
 

3D Scanning Technology as a Standard Archaeological Tool for 

Pottery Analysis: Practice and Theory 

 

Avshalom Karasik and Uzy Smilansky 

Department of Physics of Complex Systems, The Weizmann Institute of Science, 

Rehovot, 76100 Israel. 

and 

The Institute of Archaeology, The Hebrew University, Mount Scopus,  

Jerusalem, 91904 Israel. 

 

Abstract 

This article reports on the successful completion of a large-scale pilot project, 

where 3D scanning technology, and newly developed software to optimally 

identify the rotation axis of wheel produced ceramics, were used as a practical 

tool for pottery analysis. Approximately 1000 potsherds from several sites and 

periods were scanned, their symmetry axis computed, and their mean profiles 

drawn. The variety of fragments shapes, sizes and surface properties enabled 

us to test the system for a large range of archaeologically relevant pottery 

types. The high rate of success of the system, its efficiency and its output in 

the form of accurate, print quality profiles, encourage us to recommend this 

method as a practical and reliable tool in Archaeological research.    
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I. Introduction 

One of the most time consuming yet unavoidable tasks in Archaeology is the 

study of ceramic potsherds. These finds provide a considerable part of the 

archaeological information, and yet, it is exactly the abundance of the potsherds, 

(typically, thousands of indicative fragments per excavation season) which obstructs 

their detailed analysis. When the original vessels were axially symmetric, the 

potsherds can be completely characterized by their profiles. Extraction of the profile 

thus becomes the unavoidable first step in the analysis. Traditional methods for 

studying pottery, based on the slow and often inaccurate manual drawings, simply 

cannot handle the volume of information within reasonable time and cost [9,22,24: 

89-93,26]. 

Various attempts to overcome these difficulties were proposed in the past, 

amongst which the use of a profilograph is a notable example [7]. The application of 

computerized, 3D scanning for pottery analysis was studied by several research 

groups [2,20,28,32,34]. While the 3D scanning technology has made impressive 

strides in the last decade, its applications as a practical tool to accompany and serve 

Archaeological projects, did not reach beyond its embryonic stage. One of the main 

obstacles is the lack of a reliable and efficient algorithm for the extraction of the 

symmetry axis and the subsequent drawing of a representative profile. This task is not 

trivial because several hurdles must be overcome:  

• The fragments usually cover a rather small part of the full perimeter of the 

original vessel. The smaller the fragment, the harder it is to establish its 

correct positioning.  

• The original vessels are usually not perfectly symmetric. On the macroscopic 

scale, they might be slightly deformed, or with the interior and the exterior 
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faces which are not exactly concentric. On the microscopic scale, the surfaces 

of ancient ceramics are rough either because of the production techniques and 

materials or because of weathering and breakage during the long time which 

elapsed between their production and the present. These irregularities suffice 

to destabilize positioning algorithms which work perfectly well for smooth 

surfaces. 

• The 3D surface obtained from the scanner includes points which are not a part 

of the original surface of the vessel. Rather, they may belong to the fracture 

surface (which was generated when the original vessel was broken) or to 

surface defects, and their presence in the model is a nuisance which has to be 

systematically removed.  

These problems are only marginally alleviated even if one limits the task to 

include only indicative fragments - the fragments which contain a part of the rim of 

the original vessel.  

The earliest attempts to deduce the symmetry axis from the 3D scanner output   

were based on the observation that the vectors perpendicular to a perfect surface of 

revolution intersect at the axis. (The vectors of unit length which are perpendicular to 

a surface are referred to as the normal vectors). Thus, the line which minimizes the 

squared distances to the normal vectors defines the symmetry axis [3,13,27]. 

However, this method is very sensitive to outliers and to noisy data, and gets 

progressively unstable as the angle spanned by the fragment becomes small. The main 

reason for this instability is that extracting the normal vectors involves numerical 

differentiation, which is sensitive to noise – in the present context the noise is due to 

the roughness of the pottery surface and the finite spatial resolution of the scanners. 

The method can be used to provide an initial positioning, but more robust methods 
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should be used to approach the optimal axis [12,16]. Another observation was used to 

constrain the search for the optimal axis: the normal vectors from points which are 

equally far from the rim, coalesce at a single point on the symmetry axis. These points 

can be identified by the fact that their curvature eigenvalues are the same [4]. This 

constraint is introduced at the cost of having to compute the curvature tensor which 

requires the numerical computation of the second derivatives of the surface and the 

sensitivity to noise and outliers increases.   

Being aware of the adverse effects of numerical differentiation in the presence 

of noise, several authors developed methods which do not involve quantities which 

depend on the normal vectors and their divergence [12,16]. Yao and Shao [37] 

compute the symmetry axis by detecting the 'corner points' of the rim, and finding the 

best fit of a circle to these points. Similarly, Kampel and Mara [16] identify circular 

patterns (rills) on the surface of the fragments and by using the fact that they represent 

concentric horizontal features they compute the symmetry axis as the line which joins 

the centers of the circles. Halir [12] makes use of the fact  that in wheel produced 

ceramic, any horizontal section of a broken fragment is a circular arc. Thus, he uses 

an iterative scheme in which horizontal sections provide circular arcs whose centers 

provide an improved estimate of the axis. This algorithm is very efficient for surfaces 

which are parts of cylinders or cones, that is, for surfaces whose profiles consist of 

straight lines. However, for surfaces which are formed by the rotation of a more 

complex profile (e.g., archaeological potsherds) this method fails. The reasons for this 

failure will become clear after the method we use is explained in section III and in the 

mathematical appendix. When the fragment is well positioned the centers of the 

horizontal circular arcs, should meet at one point or form a small cluster. Therefore, 

Mara [21: 34-36] chose a strategy of searching for the alignment that would yield the 
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cluster with a minimal radius. This search is performed by systematically rotating the 

fragment in many directions and computing the corresponding centers of the 

horizontal sections. The position with the lowest standard deviation is chosen as a first 

guess. Then, two more similar iterations are done in the neighborhood of this guess in 

order to improve the results. This method may improve the robustness of the 

algorithm but increases dramatically the computation time. Moreover, there is no 

confidence that the final result is the optimal one since local minima may occur. 

We tried to apply the known algorithms for the analysis of the Tel-Dor 

assemblage and did not get satisfactory results, due in large part to the rather small 

angles spanned by the fragments in this assemblage (see Figure 13 and the discussion 

in chapter IV). Hence, we were forced to develop a new algorithm which would be 

stable and efficient enough to ensure reliable analysis of our data. The present paper 

describes this method, and its test in a pilot project where ca. 1000 potsherds were 

scanned and analyzed. The potsherds were excavated in several sites in Israel - Tel 

Dor (814 fragments), Kefar-Hananya (91 fragments), Bir-Safadi, Abu-Matar and Azor 

(45 almost complete vessels), covering a rather diverse spectrum of periods, clays and 

technologies. The extracted profiles were digitally stored as print-quality drawings. 

They also form the data-base for computerized typology of the type we reported 

previously [9,33]. The successful completion of this project encourages us to propose 

3D scanning technology as a useful and practical tool in Archaeology. 

