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Abstract. We study eigenvalues and eigenfunctions (vibration modes) on the
class of self-similar symmetric finitely ramified fractals which includes 3n-gaskets.
We consider such examples as the Sierpinski gasket, a non-p.c.f. analog of the
Sierpinski gasket, the level-3 Sierpinski gasket, a fractal 3-tree, the hexagasket,
and one dimensional fractals. We develop a theoretical matrix analysis, including
analysis of singularities, which allows us to compute eigenvalues, eigenfunctions
and their multiplicities exactly. We support our theoretical analysis by symbolic
and numerical computations.
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1. Introduction

In this paper we study eigenvalues and eigenfunctions (vibration modes) on the class
of self-similar fully symmetric finitely ramified fractals. Such studies originated in
[40, 41], where it was observed that on the Sierpinski there are highly localized
eigenfunctions corresponding to eigenvalues of very high multiplicity. Later the
spectrum of the Laplacian on the Sierpinski gasket was studied in detail in [13], and an
example of the modified Koch curve was studied in [34, 33]. The main purpose of our
paper is to develop a theoretical matrix analysis, including analysis of singularities,
which allows the computation of eigenvalues, eigenfunctions and their multiplicities
for a large class of more complicated fractals.

Our analysis, in particular, allows the computation of the spectral zeta function
on fractals (see [8, 49]) and the limiting distribution of eigenvalues (i.e. integrated
density of states). The latter is a pure point measure, except in the examples which
are based on the one dimensional interval. This support has a representation

supp(x) = 9r | J D,

where Jgr is the Julia set of a rational function, which we compute, and D is a
possibly empty set of isolated points (if D is infinite, it accumulates to Jr). Also, our
analysis allows the computation of eigenvalues and eigenfunctions by a highly accurate
hierarchical iterative procedure, which does not involve large matrix calculationsi and
is illustrated in Figures 1, 2 and 3.

1 see http://www.math.uconn.edu/ teplyaev/fractals/
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Figure 1. A basic Neumann eigenfunction on the Sierpiriski gasket, three
dimensional views.

There is a large body of physics and mathematics literature devoted to analysis
on fractals. A small sample of it, containing many references, is [2, 5, 14, 44] and
[23, 24, 25, 26, 43, 45, 46, 47, 48, 50]. In particular, tools for the numerical analysis
of the Sierpinski gasket were developed in [7, 16], and fractal antenae were considered
in [12, 21, 37, 39).

Our study is closely related to the analysis of self-similar graphs [27, 28, 29, 35,
36, 42, and references therein|, quantum graphs [30, 31, and references therein], self-
similar groups [4, 17, 18, 19, 38, 51, and references therein|, and the relation between
electrical circuits and Markov chains [6, 10, 11, and references therein].

This paper is organized as follows. In Section 2 we give the definition of the finitely
ramified fractals with full symmetry, on which the graphs which we consider are based.
In Section 3 we introduce spectral self-similarity, Schur complement and a Drichlet-to-
Neumann map, and show how the resolvent of the Laplacian can be computed by an
iterative procedure. In Section 4 we analyze the singularities of our map and obtain
general formulas for eigenvalues and their multiplicites. We also obtain formulas for
corresponding eigenprojectors. In the subsequent sections we use our general method
to analyze the following examples: the Sierpiriski gasket (Section 5), a non-p.c.f. analog
of the Sierpinski gasket (Section 6), the level-3 Sierpinski gasket (Section 7), a fractal
3-tree (Section 8), the hexagasket (Section 9), the unit interval as a self-similar set
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Figure 2. A basic Neumann eigenfunction on the level-3 Sierpinski gasket, three
dimensional views.

(Section 10), and the diamond fractal (Section 11).

2. Finitely ramified fractals with full symmetry.

A compact connected metric space F' is called a finitely ramified self-similar set if
there are injective contraction maps

Y1y ooy Y : F— F

such that .
F=]Jwi(F)
i=1
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Figure 3. A Neumann eigenfunction on the level-3 Sierpinski gasket, three
dimensional views.

and for any n and for any two distinct words w,w’ € W,, = {1, ..., m}" we have
Eume/ :Vwﬁvw’a

where F,, = ¥, (F) and V,, = ¥, (Vp). It is assumed that Vj is a finite set of at
least two points, which often is called the boundary of F. Here for a finite word
w = wi...w, € W, we denote

’pr = wwl O...0 ’L/an.
We define .
Vn = U 77[11(‘/vn71) = U Vw

i=1 weW,
and call this set the vertices of level or depth n.
There is a natural infinite self-similar sequence of “fractal” finite graphs G,, with
vertex set V,, defined as follows. For each n > 0 and w € W,, we define G,, as a
complete graph with vertices V,,. Then, by definition,

Gn= |J Gu

weW,

Note that G,, has no loops, but is allowed to have multiple edges, depending on the
structure of the fractal F', as in Section 6. The degree of a vertex = in graph G, is
denoted by deg,, (). The degrees of vertices are uniformly bounded in all our examples
except the non-p.c.f. analog of the Sierpinski gasket in Section 6.



Vibration modes of 3n-gaskets and other fractals 5

The main object of our study are eigenvalues and eigenfunctions on the
probabilistic graph Laplacians A,, on G,,, which are defined by

1

Anf(z) = f(z) - dog,.(z)

f()

(z,y)€E(Gn)

where F(G,,) denotes the set of edges of the graph G,,. For convenience we denote
the matrix of A, by M, in the standard basis of functions on V,,.

Our main geometric assumption is that for any permutation o : Vj — Vj there is
an isometry g, : F' — F that maps any « € V} into o(z) and preserves the self-similar
structure of F'. This means that there is a map g, : W7 — Wi such that

7/11' ©09o = go © Uj‘g}(z’)

for all : € W;. The group of isometries g, is denoted by G.

It is well know that the eigenvalues and eigenfunctions of A,, describe vibration
modes of so called cable systems modeled on the graph G,. They are also can
be considered as discrete approximations to eigenvalues and eigenfunctions of a
continuous self-similar Laplacian A, on F. This continuous self-adjoint Laplacian
is the generator of a self-similar diffusion process on F' which can be defined in the
standard way in terms of a self-similar resistance (Dirichlet) form on F, that is for
any f in a suitably defined domain DomA, of the Neumann Laplacian we have

Ef. f) = /F FAufdp

where p is the standard suitably normalized self-similar (Hausdorff, Bernoulli) measure
on F.

A G-invariant resistance form € on F is self-similar with energy renormalization
factor p if for any f € Dom(€) we have

E(f. f) =p28<fi,fi>-

Here we use the notation f,, = f o1, for any w € W,,. Such resistance forms in the
case of p.c.f. fractals were studied in detail in [23]. The finitely ramified case can be
studied in a similar way because of the general results in [24]. In particular, existence
and uniqueness, up to a scalar multiplier, of the local regular self-similar G-invariant
resistance form € is shown in [50]. Moreover, one can show that

&= lim p™"€&,

where the usual graph energy is
2
&= Y  (f@)— )
(z,y)EE(GR)

and that
(pm) " Ay f(x) — A f(x)
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for any function f for which A, f € C(F) and any x € V, = U,>0V). In addition, one
has a relation

d
pm = dZR(O) > 1

where R(z) is the rational function that appears in the spectral decimation process,
and is one of the most important objects in our study.

The standard and almost trivial example of the self-similar energy and Laplacian
in a finitely ramified situation is the case of F' = [0, 1]. In this case we can take m = 2
with ¢ (z) = 12 and 12(2) = 22+ 1, the self-similar measure p is the usual Lebesgue
measure, A, f = —f" and

1 1
E(f. f) = /0 (' ()% = /0 = /F FAL du

for any f € Dom(A,) = {f : f' € L?[0,1], f/(0) = f’(1) = 0}. Then we of course have
p =2 and

2f(z) — flz — g) — flz + 5w)

4n n—oo

47"A, f(2) = —f"(x)
for any f € C?[0,1]. The cases F = [0,1] with m = 3 and m = 4 are discussed in
Section 10.

