ 1
2 (d1 + d2).

Step 4:
Substituting pη

i from Eq. (4.13) into Eq. (4.11) for both pη
i and pη

i+1 gives

−
1

(∆x)2

d1∑

ζ=1

(β−1)η,ζ(Q
ζ
i+2,1 − 2Qζ

i+1,1 +Q
ζ
i,1) =

bTA(2)(∂qηV (Qi+1) + g
η
i+1) + (bT − bTA(2))(∂qηV (Qi) + g

η
i ) (4.17)

for each η.
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Of importance here, is that Eq. (4.17) does not involve the variables ∂tQ
η
i+1,r or

∂2
tQ

η
i+1,r since the last entry of bTA(2) is zero. Neither does it involve the variables

∂tQ
η
i,1 or ∂2

tQ
η
i,1 since the first entry of bT − bTA(2) is also zero.

Step 5:

Substituting the formulas for ∂tQ
η
i,k and ∂2

tQ
η
i,k found in Step 3 into Eq. (4.17)

and recalling that ∂tQ
η
i,r = ∂tQ

η
i+1,1 and ∂2

tQ
η
i,r = ∂2

tQ
η
i+1,1, we can obtain explicit

formulas for ∂tQ
η
i+1,1 in terms of Qi and Qi+1 for 1 ≤ η ≤ 1

2 (d1−d2) and 1
2 (d1+d2) <

η ≤ d1 and for ∂2
tQ

η
i+1,1 in terms of Qi and Qi+1 for 1

2 (d1 − d2) < η ≤ 1
2 (d1 + d2).

Thus, for each cell i in our grid, we have a system of explicit ODEs for either the
first or second time derivatives of the stage variables Qi in terms of local values of
Qi.

While the conditions on K, L and S(z) in the above theorem may at first appear
restrictive, they allow several important equations such as the nonlinear wave and
nonlinear Schrödinger equations. A notable exception is the Korteweg-de Vries equa-
tion for which S(z) is not separable. It is also worth noting that the conditions on K,
L and S(z) are the same as those required for the continuous system to be written as
a system of PDEs in the variables q and are similar to those required for a separable
Hamiltonian system to be written as a system of second order ODEs.

The structure of K is known as the “Darboux normal form” of K and a change of
coordinates will allow any skew-symmetric matrix to be written this way. If putting
K in Darboux normal form gives L the following structure

L =




Λ

0d2

−ΛT



 (4.18)

for some d1 × d1 matrix Λ with |Λ| 6= 0, then the following change of coordinates
in the p variables can put L in the form given in Eq. (4.1). Let p̂ = Λp and

T̂ (p̂) = T (Λ−1p̂) = T (p), then ∇p̂S(z) = ∇p̂T̂ (p̂) = Λ∇pT (p) = Λβp = ΛβΛ−1p̂
and S(z) still has the desired structure S(z) = V (q) + 1

2 p̂
T (ΛβΛ−1)p̂.

The upper left (d1 +d2)× (d1 +d2) block of L being all zeros is fulfilled for PDEs
which, when written as a first order system with K in Darboux normal form, have
no equations involving both a time and space derivative of the same variable; i.e.
z

η
t + zη

x = f(z) does not appear for any η.

4.1. Examples. Here we give several examples of common multi-Hamiltonian
PDEs. For the PDEs that satisfy the requirements of Theorem 4.1 we give the ODEs
that one obtains by applying the construction algorithm to those PDEs. For PDEs
that do not satisfy the requirements of Theorem 4.1 we show why they fail and where
the construction algorithm breaks down. We also give a PDE constructed so as to
require the full use of Theorem 4.1.

4.1.1. Nonlinear wave equation. Our first example is the nonlinear wave
equation,

utt = uxx − V ′(u), (4.19)
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which can be written as a multi-Hamiltonian PDE in the form of Eq. (4.2) with [4]

z =




u

v

w



 , K =




0 −1 0
1 0 0
0 0 0



 , L =




0 0 1
0 0 0
−1 0 0



 (4.20)

and S(z) = V (u) + 1
2v

2 − 1
2w

2.

