
EQUALITY OF LIFSHITZ AND VAN HOVE EXPONENTS ON
AMENABLE CAYLEY GRAPHS

TONĆI ANTUNOVIĆ AND IVAN VESELIĆ

Abstract. We study the low energy asymptotics of periodic and random Laplace opera-
tors on Cayley graphs of amenable, finitely generated groups. For the periodic operator
the asymptotics is characterised by the van Hove exponent or zeroth Novikov-Shubin invari-
ant. The random model we consider is given in terms of an adjacency Laplacian on site or
edge percolation subgraphs of the Cayley graph. The asymptotic behaviour of the spectral
distribution is exponential, characterised by the Lifshitz exponent. We show that for the
adjacency (Laplacian) the two invariants/exponents coincide. For combinatorial Laplacians
one has a different universal behaviour of the low energy asymptotics of the spectral dis-
tribution function, which can be actually established on quasi-transitive graphs without an
amenability assumption.

1. Introduction

Operators on Euclidean space which are invariant under a group action have a well defined
integrated density of states (IDS), also known as the spectral distribution function. Prominent
examples are Laplace and Schrödinger operators. Their IDS exhibits a van Hove singularity at
the bottom of the spectrum. This means that it vanishes polynomially as the energy parameter
approaches the lowest spectral edge, the exponent being equal to the space dimension divided
by two. The factor two is due to the fact that the considered operators are elliptic of second
order.

The IDS can be defined also for operators having a more general type of equivariance
property, namely for ergodic operators. Two prominent classes of such operators are random
and almost periodic ones. Among the pioneering works which have studied the IDS of such
models are [27], respectively [29].

Several well-studied types of random operators on L2(Rd) and `2(Zd) exhibit a Lifshitz
tail at the bottom of the spectrum, meaning that the IDS vanishes exponentially fast. In
particular, the spectral density is very sparse in this region and spectral values are due to
extremely rare configurations of the randomness. Hence such spectral edges are called fluctu-
ation boundaries. In Euclidean space the Lifshitz exponent is quite universal. In particular,
for Laplacians with a variety of random i.i.d. non-negative perturbations it equals d/2, cf. for
instance the survey [19] and the references therein.

Historically, physicists have introduced the IDS as a limit of spectral distribution functions
of finite volume operators. For this approximation to hold true, the underlying space or group
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needs to have some amenability property. However, for the purposes of the present paper the
approximation property is not relevant and we may rather consider the IDS as given by a
Shubin-Pastur trace formula (2).

In the present paper we want to analyse whether the Lifshitz exponent equals the van
Hove exponent for operators on more general geometries as well. Of course, for this to hold
there needs to be a proper relation between the considered periodic and random operator,
in the sense that the random operator results from its periodic counterpart by addition of
stochastically independent, positive perturbations. The periodic objects we study are Laplace
operators on Cayley graphs. We consider two different types of random perturbations thereof:
the adjacency and the combinatorial Laplacians on random subgraphs generated by a subcrit-
ical percolation process. While the first type of operators indeed shows a coincidence of van
Hove and Lifshitz exponents, the second ones exhibit a different type of universal behaviour,
the reason being, that the random perturbation is not positive in this case.

Our motivation to study this question is threefold: to extend the results of [20] on lattice
bond percolation models, to study the relation between van Hove and Lifshitz exponents, as
done at internal spectral edges of random Schrödinger operators e.g. in [21], and to clarify
some of the links between geometric L2-invariants and the IDS, see e.g. [23, 12]. Note in
particular that the van Hove exponent equals the Novikov-Shubin invariant of order zero.
Our strategy of proof is coined after the one in [20]. The description of the asymptotic
behaviour of the IDS at spectral boundaries of random operators plays a key role in the
proof of Anderson localisation, see e.g. [15]. For more background on the IDS of percolation
Hamiltonians on Cayley graphs see the discussion in [3].

In the next section we state our theorems. Thereafter, in Section 3 we present abstract
upper and lower bounds on the IDS. Section 4 is devoted to eigenvalue inequalities. Section
5 contains the proofs of the theorems in the case of adjacency Laplacians on groups with
polynomial growth and combinatorial Laplacians on general quasi-transitive graphs. In the
last section we prove the statements concerning Lamplighter groups.

2. Definitions and results

We describe the type of graphs, the percolation process and the operators we will be
considering.

Let Γ be a discrete, finitely generated group, S a finite, symmetric set of generators not
containing the unit element ι of Γ and G = (V,E) the associated Cayley graph. It is k-regular
with k = |S|. The ball around ι of radius n is denoted by B(n) and its volume by V (n). From
[5, 17, 30] it is known that either there are d ∈ N, a, b > 0 such that and ≤ V (n) ≤ b nd, in
which case Γ is called to be of polynomial growth of order d; or for every d ∈ N and every
b ∈ R there exist only finitely many integers n such that V (n) ≤ b nd, in which case Γ is
called to be of superpolynomial growth. The growth type depends only on the group and not
on the choice of the set of generators used to define the Cayley graph. Cayley graphs are a
particular case of quasi-transitive graphs, i.e. graphs that decompose under the action of the
automorphism group into finitely many orbits. Most of our results are valid only for Cayley
graphs. An exception is Theorem 12 which applies to general quasi-transitive graphs with
finite vertex degree.

Next we introduce site percolation on infinite, connected, quasi-transitive graphs. For p ∈
[0, 1], let ωx, x ∈ V be an i.i.d. sequence of Bernoulli random variables each taking the value
1 with probability p and the value 0 with probaility 1− p. The set of possible configurations
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ω = (ωx)x∈V is denoted by Ω and the corresponding product probability measure with P.
We call V (ω) := {x ∈ V | ωx = 1} the set of open sites. The induced subgraph of G with
vertex set V (ω) is denoted by Gω and called the percolation subgraph in the configuration ω.
The connected components of Gω are called clusters. For a fixed vertex o ∈ V we denote by
Co(ω) the connected component which contains it. The bond percolation process is defined
analogously. In this case the percolation subgraph Gω is the graph whose edge set E(ω) is
the set of all e ∈ E with ωe = 1 and whose vertex set V (ω) consist of all vertices in V which
are incident to an element of E(ω). For both site and bond percolation there exists a critical
parameter 0 < pc ≤ 1 such that for p < pc there is no infinite cluster almost surely and for
p > pc there is an infinite cluster almost surely. The first case is called the subcritical phase
and the second supercritical phase. The theorems of this paper concern only the subcritical
percolation phase. We will denote the expectation with respect to P by E{. . . }.