We should emphasize at the outset that at this stage of the work we consider 

only axially symmetric potsherds and defer the analysis of fragments with handles or 

spouts to a future report. Moreover, we shall treat only indicative fragments. 

Otherwise, there is no restriction on the fragments shape, size or surface.  
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The paper is organized in the following way. In the next chapter - From 

potsherd to a triangulated point cloud - we briefly describe the 3D-scanner, the 

scanning process and the setup we developed for a simultaneous scan of several (2-8) 

potsherds to shorten substantially the scanning stage. The following chapter - From 

triangulated point cloud to a mean profile - describes the algorithm which we 

constructed for finding of the axis of symmetry of potsherds. This step is crucial for 

any further analysis, and in particular for the extraction of the potsherds profiles. 

Special methods and quality tests had to be devised for the purpose, since the objects 

to be analyzed are broken fragments of complete vessels, often displaying a rough 

surface. We shall illustrate the process in action, and discuss in detail its range of 

applicability and possible pitfalls. Only the principles of our approach will be 

described, leaving all the mathematical and technical details to the appendix. The first 

trials of the new system will be the subject of the chapter Applications. Here we shall 

describe the assemblages of ceramics we have measured and analyzed. Based on the 

experience gained in these first large scale trials, we shall give a critical summary of 

the method, and outline possible future developments. The appendix - Mathematical 

and technical details - provides details on the computer algorithms developed for the 

purpose. It can be skipped by the practitioners who might not be interested in such 

details.  

 

II. From potsherds to triangulated point clouds 

In this chapter we shall share the experience we gained by the scanning of 

about 1000 potsherds, and provide several ways and means which we devised to 

accelerate the scanning procedure and further analyses. 
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The scanner and the setup: The 3D scanning camera produced by the firm Polygon 

Technology, Darmstadt, Germany1, is based on the principle of structured light 

projected on the object and recorded by two digital cameras. The system shown in 

Figure 1 consists of a projector positioned between two cameras which are attached to 

a solid bar. The bar is mounted on a tripod. Each view of the object is recorded 

simultaneously by the cameras, and transformed to a 3D point cloud which represents 

the partial view.  

The on-line analysis is performed by the control and evaluation program 

QTSculptor. In order to have the full image of the object, one has to scan it several 

times from different directions and register the scans together into one model. This is 

conveniently done by placing the object on a rotation table which is controlled by the 

software. 

 

Figure 1: The scanning system: a solid bar mounted on a tripod holding a projector positioned between 

two cameras. 

 

Placing the rotation table at a distance of approximately cm100 we get 

sufficient geometrical resolution, and a depth (and width) of view of order cm50. 

                                                 
1 The scanner was purchased by the Zinman Institute of Archaeology at the Haifa University in 
collaboration with the Weizmann Institute of Science, and supported by ISF grant no. 727/05. 
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Since the bulk of our assemblage typically consists of fragments with size ranging 

between cm5-15 we can position several fragments with minimal mutual obstruction 

in this relatively large sensitive volume. This allows us to scan up to 8 fragments 

simultaneously thus increasing the scanning efficiency by a similar factor. In practice, 

the fragments are attached to a light metallic frame by clamps whose position in space 

can be adjusted (See Figure 2). A primitive version of such a frame, built from a 

wooden frame and “crocodile” connectors was tried by us during the 2004 Tel Dor 

excavation season [22,35]. The fragments are clamped to the holders such that their 

rims are approximately parallel to the axis of rotation of the table, and their surfaces 

are perpendicular to the plane of the frame. The number of fragments is only limited 

by the requirement that mutual shadowing is avoided. The bar which carries the 

projector and the cameras is now set vertically, so that it is parallel to the rotation axis 

of the table. In this way the light pattern on the fragments can be seen by the two 

cameras, offering the best conditions for extracting the 3D information. Typically, 6-

10 exposures taken with the table angles at 600-360 intervals, respectively, suffice for 

an accurate and complete 3D reconstruction. It is clear that the upper and lower sides 

of the potsherds are badly exposed, and the clamps also show in the reconstructed 

surface. However, because of the way the fragments are attached to the frame, the 

eliminated portions of the potsherd consist mainly of the fracture surfaces. The rim 

and the bulk of the fragment surface are not affected. This is a price worth paying for 

achieving high scanning efficiency – typically, 60 fragments can be scanned per hour! 

This high rate of scanning was routinely achieved by a single operator who worked 

with two frames: one frame being loaded with fresh fragments, while the other is 

scanned. This high rate reflects the minimum “on line” time required by the scanner.  
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Figure 2: The scanning system (right) and a frame, with 6 fragments attached to it, standing on the 

rotation table. 

 

Creating the 3D model as a triangulated point cloud: After scanning, the views have 

to be combined (registered). The resulting point clouds should be separated to several 

files – a file for each fragment. The QTSculptor program performs these tasks 

interactively with the operator. There are three crucial tasks which the operator has to 

perform: 1. To separate the volumes where each of the fragments is to be found, and 

remove the parts of the images which show the clamps. 2. To mark a reference grid on 

each of the fragments. 3. To keep track of the identity of the fragments and associate 

the correct file names to the corresponding fragments. Even though the QTSculptor is 

user friendly, and gets the instructions by clicks on the mouse, this part of the work 

takes time, and slows down the processing rate. If this stage of the work were 

performed by the scanning operator between successive scans, the rate would be 

reduced to approximately 10-15 fragments per hour. However, one can achieve a 

much higher rate by employing two operators who work simultaneously with separate 

computers.  

The output of the scanning stage consists, for each fragment, of a triangulated 

cloud map which resides in a reference frame. For the further analysis the operator 
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chooses the reference (x,y) plane by marking three points on what she/he considers as 

defining the rim plane or any other plane parallel to the rim. This plane is used as a 

first approximation for the determination of the symmetry axis of the fragment. Figure 

3 shows a “framed” potsherd with the (x,y) plane tangent to the rim. 

 

Figure 3: A bowl fragment from Tel Dor and its initial positioning in a reference coordinate system. 

The rim plane is approximately parallel to the upper face of the bounding-box.  

 

III. From triangulated point cloud to a mean profile 

As was mentioned before, the most efficient way to store the information on 

pottery fragments of wheel-produced vessels is in term of their profiles - the cross-

sections with planes which go through the symmetry axis. The profiles are 

indispensable components for any further archaeological analysis, such as typological 

classification or comparisons. The importance of the correct identification of the axis 

of rotation is repeatedly emphasized in many Textbooks for Archaeology [11: 51-

58,15: 423,24: 173,29: 222] - false positioning may lead to ridiculous 

misinterpretations. To emphasize this point we show in Figure 4 three drawings which 

were produced using the same profile which was aligned at three different angles with 

respect to the assumed axis. This suffices to represent three totally different vessels. 
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An experienced archaeologist may exclude the wrong positioning. Here, when we 

seek to develop an automatic computerized alignment, we depend entirely on the 

algorithm to find the correct position of the potsherds.  

0 10 20 cm
 

Figure 4: An identical profile tilted to three different angles and shown as a standard drawing in an 

archaeological report. The different drawings represent three different archaeological types. This 

illustrates the absolute importance of the correct alignment for further analysis and interpretation. 