Here, d1 = d2 = 1 with z(1) = {u, v} and z(2) = {w}. We also have α = −β = 1,
thus we can see that K, L and S(z) satisfy the requirements of Theorem 4.1. Upon
eliminating the variable v, we obtain the PDE (4.6) with

z =

[
u

w

]
, K =

[
0 0
0 0

]
, L =

[
0 1
−1 0

]
, E =

[
1 0
0 0

]
(4.21)

and S = V (u) − 1
2w

2.
Applying the construction algorithm for r = 2 gives the following pair of ODEs

for each cell i:

∂2
tUi,1 =

1

(∆x)2
(Ui−1,1 − 2Ui,1 + Ui+1,1) − V ′(Ui,1),

∂2
tUi,2 = ∂2

tUi+1,1.

(4.22)

Recalling from Step 1 that qi = Qi,1 and noting that the last ODE is simply the first
ODE of the next cell, it is convenient to drop the second ODE and rewrite the first
ODE in terms of the node variable ui:

∂2
t ui =

1

(∆x)2
(ui−1 − 2ui + ui+1) − V ′(ui). (4.23)

Applying the construction algorithm for r = 3 gives the following triplet of ODEs
for each cell i,

∂2
tUi,1 =

1

(∆x)2
(−Ui−1,1 + 8Ui−1,2 − 14Ui,1 + 8Ui,2 − Ui+1,1) − V ′(Ui,1),

∂2
tUi,2 =

1

(∆x)2
(4Ui,1 − 8Ui,2 + 4Ui+1,1) − V ′(Ui,2),

∂2
tUi,3 = ∂2

tUi+1,1,

(4.24)

which cannot be written in terms of the node variables alone.

4.1.2. NLS equation. Our second example is the famous cubic-potential non-
linear Schrödinger (NLS) equation,

iψt + ψxx + 2|ψ|2ψ = 0, (4.25)

where ψ ∈ C. Taking ψ = p+ iq and separating the real and imaginary components
of NLS allows the PDE to be written in the form of Eq. (4.2) with [13]

z =





p

q

v

w



 , K =





0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



 , L =





0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



 (4.26)
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and S = − 1
2 (p2 + q2)2 − 1

2 (v2 + w2).

Here we have d1 = 2 and d2 = 0 with z(1) = {p, q} and z(2) = {v, w}. S(z) can
be written as Eq. (4.3) with V (q) = − 1

2 (p2 + q2) and T (p) = 1
2p

Tβp where

β =

[
−1 0
0 −1

]
and p =

[
v

w

]
, (4.27)

thus the NLS equation also satisfies the requirements of Theorem 4.1.

Applying the construction algorithm for an r-stage discretisation gives r ODEs
for each element of z(1) at cell i. As with the nonlinear wave equation, if we use the
2-stage discretisation then for each element of z(1) at cell i we can drop the ODE for
the second stage variable and write the ODE for the first stage variable in terms of
the node variables. The resulting ODEs are

∂tpi = −
1

(∆x)2
(qi−1 − 2qi + qi+1) − 2(p2

i + q2i )qi,

∂tqi =
1

(∆x)2
(pi−1 − 2pi + pi+1) + 2(p2

i + q2i )pi.

(4.28)

These are precisely the ODEs one obtains by applying second order finite differences
in space to Eq. (4.25). The same statement applies for other PDEs that satisfy the
conditions of Theorem 4.1, thus we note that 2-stage Lobatto IIIA–IIIB discretisation
in space is equivalent to second order finite differences in space up to second order
differences when applied to such a PDE.

For r = 3 we obtain a triplet of ODEs for each element of z(1) at cell i:

∂tPi,1 = −
1

(∆x)2
(−Qi−1,1 + 8Qi−1,2 − 14Qi,1 + 8Qi,2 −Qi+1,1)

− 2(P 2
i,1 +Q2

i,1)Qi,1,

∂tPi,2 = −
1

(∆x)2
(4Qi,1 − 8Qi,2 + 4Qi+1,1) − 2(P 2

i,2 +Q2
i,2)Qi,2,

∂tPi,3 = ∂tPi+1,1,

∂tQi,1 =
1

(∆x)2
(−Pi−1,1 + 8Pi−1,2 − 14Pi,1 + 8Pi,2 − Pi+1,1)

+ 2(P 2
i,1 +Q2

i,1)Pi,1,

∂tQi,2 =
1

(∆x)2
(4Pi,1 − 8Pi,2 + 4Pi+1,1) + 2(P 2

i,2 +Q2
i,2)Pi,2,

∂tQi,3 = ∂tQi+1,1.