In the following we assume throughout that G is an infinite quasi-transitive graph with
bounded vertex degree and that there exist a group of automorphisms acting freely and
cofinitely on G. In particular it may be a Cayley graph. Let G′ = (V ′, E′) be an arbitrary
subgraph of G, possibly G itself. Note that even if G is regular, G′ need not be. We denote
the degree of the vertex x ∈ V ′ in G′ by degG′(x). If two vertices x, y ∈ V ′ are adjacent in
the subgraph G′ we write y ∼G′ x.

For G and G′ as above we define the following operators on `2(G′) := `2(V ′).

Definition 1. (a) The identity operator on `2(V ′) is denoted by Id.
(b) The degree operator acts on ϕ ∈ `2(V ′) according to

[D(G′)ϕ](x) := degG′(x)ϕ(x).

(c) The adjacency operator is defined as

[A(G′)ϕ](x) :=
∑

y∈V ′,y∼G′x
ϕ(y).

(d) The combinatorial Laplacian is defined as

HN(G′) := D(G′)−A(G′).

If G is a k-regular graph we define additionaly:

Definition 2. (e) The adjacency Laplacian on G′ is defined as

HA(G′) := k Id−A(G′).

(f) The boundary potential is the multiplication operator

W b.c.(G′) = k Id−D(G′)

(g) The Dirichlet Laplacian is defined as

HD(G′) := HA(G′) +W b.c.(G′) = 2k Id−D(G′)−A(G′).

Note that HN(G′) = HA(G′) −W b.c.(G′). Of course, it is possible to define the operators
(e) – (g) also for non regular graphs, but then there is no canonical choice for the value k
which would give them a geometric meaning.
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It follows that the quadratic forms of the combinatorial, Dirichlet, and adjacency Laplacian
are given by

〈HN(G′)φ, φ〉 =
∑

(x,y)∈E′
|φ(x)− φ(y)|2

〈HD(G′)φ, φ〉 = 2
∑
x∈V ′

(k − degG′(x)) |φ(x)|2 +
∑

(x,y)∈E′
|φ(x)− φ(y)|2(1)

〈HA(G′)φ, φ〉 =
∑
x∈V ′

(k − degG′(x)) |φ(x)|2 +
∑

(x,y)∈E′
|φ(x)− φ(y)|2

and satisfy HN(G′) ≤ HA(G′) ≤ HD(G′) in the sense of quadratic forms.

Remark 3 (Terminology). If G′ = G and G is regular then the operators HA, HN , HD coincide
and we denote them simply by H. If G is the Cayley graph of an amenable group the spectral
bottom of H equals zero. Usually in the graph theory literature the adjacency matrix and the
combinatorial Laplacian are the objects of study. For the first operator one is (among others)
interested in the properties related to the upper edge of the spectrum, whereas for the second
operator one considers the low-lying spectrum. In order to be able to treat both operators in
parallel it is convenient to consider consider HA rather than A. Of course, spectral properties
of HA directly translate to those of A.

Motivated by the Dirichlet-Neumann bracketing for Laplacians in the continuum, in [28]
the terminology of Neumann HN and Dirichlet HD Laplacians was introduced. This is the
reason why we use the superscript N for the combinatorial Laplacian. While in the continuum
the boundary conditions are necessary to define a selfadjoint operator, in the discrete setting
they correspond to a boundary potential W b.c., which is either added or subtracted to/from
the Laplacian without boundary term, i.e. the adjacency Laplacian HA. Note however, that
the term Neumann Laplacian is sometimes, e.g. in [8], used for a different operator. Likewise,
the operator HA is often called Dirichlet Laplacian, e.g. in [7], while in [20] it is called Pseudo-
Dirichlet Laplacian.

Given a (site or bond) percolation subgraph Gω ⊂ G we use the following abbrevia-
tions for operators on `2(V (ω)): degω(x) = degGω(x), Aω = A(Gω), HA

ω = HA(Gω), HN
ω =

HN(Gω), HD
ω = HD(Gω),W b.c.

ω = W b.c.(Gω). Any one of the operators H#
ω ,# ∈ {A,N,D}

will be called a percolation Laplacian. If G is a Cayley graph we consider all three types
HA, HN , HD, while in the case of a quasi-transitive graph we will derive results only for the
combinatorial Laplacian HN .

Next we define the IDS. Let G be a quasi-transitive graph equipped with a subgroup Γ
of its automorphism group which acts freely and cofinitely on G. Denote by F an arbitrary,
but fixed Γ-fundamental domain, i.e. subset of G, which contains exactly one element of
each Γ-orbit. The IDS of the random operator (H#

ω )ω may be defined by the following trace
formula:

(2) N#(E) :=
1
|F|

E
{

Tr[χF χ]−∞,E](H
#
ω )]
}
.

If Γ acts transitively on G the expression (2) simplifies to E{〈δx, χ]−∞,E](H#
ω )δx〉}, where

x denotes an arbitrary vertex in G and δx its characteristic function. If moreover p = 1,
i.e. we consider the IDS of the Laplacian H on G itself, the formula simplifies further to
Nper(E) = 〈δx, χ]−∞,E](H)δx〉. We denote by Nper the IDS of the periodic operator H, while
N# is reserved for the IDS of the random operator H#.
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Remark 4. Several properties of the random family (H#
ω )ω of operators play a role in the

definition of the IDS. These hold for any of the boundary types # ∈ {A,N,D}. Firstly,
(H#

ω )ω is a measurable family of operators in the sense of [22] (which extends the notion
introduced in [18]). Secondly, each operator is bounded, selfadjoint and non-negative.

If the group Γ is amenable, it is possible to approximate the IDS by its analogs associated
to operators restricted to finite graphs along a Følner (van Hove) sequence. This has been
shown for periodic operators in [14, 24] and for site percolation Hamiltonians in [31]. For
bond percolation Hamiltonians the same proof applies. For bond percolation on the lattice
these results were proven in [20].

A finitely generated, discrete group is amenable if and only if it contains an increasing
Følner sequence, i.e. an increasing sequence of finite subsets In ⊂ Γ such that

lim
j→∞

|Ij4F · Ij |
|Ij |

= 0, for any finite F ⊂ Γ.

Any increasing Følner sequence induces a monotone exhaustion Λn, n ∈ N consisting of finite
subsets Λn of the vertex set of G, such that if we denote by H#,n

ω the restriction of H#
ω to

`2(Λn ∩ V (ω)) the convergence

(3) lim
n→∞

1
|Λn|

Tr[χ]−∞,E](H
#,n
ω )] = N#(E)

holds for almost all ω and all continuity points E of N#. Note that since H#,n
ω is a finite

dimensional operator its spectrum consists entirely of eigenvalues and hence Tr[χ]−∞,E](H#,n
ω )]

equals the number of eigenvalues of H#,n
ω not exceeding E. Using the inequalities for the

quadratic forms (1) and Weyl’s monotonicity principle it follows that Tr[χ]−∞,E](HN,n
ω )] ≥

Tr[χ]−∞,E](HA,n
ω )] ≥ Tr[χ]−∞,E](HD,n

ω )]. Passing to the limit n→∞ one obtains NN ≥ NA ≥
ND.