 

The position of a potsherd is determined once the axis of symmetry of the 

original vessel is known. To define an axis uniquely one must specify two angles θ  

and ϕ  which determine the orientation of the axis (see Figure 5) and the anchor-point 

 in the (x,y) plane. The computer algorithm reorients and shifts the axis 

until a satisfactory positioning is determines.  

),( yx bb=b

                         

X

Z

Y θ

ϕb

 

Figure 5: The parameters which define the axis position relative to the fixed reference frame.  
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We start the description of our algorithm by explaining how the concept of 

“optimal positioning” is defined in a quantitative way. Given an axially symmetric 

body, all the points which are at the same height  along the symmetry axis are at the 

same distance 

h

ρ  from the axis. Plotting  vs. h ρ  for all the points on the surface, one 

gets a line which is the profile of the vessel (see Figure 6-b). This operation projects 

the points of the vessel to a single plane – the reference plane. However, if the 

assumed axis is not the true axis, the points in the reference plane form a thick line 

which gets thicker as the assumed axis is further away from the true axis (see Figure 

6-a). At each point s on the line we can determine the width of the line q(s), which for 

convenience, we express as a percentage of the mean wall thickness of the fragment. 

The mean width of the projected profile (obtained as the average value of q(s) taken 

along the profile) provides a quantitative measure of the quality of the assumed axis. 

We define therefore the quality factor: 

                                           
fragmentofthicknesswallmean

lineprojectedofwidthmeanQ 100=  . 

The purpose of the algorithm is to determine the axis which minimizes Q. More 

details about the quality factor and its computation in practice are provided below and 

in the Appendix. Figure 6 illustrates the action of the algorithm by showing two 

projected profiles of the same potsherd plotted before and after the proper axis was 

computed. The shift of the anchor point was computed to be 10mm and the 

orientation changed by . The Q value was improved from the initial value 

Q=12.39 to Q=2.47. 

05.4=∆θ
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Figure 6: The projected profile for a fragment from Tel Dor before (a) and after (b) positioning.  

  

If the surface were an exact surface of revolution, the projected profile would 

converge to a strict geometrical curve, and Q would vanish at perfect positioning. 

However, the method used to exclude fracture surfaces and other defects has a finite 

tolerance and not all the points which deviate from axial symmetry are filtered out. 

Moreover, the surface might be slightly deformed, on either the macroscopic or 

microscopic scale. Both effects set an intrinsic minimum value to the projected line 

thickness and hence to Q. The numerical value of Q depends also on the mean 

fragment thickness. Thus, Q is most helpful to gauge the improvement in positioning 

of the same fragment, and it is less reliable as a tool to compare the quality of the 

positioning of different fragments. 

To compute the quality factor in practice, we proceed by intersecting the 

projected profile with thin adjacent rectangles (See Figure 7). The rectangles are 

oriented perpendicular to the line, and are sufficiently long to cover it transversally. 
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The width of each rectangle varies from point to point on the projected profile within 

a given range, and is inversely proportional to the mean curvature at the point. For 

each of the rectangles we compute the center of mass of the points within the 

rectangle (gray points in Figure 7). The local width q(s) of the projected line in the s 

rectangle is obtained by computing the variance of the transversal distances of the 

points from the tangent to the line through the center of mass.                           

 

Figure 7: The projected profile and the rectangles used to determine its thickness. 

 

We shall describe below the method which optimizes the positioning, and 

show how it overcomes the problems which are met in practice. In the present 

discussion we shall refrain from technical issues, which are deferred to the Appendix. 

It is assumed at the outset that the operator who scanned the fragment already 

positioned it in an approximately correct way as explained above. Thus, a first 

approximation of the symmetry axis can be computed. The next step consists of 

removing the points which belong to the fracture surfaces and to other surface defects.  

We make use of the fact that for each of the triangles formed by adjacent points on the 
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surface, one can compute a vector which approximates the normal to the surface. The 

normal vectors to a surface of revolution intersect the axis of rotation. Vectors normal 

to the fracture surfaces or to other features which violate the assumed axial symmetry 

do not have this property. This fact is used effectively to eliminate the irrelevant parts 

of the scanned surface. This is illustrated in Figure 8 which compares the projected 

points of the entire vessel (b) to the points which were selected according to the 

directions of their normal vectors (c).  

 

Figure 8: (a) A 3D model of a well positioned ceramic piece from Tel Dor. (b) The projected points on 

the reference plane, no selection applied. (c) Projected points selected by the criterion that the normal 

vectors point in the approximate direction of the symmetry axis. 

 

Our method of positioning emulates and generalizes the traditional method 

which is based on placing the rim on a planar plate such that the contact between the 

rim and the plate is maximal. The plate then defines the tangent plane which is 

parallel to the plane of the original wheel. The vessel symmetry axis is perpendicular 

to the tangent plane, and goes through the center of the arc generated by the contact 
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points of the rim with the table. If we intersect the vessel with any other plane which 

is parallel to the tangent plane, we would find two concentric circles (or arcs when we 

deal with fragments), and their common center lies on the axis of rotation. Thus, by 

cutting the 3D representation of the vessel by several parallel planes, we can identify 

the axis of rotation as the line which goes through the centers of the concentric circles. 

The tangent to the rim is just a special case of this family of planes - the one where 

the two circles, corresponding to the inner and outer surfaces, coalesce to a single 

circle. Because of the special role and properties of the rim, our algorithm which is 

based on the above understanding, consists of two independent steps. The first, 

endeavors to find the axis of rotation as the line of centers of the circular arcs which 

result from the planar intersections. We shall refer to this method as the horizontal 

sections method. The second makes use of the points of the rim, and attempts to find 

the best fitting plane tangent to the rim. This method will be referred to as the rim-

tangent method.  The horizontal sections method takes advantage of the entire 

information on the surface and therefore it is usually more stable and reliable. The 

rim-tangent method is used for fine tuning, and it improves the quality factor in some 

cases.  

The horizontal sections method can be best explained by the following consideration. 

Assume that the fragment is aligned such that its axis coincides with the z - axis (the 

“vertical” axis) of a reference system of coordinates (this reference coordinates 

system is fixed once for all and is not changed during the search of the symmetry 

axis). Next, the fragment is intersected by horizontal planes, their number depends on 

the fragments size, and is typically in the range 60-100. The centers of the circles 

traced by the sections are computed. The center points are then vertically projected on 

one horizontal plane. If the approximate axis coincides with the true axis, the points 
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on the reference plane converge to a point which is the anchor point of the axis on the 

reference (x,y) plane. It can be shifted to the origin of the reference coordinate system, 

and the alignment procedure is successfully terminated. Due to the roughness and 

deformations of the surface, and also because of the finite resolution, the projected 

points might form a small cluster, and then the anchor point is determined by their 

center of gravity (see the lower right frame in Figure 9). During the alignment 

process, however, the approximate axis is tilted with respect to the true axis, and the 

projected center points form a line segment (see the lower center frame in Figure 9). 

The direction of the line provides the information necessary to obtain an improved 

alignment. The computer program emulates this line of thinking in an iterative 

procedure which is repeated until no further improvement can be achieved. The 

convergence of the line to a very small cluster is illustrated in the second row of 

Figure 9 which shows also the corresponding Q values and the projected profiles. 

