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Abstract

We introduce a new optimization strategy to compute numerical approximations of
minimizers for optimal control problems governed by scalar conservation laws in the pres-
ence of shocks. We focus on the 1 − d inviscid Burgers equation. We first prove the
existence of minimizers and, by a Γ-convergence argument, the convergence of discrete
minima obtained by means of numerical approximation schemes satisfying the so called
one-sided Lipschitz condition (OSLC). Then we address the problem of developing efficient
descent algorithms. We first consider and compare the existing two possible approaches.
The first one, the so-called discrete approach, based on a direct computation of gradients
in the discrete problem and the so-called continuous one, where the discrete descent di-
rection is obtained as a discrete copy of the continuous one. When optimal solutions have
shock discontinuities, both approaches produce highly oscillating minimizing sequences
and the effective descent rate is very weak. As a remedy we propose a new method that
uses the recent developments of generalized tangent vectors and the linearization around
discontinuous solutions. We develop a new descent stratagey, that we shall call alternat-
ing descent method, distinguishing descent directions that move the shock and those that
perturb the profile of the solution away of it. As we shall see, a suitable alternating com-
bination of these two classes of descent directions allows building very efficient and fast
descent algorithms.
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1 Introduction
Optimal control for hyperbolic conservation laws is a difficult topic which requires a considerable
computational effort. In the last years a number of methods have been proposed to reduce the
computational cost and to render this type of problems affordable.

The aim of this paper is to present and discuss the main existing approaches to these
problems in the context of 1 − d scalar conservation laws. We focus on the inviscid Burgers
equation although most of our results extend to more general equations with convex fluxes.
We show that the descent methods developed on the basis of the existing approaches produce
highly oscillating minimizing sequences whose convergence is very slow. We then introduce a
new optimization strategy that we shall refer to as alternating descent method, well adapted to
the presence of discontinuities in the solutions, and that, as we shall see, exhibits very good
descent properties. Indeed, as shown in a number of numerial experiments, the new method
we propose is much more robust and efficient in a significantly smaller number of iterations of
the descent method.

To be more precise, given a finite time horizon T > 0, we consider the following inviscid
Burgers equation: {

∂tu+ ∂x(
u2

2
) = 0, in R× (0, T ),

u(x, 0) = u0(x), x ∈ R (1.1)

Given a target ud ∈ L2(R)) we consider the cost functional to be minimized J : L1(R) → R,
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defined by

J(u0) =

∫
R
|u(x, T )− ud(x)|2 dx, (1.2)

where u(x, t) is the unique entropy solution of (1.1).
Although this paper is devoted to this particular choice of J , most of our analysis and

numerical algorithms can be adapted to many other functionals and control problems (we refer
for instance to [20] where the control variable is the nonlinearity of the scalar conservation law).

We also introduce the set of admissible initial data Uad ⊂ L1(R), that we define later in
order to guarantee the existence of the following optimization problem: Find u0,min ∈ Uad such
that

J(u0,min) = min
u0∈Uad

J(u0). (1.3)

This is one of the model optimization problems that is often addressed in the context of optimal
aerodynamic design, the so-called inverse design problem (see, for example, [12]).

As we will see, existence of minimizers is easily established under some natural assumptions
on the class of admissible data Uad using well known well-posedness and compactness properties
of the inviscid Burgers equation. However, uniqueness is false, in general, due, in particular, to
the possible presence of discontinuities in the solutions of (1.1).

In practical applications and in order to perform numerical computations and simulations
one has to replace the continuous optimization problem above by a discrete approximation.
It is then natural to consider a discretization of system (1.1) and the functional J . If this is
done in an appropriate way, the discrete optimization problem has minimizers that are often
taken, for small enough mesh-sizes, as approximations of the continuous minimizers. There
are however few results in the context of hyperbolic conservation laws proving rigorously the
convergence of the discrete optimal controls towards the continuous ones, as the mesh-size goes
to zero.

One of the first goals of this paper is to provide such a convergence result based on a fine
use of the known properties of monotone conservative schemes and more precisely of those
satisfying the so called one-sided Lipschitz condition (OSLC).

In the following we will denote by u∆ the approximation of u obtained by a suitable dis-
cretization of system (1.1) with mesh-sizes ∆x and ∆t for space-time discretizations. We also
denote by J∆ a discretization of J and by Uad,∆ a discrete version of the set of admissible
controls Uad, and consider the approximate discrete minimization problem

J∆(u0,min
∆ ) = min

u0
∆∈Uad,∆

J∆(u0
∆).

For fixed values of the mesh-size ∆, the existence of minimizers for this discrete problem
is often easy to prove. But, even in that case, their convergence as ∆ → 0 is harder to show.
This will be done, as mentioned above, in the class of OSLC schemes that guarantee the needed
compactness properties.

From a practical point of view it is however more important to be able to develop efficient
algorithms for computing accurate approximations of the discrete minimizers. This is often not
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an easy matter due to the high number of the parameters involved, the lack of convexity of the
functional under consideration, etc.

The most efficient methods to approximate minimizers are the gradient methods (steepest
descent, conjugate gradient, etc.) although they hardly distinguish local or global minimizers.
This is an added difficulty in problems with many local minima, a fact that cannot be excluded
in our optimization problem, due to the nonlinear dependence of the state on the initial datum.
However we will not address this problem here. We shall rather focus on building efficient
descent algorithms.

Descent algorithms are iterative processes. In each step of the iteration the descent direction
is built by means of the gradient of the functional with respect to the controls, in this case
the initial datum. Then the sensibility of the discrete cost functional J∆ with respect to u0

∆

depends on the sensitivity of the solution of the numerical scheme, used to discretize (1.1), with
respect to u0

∆, which in fact involves an infinite number of parameters, one for each mesh-point.
Thus, in practice, computing the sensibility of the cost functional requires to differentiate this
numerical scheme with respect to the initial datum.

When the numerical scheme under consideration is differentiable this is easy to do and the
classical adjoint state method provides a significant shortcut when computing the derivatives
with respect to all control parameteres (mesh-points in this case). We illustrate this in section
6.1 below.

But for large complex systems, as Euler equations in higher dimensions, the existing most
efficient numerical schemes (upwind, Godunov, Roe, etc.) are not differentiable (see for example
[17] or [19]). In this case, the gradient of the functional is not well defined and there is not a
natural and systematic way to compute its variations.

In face of this difficulty, it would be natural to explore the possible use of non-smooth
optimization techniques. But this does not seem to had been done and is out of the scope of
this paper. By the contrary, the following two other approaches have been developped: The first
one, is based on the use of automatic differentiation, which basically consists in differentiating
the numerical method (even if it is not differentiable!), differentiating each line in the code
(see for instance [24]). This approach often produces oscillations which are due precisely to
the lack of differentiability. The second one, the so-called continuous approach, consists in
proceeding in two steps as follows: One first linearizes the continuous system (1.1) to obtain
a descent direction of the continuous functional J and then takes a numerical approximation
of this descent direction with the discrete values provided by the numerical scheme. Of course
the validity of this approximation as a descent direction for the discrete problem is not at all
assured either.

But the continuous approach has to face another major drawback, when solutions develop
shock discontinuities, as it is the case in the context of the hyperbolic conservation laws we
are considering here. Indeed, the formal differentiation of the continuous state equation (1.1)
yields

∂tδu+ ∂x(uδu) = 0.

But this is only justified when the state u on which the variations are being computed, is
smooth enough. In particular, it is not justified when the solutions are discontinuous since
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singular terms may appear on the linearization over the shock location. Accordingly in optimal
control applications one also needs to take into account the sensitivity fo the shock location.
This has been studied by different authors with different approaches (see [27], [14] or [8]).
Roughly speaking, the main conclusion of that analysis is that the classical linearized system
for the variations of the solutions must be complemented with some new equations for the
sensitivity of the shock position.

These issues had been the object of intensive research, as indicated above, but there is
not a systematic receipt about how to use this new notions of lineariations to implement
efficient descent methods. This is due, to some extent, to the fact that two related but different
issues have been treated simultaneously without sufficiently distinguishing one from another:
a) The lack of regularity of the solutions of the continuous state equation that makes the
formal linearization above difficult to justify and that adds some unexpected terms to the
classical derivative of the functional, to take into account the possible contribution of jump
discontinuities, and b) the numerical schemes being non-differentiable.

Therefore, the second goal of this paper is to build efficient descent algorithms taking into
account (and advantage of) the possible presence of shock discontinuities on solutions. To be
more precise, this paper is aimed to clarify these different aspects of the problem, proposing
an overall new strategy to build descent algorithms. We thus use the existing results that
allow deriving the correct linearization of the system in the presence of shocks. We then derive
the adjoint system which contains an internal boundary condition along the shock which has
been referred in the literature as an internal boundary condition for the adjoint system (see
[12] where the quasi one dimensional stationary Euler equations are considered). From the
numerical point of view, the use of this adjoint system makes methods more efficient, since
it takes into account explicitly the sensibility of the solution with respect to shock variations.
But if applied directly with the aid of the notion of generalized tangent vectors ([7], [8]) the
descent method, in each step of the iteration, adds new discontinuities to the state, thus yielding
solutions with increasing complexity.

To overcome this difficulty, in the present article, we propose a new alternating descent
method that in the iterative process alternates descent directions altering the shock position
and those that do not move it and only affect the shape of solutions away form the shock, in
such a way that the number of shocks does not increase, thus keeping the overall complexity of
solutions limited.

The detailed analysis of the continuous linearized equations in the presence of shocks is
only well-understood in a certain number of situations: 1− d scalar conservation laws ([3], [4])
with the aid of notions of duality and reversible measure valued solutions, multi-dimensional
scalar conservation was subject to one-sided Lipschitz conditions ([5]), and also when the shock
is a priori known to be located on a single regular curve, or a regular manifold in higher
dimensions (see [7], [8] and [27] for 1− d problems, and in the multi-dimensional case [22] and
[23] where general systems of conservation laws in higher dimensions are considered). We also
refer to [14] for an analysis of the linearization for multi-dimensional perturbations of 1 − d
scalar conservation laws. But the general principles leading to the alternating descent method
we propose here are of much widder application, as we shall develop in forthcoming articles
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devoted to multi-dimensional scalar conservation laws and to the quasi1D-Euler equations.
The rest of this paper is divided as follows: in section 2 we study the existence of minimizers

for the continuous problem (1.3). In section 3 we analyze the convergence of discrete minimizers
obtained by discretizing the cost function and system (1.1) by mans of OSLC schemes. In section
4 we recall some known results on the sensitivity of the continuous functional by linearizing
system (1.1) in the presence of a shock. In section 5 we propose the new alternating descent
method based on the continuous approach. In section 6 we discuss more classical descent
strategies based on both the continuous and discrete approach. In section 7 we present some
numerical experiments which confirm the efficiency of the new strategy introduced in this paper.
In section 8 we sketch the algorithms.

2 Existence of minimizers
In this section we prove that, under certain conditions on the set of admissible initial data Uad,
there exists at least one minimizer of J given in (1.2).

To simplify the presentation we consider the class of admissible initial data Uad:

Uad = {f ∈ L∞(R), supp(f) ⊂ K, ||f ||∞ ≤ C},

where K ⊂ R be a bounded interval and C > 0 a constant. Note however that the same
theoretical results and descent strategies can be applied in a much widder class of admissible
sets.

Theorem 1. Assume that ud ∈ L2(R) and that Uad is as above. Then the minimization problem

min
u0∈Uad

J(u0), (2.1)

has at least one minimizer u0,min ∈ Uad.
Uniqueness is in general false for this optimization problem.