(4.29)

4.1.3. Boussinesq equation. Our third example is the Boussinesq equation,

ptt = (εpxx + V ′(p))xx, (4.30)

which, when written as a multi-Hamiltonian PDE, shares the same z, z(1), z(2), K
and L as the NLS equation above [8]. The only difference is the function S(z) which
is given by S(z) = −V (p) + 1

2 (w2 − 1
ε
v2).

As before, the requirements of Theorem 4.1 are satisfied and applying the con-
struction algorithm gives r ODEs for each element of z(1) at cell i. For r = 2, we
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once again drop the ODEs for the second stage variables and write the first ODEs in
terms of the node variables as

∂tpi =
1

(∆x)2
(qi−1 − 2qi + qi+1),

∂tqi =
ε

(∆x)2
(pi−1 − 2pi + pi+1) + V ′(p).

(4.31)

For r = 3 we get

∂tPi,1 =
1

(∆x)2
(−Qi−1,1 + 8Qi−1,2 − 14Qi,1 + 8Qi,2 −Qi+1,1),

∂tPi,2 =
1

(∆x)2
(4Qi,1 − 8Qi,2 + 4Qi+1,1),

∂tPi,3 = ∂tPi+1,1,

∂tQi,1 =
ε

(∆x)2
(−Pi−1,1 + 8Pi−1,2 − 14Pi,1 + 8Pi,2 − Pi+1,1) + V ′(Pi,1),

∂tQi,2 =
ε

(∆x)2
(4Pi,1 − 8Pi,2 + 4Pi+1,1) + V ′(Pi,2),

∂tQi,3 = ∂tQi+1,1.

(4.32)

4.1.4. Korteweg-de Vries (KdV) equation. Our fourth example is the KdV
equation,

ut = V ′(u)x + νuxxx (4.33)

and can be written in the form of Eq. (4.2) with [5]

z =





u

φ

v

w



 , K =





0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



 , L =





0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



 (4.34)

and with S(z) = − 1
2uw−V (u)− 1

2ν
v2. Here, d1 = 2, d2 = 0 and z is partitioned into

z(1) = {u, φ} and z(2) = {v, w}.
While the K and L matrices have the required structure for Theorem 4.1, the

function S(z) does not. Specifically, the −uw term in S(z) prevents us from writing
T (p) = 1

2p
Tβp and so Step 2 of the construction algorithm cannot be carried out.

For example, discretising the KdV equation with two-stage Lobatto IIIA–IIIB
gives

vi+ 1

2

= vi− 1

2

+ ∆x(∂tφi − V ′(ui) −
1

4
(wi+ 1

2

+ wi− 1

2

)),

wi+ 1

2

= wi− 1

2

− ∆x∂tui,

−ui+1 = −ui − ∆x
1

ν
vi+ 1

2

,

−φi+1 = −φi − ∆x
1

4
(ui + ui+1),

(4.35)

where ui = Ui,1, ui+1 = Ui,2, φi = Φi,1, φi+1 = Φi,2, vi+ 1

2

= Vi,1 = Vi,2 and
wi+ 1

2

= Wi,1 = Wi,2.
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Introducing the operators D and M , where Dui = 1
∆x

(ui+1 − ui) and Mui =
1
2 (ui+1 + ui), allows us to write this system as

Dvi− 1

2

= ∂tφi − V ′(ui) −
1

2
Mwi− 1

2

,

Dwi− 1

2

= −∂tui,

−Dui = −
1

ν
vi+ 1

2

,

−Dφi = −
1

2
Mui.

(4.36)

Eliminating all the variables other than the original variable u gives the implicit ODE

M∂tui = DV ′(ui) + νD3ui−1. (4.37)

In general, M is not invertible, thus further conditions are required (e.g. periodic
boundary conditions with an odd number of grid points) to form a well defined inte-
grator from this implicit ODE.