Here we used a smooth and perfectly symmetric surface of revolution and therefore 

the center points could be made to converge to an exceedingly small cluster.  (Note 

the change of scale as the positioning improves – from millimeter to micrometers!). 

The mean radius of the cluster reflects the uncertainty (accuracy) of the resulting 

alignment. This procedure turns out to be stable, fast and it provides accurate 

determination of the axis, even in the presence of microscopic and macroscopic 

deformations. The axis determined by the horizontal sections method, is used as a first 

guess in the algorithm which implements the rim-tangent method. 
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Figure 9: Three stages in the alignment procedure of a fragment of a smooth and perfectly symmetric 

surface: The columns (left to right) represent the initially tilted positioning, after a single iteration and 

the final, converged positioning. The first row shows the projected profiles and the second row the 

clustering of the centers of the horizontal sections (note the scale difference at successive columns). 

 

The rim-tangent method consists of the following steps. Given an approximate 

symmetry axis, the fragment is intersected vertically by a fan of planes which go 

through the axis. The fragments trace profiles on the planes, and the coordinates of the 

highest point of each profile are recorded. The new estimate of the tangent to the rim 

is the plane which goes optimally through the maximum points. The normal to this 

plane gives the improved axis direction. The anchor point is given by the center of 

gravity of the centers of the horizontal sections as in the former method. In many 

cases the application of the rim-tangent method improves the Q factor as illustrated in 

Figure 10. Here, the thickened rim was better preserved and it represents a larger part 

of the perimeter than the body, which is relatively broken. The rim-tangent method 

improves the alignment, and Q is reduced from 3.62 to 2.15.  
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Figure 10: The improvement in the projected profile by the rim-tangent method: The 3D model of the 

fragment from Tel Dor is shown (left) with the original stage of its projected profile at the end of the 

horizontal sections method (center), in comparison to the profile improved by the rim-tangent method 

(right).  

 

The quality or accuracy of the alignment of a potsherd was defined above as 

the percentage ratio between the mean width of the projected profile and the mean 

wall thickness of the potsherd. Q is computed after each iteration, and the process is 

satisfactorily ended when convergence is achieved and Q reaches below a prescribed 

value . In this case the file is transferred to the 'successful' folder. However, if 

convergence is not reached within 10 iterations or if the process converged to 

, a warning flag is raised and the file is transferred to the 'failures' folder. 

The actual value of  has to be determined empirically for each assemblage, 

depending on its specific characteristics, such as surface roughness, the mean 

thickness etc.   

maxQ

maxQQ >

maxQ

Examining the local width along the profile can provide interesting insights 

about the potsherd. The lower row in Figure 11 shows the local width functions q(s) 

for 3 different fragments which are optimally aligned. The corresponding projected 

profiles are shown in the upper row. The exterior surface of the left fragment in 
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Figure 11 is less rough, which is expressed by the relatively lower values of q(s) in 

the corresponding interval (1-50). The arrows (marked by 1 and 2) indicate two places 

where points which belong to the fracture surface were not deleted. Their effect on the 

local width function is shown by the two peaks in the lower left plot (marked by two 

arrows respectively). However, it is important to note that the influence of these peaks 

on the final Q value is very small, since there are very few of them. Similarly, in the 

right fragment of Figure 11, a distortion at the middle of the interior part is indicated 

by arrow 3. This can be detected by the corresponding high values of q(s) in the 

vicinity of s = 130. This sensitivity of q(s) to local details along the profile might be 

useful in future applications.   

 

Figure 11: The projected profiles of three different potsherds from Tel Dor, and the corresponding 

distributions of the widths within the rectangles (bottom). The points along the profiles are arranged 

counter clock wise, starting at the lower point of the exterior (bottom right). 
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Once the optimal alignment is found, the center points of the rectangles 

provide also the mean profile which characterizes the potsherd for further 

documentation and analysis. This definition touches upon a methodological question 

which is at the basis of the study of ceramics, namely, which single profile should be 

used in order to represent a given fragment. This is a question one must face 

especially when dealing with slightly deformed, rough and not evenly fractured 

potsherds. As long as the profile is drawn manually, the artist integrates the entire 

information and produces a drawing which reflects his/her judgment. When a 3D scan 

is available, one could use the longest profile as a representative [17] or another single 

cross-section which is the closest to the average shape [14; here they use a different 

definition for the average]. Due to the fact that single profiles may be affected by 

local, non representative deformations, and the recognition that the entire surface of 

the fragment stores the information about the profile, we prefer to introduce the 

concept of the “mean profile” as described above. It uses the entire information 

available, it excludes local details and small deformations and it does so without bias.  

The mean profile is also used for the final drawings of the potsherd in the 

standard format used in published archaeological reports (see Figures 12 and 17). 

According to convention, a mirror symmetric, complete section is drawn with the 

symmetry axis represented by a line. The right side is blackened, and the line of the 

rim orifice is shown. On the left side only the exterior part of the profile and the rim 

are plotted. Carination and wheel-marks are also illustrated with horizontal lines, their 

lengths being proportional to the local curvature of the profile. These features are 

drawn automatically, based on the analysis of the profile curvature without the 

operator’s intervention.  
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IV. Applications 

This chapter reports on three studies in which ceramic assemblages from the 

southern Levant were scanned and evaluated. This is the ultimate test of the system, 

and it enabled us to judge the reliability and assess its rate of success in practice. Of 

particular importance is the critical discussion of those (few) potsherds which the 

method failed to evaluate. A detailed discussion of these cases will end this section. 

The assemblages used for this study span a wide range of periods, from 

Chalcolithic via the Iron-Age to Roman and early Byzantine, and they cover quite 

optimally the range of features and difficulties expected to be encountered in future 

archaeological studies.  

The Assemblages: 

1. Tel Dor - The main and the largest collection consists of 814 early Iron Age 

potsherds from Tel Dor [10,36]. This assemblage is a complete set of indicative 

fragments from one stratigraphical horizon. It is a typical Iron-Age assemblage in the 

coastal Levant, consisting mainly of house-ware vessels for daily use. 

2. Kefar-Hananya - The second group counts 91 bowl fragments from Kefar-Hananya 

which were all categorize by the excavator as belonging to a single type [type 1E, 1: 

103-109]. This site has a long tradition of pottery production over more than 400 

years during the Roman and the early Byzantine periods. We used this assemblage 

also to compare our algorithm to another method in which the fragments are drawn by 

computerized profilograph, where the positioning was manually done by an 

Archaeologist.  

3. Chalcolithic v-shape bowls – The last assemblage consists of 45 complete v-shape 

bowls from various Chalcolithic sites in the southern Levant [5,6,8,25]. It is believed 

that these early vessels were shaped with the aid of simple wheels [30,31], and indeed 
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they are rough and deviate from perfect axial symmetry. Since the vessels are 

complete, the optimal symmetry axis can be computed unambiguously. However, the 

quality measure can differ substantially from the previous assemblages, because of the 

surface roughness and deformations, which enables the study of the correlation 

between the quality factor and the production technology.   

Each of these assemblages will now be discussed in detail. 