Proof. We first prove existence. Let u0
n ∈ Uad be a minimizing sequence of J . Then u0

n is
bounded in L∞ and there exists a subsequence, still denoted by u0

n, such that u0
n ⇀ u0

∗ weakly-*
in L∞. Moreover, u0

∗ ∈ Uad.
Let un(x, t) and u∗(x, t) be the entropy solutions of (1.1) with initial data u0

n and u0
∗ respec-

tively, and assume that
un(·, T ) → u∗(·, T ), in L2(R). (2.2)

Then, clearly
inf

u0∈Uad

J(u0) = lim
n→∞

J(u0
n) = J(u0

∗),

and we deduce that u0
∗ is a minimizer of J .

Thus, the key point is to prove the strong convergence result (2.2). Two main steps are
necessary to do it: a) The relative compactness of un(·, T ) in L2. Taking the structure of
Uad into account and using the maximum principle and the finite velocity of propagation that
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entropy solutions fulfill, it is easy to see that the support of all solutions at time t = T , is
uniformly included in the same compact set of R. Thus, it is sufficient to prove compactness
in L2

loc. This is obtained from Oleinik’s one-sided Lipschitz condition

u(x, t)− u(y, t)

x− y
≤ 1

t
, (2.3)

which guarantees in fact a uniform bound of the BV -norm of un(·, T ), locally in space (see
[6]). The needed compactness property is then a consequence of the compatcness of embedding
BV (I) ⊂ L2(I), for all bounded interval I. b) The identification of the limit as the solution of
(1.1) with initial datum u0

∗. This can be proved using similar compactness arguments passing
to the limit in the variational formulation of (1.1). We refer to [10] for a detailed description
of this imit process in the more delicate case where the initial data converge to a Dirac delta.

This completes the prove of the existence of minimizers.
We now prove that the uniqueness of the minimizer is in general false for this type of

optimization problems. In fact, we prove that there are target functions ud for which there
exist two different minimizers u0

1 and u0
2 such that the corresponding solutions uj, j = 1, 2

satisfy uj(T ) = ud, j = 1, 2 in such a way that the minimal value of J vanishes. This is always
possible as soon as we deal with solutions having shocks. For example,

u1(x, t) =

{
1 if x ≤ t/2,
0 if x > t/2,

u2(x, t) =


1 if x ≤ t− 1/2,
x+ (1/2− x)t if t− 1/2 ≤ x ≤ 1/2,
0 if x > 1/2,

are two different entropy solutions for which u1(x, T ) = u2(x, T ) at T = 1. Thus if we take
T = 1 and ud(x) = u1(x, 1) then there exist two different initial data u0

1(x, 0) and u0
2(x, 0) for

which J attains its minimum. Note that this is impossible within the class of smooth solutions
by backwards uniqueness.

Note that ud as above does not belong to L2(R) but, the same argument is valid is ud is
truncated to take zero values at infinity.

Remark 1. The above proof is in fact quite general and it can be adapted to other optimization
problems with different functionals and admissible sets. In particular, using Oleinik’s one-
sided Lipschitz condition (2.3), one can also consider admissible sets of the form Uad = {f ∈
L1(R), supp(f) ⊂ K, ||f ||1 ≤ C}.

3 The discrete minimization problem
The purpose of this section is to show that discrete minimizers obtained through a numerical
scheme to approximate (1.1) satisfying the so-called OSLC property, p converge to a minimizer
of the continuous problem as the mesh-size tends to zero. This justifies the usual engineering
practice of replacing the continuous functional and model by discrete ones to compute an
approximation of the continuous minimizer.
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Let us introduce a mesh in R × [0, T ] given by (xj, t
n) = (j∆x, n∆t) (j = −∞, ...,∞;

n = 0, ..., N + 1 so that (N + 1)∆t = T ), and let un
j be a numerical approximation of u(xj, t

n)
obtained as solution of a suitable discretization of the equation (1.1).

Let us consider the following aproximation of the functional J in (1.2):

J∆(u0
∆) =

∆x

2

∞∑
j=−∞

(uN+1
j − ud

j )
2, (3.1)

where u0
∆ = {u0

j} is the discrete initial datum and ud
∆ = {ud

j} is the discretization of the target
ud at xj, respectively. A common choice is to take,

ud
j =

1

∆x

∫ xj+1/2

xj−1/2

ud(x)dx, (3.2)

where xj±1/2 = xj ±∆x/2.
We also introduce an approximation of the class of admissible initial data Uad denoted by

U∆
ad and constituted by sequences ϕ∆ = {ϕj}j∈Z for which the associated piecewise constant

interpolation function, that we still denote by ϕ∆, defined by

ϕ∆(x) = ϕj, xj−1/2 < x < xj+1/2,

satisfies ϕ∆ ∈ Uad. Obviously, U∆
ad coincides with the class of discrete vectors with support on

those indices j such that xj ∈ K and for which the discrete L∞-norm is bounded above by the
same constant C.

Finally we introduce a 3-point conservative numerical approximation scheme for (1.1):

un+1
j = un

j − λ
(
gn

j+1/2 − gn
j−1/2

)
= 0, λ =

∆t

∆x
, j ∈ Z, n = 0, ..., N, (3.3)

where,
gn

j+1/2 = g(un
j , u

n
j+1),

and g is the numerical flux. These schemes are consistent with (1.1) when g(u, u) = u2/2.
When the function H(u, v, w) = v−λ(g(u, v)−g(v, w)) is a monotone increasing function in

each argument the scheme is said to be monotone. These are particularly interesting schemes
since the discrete solutions obtained with them converge to weak entropy solutions of the
continuous conservation law, as the discretization parameters tend to zero, under a suitable
CFL condition (see [15], Chp.3, Th. 4.2).

For each h > 0 it is easy to see that the discrete analogue of Theorem 1 holds. In fact
this is automatic in the present setting since U∆

ad only involves a finite number of mesh-points.
But passing to the limit as h → 0 requires a more careful treatment. In fact, for that to be
done, one needs to assume that the scheme under consideration satisfies the so-called one-sided
Lipszhitz condition (OSLC), which is a discrete version of Oleinik’s condition above:

un
j+1 − un

j

∆x
≤ 1

n∆t
. (3.4)
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We then consider the following discrete minimization problem: Find u0,min
∆ such that

J∆(u0,min
∆ ) = min

u0
∆∈U

∆
ad

J∆(u0
∆). (3.5)

It is by now well known that Godunov’s, Lax-Friedfrichs and Engquits-Osher schemes satisfy
this OSLC condition. We refer to [6] for a discussion of this issue and also for the construction
of a second order MUSCL method satisfying OSLC.

Theorem 2. Assume that un
∆ is obtained by a conservative monotone numerical scheme con-

sistent with (1.1) and satisfying the OSLC condition.
Then:

• For all ∆x,∆t > 0, the discrete minimization problem (3.5) has at least one solution
u0,min

∆ ∈ U∆
ad.

• Any accumulation point of u0,min
∆ with respect to the weak−∗ topology in L∞, as ∆x,∆t→

0 (with ∆t/∆x = λ fixed and under a suitable CFL condition), is a minimizer of the
continuous problem (2.1).

The existence of discrete minimizers in the first statement of the Theorem is obvious in this
case since we are dealing with a finite dimensional problem. Actually, at this point the OSLC
property is not necessary. However, in more general situations (for other classes of discrete
admissible controls) we could apply the same argument as in the proof of Theorem 1 based on
the OSLC property and the BV estimates this yields (see [6]).

The second statement is less trivial. It requires, definitely, of the OSLC property to guar-
antee the compactness of numerical solutions as ∆x,∆t→ 0.

Remark 2. The most frequently used conservative 3-point numerical schemes derived to ap-
proximate (1.1) satisfy the hypotheses of Theorem 2. This is in particular the case of the Lax-
Friedrichs, Engquist-Osher or Godunov schemes whose numerical fluxes for Burgers equation
are given, respectively, by

gLF (u, v) =
u2 + v2

4
− v − u

2λ
, (3.6)

gEO(u, v) =
u(u+ |u|)

4
+
v(v − |v|)

4
, (3.7)

gG(u, v) =

{
minw∈[u,v]w

2/2, if u ≤ v,
maxw∈[u,v]w

2/2, if u ≥ v,
(3.8)

Proof of Theorem 2. The case where ∆x and ∆t are fixed being trivial, we address the limit
problem ∆ → 0.

We follow an standard Γ-convergence argument. The key ingredient is the following conti-
nuity property: Assume that u0

∆ ∈ U∆x
ad satisfies u0

∆ ⇀ u0 in L∞(R) with respect to the weak−∗
topology, then

J∆(u0
∆) → J(u0). (3.9)
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This is due to the fact that the OSLC condition guarantees uniform local BV bounds on the
discrete solutions and the compactness of the embedding and the finite velocity of propagation
of solutions in view of the class of initial data U∆

ad we are considering (see [6]) which guarantees
that uN+1

∆ → u(·, T ) in L2(R), under the CFL condition that guarantees the convergence of the
numerical schemes, and its monotonicity.

Now, let û0 ∈ Uad be an accumulation point of u0,min
∆ with respect to the weak−∗ topology

of L∞. To simplify the notation we still denote by u0,min
∆ the subsequence for which u0,min

∆ ⇀ û0,
weakly−∗ in L∞(R), as ∆x → 0. Let v0 ∈ Uad be any other function. We are going to prove
that

J(û0) ≤ J(v0). (3.10)

To do this we construct a sequence v0
∆ ∈ U∆

ad such that v0
∆ → v0, in L1(R), as ∆x,∆t→ 0 (we

can consider in particular the approximation in (3.2)).
Taking into account the continuity property (3.9), we have

J(v0) = lim
∆→0

J∆(v0
∆) ≥ lim

∆→0
J∆(u0,min

∆ ) = J(û0),

which proves (3.10).

Remark 3. Theorem 2 concerns global minima. However, both the continuous and discrete
functionals may possibly have local minima as well. Extending this kind of Γ-convergence result
for local minima requires important further developments.

4 Sensitivity analysis: the continuous approach
In this section we analyze the continuous approach to obtain descent directions for the discrete
functional J∆.

We divide this section in four more subsections: More precisely, in the first one we consider
the case where the solution u of (1.1) has no shocks, in the second and third subsections we
analyze the sensitivity of the solution and the functional in the presence of a single shock located
on a regular curve, and finally, in the last subsection we discuss various possibilities to obtain
discrete descent directions.

4.1 Sensitivity without shocks

In this subsection we give an expression for the sensitivity of the functional J with respect to
the initial datum based on a classical adjoint calculus for smooth solutions. First we present a
formal calculus and then we show how to justify it when dealing with a classical solution for
(1.1), i.e. when there are no discontinuities.

Let C1
0(R) be the set of C1 functions with compact support and let u0 ∈ C1

0(R) be a
given datum for which there exists a classical solution u(x, t) of (1.1) in (x, t) ∈ R × [0, T ],
which can be extended to a classical solution in t ∈ [0, T + τ ] for some τ > 0. Note that
this imposes some restrictions on u0 other than being smooth. More precisely, we must have
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T + τ > maxx[1/u
′
0(x)] to guarantee that two different characteristics do not meet in the time

interval [0, T + τ ]. Let δu0 ∈ C1
0(R) be any possible variation of the initial datum u0. Due to

the finite speed of propagation, this perturbation will only affect the solution in a bounded set
of (x, t) ∈ R× [0, T ]. This simplifies the argument below that applies in a much more general
setting provided solutions are smooth enough.

Then for ε > 0 sufficiently small, the solution uε(x, t) corresponding to the initial datum

uε,0(x) = u0(x) + εδu0(x), (4.1)

is also a classical solution in (x, t) ∈ R× (0, T ) and uε ∈ C1(R× [0, T ]) can be written as

uε = u+ εδu+ o(ε), with respect to the C1 topology, (4.2)

where δu is the solution of the linearized equation,{
∂tδu+ ∂x (uδu) = 0,
δu(x, 0) = δu0(x).