There are other important properties of (H#
ω )ω which are appropriate to mention here

although they are not necessary for the formulation of our definitions or theorems. The
spectrum of H#

ω is almost surely ω-independent, cf. [22, 31]. We denote it by Σ# in the
sequel. The same holds for the measure-theoretic components of the sectrum. The topological
support of the measure whose distribution function is N# coincides with Σ#. Using the same
arguments as in [20] one can show that Σ# ⊃ σ(H). The IDS of percolation Hamiltoninas
has a rich set of discontinuities [6], and a characterisation of this set is given in [32]. It is
also possible to extend the percolation Hamiltoninans to the removed vertices V \ V (ω) by a
constant. This is just a matter of convention and does not alter the results essentially. For a
broader discussion of the above facts see [3].

The next statement characterises the asymptotic behaviour of the IDS of the periodic
Laplacian H at the spectral bottom and can be inferred either form [33] or [23]. For groups
of polynomial growth it exhibits a van Hove singularity, while in the case of superpolynomial
growth one encounters a different type asymptotics which may be interpreted as corresponding
to a van Hove exponent equal to infinity.

Theorem 5. Let Γ be a finitely generated, amenable group, H the Laplace operator on a
Cayley graph of Γ and Nper the associated IDS. If Γ has polynomial growth of order d then

lim
E↘0

lnNper(E)
lnE

=
d

2
.(4)
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and if Γ has superpolynomial growth then

lim
E↘0

lnNper(E)
lnE

=∞.(5)

Next we state our result about the low energy asymptotics of (HA
ω )ω and (HD

ω )ω and
compare it with the asymptotic behaviour of the Laplacian H on the full Cayley graph. Here
and in the sequel we restrict ourselves to the subcritical phase of (site or bond) percolation,
i.e. we consider a percolation parameter p < pc. The asymptotic behaviour of the IDS of the
adjacency and the Dirichlet percolation Laplacian on a Cayley graph at low energies is as
follows:

Theorem 6. Let G be a Cayley graph of an amenable, finitely generated group Γ. Let (HA
ω )ω

and (HD
ω )ω be the adjacency, respectively the Dirichlet percolation Laplacian for subcritical

site or bond percolation on G.
Assume that G has polynomial growth and V (n) ∼ nd. Then there are positive constants

α+
D(p) and α−D(p) such that for all positive E small enough

(6) e−α
−
D(p)E−d/2 ≤ ND(E) ≤ NA(E) ≤ e−α

+
D(p)E−d/2 .

Assume that G has superpolynomial growth. Then

(7) lim
E↘0

ln | ln ND(E)|
| lnE|

= lim
E↘0

ln | ln NA(E)|
| lnE|

=∞.

Remark 7. The inequality ND(E) ≤ NA(E) in (6) is deduced from the convergence of the
finite volume eigenvalue counting functions to the IDS which is explained in Remark 4. This
is slightly inconsistent with our approach that we want to deduce the asymptotic behaviour
of the IDS from the trace formula (2) alone. Note however that our proof of Theorem 6 shows
that even without the use of the finite volume approximation we have

e−α
−
D(p)E−d/2 ≤ ND(E) ≤ e−α̃

+
D(p)E−d/2 and e−α̃

−
D(p)E−d/2 ≤ NA(E) ≤ e−α

+
D(p)E−d/2

with some positive constants α̃+
D, α̃

−
D. Thus even without the knowledge that the IDS has

finite volume approximations the correct asymptotic behaviour of the IDS may be deduced.
An analogous remark applies to equation (7).

Remark 8. Theorem 6 is a generalisation of the results in [20] on subcritical bond percolation
on the lattice and consistent with the Lifshitz asymptotics for various other types of random
Schrödinger operators in Euclidean space, cf. e.g. [19]. In particular, Lifshitz tails have been
proven for the Anderson model, i.e. the discrete random Schrödinger operator on `2(Zd) with
an i.i.d. potential. The first proofs of this result were given in [25, 28]. It is not clear whether
the proof of [28] can be adapted to general amenable Calyey graphs. One obstacle for this
extension is the fact one has to bound the IDS in terms of the eigenvalues of the random
operator restricted to a finite graph. In Euclidean space this can be established using the fact
that cubes are a very neat Følner sequence which are at the same time fundamental domains
of sublattices. For general amenable groups such sequences do not exist necessarily. The other
reason is that the eigenvalue estimates for the Anderson models restricted on finite graphs are
established using the Temple inequality, which in turn to be applied efficiently needs lower
bounds on the distance between the two lowest eigenvalues. This lower bound on the spectral
gap is immediate in the Euclidean case, while for more general transitive graphs it may be
inferred from a strengthened version of the Cheeger inequality. Taking these considerations
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into account one may hope that the proof of Lifshitz tails for the Anderson model on Zd can
be adapted for Cayley graphs of polynomial growth. They are, apart from being amenable,
residually finite and thus admit an approximation by finite transitive graphs.

Theorem 6 implies in particular that the IDS is very sparse near the bottom of the spectrum
E = 0 and consequently zero is a fluctuation boundary. Relation (6) implies that in the case
of polynomial growth the Lifshitz exponent coincides with the van Hove exponent of the
Laplacian on the full Cayley graph. In particular, we have

lim
E↘0

ln | ln ND(E)|
| lnNper(E)|

= lim
E↘0

ln | ln NA(E)|
| lnNper(E)|

= 1

In the case of superpolynomial growth we have that both exponents are infinite. One may
ask whether the limits defining them diverge at the same rate and whether, for instance, the
relation

lim
E↘0

ln ln | ln ND(E)|
ln | lnNper(E)|

= lim
E↘0

ln ln | ln NA(E)|
ln | lnNper(E)|

= 1

holds. We are not able prove this in general, but at least for the case of the Lamplighter
groups Zm o Z. These groups are amenable, but of exponential growth.

Theorem 9. Let G be a Cayley graph of the Lamplighter group Zm o Z. There are positive
constants a+

1 and a+
2 such that

Nper(E) ≤ a+
1 e
−a+

2 E
−1/2

, for all E small enough.