Although in general the fractal F' is an abstract metric space, in our examples
F C R? and the metric on F is the restriction of the usual Euclidean metric in R2.
Moreover, the isometries g, are restrictions of isometries of R? that maps F into itself
and preserves the self-similar structure of F. We do not require that contractions 1,
are similitudes (see Section 6). One can easily construct more involved and higher
dimensional examples for which our methods apply.

3. Spectral self-similarity, Schur complement and Drichlet-to-Neumann
map

If we have a matrix M given in a block form

A B
M= [ c D } (1)
then its Schur complement is
A—-BD™'C. (2)

In our work one of the most important objects is the Schur complement of the matrix
M — z which is defined by

S(z)=A—z—-B(D-2)"'C. (3)

Note that we use a convention that M — z denotes M — zI where [ is the identity
matrix of the same size as M. Similarly, A — z and D — z denote the matrices A and
D minus z times the identity matrix of the appropriate size.

Our interest in S(z) can be explained as follows. As the initial step in our
calculations, we would like to relate the eigenvalues and eigenvectors of the larger
Laplacian matrix M = M; and the eigenvalues and eigenvectors of a smaller Laplacian
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matrix Mp. In our setup, the blocks A and D in (1) correspond to outer (boundary)
and interior vertices respectively.

Suppose v is an eigenvector of M which is partitioned into its boundary part v
and interior part v{. Then eigenvalue equation

Mv = zv
can be written as n
B Vo _ Vo
ER1IEIE Y @
or as two equations
Avg+ Bv] = 2z (5)
Cvo+ Dvp = zv}
From the second equation we obtain vj = —(D — z)~'Cuvy, provided z ¢ o(D),
which implies
S(z)vg = 0. (6)

If vg is also an eigenvector of My with an eigenvalue zy, then we would like to
relate (6) with
(Mo — zo)vo = 0. (7)

According to [47, 36], we can write zg = R(z) if we solve what is our main equation

S(2) = 9(=) (Mo — R(2)) (®)

where ¢(z) and R(z) are scalar (meaning not matrix-valued) rational functions.

Proposition 3.1. For a given fully symmetric self-similar structure on a finitely
ramified fractal F' there is a unique rational function ¢(z) and R(z) that solve equation

(8).

Proof. Clearly S(z) is a matrix valued rational function. By our main symmetry
assumption in the previous section, for any z the matrix S(z) is a linear combination
of the identity matrix and My, which implies the proposition. O

Remark 3.2. From the calculations above one can see that S(X\) is the so called
Drichlet-to-Neumann map for the Laplacian A.

In our examples My is a matrix that has 1 on the diagonal and fﬁ off the
diagonal. Therefore we have that

¢(2) = —(No — 1)S1,2(2)
and
. Sl}l(z)
o(2)

Here Ny is the number of boundary vertices, which is the number of points in Vj.
From the calculations above we have the following theorem.

R(z)=1
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Theorem 3.1. Suppose that z is not an eigenvalue of D, and not a zero of ¢. Then
z is an eigenvalue of M with an eigenvector v if and only if R(z) is an eigenvalue of

, , v
My with an eigenvector vy, and v = { v? } where

v = —(D — 2)"'Cuy.

This implies, in particular, that there is an one-to-one map from the eigenspace of My
corresponding to R(z) onto the eigenspace of M corresponding to z

vg — v = T(2)vg

where
T(z)=1,— (D —2z2)"'C.

Naturally, the map vg — v is called the eigenfunction extension map, and 7'(z) is
called the eigenfunction extension matrix.
The theorem above suggest the following definition of the so called exceptional
set
E(Mo, M) = (D) U {2 : ¢(2) = 0}.

Once we have computed the functions R(z) and ¢(z) using the smaller matrices
My and M = M;, we can compute the spectrum of much larger matrices M, by
induction using the following results.

We use notation
ATL B’ﬁ/
Mn o { Cn DTL :|

for the block decomposition of M,, corresponding to the representation
Vn = Vn-1 U V»,i

where V! = V,\V,,_1.
Theorem 3.2. For all n > 0 we have a relation

b
9(2)

where P,,_1 is defined as the restriction operator from V,, to V,_1. We often identify
P,,_1 with the orthogonal projection from (?(V,,) onto the subspace of functions with
support in Vi,_1.

Suppose that z,, ¢ E(Mo, M). Then z, is an eigenvalue of M, with an eigenvector
vy, if and only if

Pyoy(My, —2)" P = ——(M,_; — R(2))"%,

An—1 = R(Zn)

. . . . Un—1
is an eigenvalue of M, _1 with an eigenvector v,_1, and v, = [ Z, ] where

v = —(Dp — 2,) ' Crvp_1.

In such a situation vl, is called the continuation of the eigenfunction v,_1 from V,_q

to Vn\vn,1 .
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One can obtain information about the extension of eigenfunctions and
eigenprojectors from V,,_1 to V,, by the following theorem.

Theorem 3.3. Let P, ., be the eigenprojector of M, corresponding to an eigenvalue
zn, ¢ E(Mo,M), and P,_1.,, , be the eigenprojector of M, _1 corresponding to
eigenvalue z,—1 = R(zyn). Then

Tn(zn) Pnfl,znfl (Pnfl - Bn(Dn - zn)_lpé) (9)

where

Tp(2) = (Pooy — (D, — 2)71C,)
and P!, is defined as the restriction operator from V,, to V,\Vy,_1. We often identify P,
with the orthogonal projection from (?(V,) onto the subspace of functions that vanish
on Vp_1. In this case P, =1, — P,_1.

Proof. First we will prove the key formula for the proof of these theorems. This
formula is not related to spectral similarity and is a known fact. Essentially, it shows
how to find the inverse of a matrix given in a two-by-two block form. To simplify
notation we assume that n =1 and M; = M.

Suppose that matrices D — x and A — x — B(D — x)~'C are invertible. Then
M — x is invertible and

(M—2)"'=(D-2)'+
+(Py-(D—-2)'CYA -z —-BD-z)"'C)y"(Py—B(D —2)"") (10)

It is enough to prove this formula for x = 0, i.e. to prove

Mt=D'4+(P,—-D'C)(A-BD'C)"(P, - BD™) (11)
provided that D and A — BD~'C are invertible.
We have
MD™ = (P|+ P)MD P/ =P + PLMD™'P]
and
PyM(Py —D™'C) = MPy — PI/MPy — P,MD *C = Py(A— BD™'C).
Thus

M(D™'P| + (Py— D~'C)(A— BD~'C) " (P, — BD"'P})) =
= P/ + PpMD ‘P, + Py(Py— BD 'P)) =P/ + Py =1.

That is what (11) says.
To obtain the proof Theorem 3.2, note that (10) implies

(M —2)t=(D—2)"'P/+
+ (Po— (D —2)7'C)(¢(x) Mo — ¢1(z)) " (Po — B(D — )~ ' P{), (12)

where ¢1(2) = ¢(2)R(z). The statements of Theorem 3.3 follow if we use the standard
spectral representation

and pass to the limit as  — z in this formula. O]
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Remark 3.3. Forn =1 these theorems are also true for the adjacency matriz graph
Laplacian. Forn > 1 it is important that we consider probabilistic graph Laplacian, or
a multiple of it. For instance, [9, 46] and related works usually consider the Laplacian,
Ay, multiplied by 4.

4. Analysis of the exceptional values.

It is not enough to restrict ourself to values of z outside of the exceptional set
E(My, M). In fact, this set is very interesting because it often contains eigenvalues of
high multiplicity, which in turn often correspond to localized eigenfunctions.

We first formulate a proposition that gives the multiplicities of such eigenvalues,
and is used extensively to analyze examples in the rest of the paper. Then we prove
a theorem which implies the proposition.

We write mult,,(z) for the multiplicity of z as an eigenvalue of M,,. By definition,
mult,,(z) = 0 if z is not an eigenvalue. Notation dim,, is used for the dimension of
¢2(V,,) which is the same as the number of points in V.