(4.3)

Let δJ be the Gateaux derivative of J at u0 in the direction δu0. We have

δJ =

∫
R
(u(x, T )− ud(x))δu(x, T ) dx, (4.4)

where δu solves the linearized system above (4.3). Now, we introduce the adjoint system{
−∂tp− u∂xp = 0,
p(x, T ) = pT (x),

(4.5)

where pT = u(x, T ) − ud(x). Multiplying the equations satisfied by δu by p, integrating by
parts, and taking into account that p satisfies (4.5), we easily obtain∫

R
(u(x, T )− ud(x))δu(x, T ) dx =

∫
R
p(x, 0)δu0 dx. (4.6)

Thus, δJ in (4.4) can be written as,

δJ =

∫
R
p(x, 0)δu0(x) dx. (4.7)

This expression provides an easy way to compute a descent direction for the continuous func-
tional J , once we have computed the adjoint state. We just take

δu0 = −p(x, 0). (4.8)

Under the assumptions above on u0, u, δu, and p can be obtained from their data u0(x), δu0(x)
and pT (x) by using the characteristic curves associated to (1.1). For the sake of completeness
we briefly explain this below.
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The characteristic curves associated to (1.1) are defined by

x′(t) = u(t, x(t)), t ∈ (0, T ); x(0) = x0. (4.9)

They are straight lines whose slopes depend on the initial data:

x(t) = x0 + tu0(x0), t ∈ (0, T ).

As we are dealing with classical solutions, u is constant along such curves and, by assumption,
two different characteristic curves do not meet each other in R× [0, T +τ ]. This allows to define
u in R× [0, T + τ ] in a unique way from the initial data.

For ε > 0 sufficiently small, the solution uε(x, t) corresponding to the initial datum (4.1) has
similar characteristics to those of u. This allows guaranteeing that two different characteristic
lines do not intersect for 0 ≤ t ≤ T if ε > 0 is small enough. Note that uε may possibly be
discontinuous for t ∈ (T, T + τ ] if u0 generates a discontinuity at t = T + τ but this is irrelevant
for the analysis in [0, T ] we are carrying out. Therefore uε(x, t) is also a classical solution in
(x, t) ∈ R × [0, T ] and it is easy to see that the solution uε can be written as (4.2) where δu
satisfies (4.3).

System (4.3) can be solved again by the method of characteristics. In fact, as u is a regular
function, the first equation in (4.3) can be written as

∂tδu+ u∂xδu = −∂x (u) δu, (4.10)

i.e.
d

dt
δu(x(t), t) = −∂x(u)δu, (4.11)

where x(t) are the characteristics curves defined by (4.9). Thus, the solution δu along a char-
acteristic line can be obtained from δu0 by solving this differential equation, i.e.

δu(x(t), t) = δu0(x0)exp

(
−

∫ t

0

∂xu(x(s), s)ds

)
.

Finally, the adjoint system (4.5) is also solved by characteristics, i.e.

p(x(t), t) = pT (x(T )).

This yields the steepest descent direction in (4.8) for the continuous functional.

Remark 4. Note that for classical solutions the Gateaux derivative of J at u0 is given by (4.7)
and this provides an obvious descent direction for J at u0, given by δu0 = −p(x, 0) ∈ C1

0(R).
However this is not very useful in practice since, even when we initialize the iterative descent
algorithm with a smoth u0 we cannot guarantee that the solution will remain classical along the
iteration.
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4.2 Sensitivity of the state in the presence of shocks

In this section we collect some existing results on the sensitivity of the solution of conservation
laws in the presence of shocks. We follow the analysis in [7] but similar results in different
forms and degrees of generality can be found in [1], [3], [4], [27] or [14], for example.

We focus on the particular case of solutions having a single shock, but the analysis can
be extended to consider more general one-dimensional systems of conservation laws with a
finite number of noninteracting shocks (see [7]). The theory of duality and reversible solutions
developed in [3], [4] is the one leading to more general results.

We introduce the following hypothesis:
(H) Assume that u(x, t) is a weak entropy solution of (1.1) with a discontinuity along a regular
curve Σ = {(t, ϕ(t)), t ∈ [0, T ]}, which is Lipschitz continuous outside Σ. In particular, it
satisfies the Rankine-Hugoniot condition on Σ

ϕ′(t)[u]ϕ(t) =
[
u2/2

]
ϕ(t)

. (4.12)

Here we have used the notation: [v]x0 = v(x+
0 )− v(x−0 ) for the jump at x0 of any piecewise

continuous function v with a discontinuity at x = x0.
Note that Σ divides R× (0, T ) in two parts: Q− and Q+, the subdomains of R× (0, T ) to

the left and to the right of Σ respectively.

Figure 1: Subdomains Q− and Q+.

As we will see, in the presence of shocks, for correctly dealing with optimal control and
design problems, the state of the system has to be viewed as being a pair (u, ϕ) combining
the solution of (1.1) and the shock location ϕ. This is relevant in the analysis of sensitivity of
functions below and when applying descent algorithms.

Then the pair (u, ϕ) satisfies the system
∂tu+ ∂x(

u2

2
) = 0, in Q− ∪Q+,

ϕ′(t)[u]ϕ(t) = [u2/2]ϕ(t) , t ∈ (0, T ),

ϕ(0) = ϕ0,
u(x, 0) = u0(x), in {x < ϕ0} ∪ {x > ϕ0}.

(4.13)
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We now analyze the sensitivity of (u, ϕ) with respect to perturbations of the initial datum,
in particular, with respect to variations δu0 of the initial profile u0 and δϕ0 of the shock location
ϕ0. To be precise, we adopt the functional framework based on the generalized tangent vectors
introduced in [7].

Definition 1. ([7]) Let v : R → R be a piecewise Lipschitz continuous function with a single
discontinuity at y ∈ R. We define Σv as the family of all continuous paths γ : [0, ε0] → L1(R)
with

1. γ(0) = v and ε0 > 0 possibly depending on γ.
2. For any ε ∈ [0, ε0] the functions uε = γ(ε) are piecewise Lipschitz with a single discon-

tinuity at x = yε depending continuously on ε and there exists a constant L independent of
ε ∈ [0, ε0] such that

|vε(x)− vε(x′)| ≤ L|x− x′|,
whenever yε /∈ [x, x′].

Furthermore, we define the set Tv of generalized tangent vectors of v as the the space of
(δv, δy) ∈ L1 × R for which the path γ(δv,δy) given by

γ(δv,δy)(ε) =

{
v + εδv + [v]y χ[y+εδy,y] if δy < 0,
v + εδv − [v]y χ[y,y+εδy] if δy > 0,

(4.14)

satisfies γ(δv,δy) ∈ Σv.
Finally, we define the equivalence relation ∼ defined on Σv by

γ ∼ γ′ if and only if lim
ε→0

‖γ(ε)− γ′(ε)‖L1

ε
= 0,

and we say that a path γ ∈ Σv generates the generalized tangent vector (δv, δy) ∈ Tv if γ is
equivalent to γ(δv,δy) as in (4.14).

Remark 5. The path γ(δv,δy) ∈ Σv in (4.14) represents, at first order, the variation of a function
v by adding a perturbation function εδv and by shifting the discontinuity by εδy.

Note that, for a given v (piecewise Lipschitz continuous function with a single discontinuity
at y ∈ R) the associated generalized tangent vectors (δv, δy) ∈ Tv are those pairs for which δv
is Lipschitz continuous with a single discontinuity at x = y.

Let u0 be the initial datum in (4.13) that we assume to be Lipschitz continuous to both
sides of a single discontinuity located at x = ϕ0, and consider a generalized tangent vector
(δu0, δϕ0) ∈ L1(R) × R for all 0 ≤≤ T . Let u0,ε ∈ Σu0 be a path which generates (δu0, δϕ0).
For ε sufficiently small the solution uε(·, t) of (4.13) is Lipschitz continuous with a single dis-
continuity at x = ϕε(t), for all t ∈ [0, T ]. Thus uε(·, t) generates a generalized tangent vector
(δu(·, t), δϕ(t)) ∈ L1 × R. Moreover, in [8] it is proved that it satisfies the following linearized
system: 

∂tδu+ ∂x(uδu) = 0, in Q− ∪Q+,
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (0, T ),

δu(x, 0) = δu0, in {x < ϕ0} ∪ {x > ϕ0},
δϕ(0) = δϕ0,

(4.15)
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with the initial data (δu0, δϕ0).

Remark 6. The linearized system (4.15) can be obtained, at least formally, by a perturbation
argument in two steps: first we make the change of variables x̂ = x − ϕ(t) which transforms
system (4.15) in a new coupled system but in a fixed domain {x̂ < 0} ∪ {x̂ > 0}, and where
the variable ϕ enters in the equations satisfied by u to both sides of x̂ = 0. Then, we introduce
a perturbation of the data (u0

ε, ϕ
0
ε) = (u0, ϕ0) + ε(δu0, δϕ0) and compute the equations of the

first order perturbation of the solution. This is in fact the usual approach in the study of the
linearized stability of shocks. We refer to [14] for a detailed description of this method in the
scalar case and [22], [23] for more general systems of conservation laws in higher dimensions.

In this way, we can obtain formally the expansion

(uε, ϕε) = (u, ϕ) + ε(δu, δϕ) +O(ε2).

However, this expansion is only justified for general scalar one-dimensional conservation laws
of the form

∂tu+ ∂x(f(u)) = 0,

when the function f ∈ C1 is convex. In this case, it is possible to establish a differentiability
result of the solution u with respect to small perturbations of the initial data u0 and the discon-
tinuity position ϕ0 (see [4]). For more general situations this differentiability has been proved
only in a weak sense, as in [7] for systems of conservation laws, or [27], for scalar equations in
several space dimensions.

Remark 7. The linearized system (4.15) has a unique solution which can be computed in two
steps. The method of characteristics determines δu in Q−∪Q+, i.e. outside Σ, from the initial
data δu0, by the method of characteristics (note that system (4.15) has the same characteristics
as (4.13)). This yields the value of u and ux to both sides of the shock Σ and allows determining
the coefficients of the ODE that δϕ satisfies. Then, we solve the ordinary differential equation
to obtain δϕ.

In this section we have assumed that the discontinuity of the solution of the Burgers equation
u is present in the whole time interval t ∈ [0, T ]. It is interesting to note that discontinuities
may appear at time τ ∈ (0, T ) for some regular initial data. In this case we can, at least
formally, obtain a generalization of (4.15). Let us show this in a particular situation. Assume
that u0 is a regular initial datum for which the weak entropy solution u of the Burgers equation
has a discontinuity at x = ϕ(t) with t ∈ [τ, T ]. Assume that we consider variations δu0 for
which the corresponding solution of (1.1) has also a discontinuity in the same time interval
t ∈ [τ, T ]. Then, the linearization can be done separately in t ∈ [0, τ) and in t ∈ [τ, T ]. The
linearized equations in the last interval are similar to the ones obtained in (4.15). Concerning
the interval [0, τ) the solution is regular and the linearization is obviously given by (4.3). The
only question is then how to compute the value of δϕ(τ) from the initial datum δu0. This can
be obtained by linearizing the weak formulation of the Burgers equation in t ∈ (0, τ).
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The weak solutions of the Burgers equation satisfy

−
∫ τ

0

∫
R
uψt dx dt−

∫ τ

0

∫
R

u2

2
ψx dx dt+

∫
R
u(x, τ)ψ(x, τ) dx

−
∫

R
u0(x)ψ(x, 0) dx = 0, ∀ψ ∈ C1

0(R× [0, τ ]).

The linearized weak formulation is given by

−
∫ τ

0

∫
R
δuψt dx dt−

∫ τ

0

∫
R
uδuψx dx dt+

∫
R
δu(x, τ)ψ(x, τ) dx− [u0]ϕ(τ)δϕ(τ)ψ(ϕ(τ), τ)

−
∫

R
δu0(x)ψ(x, 0) dx = 0, ∀ψ ∈ C1

0(R× [0, τ ]).