Moreover for every r > 1/2 there are positive constants a−r,1 and a−r,2 such that

Nper(E) ≥ a−r,1e
−a−r,2E−r , for all E small enough.

Thus we have an exponential behaviour of the IDS at the bottom of the spectrum, in
particular:

(8) lim
E↘0

ln | lnNper(E)|
| lnE|

=
1
2
.

Theorem 10. Let G be an arbitrary Cayley graph of the Lamplighter group Zm o Z. For
every p < pc there are positive constants b1, b2, c1, c2, such that the IDS of the adjacency and
Dirichlet (site or bond) percolation Laplacian satisfies the following inequality

(9) e−c1e
c2E
−1/2

≤ NA(E) ≤ ND(E) ≤ e−b1eb2E
−1/2

, for all E > 0 small enough.

Remark 11. Our proofs show that the lower bounds e−α
−
D(p)E−d/2 ≤ ND(E) ≤ NA(E) in

Theorem 6 and e−c1e
c2E
−1/2

≤ NA(E) ≤ ND(E) in Theorem 10 are valid for all values of the
percolation parameter p ∈]0, 1]

Let us now turn to combinatorial Laplacians (HN
ω )ω, i.e. Laplacians with the third type of

boundary term which we did not discuss yet. In the case of Neumann boundary conditions the
energy zero is not a fluctuation boundary. The IDS has a discontinuity at zero, thus one may
say that the zeroth L2-Betti number of the random operator (HN

ω )ω does not vanish. For the
combinatorial Laplacian we are able to treat general quasi-transitive graphs. In particular,
G does not need to be neither amenable nor a Cayley graph. The following again generalises
a result of [20] on Zd-bond percolation.
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Theorem 12. Let G be a graph with bounded vertex degree and Γ a group of automorphisms
acting freely and cofinitely on G. Consider the IDS of the Neumann percolation Hamiltonian
(HN

ω )ω of a subcritical site or bond percolation process. There exist positive constants α+
N (p)

and α−N (p) such that for all positive E small enough

(10) e−α
−
N (p)E−1/2 ≤ NN(E)−NN(0) ≤ e−α

+
N (p)E−1/2

.

The value NN(0) coincides with the average number of clusters per vertex in the random
graph Gω. After subtracting this value we can speak of (10) as a kind of ‘renormalised’
Lifshitz asymptotics with exponent 1/2.

It is possible to prove Theorem (12) for a larger class of Neumann Hamiltonians, which
correspond to long-range percolation in the subcritical phase. However, then one is dealing
with random operators which do not have a finite hopping range and are unbounded, thus
the formal setting is different.

On an abstract level Theorem 12 and its proof show that the low energy asymptotics of
the combinatorial Laplacian does not depend on geometric properties of G, but only on the
rate at which the linear clusters are produced by the percolation process.

3. Abstract upper and lower bounds on the IDS

To obtain upper bounds for the integrated density of states near the lower spectral edge, we
have to prove that the spectrum is relatively scarce in this area. In the subcritical phase the
spectrum is only pure point and consists of the eigenvalues of the operators H#(G′), where
G′ goes over the set of all finite subgraphs. So what one really needs are certain lower bounds
for the eigenvalues of the operators H#(G′), # ∈ {N,A,D}. Vice versa for lower bounds for
the IDS we shall need upper bounds for these eigenvalues in some neighbourhood of the lower
spectral edge. In this spirit we present Propositions 13 and 14, which are generalisations
of Lemmata 2.7 and 2.9 in [20]. Denote with λ#(G′) the lowest nonzero eigenvalue of the
operator H#(G′), # ∈ {N,A,D}.

Proposition 13. Let G be a quasi-transitive graph and # ∈ {A,D,N}. Assume that there
is a continuous strictly decreasing function f : [1,∞[ → R+ such that lims→∞ f(s) = 0 and
λ#(G′) ≥ f(|G′|) for any finite subgraph G′. Then, for every 0 < p < pc there is a positive
constant ap such that

(11) N#(E)−N#(0) ≤ e−apf−1(E),

for all E from the interval ]0, f(1)[ on which the inverse function f−1 is well defined.

Proof. Fix # ∈ {N,A,D} and 0 < E < f(1). Since the subspace `2(Cx(ω)) is invariant for
the operator H#

ω and the restriction on this subspace is exactly H#(Cx(ω)) we can write

N#(E)−N#(0) =
1
|F|

∑
x∈F

E
( 〈
δx, χ]0,E](H

#(Cx(ω)))δx
〉 )
.
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Now χ]0,E](H#(Cx(ω))) is the zero operator if E < λ#(Cx(ω)), in particular in the case
|Cx(ω)| < f−1(E). Since

〈
δx, χ]0,E](H#(Cx(ω)))δx

〉
≤ 1 for any E and ω we can write

N#(E)−N#(0) =
1
|F|

∑
x∈F

E
( 〈
δx, χ]0,E](H

#(Cx(ω)))δx
〉
χ{|Cx(ω)|≥f−1(E)}(ω)

)
≤ 1
|F|

∑
x∈F

P(|Cx(ω)| ≥ f−1(E)).

Now the result follows from the fact that the probabilities of large subcritical clusters in quasi-
transitive graphs decay exponentially, i.e. P(|Cx(ω)| ≥ n) ≤ e−apn for all positive integers n,
all vertices x and all p < pc, where ap is a positive constant depending only on the value of
the parameter p. This fact is established for quasi-transitive graphs in [2] using the methods
developed in [1]. �

Proposition 14. Let G be graph with bounded vertex degree and Γ a group of isometries
acting cofinitely on G and # ∈ {A,D,N}. Suppose that there is a sequence of connected
subgraphs (G′n)n and a sequence (cn)n in R+ such that

(i) lim
n→∞

|G′n| =∞,

(ii) lim
n→∞

cn = 0,

(iii) λ#(G′n) ≤ cn.

For every E > 0 small enough define n(E) := min {n; cn ≤ E}. Then for every 0 < p < 1
there is a positive constant bp such that the following inequality holds for all E > 0 small
enough

(12) N#(E)−N#(0) ≥ 1
|F|

P(G′n(E) is a cluster in G(ω)) ≥ e−bp|G
′
n(E)
|
.