Tel Dor – The scanning of this assemblage was our first project with the Polygon 3D 

scanner and software. Out of the scanned indicative 814 potsherds, 760 were 

successfully positioned and their profiles extracted. They were checked visually by an 

experienced archaeologist and all passed successfully his scrutiny. This group of 

fragments comprises of a large variety of shapes, sizes, surface qualities and 

deformations. It gave us the opportunity to test our system to its limits. We shall first 

discuss this group of fragments. The remaining 54 “failures” will be discussed 

subsequently. Figure 12 shows computer drawings of a few typical examples of the 

shapes and sizes in the “successful” assemblage. 

0 10 20 cm
 

Figure 12: Several Iron-Age potsherds from Tel Dor. The print quality drawings were produced by the 

computer program without the operator’s intervention.  
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The most important limiting factor for a successful computer positioning is the 

size of the fragment compared to the circumference of the original vessel. This is 

further exacerbated by the surface roughness and deformations of archaeological 

finds. Expressing the rim size in degrees (a complete rim extends 3600), we show in 

Figure 13 the distribution of the angular sizes of the Tel Dor potsherds which were 

successfully positioned and analyzed. Most fragments extend angles smaller than 350, 

which correspond to less than 10% of the rim circumference. In a recent publication 

which refers to this issue, a threshold value of 250 is mentioned as the minimum 

angular size for successful automatic alignment of potsherds [21]. Our method for 

fragments positioning, handled successfully 208 fragments rims in the range 130 -250 - 

a substantial proportion of the assemblage. 
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Figure 13: The distribution of the rim circumference for the Tel Dor assemblage. 

 

The distribution of the quality factor Q is shown in Figure 14. We found 

empirically, that in the analysis of the Tel Dor assemblage, satisfactory positioning is 

usually achieved when 4max =< QQ . The fragments which satisfy this condition were 
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stored in the “successful” folder. All others were stored in another folder and required 

further scrutiny. Higher Q values are not necessarily due to faulty alignment. For 

instance, in some fragments, the automatic selection and deletion of the points on the 

fracture surfaces (see Figures 8, 11), is not as successful. Similarly, protrusions, rough 

surfaces and also handles will have the same effect. We chose to pay special attention 

to cases with  just as a matter of caution. 4≥Q
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Figure 14: A comparison of the distributions of Q for the assemblages of Tel Dor and Kefar-Hananya.  

 

After the first run of the analysis was completed the potsherds in the 'failures' 

folder was further scrutinized. Those files for which the projected profiles deemed 

acceptable, in spite of their relatively high Q values, were transferred to the 

'successful' folder. The remaining 54 potsherds for which the alignment algorithm 

failed can be partitioned as follows: 

Small perimeter arc: (15 potsherds) The angular range of these potsherds is 9.50-250 

with 11 pieces with less than 150, which barely overlaps with the angular range where 

successful positioning was registered. The distinction between these groups is not 

sharp because the perimeter length is not the only factor which determines the success 
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of the positioning. Rather, it is very much dependent on the roughness and 

deformation of the fragment. 

Macroscopic deformations:  (28 potsherds) Large deformations of the type shown in 

figure 15, violate the assumption which is at the basis of the method, namely, that the 

fragments are parts of an axially symmetric vessel. These fragments were included in 

the assemblage only because their deformation was not detected by the operator.  

 

Figure 15: Two models of deformed fragments from Tel Dor which violate axial symmetry could not 

be automatically positioned. 

 

Flat potsherds: (11 potsherds) As will be explained in the appendix, fragments with 

significant flat parts violate an assumption implicit in the algorithm concerning the 

rate of change of the distance between a point on the surface and the symmetry axis, 

as a function of the height along the symmetry axis. Two examples of such fragments 

are shown in Figure 16, one is a jar with a rim area consisting of a small and short 

neck on relatively large and mostly horizontal shoulder (see Figure 16 right) and the 

other is a flat tray with no neck at all (Figure 16 left). As long as the fragment is not 

exclusively of this type, and has other parts which are not flat parts, the positioning is   

successful. However, this is not always the case, and indeed in the Tel Dor 

assemblage 1.3% of the fragments were classified as flat examples. 
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Figure 16: Two models of potsherds from Tel Dor with significant flat parts for which the algorithm 

failed. Left - a piece of a flat tray ; Right - a fragment of a jar with short neck and horizontal shoulder. 

 

2. Kefar-Hananya – This assemblage consists of fragments which were defined as 

belonging to the same type (bowl 1E) by the excavator [1, see Figure 17]. No further 

selection criterion was imposed. The fragments originate from two different 

production centers at the same site. 

200 10 cm
 

Figure 17: Type 1E bowls from Kefar-Hananya, three from each production center (corresponding to 

the two rows of the Figure). The print quality drawings were produced by the computer program 

without the operator’s intervention.  

 

Out of the 91 potsherds only 4 were declared as failures because they were too 

small. Figure 14 shows the distribution of the Q value of the Kefar-Hananya 

assemblage. It is significantly higher than the Q distribution of the Tel-Dor 

assemblage, but this does not necessarily imply that the positioning is less certain or 

less accurate. Much of this increase is due to the fact that type 1E is a relatively thin 

vessel, and since we use the thickness for normalization of Q, the Q distribution is 

shifted to higher values. This demonstrates again that Q is best used for following the 
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improvement in alignment, and is not designed for comparative studies. Similarly, it 

illustrates the reason for setting  individually for each assemblage. At the same 

time, one should keep in mind that the Kefar-Hananya vessels are kiln wasters that 

were dumped by the potters. One cannot exclude the possibility that these vessels 

were discarded because of minor deformations, which also affect the Q parameter.  

maxQ

As mentioned before, the Kefar-Hananya bowls were drawn also by a 

profilograph [7]. The fragments were positioned by the archaeologist and a single 

profile was followed using a computerized position-sensitive pointer. The radius was 

computed as the best fitted circle to a set of points that the operator marked on one 

horizontal plane (usually the rim or a parallel horizontal feature). Although, the 

resolution of the profile and the accuracy of the radius cannot compete with those of 

the 3D scanner, a comparison between the profiles obtained by the two methods is 

valuable, since the positioning in the profilograph is based on the experience of a well 

trained archaeologist who is familiar with the assemblage and the period. Figure 18 

compares profiles of six vessels which were drawn both with the profilograph and 

with our algorithm following scanning. In most cases, the alignments of the two 

methods are very similar, which reinforces the archaeological confidence in the 

automatic procedure. However, the radii show larger deviations as can be seen in the 

lower row of Figure 18. This reflects a well known problem endemic to the 

profilograph. In a preliminary test using a different 3D acquisition system during the 

2004 excavation season at Tel Dor, similar comparisons were performed [22]. 

However, the matching between the automatic alignment and the archaeologically 

based profilograph alignment was not satisfactory. This discrepancy motivated us to 

develop the system described in the present paper. 
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Figure 18: A comparison of six profiles from Kefar-Hananya which were drawn using the profilograph 

(dotted lines), and the mean profiles of the same fragments as defined by our algorithm (dashed lines). 