Taking into account that δu is constant along the characteristic lines of the Burgers equation
we easily obtain

−
∫

D

δuψt dx dt−
∫

D

uδuψx dx dt− [u0]ϕ(τ)δϕ(τ)ψ(ϕ(τ), τ)−
∫

D0

δu0(x)ψ(x, 0) dx = 0,

∀ψ ∈ C1
0(R× [0, τ ]).

where D is the triangular region D ∈ R × [0, τ ] occupied by the characteristics that meet at
(x, t) = (ϕ(τ), τ) and D0 is D ∩ {t = 0}. Taking, in particular, ψ(x, t) = 1 in (x, t) ∈ D we
obtain ∫

D0

δu0(x) dx = −[u0]ϕ(τ)δϕ(τ).

Thus, the linearized system in this case reads,
∂tδu+ ∂x(uδu) = 0, in Q− ∪Q+,
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [uxu]ϕ(t)

)
+ϕ′(t)[δu]ϕ(t) − [uδu]ϕ(t) = 0, in (τ, T ),

δϕ(τ) = − 1
[u0]ϕ(τ)

∫
D0
δu0,

δu(x, 0) = δu0, in x ∈ R.

(4.16)

4.3 Sensitivity of J in the presence of shocks

In this section we study the sensitivity of the functional J with respect to variations associ-
ated with the generalized tangent vectors defined in the previous section. We first define an
appropriate generalization of the Gateaux derivative.

Definition 2. ([7]) Let J : L1(R) → R be a functional and u0 ∈ L1(R) be Lipschitz contin-
uous with a discontinuity at x = ϕ0, an initial datum for which the solution of (1.1) satisfies
hypothesis (H). We say that J is Gateaux differentiable at u0 in a generalized sense if for any
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generalized tangent vector (δu0, δϕ0) and any family u0,ε ∈ Σu0 associated to (δu0, δϕ0) the
following limit exists

δJ = lim
ε→0

J(u0,ε)− J(u0)

ε
,

and it depends only on (u0, ϕ0) and (δu0, δϕ0), i.e. it does not depend on the particular family
u0,ε which generates (δu0, δϕ0).

The limit δJ is the generalized Gateux derivative of J in the direction (δu0, δϕ0).

The following result provides an easy characterization of the generalized Gateaux derivative
of J in terms of the solution of the associated adjoint system. A similar result is formally
obtained in [12] in the context of the one-dimensional Euler system. In [8] it is shown how
this generalization of the Gateaux derivative can be used to obtain some optimality conditions
in a similar optimization problem but, as far as we know, it has not been used to develop a
complete descent algorithm as we do here.

Proposition 1. The Gateaux derivative of J can be written as

δJ =

∫
{x<ϕ0}∪{x>ϕ0}

p(x, 0)δu0(x) dx+ q(0)[u0]ϕ0δϕ0, (4.17)

where the adjoint state pair (p, q) satisfies the system

−∂tp− u∂xp = 0, in Q− ∪Q+,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (0, T )
q′(t) = 0, in t ∈ (0, T )
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x,T )−ud)2]

ϕ(T )

[u]ϕ(T )
.

(4.18)

Remark 8. System (4.20) has a unique solution. In fact, to solve the backwards system (4.20)
we first define the solution q on the shock Σ from the condition q′ = 0, with the final value
q(T ) given in (4.20). This determines the value of p along the shock. We then propagate this
information, together with the datum of p at time t = T to both sides of ϕ(T ), by characteristics.
As both systems (1.1) and (4.20) have the same characteristics, any point (x, t) ∈ R × (0, T )
is reached backwards in time by an unique characteristic coming either from the shock Σ or the
final data at (x, T ) (see Figure 2 where we illustrate this construction in the case of a shock
located along a stright line, as it happens to the Riemann problem). The solution obtained this
way coincies with the reversible solutios introduced in [3] and [4].

Remark 9. Note that the second third and fourth equations in (4.20) come, by duality, from the
linearization of the Rankine-Hugoniot condition (4.12). Besides, they are in fact the conditions
that allow us to obtain a unique solution in (4.20). They are needed to determine the value of
p on Σ.
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Figure 2: Characteristic lines entering on a shock and how they may be used to build the
solution of the adjoint system both away form the shock and on its region of influence.

Solutions of (4.20) can be also obtained as limit of solutions of the transport equation with
artificial viscosity depending of a small parameter ε→ 0,{

−∂tp− u∂xp = ε∂xxp, in x ∈ R, t ∈ (0, T ),
p(x, T ) = pT

n (x), in x ∈ R, (4.19)

and a suitable choice of the initial data pT
n (x), depending on n → ∞. To be more precise, let

pT
n (x) be any sequence of Lipschitz continuous functions, uniformly bounded in BVloc(R), such

that
pT

n (x, T ) → pT (x) = u(x, T )− ud(x), in L1
loc(R),

and

pT
n (ϕ(T ), T ) =

1
2

[
(u(x, T )− ud)2

]
ϕ(T )

[u]ϕ(T )

.

We first take the limit of the solutions pε,n of (4.19) as ε→ 0, to obtain the solution pn of{
−∂tp− u∂xp = 0, in x ∈ R, t ∈ (0, T ),
p(x, T ) = pT

n (x), in x ∈ R,

the so called reversible solution (see [3]). These solutions can be characterized by the fact that
they take the value pn(ϕ(T ), T ) in the whole region occupied by the characteristics that meet the
shock (see [3], Th. 4.1.12). Thus, in particular they satisfy the 2nd, 3rd, 4th and 6th equations
in (4.20). Moreover, pn → p as n → ∞, and p takes a constant value in the region occupied
by the characteristics that meet the shock. Note that, by construction, this constant is the same
value for all pn in this region. Thus, this limit solution p coincides with the solution of (4.20)
constructed above. This allows in fact extending the notion of reversible solutions in [3] to
data that, on the point x(T ) are completely disconnected with the values of p to both sides of
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it. This is precisely due to the point of view we have adopted in which the linearized state has
two different components (δu, δϕ) so that the adjoint state has also two components (p, q) with
different initial data at time t = T .

Remark 10. In the expression (4.17) for the derivative of J the shock of the initial datum u0

appears. When u0 does not present a shock, obviously, this term cancels in δJ . It is however
important to note that, this is compatible with the possible appearence of shocks for times τ ∈
(0, T ). In that case this singular term does not affect the value of δJ apparently but in practice it
does. Indeed, in this case the adjoint system has to be written in the form (4.20) for τ < t < T
and later extended to the time interval (0, τ) as the classical adjoint system (4.5). Thus, the
presence of the shock does affect the value of the adjoint state p at the initial time t = 0 and
consequently, also, the value of δJ .

The adjoint system in this case is obtained from (4.16), as in the proof of Proposition 1
below, and it is given by

−∂tp− u∂xp = 0, in (x, t) ∈ R× (0, T )\Σ,
[p]Σ = 0,
q(t) = p(ϕ(t), t), in t ∈ (τ, T )
q′(t) = 0, in t ∈ (τ, T )
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}

q(T ) =
1
2 [(u(x,T )−ud)2]

ϕ(T )

[u]ϕ(T )
.

(4.20)

Let us briefly comment the result of Proposition 1 before giving its proof.
Formula (4.17) provides an obvious way to compute a first descent direction of J at u0. We

just take
(δu0, δϕ0) = (−p(x, 0),−q(0)[u]ϕ0). (4.21)

Here, the value of δϕ0 must be interpreted as the optimal infinitesimal displacement of the
discontinuity of u0.

However, it is important to underline that this (δu0, δϕ0) is not a generalized tangent vector
in Tu0 since p(x, 0) is not continuous away from x 6= ϕ0. In fact, p(x, t) takes the constant
value q(T ) in the whole triangular region occupied by the characteristics of (1.1) which meet
the shock Σ. Thus, p has, in general, two discontinuities at the boundary of this region and so
will have p(x, 0) (see Figure 3).

This is an important drawback in developing a descent algorithm for J . Indeed, according
to the Definition 1, if (δu0, δϕ0) is a descent direction belonging to Tu0 , the new datum u0,new

should be obtained from u0 following a path associated to this descent direction

u0,new =

{
u0 + εδu0 + [u0]ϕ0 χ[ϕ0+εδϕ0,ϕ0] if δϕ0 < 0,
u0 + εδu0 − [u0]ϕ0 χ[ϕ0,ϕ0+εδϕ0] if δϕ0 > 0,

(4.22)

for some ε > 0 small enough, correctly chosen. Note that, if we take (4.21) as descent direction
(δu0, δϕ0), which is not a generalized tangent vector as explained above, the new datum u0,new

will have three discontinuities; the one coming from the displacement of the discontinuity of u0
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Figure 3: Solution u(x, t) of the Burgers equation with an initial datum having a disconti-
nuity (left) and adjoint solution which takes a constant value in the region occupied by the
characteristics that meet the shock (right).

at ϕ0 and two more produced by the discontinuities of p(x, 0). Thus, in an iterative process, the
descent algorithm will create more and more discontinuities increasing artificially the complexity
of solutions. This motivates the alternating descent method we propose that, based on this
notion of generalized gradients, develops a descent algorithm that keeps the complexity of
solutions bounded. This will be done in the following Section.

We finish this section with the proof of the Proposition 1.

Proof. (Proposition 1) A straightforward computation shows that J is Gateaux differentiable
in the sense of Definition 2 and that, the generalized Gateaux derivative of J in the direction
of the generalized tangent vector (δu0, δϕ0) is given by

δJ =

∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )− ud(x))δu(x, T )−
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T ), (4.23)

where the pair (δu, δϕ) solves the linearized problem (4.15) with initial data (δu0, δϕ0).
We now introduce the adjoint system (4.20). Multiplying the equations of δu by p and

integrating we obtain

0 =

∫
Q−∪Q+

(∂tδu+ ∂x(uδu))p dxdt = −
∫

Q−∪Q+

(∂tp+ u∂xp)δu dxdt

+

∫
{x<ϕ(T )}∪{x>ϕ(T )}

δu(x, T )p(x, T ) dx−
∫
{x<ϕ0}∪{x>ϕ0}

δu0(x)p(x, 0) dx

−
∫

Σ

([δup]Σnt + [uδup]Σnx) dΣ, (4.24)

where (nx, nt) are the cartesian components of the normal vector to the curve Σ.
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Therefore,

δJ =

∫
{x<ϕ(T )}∪{x>ϕ(T )}

δu(x, T )(u(x, T )− ud(x)) dx−
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T )

=

∫
{x<ϕ0}∪{x>ϕ0}

δu0(x)p(x, 0) dx+

∫
Σ

([δup]Σnt + [uδup]Σnx) dΣ

−
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

δϕ(T ), (4.25)

Assume, for the moment, that the following identity holds:∫
Σ

([δup]Σnt + [uδup]Σnx) dΣ =

∫
Σ

[p]Σ
(
δunt + uδunx

)
dΣ

−
∫

Σ

∂tgp
(
δϕ(t)[u]ϕ(t)

)
dΣ + pT (ϕ(T ))δϕ(T )[u]ϕ(T ) − p(ϕ(0), 0)δϕ0[u]ϕ(0). (4.26)

Here g represents the average of g to both sides of the shock Σ, i.e.

g(x) =
1

2

(
lim
ε→0

g(x+ εnΣ) + lim
ε→0

g(x− εnΣ)
)
, x ∈ Σ.

Then, substituting (4.26) in (4.25) and taken into account the final condition on (p, q) at
t = T in (4.20), we obtain

δJ =

∫
R
δu0(x)p(x, 0) dx+

∫
Σ

[p]Σ
(
δunt + uδunx

)
dΣ

−
∫

Σ

∂tgp
(
δϕ(t)[u]ϕ(t)

)
dΣ− p(ϕ(0), 0)δϕ0[u]ϕ(0).