Proposition 4.1. (i) If z ¢ E(My, M), then
mult, (z) = mult,, 1 (R(z2)), (13)

and every corresponding eigenfunction at depth n is an extension of an
eigenfunction at depth n — 1.

(ii) If z ¢ o(D), ¢(z) =0 and R(z) has a removable singularity at z, then
mult, (z) = dim,, 1, (14)

and every corresponding eigenfunction at depth n is localized.

(1ii) If z € o(D), both ¢(z) and ¢1(z) have poles at z, R(z) has a removable singularity
at z, and L R(2) # 0, then

mult,, (z) = m" 'multp(z) — dim,,_; +mult, _; (R(2)), (15)

and every corresponding eigenfunction at depth n vanishes on V,_1.
(iv) If z € o(D), but ¢(z) and ¢1(z) do not have poles at z, and ¢(z) # 0, then

mult,, (z) = m" 'multp(z) + mult, 1 (R(2)). (16)

In this case m™ ‘multp(z) linearly independent eigenfunctions are localized,
and mult,,_1 (R(z)) more linearly independent eigenfunctions are extensions of
corresponding eigenfunction at depth n — 1.

(v) If z € o(D), but ¢(2) and ¢1(z) do not have poles at z, and ¢(z) =0, then
mult, (z) = m" ‘multp(z) + mult,_;(R(2)) + dim,_, (17)

provided R(z) has a removable singularity at z. In this case there are
m" tmultp(z) +dim,,_1 localized and mult,,_1(R(z)) non-localized corresponding
eigenfunctions at depth n.
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(vi) If z € o(D), both ¢(z) and ¢1(z) have poles at z, R(z) has a removable singularity
at z, and L R(2) = 0, then

mult, (z) = mult,,_1 (R(z2)), (18)

provided there are no corresponding eigenfunctions at depth n that vanish on V,_1.
In general we have

mult,, () = m" 'multp(2) — dim,,_; + 2mult,,_; (R(2)) (19)

(vii) If z ¢ o(D), ¢(z) =0 and R(z) has a pole z, then mult, (z) = 0 and z is not an
etgenvalue.

(viii) If z € (D), but ¢(z) and ¢1(z) do not have poles at z, ¢(z) =0, and R(z) has
a pole z, then

mult,, (2) = m" 'multp(2) (20)

and every corresponding eigenfunction at depth n vanishes on V,_1.

In the next theorem we establish the relation between eigenprojectors of spectrally
similar operators. Namely, we show how one can find the eigenprojector P, ,
of M, corresponding to an eigenvalue z, if the eigenprojector P,_; g(.) of M, 1
corresponding to eigenvalue R(z) is known.

We state this theorem for n = 1 and M = M, and the analogous relation holds
for any n > 1. As before, we define ¢1(2) = ¢(2)R(z).

Theorem 4.1. (i) In the case of Proposition 4.1(i),

P, = (Po— (D = 2)"'C) Py r(»)(Po — B(D — 2)7 ). (21)

o
(2) i R (z)
(ii) In the case of Proposition 4.1(ii),

P, = (Py— (D —=2)7'0)(o(2)Mo — 91(2)) " (P = B(D — 2)7") (22)

where Yo(x) = ¢(x)/(z — x) and Y1(x) = ¢1(x)/(z — x). This implies, in
particular, that there is an one-to-one map vo — v = vy — (D — 2)"1Cvy from
02(Vy) onto the eigenspace of M corresponding to z.

(iii) In the case of Proposition 4.1(iii), the poles of ¢(z) and ¢1 are simple and so
R(z) has a removable singularity at z, P,Pp , = P, and PyP, = 0, which means
that the corresponding eigenfunctions of M wvanish on Vj.

Moreover,

rankPp . — rankP, = rank(vo(z) Mo — 11(2)1o) = corankPy g(»)

where Yo(x) = ¢(x)(z — x) and Y1 (x) = d1(x)(z — x).
In addition, the following relations hold

1
Yo(2)

and Pp .CPy r(zy = 0. Note that Iy — Py g(.) is the projector from ??(Vy) onto
the space, where (D — 2)~' is a well defined bounded operator.

P,=Pp.+ Pp.C(My — R(2))""(Io — Po.r(z)) BPp,- (23)
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(iv) In the case of Proposition 4.1(iv),
1
¢(2) = R(2)
and the projector Pp . is orthogonal to the second term in the right hand side of
this formula. In particular, P,Pp , = Pp ..

(v) In the case of Proposition 4.1(v), P, is the sum of the right hand sides in (22)
and (24).

(vi) In the case of Proposition 4.1(vi), provided there are mo corresponding
eigenfunction at depth n that vanish on V,,_1, we have

I
¥(2) £ R(2)

In general, this formula is combined with 23.

P, :PD,z+ (PO_(D_Z)ilc)PO,R(Z)(PO _B(D_Z)il) (24)

(Po— (D =2)"'C)Pyp(»(Po — B(D—2)"").  (25)

o

(vii) In the case of Proposition 4.1(vii) we formally have P, = 0.
(viii) In the case of Proposition 4.1(viii) we have P, = Pp .

Proof. Ttem (i) is the same as Theorem 3.3; it is inserted here also for the sake of
completeness.

To prove item (ii), we pass to the limit as z — z in the formula 12, which can be
re-written as

(M —z)t=(D—z)" '+

+ ﬁ(Po — (D —2)71C) (o () My — 91 (2)) "2 (Po — B(D —2)™Y).  (26)

Then the statements to be proved follow if we pass to the limit as z — z in this
formula.
To prove item (iii), we again pass to the limit as  — z in formula (12). We see
that PyP, # 0 if and only if
lim ( — 2)? (4o (2) Mo — 1 (2)Io) " # 0,

r—z

that is only possible if L R(z) = 0. Therefore PyP, = 0 in our case. Relation (23)
follows from (12).
Note that
Yo(2)Mo — 1 (2)lo = —PoMPp .M Py
if z € o(D). Hence rank(yo(z)Mo — ¢1(2)Io) = rank(Pp,, — P,). In addition, we
have that g (2) My — ¢1(2)Io is nonpositive.

Also we see that Py(M — 2)~1 P, is a bounded operator on £?(Vj) and so we have
Po(M — Z)_lpo = ig(z — 1‘)(1/)0(1‘)M0 — 1,[}1(12)[0)_1. Hence PQ(M — Z)_lpo =0 if
and only if R(z) has a pole at z or R(z) € p(Mp). If R(z) has a removable singularity
at z then

wo(z)%R(z)Po(M — Z)_lpo = P}%(z)

To prove item (iv), note that the relation P,Pp , = Pp_, easily follows from the
fact that ¢ and ¢, do not have poles. Then, if we restrict everything to the orthogonal
complement of the image of Pp ., we can apply item (i) of this theorem.

Item (v) follows from items (ii) and (iv). The proof of item (vi) is a combination
of the proofs of items (i) and (iii). Items (vii) and (viii) easily follow from (12). O
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5. Sierpinski gasket.

Spectral analysis on the Sierpinski gasket originates from physics papers [40, 41] and
is well known [7, 13, 46, 47]. In this section we show how one can study it using our
methods. Note that recently Sierpinski lattices appeared as the Schreier graphs of so
called Hanoi towers groups [19, 38, 51].

L2

T L5 T3
Figure 4. The Sierpinski gasket and its Vi network.