Proof. Fix # ∈ {N,A,D} and E > 0 small enough so that n(E) is well defined. Define
Sx(E) :=

{
τ ∈ Γ;x ∈ τG′n(E)

}
where τG′n(E) is the translation of the subgraph G′n(E) ob-

tained by mapping each vertex of the subgraph G′n(E) by automorphism τ . On the set Sx(E)
define the equivalence relation ' in the following way τ1 ' τ2 :⇔ τ1G

′
n(E) = τ2G

′
n(E). Now

take Tx(E), a subset of Sx(E), which contains exactly one element from each equivalence
class. Note that for each vertex y in G′n(E) there exist a vertex x ∈ F and an automorphism
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τ ∈ Tx(E) which maps y to x. Now we can write

N#(E)−N#(0) ≥ 1
|F|

∑
x∈F

E
( 〈
δx, χ]0,E](H

#(Cx(ω)))δx
〉
χn

Cx(ω)=τG′
n(E)

;τ∈Tx(E)
o)

≥ 1
|F|

∑
x∈F

∑
τ∈Tx(E)

E
(〈

δx, χ]0,λ#(G′
n(E)

)](H
#(τG′n(E)))δx

〉
χn

Cx(ω)=τG′
n(E)

o)
=

1
|F|

∑
x∈F

∑
τ∈Tx(E)

〈
δx, U

−1
τ χ]0,λ#(G′

n(E)
)](H

#(G′n(E)))Uτδx
〉

P(Cx(ω) = τG′n(E))

=
1
|F|

∑
x∈F

∑
τ∈Tx(E)

〈
δτ−1x, χ]0,λ#(G′

n(E)
)](H

#(G′n(E)))δτ−1x

〉
P(Cτ−1x(ω) = G′n(E))

=
1
|F|

∑
y∈G′

n(E)

〈
δy, χ]0,λ#(G′

n(E)
)](H

#(G′n(E)))δy
〉

P(Cy(ω) = G′n(E))
∑
x∈F

∑
τ∈Tx(E)

y=τ−1x

1

≥ 1
|F|

P(G′n(E) is a cluster in G(ω))
∑

y∈G′
n(E)

〈
δy, χ]0,λ#(G′

n(E)
)](H

#(G′n(E)))δy
〉

≥ 1
|F|

P(G′n(E) is a cluster in G(ω)).

Here we used the fact that for any subgraph G′ and any element τ of the group Γ, H#(τG′) =
U−1
τ H#(G′)Uτ , where Uτ is a unitary operator on `2(G) defined by Uτf(x) := f(τx). The

operators Uτ have the property Uτδx = δτ−1x. In the last step we used the fact that
χ]0,λ#(G′

n(E)
)](H#(G′n(E)) is a non-trivial projection and thus its trace is equal to the dimen-

sion of its range which is greater or equal than one. Since we are considering independent
percolation on a graph of uniformly bounded vertex degree we can find a positive constant
bp depending only on p, such that 1

|F|P(G′ is a cluster in G(ω)) ≥ e−bp|G′| holds for any finite
subgraph G′. �

4. Bounds on eigenvalues

As we have seen in the previous section, for good upper and lower bounds for the IDS
we need to estimate λ#(G′). Lower bounds for eigenvalues (which give upper bounds for
IDS) which are sufficient for our purposes can be given in terms of the growth rate of the
group. Recall that B(n) denotes the ball in a Cayley graph G, of radius n around the unit
element ι and V (n) stands for the volume (the number of vertices) of B(n). Also define
φ(t) := min {n ≥ 0;V (n) > t}.

Proposition 15. Let G = (V,E) be a Cayley graph of a finitely generated group Γ. For every
finite connected subgraph G′

(13) λA(G′) ≥ 1
128

1
k2 φ(2|G′|)2

.

Proof. If we prove that every non-zero ϕ satisfies
〈ϕ,HA(G′)ϕ〉
‖ϕ‖2

≥ (128k2)−1

φ(2|G′|)2
, the inequality

will follow by the mini-max principle, after taking the infimum over all non-zero ϕ. The
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above inequality follows from results in [10] and [33]. Namely in the course of the proof of
Proposition 14.1 in [33] one proves that for any ϕ ∈ `2(G) with finite support we have

(14)
DP (ϕ)
‖ϕ‖2

≥ 1
2κ2f(| suppϕ|)2

,

where κ is a positive constant and f : N→ R is non-decreasing and such that κ|∂EA| ≥
|A|

f(|A|)
for all finite subsets of vertices A. Here ∂EA is the edge boundary, i.e. the set of edges which
have one end-vertex in A and the other outside A and DP is the Dirichlet sum, which in
the special case when P defines the nearest neighbor simple random walk satisfies DP (ϕ) =∑
x∼Gy

|ϕ(x)−ϕ(y)|2. Note that (1) implies the fact that for any finite subgraph G′ of a Cayley

graph G and any ζ ∈ `2(G′) we have
〈
HA(G′)ζ, ζ

〉
=
∑
x∼Gy

|ζ̃(x) − ζ̃(y)|2, where ζ̃ is an

extension of ζ in `2(G) defined by setting ζ̃(x) to be equal to 0 for every x /∈ G′. Thus the
Dirichlet sum considered in [33] satisfies

(15) DP (ζ̃) =
〈
HA(G′)ζ, ζ

〉
,

in the special case where the transition matrix P corresponds to a simple nearest neighbour
random walk on G. On the other hand Théorème 1 in [10] shows that for any Cayley graph
of a finitely generated group

(16) 8k |∂VA| ≥
|A|

φ(2|A|)
,

holds for all finite subsets of vertices A. (Here ∂VA is the inner vertex boundary of A, i.e. the
set of vertices in A which have a neighbour outside A.) Since |∂EA| ≥ |∂VA|, the conditions
of Proposition 14.1 in [33] are satisfied with f(n) = φ(2n) and so (14) and (15) together imply
the desired inequality. �

The role of the subgraphs G′n from Proposition 14 will be played by the B(n). As for the
sequence cn from the same proposition, the next proposition will give us a candidate.

Proposition 16. Let G = (V,E) be a Cayley graph of a finitely generated group with poly-
nomial growth. The there exists a positive constant β+

D such that for every positive integer n
we have

(17) λD(B(n)) ≤
β+
D

n2
.

Proof. From the mini-max principle we know

(18) λD(B(n)) ≤ 〈ϕ,H
D(B(n))ϕ〉
‖ϕ‖2

,
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for every ϕ ∈ `2(B(n)). For a test function ϕ use the radially symmetric function defined in
the following way:

ϕ(x) :=


n− d(ι, x), if d(ι, x) ∈ {bn/2c, . . . , n}

dn/2e, if d(ι, x) < bn/2c

0, else.

Now we have

〈ϕ,HD(B(n))ϕ〉 =
∑

[x,y]∈E
x,y∈B(n)

|ϕ(x)− ϕ(y)|2 + 2
∑

(x,y)∈E
x∈B(n),y/∈B(n)

|ϕ(x)− ϕ(y)|2 ≤ kV (n)

‖ϕ‖2 =
∑

x∈B(n)

|ϕ(x)|2 ≥ dn/2e2V (bn/2c).