 

3. Chalcolithic v-shape bowls – This assemblage consists of complete or nearly 

complete vessels known as v-shape bowls, which are characteristic to the Chalcolithic 

period in the southern Levant [8: 206-276]. Many of the obstacles that challenge the 

positioning algorithm when dealing with fragments are not relevant when complete 

vessels are studied. The computations of the best fitted circles are less sensitive to 

noise and to the fracture surfaces. Most of the alignment methods that are known in 

the literature will succeed here. However, when the vessel suffers macroscopic 

deformations, a representative profile cannot be well defined since the projected 

profile fills a thick and often blurred strip. In extreme situations the border between 

the points of the inner and outer surfaces of the vessel overlaps, as can be seen in the 

upper part of Figure 19. This is contrasted with the projected profiles obtained for a 

bowl produced on a modern fast-wheel shown at the lower part of the figure. 
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Figure 19: Projected profiles of a complete v-shape bowl from Bir-Safadi [top right, 6], and a modern 

bowl produced on a fast-wheel (bottom right). The corresponding 3D models are shown to the left. 

 

Obviously, there is no single profile that can be chosen to represent the shape 

of the v-shape bowl. However, the macroscopic deformations can be well followed by 

producing profiles which represent small sectors along the vessel. This is shown in 

Figure 20 where we have plotted 10 profiles for each of the bowls, and each profile 

represents the mean projected profile of a 360 section of the complete circumference. 

The overlap of the profiles is much better for the modern bowl than for the v-shape 

one. Moreover the edges of the projected profile of each section were much clearer so 

that the parameter Q could be computed. The mean Q value for the various sections of 

the v-shape bowl was 3.50 with standard deviation of 0.58, in comparison to 1.06 and 

0.22 (respectively) for the modern bowl.  
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Figure 20: The overlap of 10 mean profiles for 10 equal sections of the v-shape bowl (left), and of the 

modern bowl (right).  

 

Studying the section profiles enable us to discuss in a quantitative way the 

degree of deformation of the vessel. This idea, which was developed in [18,19,23,33] 

enables us to detect differences between production technologies such as e.g., 

differences in the speed of the wheels, expecting that the use of a slower wheel makes 

it more difficult for the potter to shape the clay in a uniform way.  

 

V. Summary  

In this paper we presented a new system for the study of pottery which is 

based on commercial 3D scanning hardware and software, and, on specially 

developed methods and computer algorithms which were specifically designed for the 

archaeological applications. We described the tests of this system on a large number 

of fragments (approximately 1000) and we believe that it is indeed a viable tool which 

has the potential of substantially improving the archaeological study of pottery. 

Several advantages are gained:  

a. Small fragments can be scanned at the rate of 500 potsherds per day (8 hours) 

by a single operator. Training a student to operate the system takes 2-3 days. 
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At this rate, the scanned output consists of computer files which have to be 

further evaluated to produce the final point cloud models. This task can be 

carried out either offline, or, if it is done after each scanning by the same 

operator, the rate reduces to approximately 100 potsherds per day. Comparing 

to manual drawings which are produced at the rate of 15-20 per day, this is a 

major improvement.  

b. The positioning algorithm proved to be robust and stable as long as the 

fragment covers more than 150 of the original circumference, and it does not 

consist mainly of a flat surface. The resulting positioning were scrutinized and 

approved by an expert archeologist. The success rate was higher than 90%.  

c. The system offers diagnostic tools to test cases where a failure flag was raised. 

d. The computed profiles are stored in digital form and converted easily to print 

quality drawings which can be added directly to the archaeological report.  

e. The digitized profiles can be used directly as the input for further typological 

and comparative work, unlike manual drawings which have to be scanned.  

f. The system can be also used as a tool for novel archaeological applications by 

studying e.g., the deformations of vessels and using them to unravel the 

technological reasons for their appearance.  

Further developments are pending, and they include the analysis of non-

indicative fragments and fragments which carry handles or spouts. Work on these 

extensions is in progress. 

The authors will be ready to share the know-how and computer algorithm with 

any archaeologist who is interested to use this promising technology.  
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Appendix: Mathematical and technical details 

The appendix is intended for the readers who are interested in the more 

mathematical – algorithmic aspects of the present work, and it requires some basic 

knowledge of mathematics. The material is divided to several rather independent 

sections addressing different parts of the algorithm.     

A.1 The algorithm for the optimal alignment of pottery fragments –  

Our method is an iterative procedure, in which the position of the symmetry 

axis is successively improved, and the improvement is assessed by the quality factor 

Q. As was discussed previously, the initial orientation is provided by the operator of 

the scanner, who marks three points on what she/he deems as the plane of the 

fragments rim. The QTSculptor software assigns its coordinate system such that the 

rim plane is the  plane, and the z-axis is perpendicular to the plane, anchored at ),( yx
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the estimated center of the circle defined by the three reference points. This system of 

coordinates is kept fixed as a reference frame throughout the entire computation. At 

each iteration step the fragment is shifted and oriented such that the improved 

estimate of the symmetry axis coincides with the z-axis of the reference coordinate 

system. Each iteration starts by filtering away points on the surface which correspond 

to parts of the surface which do not belong to the original surface of the vessel 

(fracture surfaces) as explained in section III.   

At each iteration four parameters determine the amount by which the fragment 

should be repositioned (Figure 5): two angles for the orientation, and two shift 

coordinates of the anchor point (the z coordinate is immaterial since changing it is 

equivalent to measuring the height on the symmetry axis relative to a different 

reference point). The repositioning of the fragment is carried out by the following 

basic operations 

1. Rotate by an angle ϕ  about the x-axis. 

2. Rotate by an angle θ  about the z-axis. 

3. Shift by bx along the x-axis. 

4. Shift by by along the y-axis (bz = 0) 

A point on the surface, with coordinates ),,( zyx=r  will have the new 

coordinates   after the fragment is shifted and reoriented, with   

and: 

)ˆ,ˆ,ˆ(ˆ zyx=r brr += Tˆ
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0
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The surface is assumed to be a surface of revolution. Suppose that after the 

transformation, the axis of symmetry coincides with the z-axis of the reference frame. 
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Then, per definition, the distance 22 ˆˆ yx +=ρ  between a point on the surface and 

the symmetry axis is a function of  only. This function is the profile function which 

we denote by . Thus, in the new positioning of the fragment, 

ẑ

)ˆ(zf 2222 ˆˆ)ˆ( zzf −== rρ .  

Our task can be stated in the following way: 

Given a fragment whose profile function is unknown, and whose symmetry 

axis is aligned along an axis which deviates from the z axis of the reference frame, 

find the parameters ϕθ ,,, yx bb  of the transformation which will bring the symmetry 

axis to coincide with the z-saxis of the reference frame.   