Figure 4 shows the depth one approximation to the Sierpiriski gasket. The depth
1 Laplacian matrix M = M7, which is obtained from the above figure, is

1 0o o o -1 —%
0 1 0 —% 0 -3
o o 1 -1 -1 0
M = 0 1 1 12 I Y
4 4
_1 9 _i —1 7 _i
I S T S T
1 1 1 1
The eigenfunction extension map is
1 2(—1+z) 2(=1+2)
75272('17;4),2)2 54+2z(—7+4z2) 5+22(Z(II+;LZ)
—1 — z 1 — z
(D—2)C= 5122(—7+4z) —5+2(7—4z)z Bt2z(—7+4z)
2(=1+z) 2(=1+2)

1
54+2z(—7+4z)  54+2z(—T7T+4z) —54+2(7—42)z

From these we have that
3—2z

o) = 5L 4
and
R(z) = (b —42)z.
The eigenvalues of M written with multiplicities are
33333
G(M) - {2727 57 Za 470}
and the corresponding eigenvectors are {-1, -1, 0, 0, 0, 1}, {-1, 0, -1, 0, 1, 0}, {0, -1,
-1, 1, 0, 0}, {2, 0, -2, -1, 0, 1}, {2, -2, 0, -1, 1, O}, {1, 1, 1, 1, 1, 1}. The eigenvalues
of D written with multiplicities are

551
D)y=<¢-,-,=
o0 ={5.3.3}
and the corresponding eigenvectors are {-1, 0, 1}, {-1, 1, 0}, {1, 1, 1}. The equation
¢ = 0 has as its solution {2} so the exceptional set is

51 3
E(MO»M) = {47272}
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[ay

0.5 1 1.5 2

Figure 5. The graph of R(z) for the Sierpiriski gasket.

We can find the multiplicities of these exceptional values by using Proposition 4.1.
For the value 2, which is a pole of ¢(z) and in (D), we use Proposition 4.1(iii)
to find the multiplicities:

mult;(3) =2-3+1=0,
multy(2) = 6-6+1=1,
mult(3) = 18 — 154+ 1 = 4,

For the value %, which is also a pole of ¢(z) and in o(D), we again use

Proposition 4.1(iii) to find the multiplicities:

mult; () =1-3+2=0,
multy(1) = 3-6+3=0,
mults(3) = 9—15+6 =0,

For the value 2, since 2 ¢ o(D) and ¢(z) = 0, we use Proposition 4.1(ii) to find
the multiplicities. Here the multiplicity of % in the n'? depth is equal to the dimension
at depth n — 1.

mu1t1 (

)
)
)

Table 1 shows the ancestor-offspring structure of the eigenvalues of the Sierpinski
gasket. The symbol * indicates branches

5 — 25— 162

mults

Il
—= o W
\-U‘ -

W IW NJw

mults (

§i(2) = 3
and
5++25—16z
bo(z) = —————

8
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of the inverse function R~1(z) computed at the ancestor value z. By Proposition 4.1(i)
the ancestor and the offspring have the same multiplicity. The empty columns
represent exceptional values. If they are eigenvalues of the appropriate M,,, then
the multiplicity is shown in the right hand part of the same row.

ZGCT(M()) 0 %

multg(z) 1 2

z € o(M) 0 % % % g

multy (z) 1 2 3

ceotny | o 2] la@lam| | 2 i 2 ]

mults (z) 1 2 2 3 6 1
z€o0(Ms) || O % s | k| k| * * | % % % | % % g
mults(z) 1 2 21|2| 2 33 6 111|15| 4

Table 1. Ancestor-offspring structure of the eigenvalues on the Sierpinski gasket

By induction one can obtain the following proposition, which is known in the case
of the Sierpiriski gasket (see [13, 46, 47]).

Notation R_, A is used for the preimage of a set A under the n-th composition
power of the function R.

Proposition 5.1. (i) (M) = {0, 2}.
(ii) For anym >0

n
c | R-m{0,3}
m=0

and for any n > 1 we have

nﬁ%$U<QRWW&Q.

In particular, forn > 2

o(M —m}U(URm{QU(URmGQ.

m=0 m=0

3ntlyg
(iii) For any 5

n >0, dim,, =
(iv) For any n > 0, mult, (0) = 1.
n>=0 3

, mult, (3) 43

(v) For any 5
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(vi) If z € R_i {3} then mult,(z) = % forn n—1.

2 1;
vii) If z € R_y, 21 then mult,(z) = Ei—— forn >2
1 2 )

Corollary 5.2. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure k with the the set of atoms

Ny ( U R_m{i}> U < U R_m{i}> :
m=0 m=0

0<k<
0<k<<n—2.

Moreover,
1
K ({%}) = ga
and
K({z}) =37
if € R_p{3,3}.

For the Sierpinski gasket we also demonstrate how one can compute the

eigenprojectors for the two most interesting eigenvalues, z = % and z = %. For
the former case we use Theorem 4.1(ii). We compute ¢o(2) =1 and ¢1(3) = —2 and
o

%:(Rf—u%—%f%%)@h+%y4@%—BADn—

[SJ[eY

e
For the case z = 5 we use Theorem 4.1(iii) with R(5) =0 and 10(5) = 75 and so

Pz =Pp (28)

n

w3 H12Pp sCuM By Py 5.

Note that one can show that the term I, — P, is the projector to the orthogonal
complement to constants and so can be omitted in this case. Note also that Pp s
has a simple block structure with blocks

2 -1 -1
L
311 21 2

and that D,, has a block structure with blocks

4 -1 -1
i -1 4 -1
-1 -1 4

The matrices of C,, and B, also have similarly simple block structure with block
equivalent, depending on the labeling of vertices, to

0 -1 -1
i -1 0 -1
-1 -1 0

except for boundary vertices. The computation of the eigenprojectors using
Theorem 4.1(i) plays an important role in [47].
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6. A non-p.c.f. analog of the Sierpinski gasket.

Several non-p.c.f. analogs of the Sierpinski gasket were introduced in [50]. Here we
analyze the simplest one of them. This fractal can be constructed as a self-affine
fractal in R? using 6 affine contractions, as shown in [50]. It is finitely ramified but
not p.c.f. in the sense of Kigami. Figure 6 shows the Vi network for this fractal.

L2
€5
r T3

Figure 6. The non-p.c.f. analog of the Sierpiriski gasket and its Vi network.

The matrix of the depth-1 Laplacian M; = M is

1 1 1
1 0 0 0 N S -
0 1 0 ~3 0 ~1 73
o 0 1 -3 -1 0 —3
M=|o0 -1 —% 1 0 0 —3
—% 0 -3 0 1 0 —3
1
-z —= 0 0 0 1 —5
5 S S R T R B
6 6 6 6 6 6
and the eigenfunction extension map is
_ 1 —5+62 —5+62
6—182+1222 12(1—32+222) 12(1—32+222)
- =T 2 - : 2 12 1_53+622 2
(D _ Z) lc — 12(1:53j3~222 ) 6:158758;122 _( — zlJr z2)
12(11732+222) 12(1173z+2z2) 61718z+12z2
—3+62 —3+62 —3+62
Moreover, we compute that
15— 14z
o(2)

T 24 72, + 4822

and
C24z(2 —1)(22 — 3)
14z — 15

The eigenvalues of D, written with multiplicites, are

R(z) =

with corresponding eigenvectors {-1, -1, -1, 1}, {-1, 0, 1, 0}, {-1, 1, 0, 0}, {1, 1, 1, 1}.

One can also compute
335533
U(M)_{2127474747470}
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1.5 — — — £ ¢ — 1

0.5 1

Figure 7. The graph of R(z) for the non-p.c.f. analog of the Sierpinski gasket.

with the corresponding eigenvectors {-1, -1, -1, 0, 0, 0, 1}, {-1, -1, -1, 1, 1, 1, 0}, {-1,
0,1,-1,0,1,0}, {-1,1,0,-1, 1,0, 0}, {1, 0, -1, -1, 0, 1, 0}, {1, -1, 0, -1, 1, 0, O}, {1,
1,1,1,1,1, 1}.

It is easy to see that ¢(z) = 0 has one solution {12}. Thus, the exceptional set is

E(MO,M):{?) 1L 15}

2°772714

ZEO'(MO) 0 %
mult(z) 1 2

3|1 3 5 3
z € o(My) 0 1353 g 2 3
multy (z) 1 2 2 2
ZEO'(MQ)O].% ******%%%%1%
multy(2) || 1 2l2|2|2|2|2| |2|2|1|6|7

Table 2. Ancestor-offspring structure of the eigenvalues on the non-p.c.f. analog
of the Sierpinski gasket.