To obtain formula (4.17), the second and third terms in this expression must vanish. This
is the case if (p, q) satisfies (4.20). This concludes the proof of Proposition 1.

Let us now prove formula (4.26). Using the elementary identity

[fg]Σ = [f ]Σg + [g]Σf, (4.27)

we get∫
Σ

([δup]Σnt + [uδup]Σnx) dΣ =

∫
Σ

[p]Σ
(
δunt + uδunx

)
dΣ +

∫
Σ

p ([δu]Σnt + [uδu]Σnx) dΣ,

and we obtain the first term in the identity (4.26). We now simplify the second term:∫
Σ

p̄ ([δu]Σnt + [uδu]Σnx) . (4.28)
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The cartesian components of the normal vector to Σ are given by

nt =
−ϕ′(t)√

1 + (ϕ′(t))2
, nx =

1√
1 + (ϕ′(t))2

.

Therefore, taking into account the second equation in system (4.15),

[δu]Σnt + [uδu]Σnx =
−ϕ′(t)[δu]Σ + [uδu]Σ√

1 + (ϕ′(t))2

=
δϕ′(t)[u]ϕ(t) + δϕ(t)

(
ϕ′(t)[ux]ϕ(t) − [∂x(u

2/2)]ϕ(t)

)√
1 + (ϕ′(t))2

=
δϕ′(t)[u]ϕ(t) + δϕ(t)[ d

dt
u(ϕ(t), t)]ϕ(t)√

1 + (ϕ′(t))2
= ∂tg

(
δϕ(t)[u]ϕ(t)

)
.

Finally,∫
Σ

p̄ ([δu]Σnt + [uδu]Σnx) dΣ =

∫
Σ

p̄∂tg

(
δϕ(t)[u]ϕ(t)

)
dΣ

= −
∫

Σ

∂tgp̄
(
δϕ(t)[u]ϕ(t)

)
+ pT (ϕ(T ))δϕ(T )[u]ϕ(T ) dΣ− p(ϕ(0), 0)δϕ0[u]ϕ(0).

5 Alternating descent directions
As we said in the end of the previous section, one of the main drawbacks of the continuous
approach in the presence of discontinuities is that, in general, the descent algorithm that uses
the optimal descent directions based on the generalized tangent vector calculus, produces min-
imizing sequences with increasing complexity. The remedy is to use true generalized tangent
vectors in Tu0 as descent directions for J .

Motivated by the above discussion we introduce a decomposition of the generalized tangent
vectors. This requires first to introduce some notation. Let

x− = ϕ(T )− u−(ϕ(T ))T, x+ = ϕ(T )− u+(ϕ(T ))T,

and consider the following subsets (see Figure 4),

Q̂− = {(x, t) ∈ R× (0, T ) such that x < ϕ(T )− u−(ϕ(T ))t},

Q̂+ = {(x, t) ∈ R× (0, T ) such that x > ϕ(T )− u+(ϕ(T ))t}.
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Figure 4: Subdomains Q̂− and Q̂+

Proposition 2. Assume that we restrict the set of paths in Σu0 to those for which the associated
generalized tangent vectors (δu0, δϕ0) ∈ Tu0 satisfy,

δϕ0 =

∫ ϕ0

x−
δu0 +

∫ x+

ϕ0 δu0

[u]ϕ0

. (5.1)

Then, the solution (δu, δϕ) of system (4.15) satisfies δϕ(T ) = 0 and the generalized Gateaux
derivative of J in the direction (δu0, δϕ0) can be written as

δJ =

∫
{x<x−}∪{x>x+}

p(x, 0)δu0(x) dx, (5.2)

where p satisfies the system{
−∂tp− u∂xp = 0, in Q̂− ∪ Q̂+,
p(x, T ) = u(x, T )− ud, in {x < ϕ(T )} ∪ {x > ϕ(T )}. (5.3)

Analogously, if we restrict the set of paths in Σu0 to those for which the associated generalized
tangent vectors (δu0, δϕ0) ∈ Tu0 satisfy δu0 = 0, then δu(x, T ) = 0 and the generalized Gateaux
derivative of J in the direction (δu0, δϕ0) can be written as

δJ = −
[
(u(x, T )− ud(x))2

2

]
ϕ(T )

[u0]ϕ0

[u(·, T )]ϕ(T )

δϕ0. (5.4)

Remark 11. Formula (5.2) establishes a simplified expression for the generalized Gateaux
derivative of J when considering directions (δu0, δϕ0) that do not move the shock position at
t = T . These directions are characterized by formula (5.1) which determine the infinitesimal
displacement of the shock position δϕ0 in terms of the variation of u0 to both sides of x = ϕ0.
Note, in particular, that to any value δu0 to both sides of the jump ϕ0 it corresponds an unique
infinitesimal translation δϕ0 of the initial shock position that does not move the shock at t = T .
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Note also that system (5.3) does not allow to determine the function p outside the region
Q̂−∪Q̂+, i.e. in the region under the influence of the shock by the characteristic lines emanating
from it. However the value of p in this region is not required to evaluate the generalized Gateaux
derivative in (5.2).

Analogously, formula (5.4) provides a simplified expression of the generalized Gateaux deriva-
tive of J when considering directions (δu0, δϕ0) that uniquely move the shock position at t = T
and which correspond to purely translating the shock.

Let us briefly explain the main interest of Proposition 2 before giving its proof. The results
in Proposition 2 suggest the following decomposition of the set of generalized tangent vectors:

Tu0 = T 1
u0 ⊕ T 1

u0 (5.5)

where T 1
u0 contains those (δu0, δϕ0) for which identity (5.1) holds, and T 2

u0 the ones for which
δu0 = 0. This provides two classes descent directions for J at u0. In principle they are not
optimal in the sense that they are not the steepest descent directions but they both have three
important properties:

1. They both are descent directions.

2. They allow to split the design of the profile and the shock location.

3. They are true generalized gradients and therefore keep the structure of the data without
increasing its complexity.

When considering generalized tangent vectors belonging to T 1
u0 we can choose as descent

direction,

δu0 =


−p(x, 0) if x < x−,
− limx→x−

x<x−
p(x, 0) if x− < x < ϕ0,

− limx→x+

x>x+
p(x, 0) if ϕ0 < x < x+,

−p(x, 0) if x+ < x,

δϕ0 = −
∫ ϕ0

x−
p(x, 0) +

∫ x+

ϕ0 p(x, 0)

[u]ϕ0

, (5.6)

while for T 2
u0 a good choice is:

δu0 = 0, δϕ0 =

[
(u(x, T )− ud(x))2

2

]
ϕ(T )

[u(·, T )]ϕ(T )

[u0]ϕ0

. (5.7)

In (5.6) the value of δu0 in the interval (x−, x+) does not affect the generalized Gateaux deriva-
tive in (5.2) under the condition that δϕ0 is chosen exactly as indicated (otherwise the shock
would move and this would produce an extra term on the derivative of the functional J). We
have chosen the simplest constant value that preserves the Lipschitz continuity of δu0 at x = x−

and x = x+, but not necessarily at x = ϕ0. Other choices would also provide descent directions
for J at u0, but would yield the same Gateaux derivative according to (5.2).

This allows us to define a strategy to obtain descent directions for J at u0 in Tu0 .
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To illustrate this we consider the simplest case in which ud

ud is Lipschitz continuous with a discontinuity at x = xd. (5.8)

To initialize the descent algorithm, in view of the structure of ud we choose u0 with a similar
structure, with a single discontinuity located at ϕ0. Typically this produces a solution u with
a shock disciontinuity that at the final time t = T is located at ϕ(T ). Then, there are two
possibilities depending on ϕ(T ) before applying the descent method:

1. ϕ(T ) 6= xd. Then, we consider a descent direction of the form (5.7) that will move the
discontinuity of u0 until we have xd = ϕ(T ).

2. We already have xd = ϕ(T ) and we consider descent directions of the form (5.6). To first
order, these directions will not move the value of ϕ at t = T .

In practice, the deformations of the second step will slightly move the position of the shock
because of its nonlinear dependence on the parameter ε. Thus, one has to iterate this procedure
to assure a simultaneous better placement of the shock and a better fitting of the value of the
solution away from it.

In the next section we explain how to implement a descent algorithm following these ideas
that, of course, can also be used in the case where the number of shocks of u0 and ud is not
necessarily one, or the same.

Proof. (Proposition 2) Assume that (δu0, δϕ0) is a generalized tangent vector for which the
solution of (4.20) satisfies δϕ(T ) = 0. The first equation in (4.15) can be written as

divt,x(δu, uδu) = 0.

Thus, integrating this equation over the triangle Q−\Q̂− and using the divergence theorem we
obtain

0 = −
∫ ϕ0

x−
δu0 dx+

∫
Σ

(δu, uδu) · n ds,

where n is the normal vector to Σ. Of course we obtain an analogous formula if we integrate
over Q+\Q̂+. Combining these two identities, and (4.29), we have∫ x+

ϕ0

δu0 dx+

∫ ϕ0

x−
δu0 dx = −

∫
Σ

([δu], [uδu]) · n ds = −
∫

Σ

∂tg(δϕ[u]Σ) ds = δϕ(0)[u]ϕ(0),

and therefore we obtain the characterization (5.1).
Now we prove formula (5.3). We follow the argument in the proof of Proposition 1. Since

δϕ(T ) = 0, in this case, formula (4.23) is reduced to

δJ =

∫
{x<ϕ(T )}∪{x>ϕ(T )}

(u(x, T )− ud(x))δu(x, T ). (5.9)

When multiplying the equations of δu by the solution p of (5.3) and integrating, this time over
Q̄− ∪ Q̂+, we easily obtain (5.3).
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6 Numerical approximations of the descent direction
We have computed the gradient of the continuous functional J in several cases (u smooth
and having shock discontinuities) but, in practice, one has to look for descent directions for
the discrete functional J∆. In this section we discuss the various possibilities for searching
them. There are several possibilities which are based on the approach chosen (continuous
versus discrete) and the degree of sophistication adopted.

We consider the following possibilities:

• The discrete approach: differentiable schemes.

• The discrete approach: non-differentiable schemes.

• The continuous approach: Internal boundary conditions on the shock.

• The continuous approach: The alternating descent method.

The last one is the new method we propose in this article.
In the following Section we present some numerical experiments that allow us to easily

compare the efficiency of each method. As we shall see, the alternating descent method we
propose, alternating the generalized tangent vectors to sometimes move the shock and some
others correct the profile to both sides of it, is superior in several ways. It avoids the drawbacks
of the other methods related either to the inefficiency of the differentiable methods to capture
shocks, the difficulty to dealing with non-differentiable schemes and the uncertainty of using
“pseudo-linearizations", or the difficulty to efficiently impose internal boundary conditions in
practice. As a consequence of this, the method we propose is much more robust and the
functional decreases in a much more efficient way in a significantly smaller number of iterations.

The rest of this section is divided as follows: we first compute the gradient of the discrete
cost functional when the numerical scheme chosen to approximate the Burgers equation is dif-
ferentiable. When the numerical scheme is not differentiable the gradient of the cost functional
is not well-defined and a descent direction must be computed in a different way. In the second
subsection we present an alternative method which consists roughly in computing a subgradient
of the discrete functional. The last two subsections contain methods based on the continuous
approach. More precisely, the third one describes the a priori more natural method based on
the discretization of the continuous gradient while the fourth subsection is devoted to the new
method introduced in this work in which we consider a suitable decomposition of the generalized
tangent vectors.

