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No one should have any objections against the claim that the diamond crystal,
the most precious gem polished usually with the brilliant cut, casts a spell on us by
its stunning beauty. The beauty would be more enhanced and its emotional appeal
would be raised to rational one if we would explore the microscopic structure, say
the periodic arrangement of carbon atoms, which is actually responsible for the
dazzling glaze caused by the effective refraction and reflection of light. Figure 1,
found in many text books of solid state physics, illustrates the arrangement of atoms
together with the bonding (depicted by virtual lines) of atoms provoked by atomic
force. A close look at this figure (or its readymade model preferably) reveals that,
as a 1-dimensional diagram in space, the diamond crystal is formed by a wed of the
same hexagonal rings1 and has a “very big” symmetry, thereby being conspicuously
distinguished from other crystals by its “microscopic beauty”.

Figure 1. Carbon atoms in the diamond crystal

The purpose of this article is to provide a new crystal structure2 having similar
mathematical properties as the diamond crystal. This “crystal”, which we pro-
saically call the K4 crystal with some good reason, has valency 3, is constituted
by a web of the same decagonal rings, and has a very big symmetry in the similar
sense as the diamond crystal. A significant difference is in that the K4 crystal has
chirality while the diamond crystal does not. Since “nature favors symmetry” as is
justified by plenty of examples, it makes sense to ask if this mathematical object
exists in nature as a real crystal, or may be synthesized with carbon atoms (by
allowing double bonds in an appropriate way).

As mentioned above, a crystal in the mathematical sense is a periodic figure of 1
dimension consisting of vertices (points representing positions of atoms) and edges

1The chair conformation in the chemical term.
2This is different from the so-called diamond polytypes such as lonsdaleite, a rare stone of pure

carbon discovered at Meteor Crater, Arizona, in 1967.
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(lines representing bonding of atoms), by ignoring the physical characters of atoms
and atomic forces which may be different one by one. In other words, a crystal is
considered as an infinite graph realized periodically in space. This interpretation
offers us two distinct notions of symmetry; one is extrinsic symmetry, the same
as the classical notion bound up directly with beauty of the spatial object, which
thus depends on realizations and is described in terms of congruent transforma-
tions of space; another is intrinsic symmetry, the notion irrelevant to realizations,
solely explained in terms of automorphisms of graphs, and hence somehow denoting
beauty enshrined inward. In general, intrinsic symmetry is “bigger than” extrin-
sic symmetry since congruent transformations leaving the crystal invariant induce
automorphisms, but not vice versa.

A special feature of the diamond crystal is that intrinsic symmetry coincides with
extrinsic symmetry. Furthermore the diamond crystal has a strong isotropic prop-
erty3 in the sense that any permutation of 4 edges with a common end point extends
to a congruent transformation preserving the diamond crystal. Those observations
naturally give rise to the question as to which crystal shares such noteworthy prop-
erties. The answer is, as is given in the last section, that the K4 crystal (if leaving
its mirror image out of account) is only one kinfolk of the diamond crystal in this
sense (Theorem 3).

I would like to point out that the view taken up here is quite a bit different
from that of classical crystallography, whose business is also the study of symmetry
of crystals. Actually I came across the K4 crystal when I was studying discrete
geometric analysis, the field to deal with analysis on graphs by using geometric
ideas cultivated in global analysis. In fact, geometric theory of random walks on
crystal lattices, a topic developed recently in [1], [3], played a crucial role in its
construction.

Symmetry of the diamond crystal

For a start, it is worthwhile to give a precise description of the diamond crystal.
Consider a regular tetrahedron C1C2C3C4 together with its barycenter C. The
atom at the position C is bound to atoms at Ci so that we shall draw lines joining
C and Ci’s. We then take the regular tetrahedron CC ′2C

′
3C

′
4 with the barycenter

C1 which is to be point-symmetrical with respect to the midpoint A of the segment
CC1 (see Figure 2). We do the same for other three vertices C2, C3, C4, and then

Figure 2. Regular tetrahedron

3The term “isotropic” is used in a different context in crystallography.
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continue this process. The 1-dimensional figure obtained in this manner turns out
to be the diamond crystal.