To begin the analysis of the exceptional values, note that 4 is a pole of R(z) and
therefore is not an eigenvalue by Proposition 4.1(v11). We are interested in the values
of R(z) in the other exceptional points, which are

R()=R(E)=0 and R(}) =%

It is easy to see that 1 and  are poles of ¢(z) and so we can use Proposition 4.1(iii)
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to compute the multiplicities. We obtain

mult; (1) = 2-3+1=0,

and
multy (1) =6-7+2=1.

Since 2 is not a pole of ¢(z), we can use Proposition 4.1(iv) to compute the

multiplicities
multy(3) =1+1=2

and
multy(3) =6+1=71.

The ancestor-offspring structure of the eigenvalues on the non-p.c.f. analog of the
Sierpiniski gasketis shown in Table 2. The symbol * indicates branches of the inverse
function R~!(z) computed at the ancestor value. The multiplicity of the ancestor is the
same as that of the offspring by Proposition 4.1(i). The empty columns correspond
to the exceptional values. If they are eigenvalues of the appropriate M,,, then the
multiplicity is shown in the right hand part of the same row.

Theorem 6.1. (i) For any n > 0 we have that o(A,) C Uy, _o R—m({0,3}) and
(AI) - {Oa 4 4a%

(ii) For n > 2 we have that

o(An) = {0, }U<U R_m{3, i})U(U R-m{;,l}).

> 11+4-6 .
5
iv) For any n > 0 we have mult, (0) = 1.

> 1 we have mult, (3) = 6"~ + 1.

ili) For any n > 0 we have dim,, =

vi) For anyn > 1 and z € Ri_,{2, 2} we have that mult,,(z) = 2.

(
(
(v) For anyn
(
( m<n—2andz € R_,{3,2} we have that

>
vii) For any 0 <

multn(z) = mlﬂtn—m—l(%) — 6n7m72 +1.

11-6"™"2_6
—
6" ™ — 6
—

Proof. For this fractal we have o(Ag) = {0, 3} with multo(2) = 2 and, for the purposes
of Proposition 4.1, m = 6.
Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Ttem (iii
(

(viii) For any 0 <m <n—2 and z € R_,,{3} we have mult,,(3) =

(ix) For any 0 < m <n —2 and z € R_,, {1} we have mult, (1) =

iii) is straightforward by induction.
Ttem (iv) follows from Proposition 4.1(i) because 0 is a fixed point of R(z).
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Ttem (v) easily follows from Proposition 4.1(iv).
Items (vi) and (vii) follows from the items above.
(

Items (viii) and (ix) follows from Proposition 4.1(iii) because
1144671 11-6"2 -6
mult, (1) =611 - 220 g2y g o 00 770
5 5
11+4-67"1 6" — 6
mmmu)=6”4.2—4—i?7——7+1= —.

O

Corollary 6.1. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure k with the the set of atoms

U Rfm{%7 1}7
m=0

where r ({3}) = 5 and

24
5o e

(e =367 i s e Ron{d 3k
11

k({z}) = ZG*’"” if z€R_ {3}

K({2}) = %6_’” if zeR_n{1}.

7. Level-3 Sierpinski gasket.

The level-3 Sierpinski gasket is shown in Figure 8. It had been used as an example
in several works [3, 20, 46, and references therein]. In particular, the spectrum is
computed in the recent paper [9] independently of our work.

The matrix for the depth-1 Laplacian M; = M is

1 0o o -+ -0 o0 0 o0 o0
o 1 o0 o0 0 -+ -2o0 0 o0
o 0o 1 o o0 o0 o0 -2 —% 0
—% o o 1 -0 0o 0 -3 —%
| 10 0 -+ 1 -0 o0 o0 -3
0 —% o o -+ 1 -1o0 o -3
o -2 0 0 o0 -1+ 1 -Xo0 -2
o o -0 o o -1+11 -1 i
0 0 —% —% 0 0 0 —% 1 73
00 0 —p b f o o
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and the eigenfunction extension map (D — z)71C' is

—94+72

—44+3z

3(1—62+422)(15—322+1622)
—24+4109z—132224482°

3(1—62+422)(15—322+1622)

3(1—62+422)(15—322+1622)

—443z
3(—5+342z—422+1623)

3(—5+342—422+1623)

—94-7z
3(1—62z+422)(15—322+1622)

—4432 —24+109z—13222 44823 —9+472
3(—5+342z—422+1623) 3(1—62+422)(15—322+1622)  3(1—6z+422)(15—322+1622)
—9+472 —24+1092—13222 44823 —4+43z
3(1—62+422)(15—322+1622)  3(1—62+422)(15—322+1622)  3(—5+342—422+1623)
—9472 —4432 —2441092—132224482%
3(1—62+422)(15—322+1622)  3(—5+342—422+1623) 3(1—62+422)(15—322+1622)
—4+432 — —24+1092—1322%+482°
(

3(—5+34iz—4z2+16z3)
T 3-18z+1222

+7z
3(1 —6z-|i4z2)(15—32z+16z2)
T 3—18z+1222

3 1—6z-|i4z2)(15—32z+16z2)
T 3-182+1227

Moreover, we compute that

(22 —3)(62—17)

92) = 30— 5) (4 = 3)(1 = 62 1+ 427)

and 62(> — 1)(42 — 5)(4z — 3)
Z\Z — Z — Z —
R(z) = .
(2) 62 —7
)
X7 5
Ty 10 T8
1 fe) T6 x3

Figure 8. The level-3 Sierpinski gasketand its V; network.

Figure 9. The graph of R(z) for the level-3 Sierpinski gasket.

The eigenvalues of D, written with multiplicities are

o) ={3.56+v5.23.22 16— v5)
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One can also compute

o) = {3,555 16+ V2. {3+ VA1 16 - VD, {6~ VD)0

We find that ¢(z) = 0 has two solutions {Z}, {2}. Thus, the exceptional set is

E(Mo, M) = {;,i(3+¢5),i,i,i(3—\/5),g}.
z € o(My) 0 %
multp(2) 1 2
z € o(M) 0 1|22 3i4‘/§ 3*4\/3 3
multq (2) 1 1 2 2 4
ZGU(MQ)OI%%**** k| ok | | ok | ok | | ok | % 314‘/§3i4\/5%%%
multe(2) || 1)1 1|11|1|1 2|2|2/2\2/2 22 4| 4 16| 3|3

Table 3. Ancestor-offspring structure of the eigenvalues on the level-3 Sierpinski
gasket.

To begin the analysis of the exceptional values, note that find the poles of R(z)

and see if it is an exceptional value It is easy to see that 2, 2, 1(3—+/5) and 1(3+/5)
are poles of ¢(z) and so we can use Proposition 4.1(iii) to compute the multiplicities.
We obtain

multl(%): 2—-34+1=0,
multy(3) = 121041 = 3,
multy(3) =2-3+1=0,
multy(3) = 12-1041 = 3,
mult; (35Y8) = 1 -3 42 =0,
multy (35Y3) = 6 — 10 + 4 = 0.

#(3) = 0 and therefore we use Proposition 4.1(v) to compute the multiplicities. We

obtain

Note that R(2) = R(5) = 0 and R(%‘/g) = 2. Also, 3 is not a pole of ¢(z) but
v
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The ancestor-offspring structure of the eigenvalues on the level-3 Sierpinski gasket
is shown in Table 3. The multiplicity of the ancestor is the same as that of the offspring
by Proposition 4.1(i). The empty columns correspond to the exceptional values. If
they are eigenvalues of the appropriate M,,, then the multiplicity is shown in the right
hand part of the same row.

Theorem 7.1. (i) For any n > 0 we have that o(A,) C Ul _o Rom({0,2}) and
U(A ) = 37%(31 \[)7 VR 4
(ii) For m > 0 we have that

o(An) = (R (0)) <R-<n_1) (3 i4¢5>> U{g}

n >0 we have dim,, = 3+ (6" —1).
iv) For n > 0 we have that mult,(0) = mult, (1) = 1.
n =2 and for z € R_k(1), 0 = k < 2 we have that mult,(z) = 1.