Inserting these two inequalities into (18) and using the fact that V (n) grows polynomially
one easily obtains (17). �

Now we give bounds for the eigenvalues in case of the combinatorial Laplacian on quasi-
transitive graphs.

Proposition 17. Let G = (V,E) be a quasi-transitive graph with vertex degree bounded by
k̃. For every finite subgraph G′ = (V ′, E′) we have

(19) λN(G′n) ≥ 2

k̃ |G′|2
.

Proof. The Cheeger inequality (cf. Théorème 3.1.(2) in [9]) gives us

λN(G′n) ≥ h2(G′)

2k̃
,

where h(G′) is the Cheeger constant of G′ defined as h(G′) := minfV ′⊂V
|fV ′|≤|V ′|/2

|∂EṼ ′|
|Ṽ ′|

. Since the

Cheeger constant h(G′) satisfies h(G′) ≥ 2/|G′|, we get the desired bound in (19). �

The role of the subgraphs G′n from Proposition 14, in the case of the Neumann Laplacian,
will be played by linear subgraphs. A linear subgraph Ln ⊂ G of length n is the subgraph
induced by a path v1, v2, . . . , vn+1 in the graph G, such that the distance between vi and vj
is equal to |j − i|, for every 1 ≤ i, j ≤ n+ 1. Notice that for every connected infinite graph G
and every n ∈ N there exists a linear subgraph of length n in G. To see this fix an arbitrary
vertex w0 and take any vertex wn on the sphere of radius n with center in w0 (this sphere is
obviously non-empty). Now take a shortest path (w0, w1, . . . wn−1, wn) between the vertices
w0 and wn. Clearly, the vertices {w0, w1, . . . wn} are vertices of a linear subgraph Ln.

Proposition 18. Let G = (V,E) be a quasi-transitive graph with bounded vertex degree. For
any integer n we have

(20) λN(Ln) ≤ 12
n2
.
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Proof. We will again use the mini-max principle, i.e. λN(Ln) ≤ 〈ϕ,H
N(Ln)ϕ〉
‖ϕ‖2

, for all ϕ ∈

`2(Ln), which are orthogonal to the kernel of the operator HN(Ln). Since the kernel is one
dimensional and contains only constant functions, the condition that ϕ is orthogonal to the
kernel is equivalent to

∑
x∈Ln

ϕ(x) = 0. One obtains (20) by inserting the function which grows

linearly along Ln having the value −n/2 on one end-vertex and n/2 on the other, see Lemma
2.6 in [20]. �

5. Proofs of the theorems for groups of polynomial growth and
quasi-transitive graphs

We insert the eigenvalue bounds from the previous section into Propositions 13 and 14 to
obtain the estimates on the IDS stated in Theorems 6 and 12.

Proof of Theorem 6. For the first inequality in (6) use Proposition 14 with G′n := B(n) and

cn := β+
D
n2 , where β+

D is the constant from Proposition 16. When E approaches 0 from above,
n(E)E1/2 is bounded from above by a constant and thus the same is true for |G′n(E)|E

d/2.
Now using the fact that ND(0) = 0 the result follows directly from Proposition 14.

For the second inequality in (6) we refer to Remark 4.
To prove the third inequality we use Proposition 13 together with the lower bounds from

Proposition 15. Because of the polynomial volume growth we have φ(s) ≤ κ1s
1/d, for all

s > 1, which implies g(s) :=
(128k2)−1

φ(2s)2
≥ κ2s

−2/d, for all s > 1, where κ1, κ2 are positive

constants. Now the choice f(s) := κ2s
−2/d satisfies the conditions of Proposition 13 and,

since NA(0) = 0, the proof is straightforward.

Now we prove (7). By ND ≤ NA the divergence in (7) has to be proven only for the case of

the adjacency Hamiltonian. In the case of superpolynomial growth we have lim
n→∞

lnn
lnV (n)

= 0

from where one can easily obtain

(21) lim
t→∞

lnφ(t)
ln t

= 0.

If we show that the assumptions of Proposition 13 are satisfied we can obtain for E > 0 small
enough such that

ln | lnNA(E)|
lnE

≤ ln ap
lnE

+
ln f−1(E)

lnE
.

So it is enough to find an f which satisfies the conditions of Proposition 13, in particular

λA(G′) ≥ f(|G′|) for all finite subgraphs G′, and such that lim
E↘0

ln f−1(E)
lnE

= −∞. The last

condition is equivalent to

(22) lim
s→∞

ln s
ln f(s)

= −∞.
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Proposition 15 gives us the bound λA(G′) ≥ g(s), where again g(s) :=
(128k2)−1

φ(2s)2
. Now (21)

easily implies

(23) lim
s→∞

ln s
ln g(s)

= −∞.

The function g(s) is not a good candidate for the function f in Proposition 13, since it is not
continuous and strictly decreasing. Thus we define the function f as an arbitrary continuous,
strictly decreasing, positive function which has the following three properties:

• f(s) ≤ g(s) for every positive real s,
• f(s) = g(s) if s is a discontinuity point of g,
• f(s) ≥ 1

2g(s) if g has no discontinuity points in [s, 2s[.
A function with these properties exists since g is continuous from the right. Now f satisfies
the conditions of Proposition 13 as well as (22) and this proves the last part. �

Proof of the Theorem 12. By Proposition 17 we see that the assumptions of Proposition 13

are satisfied with f(s) :=
2

k̃ s2
. Moreover, by Proposition 18 we can use Proposition 14 with

G′n = Ln and cn =
12
n2

. Now the bounds in (10) follow directly. �

As for the periodic case, the formulae for the limits in Theorem 5 are not new. See for
instance Lemma 2.46. in [23], where this statement is derived using homological algebra.
Another way to derive these bounds is the following: Consider the scaled adjacency operator
1
kA(G) and its integrated density of states N 1

k
A. Denote the return probability after n steps

of the simple random walk (Xn) which started at o by Po(Xn = o). It follows that Po(Xn =
o) =

∫
R t

ndN 1
k
A(t). Now it is possible to give sharp bounds on the behaviour of N 1

k
A near

the upper spectral edge (i.e. E = 1) since the return probabilities of the simple random walk
are well studied. Namely in the case of Cayley graphs of groups with polynomial growth the
probabilities Po(Xn = o) behave like n−d/2 (see Corollary 14.5 and Theorems 14.12 and 14.19
in [33]). Now the desired bounds for Nper follow directly.

The idea to relate the IDS with the return probabilities of the simple random walk will be
important for studying the same problem in the case of Lamplighter groups. Here we shall
refer to results in [26].