There is another way to construct the diamond crystal, which allows us to see
the periodicity explicitly. We again begin with the regular tetrahedron C1C2C3C4

and its barycenter C. Consider the parallelepiped P with the edges C2C1, C2C3,
C2C4. Regarding P as a building block, we fill solidly space with parallelepipeds
which are exactly alike (see Figure 3). Then the diamond crystal is formed by
gathering up the copy, in each parallelepiped, of the above-mentioned figure inside
P . From this construction, it follows that the additive group

L = {n1
−−−→
C2C1 + n2

−−−→
C2C3 + n3

−−−→
C2C4; n1, n2, n3 ∈ Z}

leaves the diamond crystal invariant under translations x 7→ x + σ (σ ∈ L). This
is the periodicity that the diamond crystal possesses. In general, a crystal is char-
acterized as a graph realized in space which is invariant under translations by a
lattice group.

Figure 3. Parallelepiped P

The following says that the diamond crystal has not only big symmetry, but
also has a strong isotropic property, which as well as Observation 2 below is easily
checked in view of its construction.

Observation 1. Let p and p′ be vertices of the diamond crystal. Let `1, `2, `3, `4
be the edges with the end point p, and `′1, `

′
2, `

′
3, `

′
4 be the edges with the end point

p′. Then whatever order of edges may be, there exists a congruent transformation
T leaving the diamond crystal invariant such that T (p) = p′ and T (`i) = `′i (i =
1, 2, 3, 4).

A graph is, in general, an abstract object, having nothing to do with its realiza-
tion and defined solely by an incidence relation between vertices and edges. When
we think of the diamond crystal as an abstract graph, we call it the diamond lat-
tice. More generally, a crystal as an abstract graph will be called a crystal lattice.
Needless to say, there are many ways to realize a given crystal lattice periodically
in space. For instance, Figure 4 gives a graphite-like realization of the diamond
lattice.

A congruent transformation leaving a crystal invariant induces an automorphism
of the corresponding crystal lattice in a natural manner. But every automorphism
is not necessarily derived in this way. The following says that among all periodic
realizations of the diamond lattice, the diamond crystal is a realization with the
biggest extrinsic symmetry.

Observation 2. Every automorphism of the diamond lattice extends to a congruent
transformation leaving the diamond crystal invariant.
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Figure 4. A realization of the diamond lattice of graphite type

Our concern is the existence of other crystals enjoying the properties stated in
these observations.

Crystal lattices as abelian covering graphs

We need more mathematics to study crystal lattices. The discipline we step
into is not classical crystallography, but an elementary part in algebraic topology
applied to graphs, a realm apparently unrelated to crystals.

Recall that a crystal has periodicity with respect to the action of a lattice group
in space by translations. By identifying vertices (resp. edges) when they are super-
posed by such translations, and by inducing the incidence relation of vertices and
edges to identified objects, we obtain a finite graph4 which we call the fundamental
finite graph. For instance, the fundamental finite graph for the diamond crystal is
the graph with 2 vertices joined by 4 multiple edges (Figure 5).

Figure 5. The fundamental finite graph for the diamond crystal

The canonical map from the crystal (lattice) onto the fundamental finite graph
is a covering map, that is, a surjective map preserving the local incidence relations.
Therefore what we have observed now amounts to the same as a crystal lattice is
an abelian covering graph over a finite graph with covering transformation group
ismorphic to Z3. Having this view in mind, we give an abstract definition of d-
dimensional crystal lattices.

Definition A graph is said to be a d-dimensional crystal lattice if it is an abelian
covering graph over a finite graph5 with a covering transformation group isomorphic
to Zd, the free abelian group of rank d.