2-6"4+8
—
2 and 0 < k < n—2 we have forzER_k{%,%} that

vi) Forn > 0 we have that mult,(3) =

5
S
3
S
\%

mult, (z) = %(6”_’“_1 —1).
Note as a special case k = 0 which gives the multiplicities of < and 5

(viii) Forn > 1 with 0 < k < n — 1 we have that for z € R_ (3i4‘f)

2. 6n—k‘—1 +8

mult, (2) = multnfkfl(%) = 5

&

(ix) For anyn > 1 with 0 < k < n — 1 we have that for = € R_,(3£Y5)
mult, (z) = 0.

Proof. For this fractal we have o(Ag) = {0, 2} with multo(2) = 2 and, for the purposes
of Proposition 4.1, m = 6.

Item (i) is obtained above in this section.

Ttem (ii) follows from the subsequent items.

Ttem (iii) is straightforward by induction.
Ttem (iv) follows from Proposition 4.1(i) because 0 is a fixed point of R(z) and
because R(1) =

Item (v) easﬂy follows from Proposition 4.1(i) and Item (iv).

Ttem (vi) follows from the previous items and Proposition 4.1(v).

Ttem (vii) follows from Proposition 4.1(iii).

Ttem (viii) follows from Proposition 4.1(i).

Ttem (ix) follows from Proposition 4.1(iii), and as a consequence none of these
values appear in the spectrum. O



Vibration modes of 3n-gaskets and other fractals 24

Corollary 7.1. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure k with the the set of atoms

= (QORm{i, : Biﬁ}> .

Moreover, r ({3}) and

2
7
z})=26"""" if zeR_,{3,5}

({z}) =
H=26"" if zeR., {32}

—_

—~
—_
I

K
K
8. A fractal 3-tree.

The fractal tree is a fractal that is approximated by triangles as shown in Figure 10,

but in the limit is a topological tree. It appeared as the limit set of the Gupta-Sidki
group, see [4, 38, and references therein].

T2
5
g
T4
rr
L9
I €3
6
Figure 10. The fractal 3-tree and its V1 network.
The depth-1 Laplacian matrix M; = M is
1 0o o0 -0 0o -3 0 o0
o 1 0 0 -0 o0 -10
0o 0 1 0 0 —%0 0 —3
-2 0 0 1 —i—%—io 0
M=|[0 -0 —%1 -1 0 =10
0 0 —i—%—il 0o 0 -1
-+ 0 0 -4 0 0 1 0 O
o -2 0 0 -0 o0 1 o0
o 0 -+20 0 -1 o0 0 1
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and the eigenfunction extension map (D — z)71C' is
5+2z(—7+4z) 2(—1+42) 2(—1+42)
9—8z(6+2(—9+4z2)) (—3+42)(3+42(—3+2z2)) (—3+4z)(3+4z(—3+2z2))
2(—1+42) 5+2z(—7+4z) 2(—1+42)
(73+4z)(3+4z(73+22)) 9—8z(6+2(—9+4z2)) (—3+4+42)(3+42(—3+2z2))
2(—1+42) 2(—1+42) 5+2z(—7+4z)
(— 3—}-4z)(3—(‘,—34.2(2 )3+2z)) (—3+42)(3+4z(—3+2z)) 9—8z(6+2(—9+4z))
—7 z)z 1 1
(—34+42)(34+4z(—342z))  9—8z(6+2z(—9+4z2)) 978z(6+z(79+4z))
1 —74+8(3—2z2)z
9—82z(6+2(—9+4z)) (—34+42)(34+4z(—34+2z)) 9— 82(6+z( 9+4.§))
1 1 8(3—22)z
9—8z(6+2z(—9+4z2)) 9—8z(6+2(—9+4z2)) (— 3+4z)(3+4z( 3+2z2))
From here, we compute that
3—2z
OC) = TR T2 — 32
and
R(z) =4z(z — 1)(4z — 3).
2 |
[
1.75 |
[
1.5 —A————— — 4 — — ----
[
1.25 |
[
1 [
[
0.75 [
[
0.5 [
[
0.25 [
[
0.5 1 s 2
Figure 11. The graph of R(z) for the fractal tree.
The eigenvalues of D written with multiplicities are
331 331
D (3+v5).317(-v5)
o(D) = {2243+\f PG V3
and the corresponding eigenvectors are {1,0,—1,—1,0,1}, {1,—1,0,—1,1,0},
{152,158, 158 1,11}, {-4,0,4,-1,0,1}, {~}, $,0,~1,1,0}, and
{1+2\/§7 1—0—2\/3, 1-"-2\/57 1,1, 1}.
Computing the eigenvalues of M with multiplicities gives
33333 .11
M)y=<—-,-,=,=-,= 1,-,-,0
o(M) = {22222 4’4’}
and the corresponding eigenvectors are {0, 0, —1, 0, 0, 0, 0, 0, 1}, {0, —1, 0,
o0,1,0} {-1,0,0,0,0,0,1,0,0}, {1,0, -1, -1, 0, 1, 0, 0, 0}, {1, —1, 0 0,
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07 0}’ {17 1a 1a 717 717 7]% 17 15 1}’ {717 07 17 7%7 07 %7 717 0’ 1}7 {71, 1a Oa -
0,-1,1,0}, {1,1,1,1,1,1,1, 1, 1}.
The only solution of ¢(z) =0 is % As such, the exceptional set is

331 1
S CIACE RG]

11
20 2

B30 = {
For analysis of exceptional values, one can find R(z) at each exceptional point by
1 3 1,3 11 1
R7H0)=140,7.1¢ and R'(3) =1, 73-v3),73+V3)¢.
4 4’4 4
Using Proposition 4.1, one can determine the multiplicities of the exceptional values.

For the value 2, which is a zero of ¢(z), we use Proposition 4.1(v) to find the
multiplicities.

mult; (3) =4°(2) + 0+ 3 = 5,
multe(3) =4'(2) +0+9 = 17.

For the value 2, which is a pole of ¢(z), we use Proposition 4.1(iii) to find the
multiplicities.

mult ( 4°(2) =3+ 1 =0,
multy(3) =4*(2) -9 +1=0.

For the values 1(3 + v/3) and 1(3 — v/3), which are poles of ¢(z), we use
Proposition 4.1(iii) to find the multiplicities.

7)
3
4

mult; (3(3 £ v3)) =4°(1) -3+ 2 =0,
multa(1(3 £ v3)) =4'(1) —9+5=0.

z € o(Mp) 0 3

multy(z) 1 2

z € o(M) 0 % 1 i ENE %

multy (z) 1 1 2 5
z€0(M) || O % 1 H |k |k | x| k| % i EE V] %
multo(z) || 2| |1| |z|1|1]2]2|2 5 17

Table 4. Ancestor-offspring structure of the eigenvalues of the fractal tree.

The ancestor-offspring structure of the eigenvalues of the Fractal Tree is shown
in Table 4. As before, the symbol * indicates branches of the inverse function R~*(z)
computed at the ancestor value. The multiplicity of the ancestor equals that of the
offspring by Proposition 4.1(i). The exceptional values are represented by the empty
columns. If they are eigenvalues of the appropriate M,,, then the multiplicity is shown
in the right hand part of the same row.
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Theorem 8.1. (i) For any n > 0 we have that o(A,) C U, _o R—n ({0, 21 U{3}
and o(A) = {3,1(3+V3),2
(ii) For m > 2 we have that

= }u(’um{ )

And for n =1 we have o(A;) = {0,1,1,2

y 499
(iii) For n > 0 we have dim,, = 3 + 2(4™ — 1).

(iv) For n > 0 we have mult,(0) = mult, (1) = 1.
(v) Forn > 2 with 0 < k < n —2 we have that if z € R_;(1) then

mult, (z) = mult,, (1) = 1.

(vi) For n > 0 we have that
mult,,(3) = 4" + 1.

(vil) Forn > 1 with 0 < k < n we have for z € R_y () that

y=4nkl g,

[S][eV

multn(z):multn_k(i) mult, 1 (:

(viil) For n > 1 we have mult,(2) = 0.
(ix) Forn > 1 with 0 < k < n we have that if z € R_ (3i4‘/§) then mult, (z) = 0.