This is none other than the narrow box scheme, introduced in [2] and derived as
a finite volume scheme (and shown to be more accurate than the box scheme) in [3].
Thus, we have shown that the narrow box scheme is multisymplectic.

4.1.5. Camassa-Holm (CH) equation. Our fifth example is the CH equation,

ut − uxxt = V ′(u)x + αuxxx. (4.38)

This equation can be written in the form of Eq. (1.1) with z = [u, ν, φ, w, ρ, v]T ,

K =





0 1
2 − 1

2 0 0 0
− 1

2 0 0 0 0 0
1
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, L =





0 0 0 0 1
2 α

0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
− 1

2 0 0 0 0 0
−α 0 0 0 0 0




(4.39)

and S(z) = uw − V (u) − α
2 v

2 − 1
2νρ. To the best of our knowledge, this is the first

occurrence of the multi-Hamiltonian structure of the CH equation in the literature.

Putting K into its Darboux normal form puts L into the form

L =

[
03 Λ

−ΛT 03

]
(4.40)

where Λ is a 3 × 3 matrix with rank(Λ) = 2. Thus, we cannot write L in the form
of Eq. (4.1) and so the Camassa-Holm equation does not satisfy the requirements of
Theorem 4.1.

However, partitioning z into z(1) = {u, ν, φ} and z(2) = {w, ρ, v}, then discretising
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the CH equation with two-stage Lobatto IIIA–IIIB using the D and M notation gives

1

2
Dρi− 1

2

+ αDvi− 1

2

= Mwi− 1

2

− V ′(ui) −
1

2
∂tνi +

1

2
∂tφi,

0 = −
1

2
Mρi− 1

2

+
1

2
∂tui,

−Dwi− 1

2

= −
1

2
∂tui,

Dφi = Mui,

−
1

2
Dui = −

1

2
Mνi,

−αDui = −αvi− 1

2

.

(4.41)

Eliminating ν, φ, w, ρ and v gives the implicit ODE

(M2 −D2)∂tui = MDV ′(ui) + αMD3ui−1. (4.42)

As with the KdV equation, the operator on the left hand side cannot be locally
inverted, although it is at least typically invertible.

4.1.6. Benjamin-Bona-Mahony (BBM) equation. Our sixth example is the
BBM equation,

ut − αuxxt = V ′(u)x. (4.43)

Writing this equation in the form of Eq. (1.1) with z = [u, ν, φ, w, ρ]T gives

K =





0 α
2 − 1

2 0 0
−α

2 0 0 0 0
1
2 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, L =





0 0 0 0 α
2

0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0

−α
2 0 0 0 0




(4.44)

and S(z) = uw−V (u)− α
2 νρ. The multi-Hamiltonian structure of the BBM equation

presented here also appears to be the first such occurrence in the literature.
As with the Camassa-Holm equation in the previous example, putting K into its

Darboux normal form results in an L which cannot be written in the form of Eq. (4.1)
and so the BBM equation does not satisfy the requirements of Theorem 4.1.

Partitioning z into z(1) = {u, ν, φ} and z(2) = {w, ρ}, then discretising the BBM
equation with two-stage Lobatto IIIA–IIIB using the D and M notation gives

α

2
Dρi− 1

2

= Mwi− 1

2

− V ′(ui) −
α

2
∂tνi +

1

2
∂tφi,

0 = −
α

2
Mρi− 1

2

+
α

2
∂tui,

−Dwi− 1

2

= −
1

2
∂tui,

Dφi = Mui,

−
α

2
Dui = −

α

2
Mνi.

(4.45)

Eliminating ν, φ, w and ρ gives the implicit ODE

(M2 − αD2)∂tui = MDV ′(ui). (4.46)
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4.1.7. A made up example. Our last example is contrived to satisfy the re-
quirements of Theorem 4.1 and demonstrates the case when d2 6= d1 and d2 6= 0.
We have chosen d1 = 3, d2 = 1 and a multi-Hamiltonian PDE (1.1) with z =
[q1, q2, q3, v, p1, p2, p3]T ,