Among all abelian covering graphs of a fixed finite graph X0, there is a “maximal
one”, whose covering transformation group is H1(X0,Z), the first homology group.

4In other words, this is the quotient graph by the lattice group action.
5There are, of course, infinitely many choices of fundamental finite graphs for a fixed crystal

lattice.
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The diamond lattice is the maximal abelian covering graph over the graph in Figure
5. It is interesting to point out that the hexagonal lattice is the maximal abelian
covering graph over the graph with 2 vertices joined by 3 multiple edges so that the
hexagonal lattice is regarded as the 2-dimensional analogue of the diamond lattice.

Figure 6. The hexagonal lattice and its various realizations

If we start from a crystal lattice X with a fundamental finite graph X0 in the
above sense, then a crystal corresponding to X should be understood as a peri-
odic realization Φ : X −→ Rd. The periodicity of Φ is embodied by the equality
Φ(σx) = Φ(x) + ρ(σ), where σ is a covering transformation, and ρ is an injective
homomorphism of the covering transformation group into a lattice group in Rd.

From its nature, a periodic realization is determined uniquely by the image of a
finite part of the crystal lattice. To be exact, let E (resp. E0) be the set of oriented
edges in X (resp. X0), and consider a system of vectors {v(e)}e∈E0 defined by

v(e) = Φ
(
t(e)

)− Φ
(
o(e)

)
(e ∈ E),

where o(e) and t(e) are the origin and terminus of e respectively. We should note
that the function v on E is invariant under the action of the covering transformation
group so that it is regarded as a function on E0. It is easily observed that {v(e)}e∈E0

determines the periodic realization Φ. In this sense, {v(e)}e∈E0 is called a building
block.

Energy and Standard realizations

Our mathematical experience suggests that symmetry has strong relevance to
a certain minimum principle. Leonhard Euler, a pioneer of calculus of variations,
said6 “since the fabric of the Universe is most perfect and the work of a most wise
creator, nothing at all takes place in the Universe in which some rule of maximum
or minimum does not appear”. We shall apply this “philosophy” to the problem to
look for a periodic realization with biggest extrinsic symmetry7.

We think of a crystal as a system of harmonic oscillators, that is, each edge
represents a harmonic oscillator whose energy is the square of its length. We shall
define the energy of a crystal “per a unit cell” in the following way8.

6The quotation in “Vector Calculus” by J. E. Marsden and A. J. Tromba.
7The macroscopic shape of a crystal is also characterized by a certain minimum principle (J.

W. Gibbs (1878) and P. Curie (1885)).
8A real crystal (crystalline solid) is also physically regarded as a system of harmonic oscillators

under an appropriate approximation of the equation of motion, but the shape of energy is much
more complicated (see [5]).
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Given a bounded domain D in Rd, denote by E(D) the sum of the energy of
harmonic oscillators whose end points are in D, and normalize it in such a way as

E0(D) =
E(D)

deg(D)1−2/dvol(D)2/d
,

where deg(D) is the sum of degree (valency) of vertices in D. Roughly E(D) ∼
vol(D) and deg(D) ∼ vol(D) as D ↑ Rd, so that E0(D) is bounded from above. If
the crystal is transformed by a homothetic transformation T , then, thanks to the
term vol(D)2/d, the energy E0(D) changes to E0(T−1D).

Take an increasing sequence of bounded domains {Di}∞i=1 with ∪∞i=1Di = Rd

(for example, a family of concentric balls). The energy of the crystal (per a unit
cell) is defined as the limit

Ener = lim
i→∞

E0(Di).

Indeed the limit exists under a mild condition on {Di}∞i=1, and Ener does not depend
on the choice of {Di}∞i=1. We write Ener(Φ) for the energy when the crystal is given
by a periodic realization Φ. It is easy to observe that Ener(T ◦ Φ) = Ener(Φ) for
every homothetic transformation T .