Proof. For this fractal we have o(Ag) = {0, 3} with multo(2) = 2 and, for the purposes
of Proposition 4.1, m = 6.

Item (i) is obtained above in this section.
Item (ii) follows from the subsequent items.
Ttem (iii) is straightforward by induction.

Ttem (iv) follows from Proposition 4.1(i) because 0 is a fixed point of R(z) and
because R(1) =

Ttem (v) easﬂy follows from Proposition 4.1(i) and Item (iv).

Item (vi) follows from the previous items and Proposition 4.1(v).

Ttem (vii) follows from Proposition 4.1(i).

Ttems (viii) and (ix) follow from Proposition 4.1(iii), and as a consequence none
of these values appear in the spectrum. O

Corollary 8.1. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure k with the the set of atoms

Bu(Om-})

Moreover, k ({3}) = 3, and s({z}) = 347" if 2 € R, {3}
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L2
Ty Z10 zs Ts5
L7 L11
T Z12 e T3
xbx . x&x
N
L6

Figure 12. The hexagasket and its V7 network.

9. Hexagasket.

The hexagasket, or the hexakun, is a fractal which in different situations [1, 6, 23,
46, 50, 52, 53, and references therein] is called a polygasket, a 6-gasket, or a (2, 2,
2)-gasket. The depth-1 approximation to it is shown in Figure 12.

The matrix of the depth-1 Laplacian M; = M is
1 o o -+ -0 0o 0 0 0 0 O
o 1 o0 O 0 -4+ -320 0 0 0 O
o 0o 1 0o o0 0 o0 -1 —% 0 0 0
—% o 0o 1 -+o0o o 0o -3 -1o o
-0 0 -+ 1 -0 o0 o0 o0 —% 0
_1 _1 1 1
|0 700 il -3 0 0 0 10
0 -3 0 0 0 -3 1 =50 0 0 -4
0 0 —% o o o -*+1 -2 0 0 -—%
0o 0 -z —% o 0o o0 —-+1 -1 0 0
o 0 0 -0 0 0 0 -1 0 o0
o o o o -+ -1290 o0 0 0o 1 0
o 0 0 0 0 0 i -0 0 o0 1
and the eigenfunction extension map (D — z)~1C' is
—4+42(234+42(—9+4%2)) —1+42 —24(7—4z2)z
(1—62+422)(7+82(—3+2z)) (1—6z+4z2)g7+82( 3422)) (1—62+422)(7+82(—3+2z2
—44+2(234+42(—9+42)) —24(7—4z2)z — 14z
(1— 6z+4z2)g7+8z( 3+22)) (1—62+422)(7T+82(—3+22)) (1—62+422)(7+82(—3+22
—24(7—42)z —442(234+42(—9+42)) — 142
(1—62+422)(7+82(—3+2z)) (1—62+422)(7+82(—3+2z)) (1—6z+4z2)E7+8z(—3+2z
—44-2(234+42(—9+4%)) —24(7—42)z

+
T=627422)(7482(—3722))

[ 6z+4z2)E7+8z( 3+22))

))
)
))
(1=62+422)(T+82(—3+27))
)
)
))

142 7T—4z)z —44-2(234+42(—9+42))
(1— 62+422)E7+82( 3422)) (1—62+422)(74+82(—3+2z)) (1—62+422)(7+82(—3+2z2
—4z)z —142 —4+2(234+42(—9+4z2))
(1—62+422)(74+82z(—3+2z)) (1—62+422)(74+82z(—3+2z2)) (1—62+422)(7+8z(—3+2z
—344(3—22)z 1 —34+4(3—22)z
(1— 62+422)(7+82( 34+2z)) T (1—62+422)(7+82(—3+22))  (1—62+422)(7+82(—3+2z2
3+4(3—22)z —34+4(3—22)z o 1
(1—62+422)(7+82(—3+22)) (1—621422)(7+82(—3+22)) (1—621422)(7+82(—3+22))
—34+4(3—22)z —34+4(3—22)z

1
T (1—62+422)(7+82(—3+22))

Moreover, we compute that

¢(2) =

(1—624+422)(7+82(—3+2z))

3+4(z—2)z

(1—62+422)(7+82(—3+2z))

(422 462 — 1) (7 + 82(22 — 3))
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and
22(z — 1)(7 — 24z + 162?)

2z —1

R(z) =

1.5 -F-+-=-=-4-

1.25

0.75

0.25

0.5 1 1.5 2

Figure 13. The graph of R(z) for the hexagasket.

The eigenvalues of D, written with multiplicities, are

U(D):{g,g,z,i@ \f) (3if) (3if)}

One can also compute

333333 _.3311
M)y=<—-, - - —, = = 1,—,—,—,—
O—( ) {2)272?272723 ’474?47470}
with the corresponding eigenvectors {0, 1, 0, 0, 0, 0, —1, 0, 0, 0,0,1},{1,0,0,0, -1,
0,0,0,0,0, 1,0}, {1,0,0,-1,0,0,0,0,0, 1, 0, 0}, {1,0, -1, —-1,0,0,0,0, 1, 0, O,
0} {O 1, -1, O 0,0, —1,1, 0,0, 0,0},{1771,0,0771,1,0,0,0,0 0, 0},{ 1, 1,
-1, 0,0, 0 0 0,0, 1,1, 1} {1 -1, 0, 0,%,75,0,%,%,* , 0, 1}, {0 -1,1, — %,
;,9, % ,0,—1,1, 0} {-1,1,0,-1,-%, 3, 1,3, -3, -1,0,1}, {0, 1, -1, -1, 3,
i1, 5—1 110}{111111111111}
It is easy to see that ¢(z) = 0 has two solution 2 5 and % Thus, the exceptional
set is

E(Mo, M) = {;i(:ai\f) (3+v2), }

To begin the analysis of the exceptional values, note that % is the pole of R(z)
and therefore is not an eigenvalue by Proposition 4.1(vii).

It is easy to see that 1(3+1/2) and 1 (3 +1/5) are the four poles of ¢(z) and so
we can use Proposition 4.1(iii) to compute the multiplicities. We obtain

mult; (23 £v2))=6-2-3+1=0,
multo(2(3£Vv2))=6'-2-12+1=1,
mult; (13 +£V5))=6°-1-3+2=0,
multy(3(3£V5)) = 6' -1 -12+6=0.
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a(My) 0 3
multo(z) 1 2
z € o(My) 0 1 EEST) % % 515 %
multl(z) 1 1 2 2 6
2 € 0(M3) ||0]1| 3£ x| * || * ) [ ) g e PR Y i%&i@%&iﬁ
multe(z) || 1)1 111|111 21212222 22 6|6 30/ 1| 1

Table 5. Ancestor-offspring structure of the eigenvalues on the hexagasket.
The exceptional value 3 is in the spectrum o(D), not a pole of ¢(z) and ¢(3) =
For this reason we can use Proposition 4.1(v) to compute the multiplicities.

mult;(3) = 6°-3+0+3=6,
multy(3) = 6' -3+ 0+ 12 = 30.

As in the other sections, the multiplicities of all eigenvalues at depths 0, 1 and 2 are

shown in Table 5.

Theorem 9.1. (i) o(M))

1
(ii) We have that o(My) = { L .1, z} and for n = 2 we have
n—1
3 13 3+v2
U(M"){O’Q}U<U R—m{174 4}>U<UR { })
m=0 m=0
(iii) For any n > 0 we have dim,, = %
. 644-6"
(iv) For any n >0, mult,(0) = 1 and mult,(3) = %

P
(v) For anyn >1 and 0
>

<
(vi) For anyn >1 and 0 <k <n — 1 we have that if z € R_x{%,3} then

64+4- 6n7k71

mult, (z) = s

(vii) For anyn >2 and 0 < k <n — 2 we have that if 2 € R_(3E¥2) then

6n7k71 -1

mult,, (z) z

(viii) For n > 0 we have mult,, (3i4‘/5) =0

k <n —1 we have that if x € R_(1) then mult,(z) = 1.
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Proof. For this fractal we have o(Ag) = {0, 2} with multo(2) = 2 and, for the purposes
of Proposition 4.1, m = 6.