6. Estimates for Lamplighter groups

In this section we derive upper and lower bounds on the IDS for a particular class of
amenable groups of superpolynomial growth, namely for Lamplighter groups.

Fix a positive integer m ≥ 2. The Lamplighter group is defined as the wreath product
Zm oZ, or in other words, elements of the group are ordered pairs (ϕ, x), where ϕ is a function
ϕ : Z→ Zm with finite support and x ∈ Z. The multiplication is given by (ϕ1, x1)∗(ϕ2, x2) :=
(ϕ1 + ϕ2(· − x1), x1 + x2).

We shall use the following notation. For x ∈ Z let δx denote the function which has value
1 at x and 0 everywhere else. The zero function will be denoted by 0.

Lamplighter groups are examples of amenable groups with exponential growth. It suffices
to prove these two properties for some Cayley graph of the Lamplighter group. Consider the
Cayley graph of the Lamplighter group Zm o Z, defined with respect to the set of generators
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{(0,±1), (kδ0, 0); k ∈ Zm\ {0}}. To prove the amenability one only has to notice that the
sequence of sets (

{(ϕ, x); suppϕ ⊆ {−n, . . . , n} , x ∈ {−n, . . . , n}}
)
n

is a Følner sequence. Exponential growth follows directly from the fact that for any function
ϕ with support in {1, 2, . . . , n} one is able reach the vertex (ϕ, n), from the zero element in
at most 2n steps, and so ball of radius 2n has at least mn elements.

Using the same ingredients as in the case of groups with polynomial growth we now prove
the upper bound in (9).

Proof of the upper bound from Theorem 10. Using the fact that the growth of the Lamp-
lighter group is exponential, we get the upper bound φ(s) ≤ µ1 ln s, for all s > 2 and some
µ1 > 0, where the function φ was defined before Proposition 16. It implies the lower bound

g(s) =
(128k2)−1

φ(2s)2
≥ µ2(ln s)−2, for all s > 2, where µ2 is a positive constant. Thus the

function f(s) := µ2(ln s)−2 satisfies the conditions of Proposition 14 and gives the desired
estimate. �

The lower bound in Theorem 10 requires an additional step. In the proof we shall first
prove the claimed estimate in the case of a particular generator set and then we shall show
how to generalize the result to arbitrary Cayley graphs.

For an arbitrary generator set K of Zm o Z denote by (Zm o Z)K the Cayley graph induced
by the generator set K. Also if V ′ is a subset of Zm o Z denote by G(V ′,K) the subgraph of
(Zm o Z)K induced by the vertex set V ′.

Define the following symmetric set of generators

(24) K0 := {(l · δ1, 1), l ∈ Zm} ∪ {(l · δ0,−1), l ∈ Zm} .
As explained in Section 2 of [34] the Cayley graph (Zm o Z)K0 is the horocyclic product of
two (m + 1)-regular trees. We will briefly sketch the necessary definitions and results. For
a comprehensive introduction and a graphical illustration of horocyclic products of trees we
refer to [4].

Let T = (V,E) be a (m+ 1)-regular rooted tree with graph metric d. Let ξ be an arbitrary
but fixed end. (An end is an infinite path from the root o in which vertices do not repeat.)
For each vertex x there is the unique path γx from o to x. With γx∩ ξ denote the intersection
of the paths γx and ξ, that is the sequence of edges which lie both in γx and ξ. Now the
Busemann function of the tree T (with respect to the root o and the end ξ) is defined as
h : V → Z, h(x) := |γx| − 2|γx ∩ ξ|. For two vertices x and y which satisfy h(y) ≥ h(x) and
d(x, y) = h(y)− h(x) we shall write x ≤ y.

Assume now that we are given two (m+1)-regular trees T1 and T2 with Busemann functions
h1 and h2 respectively. The horocyclic product of the trees T1 and T2 is defined as the graph
whose vertex set is given by {(x1, x2);xi ∈ Ti, h(x1) + h(x2) = 0}, with two vertices (x1, x2)
and (x′1, x

′
2) adjacent if xi and x′i are adjacent in Ti for i = 1, 2. The choice of a root and an

end in the definition is irrelevant since all horocyclic product of two given trees are mutually
isomorphic. As we mentioned before, the Cayley graph (Zm o Z)K0 is isomorphic to the
horocyclic product of two (m+ 1)-regular trees.

The spectrum of the full Laplace operator on the graph (Zm o Z)K0 is pure point, with
eigenfunctions having only finite support. This was shown for the Lamplighter group Z2 o Z
in [16] and for more general wreath products in [11]. Here we shall follow the methods from
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[4] where the same facts are proved for Diestel-Leader graphs, which include certain Cayley
graphs of the Lamplighter groups Zm o Z as a particular case. Moreover, there the spectrum
of the Laplace operator restricted to certain subgraphs called tetrahedrons is calculated. This
is where the representation of (Zm o Z)K0 as a horocyclic product becomes essential.

Assume we are given a horocyclic product of two (m + 1)-regular trees T1 and T2 with
Busemann functions h1 and h2 and graph metrics d1 and d2 respectively. Fix a positive
integer n and take two vertices x1 ∈ T1 and x2 ∈ T2 such that h2(x2) = −h1(x1)−n. Now the
tetrahedron Sn with height n is defined as the subgraph of the horocyclic product of T1 and T2

induced by the set of vertices {(x′1, x′2) ∈ T1 × T2; h1(x′1) + h2(x′2) = 0, xi ≤ x′i, 1 = 1, 2}. Note
that we do not need to specify the vertices x1 and x2 in the definition of the tetrahedron,
since all tetrahedra with height n are isomorphic.

Corollary 1 and Proposition 1 from [4] specify certain eigenvalues for the Laplacian re-
stricted to tetrahedron with height n among which is 2m(1− cos πn). Moreover there exist an
eigenfunction corresponding to this eigenvalue which vanishes on the inner vertex boundary of
the tetrahedron, so 2m(1− cos πn) is an eigenvalue of the operators H#(Sn) for # = N,A,D.
This gives us upper bounds on the lowest eigenvalue of HD(Sn) which are sharp enough to
give the lower bounds for the IDS from (9).

Proof of the lower bound from Theorem 10. First we shall consider the Cayley graph (Zm o
Z)K0 . Again we shall use Proposition 14 for # = D. We set G′n = Sn. It is easy to see that

|Sn| = (n+ 1)mn. Moreover λD(Sn) ≤ 2m(1− cos
π

n
) ≤ mπ2

n2
and thus we can set cn =

mπ2

n2
.