The horizontal sections method is based on the following observations:   

Assume that the shift and orientation parameters ),,( θyx bb  are small (no 

assumption regarding ϕ  is necessary). Consider the intersections of the surface with 

N planes parallel to the  plane, which are defined by the points of intersection of 

each of the planes with the z axis in the reference system 

),( yx

Nizz i ,...,1, == . Then, to 

leading order in the parameters ),,( θyx bb : 

i. The intersection of the plane izz =  with the fragment surface comprises of 

two circular arcs, obtained by the intersection with the interior surface and 

the exterior surfaces of the fragment.  

ii. Denote the coordinates of the centers of the circles in the  plane by ),( yx

int),( ii yx δδ  and ( extii yx ),δδ , where the subscripts stand for the interior and 

the exterior circles, and i denotes the index of z iz= . Th

j +

e centers of the 

interior and exterior circles, for all the planes, converge to a straight line 

y j = BxAδδ  where j=1,…,2N so that j goes over the interior and 

 35



exterior circles in the N planes. Moreover,  and )(cot 1 A−= −ϕ

222

2

1sincos
coscos

A
ABBBbx
+

=
+

−=−=
ϕϕ

ϕϕ . 

iii. The following relations are satisfied:                 

Njyxzfzfzb jjjjjy 2,...,1;cossin)](')([ =⋅−⋅=⋅⋅+− ϕδϕδθ . 

Knowing ϕ  and  from ii., the equation above determines  and xb yb θ  by 

best fit. 

The lower middle frame in Figure 2 shows how the points ),( jj yx δδ converge 

to a line. The plot to its left is obtained in the first iteration, where the assumption that 

the deviations are small is not satisfied. Still, a best fit to a straight line provides 

enough information to start the iterations in the correct way. The plot to its right 

shows the final coordinates of the circle centers. The points converge within a small 

radius showing that the symmetry axis of the fragment coincides with the z-axis to 

within a micrometer.   

To prove the validity of the three points above, we start with the relation 

222 ˆˆ)ˆ( zzf −= r  which must hold if the fragment symmetry axis coincides with the z-

axis. To leading order in ),,( θyx bb  

                   )(2)(2ˆ 22222 rbrbrbrbrr TTT +≈++=+= ,  

and therefore,   
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We used above .  Since ]cossin[2ˆ 22 ϕϕθ yxzzz +−+≈ 2222 zyx ++=r  we can 

write, 

γβα ++++= yxyxzf 222 )ˆ(     (1) 

with  

.2

cos2]cossin[2

sin2]sincos[2

θγ

ϕθϕϕβ

ϕθϕϕα

y

yx

yx

bz

zbb

zbb

=

−+=

+−=

                                    

Using Taylor expansion we write, 

]cossin[)(')(2)()()ˆ( 222 ϕϕθδ yxzfzfzfzzfzf +−⋅+=+=   (2) 

By combining (1) and (2) we get: 

γβαϕϕθ ++++=+−⋅+ yxyxyxzfzfzf 222 )]cos()sin([)(')(2)(  (3) 

For a given , equation (3) describes a circle centered at jzz = ),( jj yx δδ  where                                           

ϕθϕθϕϕδ sin)(')(sin)sincos( ⋅⋅−−−−= jjjyxj zfzfzbbx   (4) 

ϕθϕθϕϕδ cos)(')(cos)cossin( ⋅⋅+++−= jjjyxj zfzfzbby   (5) 

Equation (3) proves observation i. above. Multiplying equation (4) by ϕcos  and 

adding to equation (5) multiplied by ϕsin  we get 

xjj byx −=⋅+⋅ ϕδϕδ sincos        (6) 

which proves observation ii. 

Finally, multiply equation (4) by ϕsin  and subtract from it equation (5) multiplied 

by ϕcos  to get 

θθϕδϕδ ⋅⋅−−=⋅−⋅ )(')(cossin jjjyjj zfzfzbyx  

and after rearranging the equation we get: 

ϕδϕδθ cossin)](')([ ⋅−⋅=⋅⋅+− jjjjjy yxzfzfzb     (7) 
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which proves iii.  

In practice, we use typically N= 60-100 horizontal sections. The number of 

equations exceeds the number of unknowns so that the parameters ϕθ ,,, yx bb  are 

obtained by best fit. The profile function  and its derivative  are computed 

iteratively from the mean projected profile deduced in the previous iteration. This is 

the only point in the computation where a numerical derivative is used. Still, the 

function  depends on a single parameter so the computation does not involve 

partial differentiation as is the case with the computation of the normal vectors and 

the curvature tensor.  

)(zf )(' zf

)(zf

Equation (7) is valid only when )(' zf  is bounded. This is not the case when 

the vessel has flat sections parallel to the  plane. Flat sections of this type are 

removed by the algorithm from the analysis, but if the fragment consists 

predominantly of such surface, the method fails. This explains the failure of the 

algorithm for the small flat fragments discussed in section IV.  

),( yx

The rim-tangent method is based on the observation that the symmetry axis of a wheel 

produced vessel is perpendicular to its orifice plane. As in the previous method, we 

use an iterative procedure to compute the necessary shift and alignment parameters 

ϕθ ,,, yx bb  that should bring the symmetry axis to coincide with the z-axis of the 

reference system. Given an approximate positioning, vertical sections are defined as 

the intersections of the fragment with M vertical planes which fan out from the z-axis, 

and are separated by an angle of typically 20-30. The highest points in each section 

with coordinate vectors  are identified and stored. The set of M 

maximal points 

),,( mmmm zyx=r

mr  represent the rim, and by realigning the fragment such that the 

plane tangent to the rim is perpendicular to the z-axis we obtain the improved 
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alignment. After realignment the maximal points will have the coordinates 

 which can be written as above (assuming )ˆ,ˆ,ˆ(ˆ mmmm zyx=r θ  is small): 
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Suppose that after the transformation the symmetry axis is brought to coincide with 

the z-axis, so that the  coordinate of all maximal points should be equal, and can be 

arbitrarily set to be zero. From which we get,  

ẑ

 0cossin =++− mmm zyx ϕθϕθ  ,      for every m=1,...M    (8) 

Minimizing the sum  with respect to the 

parameters 

∑
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The  parameters are calculated as the mean of all the centers of the best fitted 

circles to the arcs of the horizontal sections. The iterations are repeated until no 

improvement in Q is achieved. 

yx bb ,

 A.2 The surface tensor and its principal axes – 

Given a surface Ω, we denote by  the outward pointing normal to Ω at 

the point . In our analysis we often encounter the question, what is the direction 

 which is parallel to the largest fraction of the normal vectors on Ω ? Two simple 

examples will suffice: Consider a complete vessel whose surface is a perfect surface 

of revolution. The corresponding h  is the direction of the axis of symmetry, because 

this is the only direction to which there is a group of normal vectors all pointing to the 

same direction - the normals on the rim and the base (if it is flat). Moreover, the 

normal vectors on the rest of the vessel are distributed uniformly which selects the 

)(rn

Ω∈r

h
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main direction to be the mean normal to the base and the rim. For a small potsherd, 

the surfaces are almost planar, and h  points in the direction of their mean normal. 

The normals to the rim have less weight, and the fracture surfaces will have minimal 

weight since the normals there point in arbitrary directions.  

 

To find  in practice we have to maximize the mean projection of  on the 

normal vectors 

h h

2)(1 ∑
Ω∈

⋅
Ω r

hrn  ( Ω  is the number of surface points) subject to the 

condition that  is of unit length. Using the Lagrange multiplier method, we have to 

find the extremum of the quadratic form, 

h

                                           22)(1)( hhrnh
r

λχ −⋅
Ω

= ∑
Ω∈

. 