We do not address here the convergence of these algorithms, but, in the present case, and
taking into account that when dealing with the discrete functional J∆ the number of control
parameters is finite, one could prove convergence by using LaSalle’s invariance principle and
using the cost functional as Lyapunov functional.
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6.1 The discrete approach: Differentiable numerical schemes

Computing the gradient of the discrete functional J∆ requires computing one derivative of J∆

with respect to each node of the mesh. This can be done in a cheaper way using the adjoint state.
We illustrate it on two different numerical schemes: Lax-Friedrichs and Engquist-Osher. Note
that both schemes satisfy the hypothesis of Theorem 2 and therefore the numerical minimizers
are good approximations of minimizers of the continuous problem. However, as the discrete
functionals J∆ are not necessarily convex the gradient methods could possibly provide sequences
that do not converge to a global minimizer of J∆. But this drawback and difficulty appears in
most applications of descent methods in optimal design and control problems. As we will see, in
the present context, the approximations obtained by gradient methods are satisfactory, although
convergence is slow due to unnecessary oscillations that the descent method introduces.

Computing the gradient of J∆, rigoroulsy speaking, requires the numerical scheme (3.3)
under consideration to be differentiable and, often, this is not the case. To be more precise, for
the Burgers equation (1.1) we can choose several efficient methods which are differentiable (as
the Lax-Friedrichs and the Engquist-Osher one) but this is not the situation for general systems
of conservation laws in higher dimensions, as Euler equations. For such complex systems the
efficient methods, as Godunov, Roe, etc., are not differentiable (see, for example [17] or [21])
thus making the approach in this section useless.

We observe that when the 3-point conservative numerical approximation scheme (3.3) used
to approximate the Burgers equation (1.1) has a differentiable numerical flux function g, then
the linearization is easy to compute. We obtain{

δun+1
j = δun

j − λ
(
∂1g

n
j+1/2δu

n
j + ∂2g

n
j+1/2δu

n
j+1 − ∂1g

n
j−1/2δu

n
j−1 − ∂2g

n
j−1/2δu

n
j

)
= 0,

j ∈ Z, n = 0, ..., N.
(6.1)

In view of this, the discrete adjoint system can also be written for any differentiable flux function
g: {

pn
j = pn+1

j + λ
(
∂1g

n
j+1/2(p

n+1
j+1 − pn+1

j ) + ∂2g
n
j−1/2(p

n+1
j − pn+1

j−1 )
)
,

pN+1
j = pT

j , j ∈ Z, n = 0, ..., N.
(6.2)

In fact, when multiplying the equations in (6.1) by pn+1
j and adding in j ∈ Z and n = 0, ..., N ,

the following identity is easily obtained,

∆x
∑
j∈Z

pT
j δu

N+1
j = ∆x

∑
j∈Z

p0
jδu

0
j . (6.3)

This is the discrete version of formula (4.6) which allows us to simplify the derivative of the
discrete cost functional.

Thus, for any variation δu0
∆ ∈ U∆ of u0

∆, the Gateaux derivative of the cost functional
defined in (3.1) is given by

δJ∆ = ∆x
∑
j∈Z

(uN+1
j − ud

j )δu
N+1
j , (6.4)
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where δun
j solves the linearized system (6.1). If we consider pn

j the solution of (6.2) with final
datum

pT
j = uN+1

j − ud
j , j ∈ Z, (6.5)

then δJ∆ in (6.4) can be written as,

δJ∆ = ∆x
∑
j∈Z

p0
jδu

0
j , (6.6)

and this allows to obtain easily the steepest descent direction for J∆ by considering

δu0
∆ = −p0

∆. (6.7)

We now present two particular examples. Let us consider first the Lax-Friedrichs scheme:{
un+1

j −
un

j−1+un
j+1

2

∆t
+

f(un
j+1)−f(un

j−1)

2∆x
= 0, n = 0, ..., N,

u0
j = u0,j, j ∈ Z,

(6.8)

where f(s) = s2/2. The numerical scheme (6.8) can be written in conservation form with the
numerical flux given in (3.6). Moreover, it satisfies the hypotheses of Theorem 2, under the
Courant-Friedrichs-Levy (CFL) condition λ|maxu0| ≤ 1, and it is differentiable.

For any variation δu0
∆ ∈ U∆ of u0

∆, the Gateaux derivative of the cost functional is given by
(6.6) where the values pn

j satisfy the adjoint system, pn
j −

pn+1
j+1

+pn+1
j−1

2

∆t
+ un

j

pn+1
j−1−pn+1

j+1

2∆x
= 0, n = 0, ..., N

pN+1
j = pT

j , j ∈ Z,
(6.9)

with pT
j = (uN+1

j − ud
j ) ∈ U∆

ad,.
Note that, formally, (6.9) is in fact the Lax-Friedrichs numerical scheme applied to the

continuous adjoint system (4.5).
The Engquist-Osher scheme can be treated similarly. In this case the numerical flux is given

by (3.7) and we get the adjoint system{
pn

j = pn+1
j + λ

(
un

j +|un
j |

2
(pn+1

j+1 − pn+1
j ) +

un
j −|un

j |
2

(pn+1
j − pn+1

j−1 )
)

= 0, n = 0, ..., N,

pN+1
j = pT

j , j ∈ Z.
(6.10)

The derivative δJ∆ is given again by (6.6) and the steepest descent direction is (6.7) where,
now, p solves (6.10).

We observe that (6.10) is the upwind method for the continuous adjoint system. Thus,
this is another case in which the adjoint of the discretization corresponds to a well-known
discretization of the adjoint problem.
Remark 12. We do not address here the problem of the convergence of these adjoint schemes
towards the solutions of the continuous adjoint system. Of course, this is an easy matter when
u is smooth but is is far from being trivial when u has shock discontinuities. Whether or not
these discrete adjoint systems, as ∆ → 0, allow reconstructing the complete adjoint system,
with the inner Dirichlet condition along the shock, constitutes an interesting problem for future
research. We refer to [18] for preliminary work on this direction.
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6.2 The discrete approach: Non-differentiable numerical schemes

We describe here the most common method to compute “gradients" of functionals when the
underlying numerical scheme used to approximate the flow equations is non-differentiable (see
for example [14] where this method is used in the context of linearized stability). To illustrate
this method we focus on the Roe scheme which is one of the most popular ones to approximate
solutions of conservation laws.

In the particular case of the Burgers equation under consideration Roe’s scheme coincides
with Godunov’s one and therefore Theorem 2 applies.

However, Roe’s scheme is not monotone for general fluxes f and it is well-known that this
scheme admits entropy violating discontinuities (see [15]). Therefore, convergence of discrete
minimizers towards continuous ones can not be guaranteed for more general fluxes.

The scheme can be modified to obtain the conservation of entropy (see [15] for the Harten
and Hyman modification) but we will not consider this modification here (which is still non-
differentiable) since we are mainly interested in the issue of “linearizing" non-differentiable
schemes.

The Roe scheme for a general conservation law

∂tu+ ∂xf(u) = 0,

is a 3-point conservative scheme of the form (3.3) with numerical flux

gR(u, v) =
1

2
(f(u) + f(v)− |A(u, v)|(v − u)),

where the matrix A(u, v) is a Roe linearization which is an approximation of f ′ (see, for example,
[14]). In the scalar case under consideration f(u) = u2/2 and

A(u, v) =

{
f(u)−f(v)

u−v
= u+v

2
, if u 6= v,

f ′(u) = u, if u = v .

Note that the previous scheme is not differentiable, in general, due to the presence of the
absolute value of A in gR. Thus, we cannot linearize this system and obtain its adjoint, in a
rigurous sense.

In [14] the following scheme is proposed for the linearization

δun+1
j = δun

j − λ(hn
j+1/2 − hn

j−1/2), j ∈ Z, n = 0, ..., N, (6.11)

where

hn
j+1/2 = h(un

j , u
n
j+1; δu

n
j , δu

n
j+1),

h(u, v;w, z) =
1

2
(A(u, v)(w + z)− |A(u, v)|(z − w)) . (6.12)

Equation (6.12) is in fact an approximation of the natural choice h(u, v;w, z) = ∂gR

∂u
w + ∂gR

∂v
z,

where ∂f
∂u

is approximated by the Roe linearization A(u, v), and the non-differentiable term
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|A(u, v)| in (6.11) is assumed to have zero derivative. This last assumption could be formally
interpreted as a particular choice of the subgradient of the absolute value function a(x) = |x|
at x = 0.

In this way

hn
j+1/2 =

1

2

(
Aj+1/2(δu

n
j + δun

j+1)− |Aj+1/2|(δun
j+1 − δun

j )
)
,

Aj+1/2 = A(un
j , u

n
j+1).

The corresponding adjoint system to the linearized equations (6.11) is given by{
pn

j = pn+1
j + λ

(
αn

j (pn+1
j+1 − pn+1

j ) + βn
j (pn+1

j − pn+1
j−1 )

)
, n = 0, ..., N,

pN+1
j = pT

j , j ∈ Z, (6.13)

where

αn
j =

1

2
(Aj+1/2 + |Aj+1/2|), βn

j =
1

2
(Aj+1/2 − |Aj+1/2|).

In fact, multiplying the equations in (6.11) by pn+1
j and adding in j ∈ Z and n = 0, ..., N

we obtain:

0 =
∑
j∈Z

N∑
n=0

(
δun+1

j − δun
j + λ(hn

j+1/2 − hn
j−1/2)

)
pn+1

j

=
∑
j∈Z

N∑
n=0

(
pn

j − pn+1
j − λ

[
αn

j (pn+1
j+1 − pn+1

j ) + βn
j (pn+1

j − pn+1
j−1 )

])
δun

j

+
∑
j∈Z

δuN+1
j pN+1

j −
∑
j∈Z

δu0
jp

0
j =

∑
j∈Z

δuN+1
j pN+1

j −
∑
j∈Z

δu0
jp

0
j . (6.14)

To obtain (6.14) we have used the following identity:∑
j∈Z

hn
j+1/2p

n+1
j =

∑
j∈Z

1

2
Aj+1/2(δu

n
j + δun

j+1)p
n+1
j

−
∑
j∈Z

1

2
|Aj+1/2|(δun

j+1 − δun
j )pn+1

j

=
∑
j∈Z

1

2
(Aj+1/2p

n+1
j + Aj−1/2p

n+1
j−1 )δun

j

−
∑
j∈Z

1

2
(|Aj−1/2|pn+1

j−1 − |Aj+1/2|pn+1
j )δun

j ,

and an analogous one for the term
∑

j∈Z h
n
j−1/2p

n+1
j .
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Then, as for differentiable schemes, formula (6.14) allows to simplify the “derivative" δJ∆

which is formally written as (6.6). Thus, a tentative descent direction for J∆ is given by (6.7),
where pn

j is the solution of the adjoint system (6.13) with final datum pN+1
j = uN+1

j − ud
j .

The above computation does not provide the gradient of the discrete functional, which is
non-differentiable in this case. But the value obtained through this computation could be used
as an alternative “descent direction" in a gradient-type algorithm.

Note that the approach of using “pseudogradients" we have presented here is a common
practice in optimal design in aeronautics where efficient solvers are often non differentiable (see
[25]).

6.3 The continuous approach: Internal boundary condition on the
shock

This method is based on the result stated in Proposition 1 indicating that the sensitivity of the
functional is obtained by approximating (−p(x, 0),−q(0)[u]ϕ0). We recall that the continuous
adjoint system is well-posed and its solution can be obtained in two steps. We first obtain the
value of p on the shock ϕ of u from the differential equation q′(t) = 0 and the end condition
on q(T ). Note that, in our case, p takes the constant value q(T ) along the shock Σ. Then we
solve backwards the adjoint equation taking into account both the value of p at t = T and the
value of p on the shock.

At the numerical level we can proceed similarly distinguishing the computation of the dis-
crete adjoint state in the region of influence of the shock and away of it. We first introduce a
suitable discretization of the adjoint equation in the whole domain (for instance by taking the
adjoint of a linearizable numerical scheme), that we solve. This gives an approximation of the
adjoint state away from the influence region of the shock. We then determine the value of jn
which corresponds to the nearest grid point x = xjn to the shock position at t = tn, and impose
pn

jn
= q(T ) for this particular jn. Finally, we take pn

j to coincide with pn
jn

in all the influence
region of the shock.