Proposition 14 now gives the desired result.
Now take an arbitrary generator set K and consider the corresponding Cayley graph (Zm o

Z)K . Let Vn be a set of vertices which induces a tetrahedron with height n in the Cayley
graph (Zm o Z)K0 . The same set of vertices need not be connected in (Zm o Z)K and thus
the induced subgraph in (Zm o Z)K will not be a good candidate for G′n in Proposition 14.
For this reason we consider a thickening of this set defined by Vn,R := ∪x∈VnBK(x,R), where
BK(x,R) is the ball in (Zm o Z)K of radius R with center in x. Here R is a positive integer,
large enough so that the set Vn,R is connected in (Zm o Z)K . (We can take R equal to the
maximal distance in (Zm o Z)K between vertices which were neighbours in (Zm o Z)K0 .) The
set Vn,R induces a connected subgraph G(Vn,R,K) of (Zm o Z)K . The volume of G(Vn,R,K)
is bounded above by a constant times |Vn| = (n+ 1)mn, where for the constant we can take
the volume of BK(x,R).

Next we will prove that

(25) λD(G(Vn,R,K)) ≤ %λA(Sn),

for all n and some positive constant %. Having in mind that 2m(1− cos πn) is in the spectrum
of HA(Sn) the desired estimate will follow with the choice G′n = G(Vn,R,K) and cn = %mπ

2

n2 .
For each function ϕ ∈ `2(Vn) define the extension ϕ̃ to Vn,R by setting ϕ̃(x) = 0 for all

x ∈ Vn,R\Vn. Theorem 3.2 in [33] implies

(26) 〈HA(G(Vn,R,K))ϕ̃, ϕ̃〉 ≤ % 〈HA(G(Vn,R,K0))ϕ̃, ϕ̃〉 ,

for some positive constant %. (To see this consider the special case of Theorem 3.2 in [33]
where the supporting graph is (Zm o Z)K0 and the transition matrix P defines the nearest
neighbour simple random walk on (Zm o Z)K and use (15)).
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From (1) and the fact that Sn = G(Vn,K0) it follows that

(27) 〈HA(G(Vn,R,K0))ϕ̃, ϕ̃〉 = 〈HA(G(Vn,K0))ϕ,ϕ〉 = 〈HA(Sn)ϕ,ϕ〉 .
Now, having in mind ‖ϕ‖ = ‖ϕ̃‖ and HD(G(Vn,R,K)) ≤ HA(G(Vn,R,K)), (25) follows from
(26) and (27) and the proof is finished. �

Now we are left to consider the case of the full Laplacian on the Lamplighter group, i.e. to
prove Theorem 9. As we have said before we shall use the relation between the integrated
density of states and return probabilities of the simple random walk. To simplify expressions
we shall use the following notation. If f and g are two functions f, g : R+ → R, we shall write
f � g if there exist an ε > 0 and positive constants A and B such that f(x) ≤ Ag(Bx) for
every x ∈]0, ε[.

Theorem 19. Let G be a Cayley graph of a finitely generated amenable group and (Xn)n
simple random walk on G, started at o. Let Po(Xn = o) be the probability of the return of the
simple random walk after n steps.

(i) Assume that there is a constant 0 < b < 1 such that for every positive integer n we
have Po(X2n = o) � e−(2n)b. Then the integrated density of the full Laplace operator
Nper satisfies

Nper(E) � e−E
− b

1−b
.

(ii) Assume that there is a constant 0 < b < 1 such that e−(2n)b � Po(X2n = o). Then,
for every r > b

1−b we have

e−E
−r � Nper(E).

Proof. The proof of both parts is a minor modification of the proof of the Theorem 4.4 (parts
(ii) and (iii)) in [26]. Using the notation in [26] we shall explain the adjustments which
are needed to obtain Theorem 19 from the proof of [26, Thm. 4.4]. The results in [26] are
formulated in terms of a certain distribution function F . First note that the value F (λ),
for any given positive λ, is nothing but 1 − lim

s↗1−λ
N 1

k
A(s), where N 1

k
A is the IDS of the

rescaled adjacency operator 1
kA. Here k is the vertex degree in the graph. From the relation

Nper(λ) = 1− lim
s↗1− 1

k
λ
N 1

k
A(s) it is clear that Nper(λ) = F (λ/k). Thus it is sufficient to prove

the desired inequalities for the function F .
In the proof of the part (ii) we choose

nλ :=

[[( Cb

ln( 1
1−λ)

)1/(1−b)
]]

.

This replaces the choice of

nλ :=

[[(
1
λ

)1/(1−b+ε)
]]

of Oguni in [26]. This enables us to eliminate the variable ε from the calculations and to
prove the wanted upper bound for F (λ).

For the lower bounds notice that our assumptions are somewhat different than those in the
part (iii) of the Theorem 4.4 in [26]. Namely we assume uniform lower bounds for the return
probabilities. Following steps of the cited proof, one can prove the same inequalities for all
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positive λ small enough (i.e. we do not need to define the sets ΛC). This is exactly what we
wanted. �

Proof of Theorem 9. Since the return probabilities of the simple random on any Cayley graph
of the Lamplighter group ZmoZ satisfy the conditions from both parts of the preceding theorem
with b = 1/3 (see Theorem 15.15 in [33]), the proof is straightforward from Theorem 19. �

References

[1] M. Aizenman and D. J. Barsky. Sharpness of the phase transition in percolation models. Comm. Math.
Phys., 108(3):489–526, 1987.
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[3] T. Antunović and I. Veselić. Spectral asymptotics of percolation Hamiltoninas on amenable Cayley graphs.
Accepted for publication in the proceedings of OTAMP 2006 in the series Operator Theory: Advances and
Applications.

[4] L. Bartholdi and W. Woess. Spectral computations on lamplighter groups and Diestel-Leader graphs. J.
Fourier Anal. Appl., 11(2):175–202, 2005.

[5] H. Bass. The degree of polynomial growth of finitely generated nilpotent groups. Proc. London Math.
Soc., 25:603–614, 1972.

[6] J. T. Chayes, L. Chayes, J. R. Franz, J. P. Sethna, and S. A. Trugman. On the density of states for the
quantum percolation problem. J. Phys. A, 19(18):L1173–L1177, 1986.

[7] F. Chung, A. Grigor′yan, and S.-T. Yau. Higher eigenvalues and isoperimetric inequalities on Riemannian
manifolds and graphs. Comm. Anal. Geom., 8(5):969–1026, 2000.

[8] F. R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in Mathematics.
Conference Board of the Mathematical Sciences, Washington, DC, 1997.

[9] Y. Colin de Verdière. Spectres de graphes, volume 4 of Cours Spécialisés. Société Mathématique de France,
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