K =





0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





, L =





0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0





(4.47)

and S(z) = V (q) + 1
2p

Tβp + α
2 v

2, where α is a constant and

β =




1 1 − 1

2
1 1 0
− 1

2 0 1



 . (4.48)

This corresponds to the PDE

∂tq
1 = −2q1xx + 2q2xx + ∂q3V (q)

1

α
∂2

t q
2 = −4q1xx + 3q2xx − 2q3xx − ∂q2V (q)

∂tq
3 = 4q1xx − 4q2xx + 2q3xx − ∂q1V (q)

(4.49)

Eliminating the variable v in favour of higher derivatives in time of q2 gives Eq.
(4.6) with

z =





q1

q2

q3

p1

p2

p3




, K =





0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, L =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0




,

(4.50)
S(z) = V (q) + 1

2p
Tβp, and the only non-zero entry of E given by E2,2 = 1

α
.

If we applying the construction algorithm for r = 2 then once again we can
drop the ODEs for the second stage variables and write the ODEs for the first stage
variables in terms of the node variables giving the following ODEs at cell i:

∂tq
1
i =

1

(∆x)2
(−2q1i−1 + 2q2i−1 + 4q1i − 4q2i − 2q1i+1 + 2q2i+1) + ∂q3V (qi),

∂2
t q

2
i =

α

(∆x)2
(−4q1i−1 + 3q2i−1 − 2q3i−1 + 8q1i − 6q2i + 4q3i − 4q1i+1 + 3q2i+1 − 2q3i+1)

− α∂q2V (qi),

∂tq
3
i =

1

(∆x)2
(4q1i−1 − 4q2i−1 + 2q3i−1 − 8q1i + 8q2i − 4q3i

+ 4q1i+1 − 4q2i+1 + 2q3i+1) − ∂q1V (qi).
(4.51)
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5. Discussion. We would like to point out that the discretisation in space by
Lobatto IIIA–IIIB in the above examples only modifies the linear component of the
multi-Hamiltonian PDE, i.e. the discrete approximation of Lzx. The reason for this is
that throughout the construction algorithm, the nonlinear components of the multi-
Hamiltonian PDE always appear coupled to the time derivatives as the expression
∂η

q V (Qi) + g
η
i .

Furthermore, we note that in the examples above, the same pattern of coefficients
arises from discretising different PDEs with the same order Lobatto IIIA–IIIB dis-
cretisation. For example, with r = 2 the coefficients in the approximation of qxx have
a weighting proportional to [1, −2, 1], while for r = 3 these coefficients are propor-
tional to [−1, 8, −14, 8, −1] for the first ODE and [4, −8, 4] for the second ODE.
This behaviour continues for higher values of r, e.g. for r = 4 the approximation
of qxx in the first ODE has coefficients proportional to [1, 1

2 (25 − 15
√

(5)), 1
2 (25 +

15
√

(5)), −52, 1
2 (25+15

√
(5)), 1

2 (25−15
√

(5)), 1], the second ODE has coefficients

proportional to [5 + 3
√

(5), −20, 10, 5 − 3
√

(5)] and the third ODE has coefficients

proportional to [5−3
√

(5), 10, −20, 5+3
√

(5)]. For higher values of r these patterns
of the coefficients in the approximation of qxx become increasingly complicated, yet
for a given value of r, these patterns remain the same regardless of the PDE under
consideration.

The reason these patterns of coefficients occur for different PDEs is due to Eqs.
(4.16) and (4.17). For a given value of r, C and dζ

i are fixed regardless of the PDE.
Similarly, the coefficients bTA(2) and bT − bTA(2) in Eq. (4.17) are completely
determined by r. Thus, when solving Eqs. (4.16) and (4.17) for gη

i , the same weighting
of the nearby stage variables occurs for qxx for different PDEs.