For a fixed crystal lattice, there exists a unique periodic realization (up to ho-
mothetic transformations) which attains the minimum of Ener. Such a realization
is said to be the standard realization, and is characterized by two equalities

∑

e∈Ex

v(e) = 0,

∑

e∈E0

(
x · v(e)

)2 = c‖x‖2 (x ∈ Rd),

where Ex denotes the set of oriented edges whose origin is x.
The diamond crystal turns out to be the standard realization of the diamond

lattice. One can also check that the honeycomb is the standard realizations of the
hexagonal lattice. Thus it is not surprising that the standard realization yields a
crystal with the biggest symmetry as the following theorem tells.

Theorem 1. For the standard realization Φ, there exists a homomorphism T :
Aut(X) −→ M(d) such that Φ(gx) = T (g)Φ(x), where Aut(X) denotes the auto-
morphism group and M(d) is the group of congruent transformations of Rd.

The existence and uniqueness of standard realizations are proven along the fol-
lowing line. For the existence, we first fix a fundamental finite graph (in other
words, fix a transformation group acting on the crystal lattice). We also fix the
volume of a fundamental domain for the lattice group action in Rd, and show that
there exists a periodic realization Φ which minimizes

∑
e∈E0

‖v(e)‖2, a more man-
ageable version of energy functional. This is easy indeed, but it is not obvious
that this Φ (up to homothetic transformations) does not depend on the choice of
a fundamental finite graph9. The independence of the choice in full generality is
somehow derived from an asymptotic property of the simple random walk on X.
At first sight, this might sound mysterious because of big conceptual discrepancy
between “randomness” and “symmetry”, or “chance” and “order” in our everyday

9If we would know in advance that Aut(X) is isomorphic to a crystallographic group, then it
is not difficult to prove this. As a matter of fact, however, Aut(X) is not always isomorphic to a
crystallographic group.



CRYSTALS THAT NATURE MIGHT MISS CREATING 7

language. However once we perceive that “laws of randomness” are solidly present
in the world, it is no wonder that symmetry favored by the world is naturally con-
nected with randomness, just like the relation between symmetry and minimum
principles.

In general, a random walk on a graph X is a stochastic process on the set of
vertices characterized by a transition probability, i.e., a function p on E satisfying
p(e) > 0 and

∑
e∈Ex

p(e) = 1. We think of p(e) as the probability that a particle
at o(e) moves in a unit time to t(e) along the edge e. If p is constant on Ex, i.e.,
p(e) =

(
deg o(e)

)−1, the random walk is said to be simple.
The following theorem gives a direct relation between the standard realization

and the simple random walk.

Theorem 2. ([1]) 10 Let p(n, x, y) be the n-step transition probability and let Φ
be the periodic realization which minimizes

∑
e∈E0

‖v(e)‖2. There exists a positive
constant C such that

(1) C‖Φ(x)− Φ(y)‖2 = lim
n→∞

2n
{p(n, x, x)

p(n, y, x)
+

p(n, y, y)
p(n, x, y)

− 2
}

.

This theorem is powerful enough in order to establish immediately what we have
mentioned above, and eventually leads us to our claim that Φ actually minimizes
Ener. Crucial in the argument is the fact that the right hand side of (1) depends
only on the graph structure and has nothing to do with realizations. The uniqueness
and Theorem 1 are also consequences of this theorem.

Theorem 2 is a byproduct of the asymptotic expansion of p(n, x, y) at n = ∞;

p(n, x, y)
(
deg y

)−1 ∼ (4πn)−d/2C(X)
[
1 + c1(x, y)n−1 + c2(x, y)n−2 + · · · ].

Having help from discrete geometric analysis, we may compute explicitly the coef-
ficient c1(x, y) in geometric terms of graphs. Ignoring the exact shape of irrelevant
terms, we find

c1(x, y) = −C

4
‖Φ(x)− Φ(y)‖2 + g(x) + g(y) + c

with a certain function g(x) and a constant c. Noting that the right hand side of
(1) is equal to c1(x, x) + c1(y, y)− 2c1(x, y), we get Theorem 2.