Item (i) is obtained above in this section.

Item (ii) follows from the subsequent items.

Ttem (iii) is straightforward by induction.

Item (iv) follows from Proposition 4.1(i) because 0 is a fixed point of R(z), and
from Proposition 4.1(v).

Items (v) and (vi) follow from Proposition 4.1(i).

Ttems (vii) and (viii) follow from Proposition 4.1(iii). O

Corollary 9.1. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure k with the the set of atoms

Bu(Qe{i357))

=36"""" if z€R_,{1, 3}
=167t if ze R, {352}

10. One dimensional interval as a self-similar set.

In this section we show how our results allow us to recover classically known
information about the spectrum of the discrete Laplacians that approximate the usual
one dimensional continuous Laplacian. The unit interval [0,1] can be represented as
a self-similar set in various ways. Here we consider three cases: when it subdivided
into two, three or four subintervals of equal length. In our notation this means that
m is 2, 3, or 4. The depth-1 networks for these cases are shown in Figure 14. The
first two cases were also discussed in [49]. Note that in each case the function R(z) is
the same as the Chebyshev polynomial of degree m for the interval [0,2], which is the
smallest interval that contains the spectrum of the matrices M,,. It is shown in [49], in
particular, that the iterations of these polynomials are related in a natural way with
the Riemann zeta function.

x1 xs3 T2
T €3 T4 T2
X1 x3 T4 T5 T2

Figure 14. Vi networks for the interval in cases m = 2, 3,4 respectively.

Case m = 2. The matrix of the depth-1 Laplacian M; = M is
0 -1
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and the eigenfunction extension map is

D-»7c=(wn ).

Moreover, we compute that
1

¢(z) = m

and
R(z) =22(2 — 2).

The only eigenvalue of D is o(D) = {1} . One can also compute o(M) = {2,1,0} with
the corresponding eigenvectors{{-1, -1, 1}, {-1, 1, 0}, {1, 1, 1}}. It is easy to see that
@(z) # 0. Thus, the exceptional set is

BE(My, M) = {1}.

To begin the analysis of the exceptional value, note that R(z) does not have
any poles. We are interested in the value of R(z) at the exceptional point, which is
R(1) = 2. Tt is easy to see that 1 is a pole of ¢(z), R(z) has a removable singularity
at z, and LR(z) = 0. So for all n we can use Proposition 4.1(vi) to compute its
multiplicity

mult, (1) = 1.
2 —— e~ — — — — , 2 —— o ——————— — —
1 |
1.75 , 175 \
| |
1.5 ] |
| |
1.25 | 1.25 |
| |
1 | 1 |
1 1
0.75 1 0.75 1
1 1
0.5 I 0.5 |
| |
0.25 I 0.25 |
| |
|
2 2

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 2

Figure 15. The graph of R(z) for F = [0,1] with m =2, m = 3 and m = 4
respectively.

Case m = 3. The matrix of the depth-1 Laplacian M; = M is

1 0 -1 0
0 1 0 -1
M=1 _. 0 1 _1
2 2

0o -1 -1

and the eigenfunction extension map is

2(z—1) 1
_ -1~ _ 3—8z+422 82—422—-3
(D—2)"C= 1 2(z—1) :
82—422—3  3—8z+422

Moreover, we compute that
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and
R(2) = 2(3 — 22)%

The eigenvalues of D, written with multiplicities, are

0-(33)

with corresponding eigenvectors{{-1, 1}, {1, 1}}. One can also compute

n = {2210}

with the corresponding eigenvectors{{1, -1, -1, 1}, {-2, -2, 1, 1}, {-2, 2, -1, 1}, {1, 1,
1, 1}}. Tt is easy to see that ¢(z) # 0. Thus, the exceptional set is

E(My, M) = {2;}

Again, note that R(z) does not have any poles. We are interested in the values of
R(z) in the exceptional points, which are

R(3)=0, R(3) =2
Since L R(z) = 0 in these points, we can use Proposition 4.1(vi) to obtain
mult,, (3) = mult, () =1

for all n.
Case m = 4. The matrix of the depth-1 Laplacian M; = M is

1 0 -1 0 0
0 1 0 0 -1

M=| -3 0 1 =30
o o -3 1 -1
0 -3 0 -3 1

and the eigenfunction extension map is
3—824422 1
4(—1+452—6224223) 4(—1+452—622+223)
(D-2)7'C=| —o=gqar Qb= T
1 3—8z+4z>

4(—1452—622+223) 4(—1452—622+4223)

We compute that

1
o) = o0, 7212 —80

and
R(z) = 82(2 — 2)(1 — 2)*.

The eigenvalues of D, written with multiplicities, are

a(D):{;<2+\/§),1,;<2—\/§)}
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with corresponding eigenvectors

{{1,—\/5,1},{—1,0,1}, {1\/51}}

One can also compute
1 1
o(M) = {2,2 (2+xf2) A5 (2—\6) ,o}.
It is easy to see that ¢(z) # 0. Thus, the exceptional set is
E(Mo, M) = {% (2+f2) 1,1 (2—\/5)}.

To begin the analysis of the exceptional values, note that R(z) does not have any
poles. We are interested in the values of R(z) at the exceptional points, which are

R(1(2+V2) =2, R(1)=0, R(3(2-V2)=2.
Once again, -£ R(z) = 0 at these points, and by Proposition 4.1(vi) we have
mult, (3(2 + v2)) = mult,, (1) = mult,(3(2 - v2)) = 1
for all n.
11. Diamond fractal.
The diamond fractal is shown in figure 16. The diamond self-similar hierarchical lattice

appeared as an example in several physics works, such as [14]. Recently the critical
percolation on the diamond fractal was analyzed in [15].

zs3

€ T2

Lq
Figure 16. The diamond fractal and its V] network.
We can use the results obtained for the unit interval [0,1] in Section 10, case

m = 2, to develop the spectral decimation method for the diamond fractal. The
matrix of the depth-1 Laplacian M; = M is

S =
_ o
B[00 | =
DO |00 | =

D[ =00 =
— o

O)—“



Vibration modes of 3n-gaskets and other fractals 35

and the eigenfunction extension map is now the square matrix with the same entries

_ 1 1
(D~2) 102@—1)(1 1>

while the functions

1
P(z) = m
and
R(z) =22z(2—2)
are the same as for the unit interval, o(D) = {1,1} has multiplicity two, and

o(M) = {2,1,1,0} with the corresponding eigenvectors {-1, -1, 1, 1}, {-1, 1, 0,0},
{0,0,-1, 1}, {1, 1, 1,1}. The exceptional set is

E(Mo, M) = {1}.

Theorem 11.1. (i) For any n > 0 we have that

n

U(An) = U R—m({052})

m=0

(ii) For any n > 0 we have dim,, = 3 +2(4™ — 1).

(iii) For any n > 0 we have mult, (0) = mult, (2) = 1.

: k42

(iv) For anyn > 1 and 0 < k < n — 1 we have mult,(z) = —5 if z € R_k(1).
Proof. Ttem (i) follows from (iii) and (iv). Item (ii) is obtained by induction. Item (iii)
follows from Proposition 4.1(i), and the fact that R(0) = R(2) = 0. For the analysis
of the only exceptional value z = 1, note that it is a pole of ¢(z), R(1) = 2, R(z) has
a removable singularity at 1, and %R(l) = 0. Therefore by Proposition 4.1(vi) we

have -
mult, (1) = qn—1.9 _ 2'4”37+4 + 2= L;—Q

for all n > 1. This implies Item (iv). O

Corollary 11.1. The normalized limiting distribution of eigenvalues (the integrated
density of states) is a pure point measure K with the the set of atoms

U B-mf{1}

and k ({z}) = 24=™ if 2 € R_,, {1}.
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