Requiring that the first variation of )(hχ  vanishes, we find that h  must satisfy 

hh λ=T , where the tensor T  is expressed explicitly as the 3x3 (symmetric) matrix, 

),,(,;)()(1
, zyxnnT ∈

Ω
= ∑

Ω∈

βαβαβα
r

rr  

There are in general 3 independent eigenvectors, corresponding to the 3 eigenvalues 

λ  of T. The eigenvector with the largest eigenvalue is the vector which is parallel to 

the largest fraction of normals. This vector is referred to as the principal normal. It is 

attached to the point (not necessarily on the surface) ∑
Ω∈Ω r

r1 . The other two 

eigenvectors identify local extrema of the quadratic form )(hχ , and they might be of 

use in some applications. Figure 21 shows the surface of a typical potsherd with the 

field of normals attached. The eigenvectors are also shown at the right side of the 

Figure by thickened lines. Their length is proportional to the eigenvalues. The 

principal direction is perpendicular to the body surface of the fragment, and the 

second direction is almost in the plane of the axis of symmetry and the principal 
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normal, due to the weight of the rim points. Thus, the eigenvectors of the surface 

tensor can be used also for an initial positioning of the potsherd for further analysis. 

 
 

Figure 21: A typical potsherd from Tel Dor and its surface normal vectors (left). The thick lines in the 

right frame represent the directions of the surface tensor eigenvectors. Their length is proportional to 

the eigenvalues. 

 

To improve on this rough approximation, one may repeat the computation, 

eliminating now the points on the surface with normal vectors which are 

approximately parallel to the principal direction obtained in the first computation. The 

main eigenvector of the resulting tensor defines better the direction normal to the rim 

or the base of the potsherd.    

A.3 The mean thickness of a potsherd – 

In the definition of the alignment quality parameter Q we use the thickness of 

the potsherds for normalization. Although the intuitive meaning of the term is clear, 

the computation of this parameter requires a precise definition.  

We define the local thickness at a point P1 (or P2) - see figure 22 - along the 

profile as the distance between the point and the intersection of the (ingoing) normals 

N1 (or N2) with the profile Q1 (or Q2). This definition is useful when, locally, the 

profile consists of approximately parallel lines. However, there are sections in which 

the local thickness does not represent the true thickness of the vessel (e.g. P2 - Q2 in 

Figure 22). To rectify this problem we defined the reverse normal R1 (or R2) which is 
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the local normal at the intersection point (drawn in figure 22 as dotted lines from Q1, 

Q2). The reverse normal intersects the profile at the point F1 (or F2). The two normals 

approximately coincide when the profile consists of approximately (locally) parallel 

lines (N1, R1 in Figure 22). This is not the case when this condition is not satisfied 

(N2, R2). We defined the reverse distance which is the Euclidean distance between 

our original point (P1 or P2) and the reverse intersection point (F1 and F2). 

80 90 100 110 120 130 140

10

20

30

40

50

X (mm)

Y
 (m

m
)

F2 P2

N2R2

Q2

P1F1

R1
N1

1Q

 

Figure 22: A profile of a bowl fragment from Kefar-Hananya where the points refer to in the text are 

marked. 

 

To get a proper definition of the mean thickness, we consider only those points 

on the profile for which the reverse distance is less than a predetermine tolerance 

(typically 3mm), and compute their mean. Figure 23 (left) shows the distribution of 

the reverse distance along the profile shown in Figure 22. The threshold value of 

3mm is marked as a dotted line. The points which contribute to the mean thickness are 

marked on the profile shown in Figure 23 (right). 
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Figure 23: The distribution of the reverse distance along the profile of a bowl fragment (left), where all 

points with reverse distance lower than 3mm are highlighted at the right. 

 

A.4   The sensitivity of Q to the positioning parameters - 

As explained in Section III, the positioning algorithm varies four parameters 

ϕθ ,,, yx bb , to find the shift and orientation of the axis of symmetry relative to a fixed 

reference coordinate system. The quality parameter Q is a function of these 

parameters and the optimal positioning is defined as the point in the four dimensional 

space where Q is minimal. In the present section we study the sensitivity of Q to the 

shift and orientation parameters in the vicinity of the minimum point.  

The computations were carried out on a synthetic surface of revolution, 

created by turning a profile about its axis. A random, triangulated mesh of points is 

distributed on the surface to emulate the point cloud obtained from the scanner for 

real fragments. Finally, only a sixth of the entire circumference (which includes the 

rim) is used for the analysis, thus imitating a fragment.  

The advantage of working with such a synthetic fragment is that it does not 

suffer from macroscopic or microscopic deformations, and the only source of “noise” 

is the finite mesh size. This way, the minimum value of Q (denoted by Q0) is much 
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smaller than the value obtained for archaeological fragments. Therefore Figures 24-25 

show Q/Q0 rather than Q itself.  

As can be seen from Figures 24-25, Q/Q0 responds to variations of the shift 

and orientation parameters in a non uniform way: Keeping the orientation fixed, and 

shifting the symmetry axis along the principal normal of the fragment, (see Appendix 

A2), Q/Q0 varies relatively slowly. On the other hand, when the axis is shifted 

perpendicularly to this direction, Q/Q0 changes significantly.  

The most conspicuous feature in Figure 24 is the narrow valley along the -

axis in which the parameter Q/Q

xb

0 changes gradually, indicating that the uncertainty in 

the final value of  is maximal. To estimate it we note that to change Q/Qxb 0 from 1 to 

2 one needs to change  by 0.66 mm, while the same change along the -axis 

happens already after 0.054 mm. This value depends, of course, on the size of the 

fragment. Smaller potsherds will show even less sensitivity to shifts along the 

principal normal of the surface.   
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Figure 24: Topographic map of the quality parameter Q/Q0 as a function of shifts of the symmetry 

axis in the neighborhood of the minimum. Note the narrow valley along the bx-axis in which Q is 

changing slowly. 
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Tilting the rotation axis shows similar trend, where directing the axis towards 

the principal normal influences Q much slower than directing the axis in the 

perpendicular direction. Figure 25 illustrates this phenomenon in terms of the two 

orientation angles ϕ  and θ , while 0== yx bb . The computed Q/Q0 is plotted as a 

topographic map in Figure 25. 
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Figure 25: Topographic map of the quality parameter Q as a function of two rotation angles. Note that 

the two axes are not scaled.  

 

Obviously, rotating by an angle ϕ  without tilting ( 0=θ ), has no effect on the 

quality parameter, since the projected profiles are identical. Moreover, a rotation by 

 turns the principal normal of the fragment to be parallel to the y-axis, so 

further tilt of 

o90=ϕ

θ  has minimal influence. This is the reason for the gradual vertical 

valley in the center of Figure 25. The steepest slope at the left and right of the figure 

occurs when θ  changes without any rotation of ϕ  (or when ), which orients o180=ϕ

 45



the symmetry axis in a direction perpendicular to the principal normal of the 

fragment.  

In summary we can say that the quality parameter Q/Q0 responds sensitively to 

any rotation or shift which is not confined to the plane defined by the principal normal 

and the true axis. Shifts within this plane also cause Q/Q0 to increase, however, here 

the changes are more moderate, and their magnitude depends sensitively on the size of 

the fragment. 
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