For an r stage discretisation, the approximation to qxx at stage j is given by

−
1

(∆x)2
(C−1dζ

i )j−1 =
1

(∆x)2

r−1∑

k=2

(C−1)j−1,k−1((1 − ck)Qζ
i,1 −Q

ζ
i,k + ckQ

ζ
i,r) (5.1)

for 2 ≤ j ≤ r − 1 and 1 ≤ η ≤ r, where Ci−1,k−1 and ck are given by Eqs. (3.5) and
(3.2) respectively, and by

1

2b1(∆x)2

( r−1∑

k=2

(
(bT A(2))k(C−1dζ

i )k−1 + (bT − bT A(2))k(C−1dζ
i+1)k−1

)

+ (Qζ
i+2,1 − 2Qζ

i+1,1 +Q
ζ
i,1)

)
, (5.2)

for j = 1, where b1 is the first entry in b.
This suggests the following shortcut:

1. Write the PDE with only terms of the form zxx (no zx).
2. Replace the zxx terms with the PRK finite differences of the desired order.

Now, the system of ODEs that one obtains from applying Theorem 4.1 to an
appropriate PDE can be written as a Hamiltonian system; e.g. for the Boussinesq
equation and r = 2, the system of ODEs at node i can be written as

∂tzi = J−1∇zi
Hi (5.3)

where

zi =

[
qi
pi

]
, J−1 =

[
0 1
−1 0

]
(5.4)
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and

Hi =
1

(∆x)2
(−qi−1qi + q2i − qiqi+1 + εpi−1pi − εp2

i + εpipi+1) + V (pi). (5.5)

If the nonlinear terms in such a Hamiltonian system are separable, then one can apply
an explicit symplectic PRK discretisation in time to obtain an explicit (and hence well
defined) high-order local multisymplectic integrator. If the nonlinear terms are not
separable then other explicit time integrators may be applied, e.g. symplectic splitting
methods [19], which may give superior performance (in terms of speed and stability)
over implicit integrators. Even if no explicit time integrator can be applied to the
Hamiltonian system, there may be some benefits to having a spatial discretisation
that gives rise to explicit ODEs, e.g. the ODEs may be less stiff than those obtained
from an implicit discretisation.

In the examples in the previous section, the systems of ODEs arising from the
nonlinear wave equation and the Boussinesq equation both have separable Hamilto-
nians and thus allow for a high-order explicit symplectic PRK discretisation to be
applied in time. The NLS equation is not so fortunate, however its non-linearity is
only quadratic and thus for an r-stage Lobatto IIIA–IIIB discretisation in time it is
necessary to solve a system of r−1 coupled quadratic equations for each update of Pi

or Qi. For r = 2, this quadratic equation can be solved explicitly (in particular, the
same root of the quadratic is always taken) and an explicit (and hence well defined),
local, high-order in space, multisymplectic integrator can be formed.

Another point that we would like to make is about how the ODEs that one obtains
from our construction algorithm handle boundary conditions. Many other discreti-
sation schemes (e.g. implicit midpoint, higher order Gaussian Runge–Kutta) either
do not remain well defined or they require extra conditions to be so [2, 18]. How-
ever, our ODEs remain well defined under periodic, Dirichlet and Neumann boundary
conditions without any further restrictions. For example, 3-stage Lobatto IIIA–IIIB
applied to the NLS equation with Neumann boundary conditions, ψx = 0, applied to
the left boundary as v1 = w1 = 0 leads to the following ODEs:

∂tP1,1 = −
1

(∆x)2
(−14Q1,1 + 16Q1,2 − 2Q2,1) − 2(P 2

1,1 +Q2
1,1)Q1,1,

∂tQ1,1 =
1

(∆x)2
(−14P1,1 + 16P1,2 − 2P2,1) + 2(P 2

1,1 +Q2
1,1)P1,1,

(5.6)

which are equivalent to the first and fourth lines of Eq. (4.29), where the points
outside the domain are treated as phantom points, i.e. Q0,1 = Q2,1 and Q0,2 = Q1,2.

Finally, we would like to point out that although Theorem 4.1 is stated for the
Lobatto IIIA–IIIB class of PRK discretisations, it applies equally well to any PRK
discretisation satisfying Eqs. (3.3), (3.4) and (3.5). We leave it as an open question
as to whether there are any other PRK discretisations that satisfy Eqs. (3.3), (3.4)
and (3.5).

In this paper we have deliberately restricted our attention to the structural prop-
erties of PRK discretisation, namely its multisymplecticity and explicitness. Results
on its dynamical properties, such as order and dispersion, will be reported elsewhere.
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