In this way we get a descent direction of the form

(δu0
j , δϕ

0) = (−p0
j ,−q0[u0

j ]ϕ0). (6.15)

In particular, the second value must be interpreted as a displacement of the position of the
discontinuity of u0. Note that this interpretation is formal at the continuous level since formula
(4.22) was derived for generalized tangent vectors, which is not the case here, as discussed after
the statement of Proposition 1.

To be more precise, we now describe how to obtain a new initial datum out of the previous
one within the descent iteration, in view of the approximation above of the gradients.

For example, if δϕ0 > 0, one can choose

u0,new
j =

{
u0

j + εδu0
j , if j < ϕ0 or j > ϕ0 + εδϕ0/∆x,

u0
j + εδu0

j + [u0
j ]ϕ0 , if ϕ0 ≤ j ≤ ϕ0 + εδϕ0/∆x.

The main drawbacks of this approach are the following:
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1. At any step of the descent algorithm, a numerical approximation of the position of the
shock is required.

2. The pair (p(x, 0), q(0)) is not a generalized tangent vector and, as discussed after the
statement of Proposition 1, an iterative gradient method based on these ideas gener-
ates increasingly complex initial data. Numerical experiments confirm that this actually
occurs.

3. A pure displacement of the discontinuity will never be a descent direction computed by
this method. Indeed, a generalized vector of the form (0, α) which only moves the shock,
i.e. with vanishing first component, cannot be obtained as (p(x, 0), q(0)) for any solution
of (4.20). In fact, if p(x, 0) = 0 then q(0) = 0, since p(x, T ) = q(T ) = q(0) in the whole
region occupied by the characteristics of u that meet Σ.

6.4 The alternating descent method

Here we propose a new method suggested by the results in Proposition 2 and the discussion
thereafter. We shall refer to this new method as the alternating descent method.

In order to illustrate how the method can be implemented, we assume that we have a final
target ud which is Lipschitz continuous function with a single discontinuity at x = xT with
negative jump, i.e. [ud]xT

< 0, to guarantee that this discontinuity can be generated by the
solution at t = T of (1.1) for some solution u having a shock. To initialize the iterative descent
method we choose an initial datum u0 in such a way that the solution at time t = T has a profile
similar to ud, i.e., it is a Lipschitz continuous function with a single continuity of negative jump,
located on an arbitrary point x ∈ R. The main idea now is to approximate a minimizer of J
alternating the following two steps: first we perturb the initial datum u0 by simply moving the
discontinuity of the solution u of (1.1) at time t = T , regardless of its value to both sides of
the discontinuity. Once this is done we perturb the resulting u0 without altering the position
of the discontinuity of u(x, T ). This is done by decomposing the set of generalized tangent
vectors associated to u0 into the two subsets introduced in (5.5) considering alternatively (5.6)
and (5.7) as descent directions.

More precisely, for a given initialization of u0 as above, in each step of the descent iteration
process we proceed in the following two substeps:

1. Compute (5.7) and find the optimal step size ε for which this datum must be modified
in the direction given by (5.7). This involves a one-dimensional optimization problem
that we can solve with a classical method (bisection, Armijo’s rule, etc.). In this way we
obtain the best location of the discontinuity for this u0.

2. We then use the descent direction (5.6) to modify the value of the solution at time t = T
to both sides of the discontinuity. Here, we can again estimate the step size by solving a
one-dimensional optimization problem or simply take a constant step size.

The main advantage of this method is that for an initial datum u0 with a single discontinuity,
the assumption (5.8) holds and the descent directions are generalized tangent vectors, i.e.
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they introduce Lipschitz continuous variations of u0 to both sides of the discontinuity and a
displacement of the shock position. In this way, the new datum obtained modifying the old
one, in the direction of this generalized tangent vector, will have again a single discontinuity.
Therefore, the iterative optimization process will not introduce new discontinuities in u0, as in
the previous method.

We have presented here the method in the particular case in which both the target ud and
the initial datum u0 that initializes the process have one single shock discontinuity. But these
ideas can be applied in a much more general context in which the number of shocks does not
necessarily coincide. Indeed, as we shall see in various numerical experiments, this method is
able both to generate shock and to distroy them, if any of these facts contributes to the decrease
of the functional.

This method is in some sense close the the present methods emploeyd in shape design
in elasticity in which topological derivatives (that in the present setting would correspond to
controlling the location of the shock) are combined with classical shape deformations (that
would correspond to simply shaping the solution away form the shock in the present setting)
([11]).

7 Numerical experiments
In this section we present some numerical experiments which illustrate the results obtained
in an optimization model problem with each one of the numerical methods described in the
previous section.

We have chosen as computational domain the interval (−4, 4) and we have taken as boundary
conditions in (1.1), at each time step t = tn, the value of the initial data at the boundary. This
can be justified if we assume that the initial datum u0 is constant in a sufficiently large inner
neighborhood of the boundary x = ±4 (which depends on the size of the L∞-norm of the data
under consideration and the time horizon T ), due to the finite speed of propagation. A similar
procedure is employed for the adjoint equation.

We underline once more that the solutions obtained with each method may correspond to
global minima or local ones since the gradient algorithm does not distinguish them.

Experiment 1. We first consider a piecewise constant target profile ud given by

ud =

{
1 if x < 0,
0 if x ≥ 0,

(7.1)

and the time T = 1. Note that in this case one solution of the optimization problem is obviously
given by

u0,min =

{
1 if x < −1/2,
0 if x ≥ 0.

(7.2)

This means that the optimal value u0,min can be attained and the minimum value of J in this
case is zero.
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We solve the optimization problem (3.5) with the above described different methods starting
from the following initialization for u0:

u0 =

{
2 if x < 1/4,
0 if x ≥ 1/4.

(7.3)

which also has a discontinuity but located on a different point.
To compare the efficiency of the different methods we consider a fixed ∆x > 0, λ = ∆t/∆x =

1/2 and we focus on the number of iterations for each method to attain a prescribed value of
the functional. In Table 1 we give these values when the spatial discretization parameter is
∆x = 1/20 and ∆x = 1/80 respectively.

log(J∆) −3 −4 −5 −6 −7

Lax-Friedrichs 14 39 > 1000
Engquist-Osher 26 85 288 > 1000
Roe 18 33 54 114 > 1000
Imposing b.c. 5 6 9 21 > 1000
Alternating descent 3 3 3 Not attained

log(J∆) −3 −4 −5 −6 −7

Lax-Friedrichs 15 49 > 1000
Engquist-Osher 115 673 > 1000
Roe 185 > 1000
Imposing b.c. 5 6 52 440 > 1000
Alternating descent 3 3 3 3 Not attained

Table 1: Experiment 1. Number of iterations needed for a descent algorithm to obtain the value
of log(J) indicated in the upper row, by the different methods presented above. The upper table
corresponds to ∆x = 1/20 and the lower one to ∆x = 1/80. In both cases λ = ∆t/∆x = 1/2.

In Figure 5 we show the initial data u0 obtained with the different methods after 30 iterations
for ∆x = 1/20 and in Figure 6 the value of the functional one achieves, with∆x = 1/20 and
∆x = 1/80. In both cases λ = ∆t/∆x = 1/2.

We observe the following:

1. In Figure 5, we see that the different numerical approximation and descent methods lead
to different solutions.

Obviously, the final output of the descent algorithm may also depend on the initialization
u0. This will be discussed in another experiment later. In this one the initialization is
the same for all the five methods under consideration.

2. For the first four methods the initial datum u0 we obtain after the iteration process
presents strong oscillations. That is not the case for the method we have developped in this
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article based on alternating descent directions. Note that, actually, the highest oscillations
are produced when using the Lax-Friedrichs scheme, which is the most dissipative one.

3. In Figure 6 and Table 1 we see that the numerical methods that ignore the presence
of the shock (Lax-Friedrichs, Engquist-Osher and Roe) descend more slowly than those
that take into account the sensitivity with respect to the shock position (by imposing the
boundary condition on the shock or the alternating descent method).

4. For fixed ∆x the alternating descent method stabilizes quickly in a few iterations. This
is due to the fact that the descent direction is computed for the continuos system and
not for the discrete one, and therefore ∆x needs to be small for that computation to be
valid at the discrete level as well.

5. For smaller values of ∆x the only method that remains effective is the alternating descent
method. The other methods descent more slowly.

Experiment 2. We consider the same target ud as in the previous experiment but with
different initial data. We see that different initialization functions u0, with more or less discon-
tinuities, do not alter the efficiency of the alternating descent method. The numerical results
are presented in Figure 7.

Experiment 3. We now consider a piecewise constant target profile ud with two disconti-
nuities:

ud =


1 if x < −1/4,
1/2 if − 1/4 ≤ x < 3/2,
0 if x ≥ 3/2,

(7.4)

and the time T = 1.
We solve the optimization problem (3.5) with the above described methods starting from

the following initial datum

u0 =


2 if x < 0,
1/2 if 0 ≤ x < 2,
0 if x ≥ 0.

(7.5)

which also has two discontinuities, as the target.
The conclusions are similar to those of the first experiment.
In Table 2 we give the number of iterations for each method to attain a prescribed value of

the functional when the spatial discretization parameter is ∆x = 1/20 and λ = ∆t/∆x = 1/2..
The solutions obtained after 30 iterations of each method are given in Figure 8. Of course, as
in the first experiment, the alternating descent method becomes much more efficient for lower
values of ∆x.

Experiment 4. We now consider a piecewise constant target profile ud with a discontinuity
with positive jump:

ud =

{
1/2 if x < 1/4,
1 if x ≥ 1/4,

(7.6)
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log(J∆) −3 −4 −5 −6 −7

Lax-Friedrichs 5 8 30 > 1000
Engquist-Osher 5 17 54 > 1000
Roe 4 6 13 34 101
Imposing b.c. 3 5 16 55 > 1000
Alternating descent method 3 4 4 4 Not attained

log(J∆) −3 −4 −5 −6 −7

Lax-Friedrichs 6 10 270 > 1000
Engquist-Osher 10 235 > 1000
Roe 20 Not attained
Imposing b.c. 8 Not attained
Alternating descent method 3 4 4 5 Not attained

Table 2: Experiment 3. Number of iterations needed for a descent algorithm to obtain the value
of log(J) indicated in the upper row, when considering the different descent strategies. Here
∆x = 1/20 in the upper table and ∆x = 1/80 in the lower one. In both cases λ = ∆t/∆x = 1/2.

and the time T = 1.
We observe that the alternating descent method obtain the same values as the other methods

but in less iterations (see Figures 9 and 10).

8 Numerical algorithms
In this section we briefly describe the algorithms we have used to implement the various nu-
merical methods.

We first consider the discrete approach. The algorithm is the same for both differentiable
and non-differentiable schemes and uses a constant descent step. Of course, when the numerical
scheme is not differentiable one has to choose a suitable pseudolinearization of the numerical
flux for the algorithm to make sense as we have described in the context of Roe’s scheme.

Algorithm 1: solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

1 input ∆x, ∆t, {u0
j}j=1,...,N

2 set λ = ∆t/∆x
3 for n = 0(1)M − 1 repeat
4 set un+1

1 = u0
1, u

n+1
N = u0

N

5 for j = 2(1)N − 1 repeat
6 set un+1

j = un
j + λ(g(un

j , u
n
j+1)− g(un

j−1, u
n
j ))

7 end
8 end
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Line Comments
2 λ satisfies the CFL condition.
6 g is the numerical convective flux.

Algorithm 2: solve adjoint equation with final datum {pT
j }j=1,...,N→ {p0

j}j=1,...,N

1 input ∆x, ∆t, {un
j }j=1,...,N

2 set λ = ∆t/∆x
2 for n = 0(1)M repeat
3 set pn−1

1 = pM
1 , pn−1

N = pM
N ,

4 for j = 2(1)N − 1 repeat
5 set pn−1

j = pn
j + λ(∂1g(u

n−1
j , un−1

j+1 ) ∗ (pn
j − pn

j+1)
6 +∂2g(u

n−1
j−1 , u

n−1
j ) ∗ (pn

j−1 − pn
j ))

7 end
8 end

Line Comments
2 λ satisfies the CFL condition.
6 g is the numerical convective flux.

Algorithm 3: Discrete approach

STEP 0: initialization
1 input ∆x, ∆t, {u0

j}j=1,...,N , {ud}j=1,...,N

2 set λ = ∆t/∆x

3 solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

4 for j = 1(1)N repeat
5 set pT

j = uM
j − ud

j , pM
j = pT

j

6 end
7 solve adjoint equation with final datum {pT

j }j=1,...,N→ {p0
j}j=1,...,N

STEP 1: optimization loop
1 input ε
2 for k = 0, 1, ...repeat
3 solve Burgers equation with initial datum {u0

j}k
j=1,...,N → {un

j }
n=1,...,M
j=1,...,N

4 for j = 1(1)N repeat
5 set pT

j = uM
j − ud

j

6 end
7 solve adjoint equation with final datum {pT

j }j=1,...,N → {p0
j}j=1,...,N

8 set gk = {p0
j}j=1,...,N ,

9 compute αk

10 set {u0
j}k+1

j=1,...,N = {u0
j}k

j=1,...,N − αk ∗ gk

11 end until ||gk+1|| < ε
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Line Comments
1 ε is the tolerance.
9 Compute the descent step αk arg min. J({u0

j}k
j=1,...,N − αk ∗ gk) .

11 || · || is the Euclidean norm in RN .

We now consider the continuous approach, imposing the internal conditions along the shock.
In this case he algorithm must be slightly modified in order to take into account the presence
of discontinuities. Thus we first describe a subroutine to find the “discontinuities" of a vector
{uj}j=1,...,N based on a shift condition. Roughly, we introduce two parameters α and ρ and we
look for the indexes j where

uj−α − uj+α

|uj−α|
> ρ.

To simplify the presentation we consider the case in which only one discontinuity is relevant
in the numerical experiment, and arises in the discrete vector.

Algorithm 4: solve jump({uj}j=1,...,N ,∆x) → (index, uleft, uright)

1 input sh, js, {uj}j=1,...,N , ∆x
2 set α = INT(sh/∆x)
3 set max = arg maxj(uj−α − uj+α)/ABS(uj−α)
4 if max > js then
5 set index = max
6 set uleft = uj−index, uright = uj+index

7 end

Line Comments
1 sh is the shift parameter and the js the jump sensibility parameter

The complete algorithm is now as follows:

Algorithm 5: Continuous approach: interior conditions on the shock
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STEP 0: initialization.
1 input ∆x, ∆t, {ud}j=1,...,N , {u0

j}j=1,...,N

2 solve jump({uobj
j }j=1,...,N ,∆x) → (indexobj, ulobj, urobj)

3 solve jump({u0
j}j=1,...,N ,∆x) → (index0, ul0, ur0)

4 solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

5 solve jump({uM
j }j=1,...,N ,∆x) → (indexT , ulT , urT ) ! Shock position at t = T

6 for j = 1(1)N repeat
7 set pT

j = uM
j − ud

j , pM
j = pT

j

8 end
9 set qT = ((urT − urobj)2/2− (ulT − ulobj)2/2)/(urT − ulT )
10 solve adjoint equation with final datum {pT

j }j=1,...,N → {p0
j}j=1,...,N

11 for j = index0 − INT(ulT ∗ T )(1)index0 − INT(urT ∗ T ) repeat
12 p0

j = qT

13 end
14 set (g1, g2) = ({p0

j}j=1,...,N , q
T/(ur0 − ul0))

Line Comments
11 Impose the internal condition on the shock.
14 (g1, g2) is the gradient.
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STEP 1: optimization loop
1 input ε
2 for k = 0, 1, ...repeat
3 compute αk

4 set {u0
j}k+1

j=1,...,N = {u0
j}k

j=1,...,N − αk ∗ g1,k

5 if g2 > 0 then
6 for j = index0(1)index0 + INT(g2 ∗ αk/∆x)
7 set u0

j = ul0

8 end
9 else
10 for j = index0 + INT(g2 ∗ αk/∆x)(1)index

0

11 set u0
j = ur0

12 end
13 end
14 solve Burgers equation with initial datum {u0

j}k
j=1,...,N → {un

j }
n=1,...,M
j=1,...,N

15 solve jump({uM
j }j=1,...,N ,∆x) → (indexT , ulT , urT ) ! Shock position at t = T

16 for j = 1(1)N repeat
17 set pT

j = uM
j − ud

j

18 end
19 set qT = ((urT − urobj)2/2− (ulT − ulobj)2/2)/(urT − ulT )
20 solve adjoint equation with final datum {pT

j }j=1,...,N → {p0
j}j=1,...,N

21 set internal boundary condition on the shock
22 set (g1, g2)k = ({p0

j}j=1,...,N , q
T/(ur0 − ul0))

23 end until ||(g1, g2)1,k+1|| < ε

Line Comments
1 ε is the tolerance.
3 Compute the descent step αk arg min J({u0

j}k
j=1,...,N − αk ∗ g1,k)

5:13 Move the discontinuity.
22 (g1, g2) is the gradient.
23 || · || is the Euclidean norm in RN+1.

Finally we describe the algorithm for the alternating descent method we propose.

Algorithm 6: Alternating descent method
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STEP 0: initialization.
1 input ∆x, ∆t, {ud}j=1,...,N , {u0

j}j=1,...,N

2 solve jump({uobj
j }j=1,...,N ,∆x) → (indexobj, ulobj, urobj)

3 solve jump({u0
j}j=1,...,N ,∆x) → (index0, ul0, ur0)

4 solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

5 solve jump({uM
j }j=1,...,N ,∆x) → (indexT , ulT , urT )

6 set qT = ((urT − urobj)2/2− (ulT − ulobj)2/2)/(urT − ulT )
7 set (g1, g2) = (0, qT ) ! first generalized tangent vector
8 solve discontinuity position (using optimal step) → {u0

j}j=1,...,N

9 solve jump({u0
j}j=1,...,N ,∆x) → (index0, ul0, ur0)

10 solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

11 solve jump({uM
j }j=1,...,N ,∆x) → (indexT , ulT , urT )

12 for j = 1(1)N repeat
13 set pT

j = uM
j − ud

j , pM
j = pT

j

14 end
15 set qT = ((urT − urobj)2/2− (ulT − ulobj)2/2)/(urT − ulT )
16 solve adjoint equation with final datum {pT

j }j=1,...,N → {p0
j}j=1,...,N

17 solve jump({uM
j − uobj

j }j=1,...,N ,∆x) → (indexT , plT , prT )
18 for j = index0 − INT(ulT ∗ T )(1)index0 repeat
19 p0

j = plT

20 end
21 for j = index0(1)index0 − INT(urT ∗ T )
22 p0

j = prT

23 end
24 set (g1, g2) = ({p0

j}j=1,...,N , q
T/(ur0 − ul0)), ! second tangent vector

Line Comments
4:9 Optimize location of the discontinuity.
8 See lines 5:13 of Algorithm 4, STEP 1.

17:23 Impose the condition in (5.6).
24 (g1, g2) is the gradient.
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STEP 1: optimization loop
1 input ε
2 for k = 0, 1, ...repeat
3 compute αk

4 set {u0
j}k+1

j=1,...,N = {u0
j}k

j=1,...,N − αk ∗ g1,k

5 solve Burgers equation with initial datum {u0
j}k

j=1,...,N → {un
j }

n=1,...,M
j=1,...,N

6 solve jump({uM
j }j=1,...,N ,∆x) → (indexT , ulT , urT ) ! Shock position at t = T

7 for j = 1(1)N repeat
8 set pT

j = uM
j − ud

j

9 end
10 set qT = ((urT − urobj)2/2− (ulT − ulobj)2/2)/(urT − ulT )
11 solve adjoint equation with final datum {pT

j }j=1,...,N → {p0
j}j=1,...,N

12 set impose the condition in (5.6)
13 set (g1, g2)k = ({p0

j}j=1,...,N , q
T/(ur0 − ul0))

14 end until ||(g1, g2)1,k+1|| < ε

Line Comments
1 ε is the tolerance.
3 Compute the descent step αk arg min J({u0

j}k
j=1,...,N − αk ∗ g1,k)
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Figure 5: Experiment 1. Initialization (dashed line) and initial data obtained after 30 iterations
(solid line) with Lax-Friedrichs (upper left) , Engquist-Osher (upper right), Roe (middle left),
the continuous approach imposing a boundary condition on the shock (middle right) and the
alternating descent method (lower left). A minimizer u0 of the continuous functional is given
in the lower right figure.
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Figure 6: Experiment 1. Log of the value of the functional versus the number of iterations in
the descent algorithm for the Lax-Friedrichs, Engquist-Osher and Roe schemes, the continuous
approach imposing the internal boundary condition on the shock and the alternating descent
method proposed in this article. The upper figure corresponds to ∆x = 1/20 and the lower
one to ∆x = 1/80. We see that the last method stabilizes in a few iterations and it is much
more efficient when consider small enough values of ∆x in order to be able to resolve the shock
sufficiently well.
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Figure 7: Experiment 2. The four upper figures and the lower left one show the initial data ob-
tained once the descent iteration stops (solid) with different initialization functions u0 (dashed)
with the alternating descent method proposed in this article. In the lower right figure, the
target ud(x) and the solution u(x, T ) (here T = 1) corresponding to the obtained u0 are drawn
for the last initialization. The function u(x, T ) one obtains for the other initializations is very
similar to this one. In this experiment ∆x = 1/20 and λ = ∆t/∆x = 1/2.
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Figure 8: Experiment 3. Initialization (dashed line) and initial data obtained after 30 iterations
(solid line) with Lax-Friedrichs (upper left) , Engquist-Osher (upper right), Roe (middle left),
the continuous approach imposing a boundary condition on the shock (middle right) and the
alternating descent method (lower left). A minimizer u0 of the continuous functional is given
in the lower right figure.
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Figure 9: Experiment 4. Initial datum obtained after 30 iterations with the Lax-Friedrichs
(upper left) , Engquist-Osher (upper right), Roe schemes (medium left), imposing internal
boundary conditions (medium right) and the alternating descent method (lower left). In the
lower right figure there are both the target ud given in (7.6) (dashed) and the solution of the
Burgers equation u at time t = T = 1 with the initial datum obtained after optimization with
the alternating descent method (solid).
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Figure 10: Experiment 4. Log of the value of the functional versus the number of iteration in
the descent algorithm for the Lax-Friedrichs, Engquist-Osher, Roe schemes, imposing internal
boundary conditions and the alternating descent method we propose. Note that, in this case,
no shocks are involved and therefore the Engquist-Osher scheme and the continuous method
imposing the boundary conditions coincide. Here the upper figure corresponds to ∆x = 1/20
and the lower one to ∆x = 1/40. In both cases λ = ∆t/∆x = 1/2.

50


	Introduction
	Existence of minimizers
	The discrete minimization problem
	Sensitivity analysis: the continuous approach
	Sensitivity without shocks
	Sensitivity of the state in the presence of shocks
	Sensitivity of J in the presence of shocks

	Alternating descent directions
	Numerical approximations of the descent direction
	The discrete approach: Differentiable numerical schemes
	The discrete approach: Non-differentiable numerical schemes
	The continuous approach: Internal boundary condition on the shock
	The alternating descent method

	Numerical experiments
	Numerical algorithms