As for the constant C(X), we have the following relation to the energy.

Ener(Φ) ≥ dC(X)−2/d,

where the equality holds11 if and only if Φ is standard. The proof, available at
present, of this remarkable inequality is not carried out by finding a direct link
between two quantities, but is based upon a canonical expression of the standard
realization, an analogue of Albanese maps in algebraic geometry ([1], [2], [3]).

10To avoid unnecessary complication, we assume that X is non-bipartite so that p(n, x, y) > 0
for sufficiently large n, where a graph is said to be bipartite if one can paint vertices by two colors
in such a way that any adjacent vertices have different colors. We need a minor modification for
the bipartite case.

11This inequality is for non-bipartite crystal lattices. In bipartite case, the right hand side

should be replaced by d
“C(X)

2

”−2/d
.
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We conclude this section with the case of maximal abelian covering graphs. Let
P : C1(X0,R) −→ H1(X0,R)(⊂ C1(X0,R)) be the orthogonal projection with
respect to the inner product on C1(X0,R), the group of 1-chains on X0, defined by

(2) 〈e, e′〉 =





1 (e = e′)
−1 (e = e′) (e, e′ ∈ E0)
0 (otherwise).

Identify H1(X0,R) with Rd (d = dim H1(X0,R)) by choosing an orthonormal basis
for the inner product on H1(X0,R) induced from (2). Fixing a reference point
x0 ∈ V , and taking a path c = (e1, · · · , en) in X with o(e1) = x0, t(en) = x, we put

Φ(x) = P (π(e1)) + · · ·+ P (π(en)),

where π is the covering map. The map Φ, in which the reader may feel a fravor of
Albanese maps, is well-defined and turns out to be the standard realization.

The K4 crystal

We mentioned that the diamond crystal have the strong isotropic property. This
property leads us to the following general definition in terms of crystal lattices.

Definition A crystal lattice X (or a general graph) of degree n is said to be strongly
isotropic if, for any x, y ∈ V and for any permutation σ of {1, 2, · · · , n}, there
exists g ∈ Aut(X) such that gx = y and gei = fσ(i) where Ex = {e1, · · · , en},
Ey = {f1, · · · , fn}.

In veiw of Theorem 1, the standard realization of a crystal lattice with this
property is strongly isotropic as a crystal.

We wish to list all crystal lattices12 with the strong isotropic property in dimen-
sion two and three. We thus follow the Greek tradition in geometry that beautiful
objects must be classified. Actually the classification of regular polyhedra13 turns
out to have a close connection with our goal

It is straightforward to check that the hexagonal lattice is a unique 2-dimensional
crystal lattice with the strong isotropic property (look at the standard realization).
In the 3-dimensional case, we have another crystal lattice with this property besides
the diamond lattice. It is the maximal abelian covering graph over the complete
graph K4 with 4 vertices14, which we call the K4 lattice in plain words.

Since the graph K4 has the strong isotropic property, so does its maximal abel
cover. The K4 crystal is then defined to be the standard realization of the K4 lattice.
The definition as such is quite simple. But its concrete construction is a bit involved,
and put in practice by following the recipe at the end of the previous section.
Consider three closed paths c1 = (e2, f1, e3), c2 = (e3, f2, e1), c3 = (e1, f3, e2)
in Figure 7. The cycles c1, c2, c3 constitute a Z-basis of H1(K4,Z), and satisfy
‖c1‖2 = ‖c2‖2 = ‖c3‖2 = 3, 〈ci, cj〉 = −1 (i 6= j) as vectors in H1(K4,R) = R3

(note that, if ci =
−−→
OPi, then Pi’s are three vertices of the regular tetrahedron with

12We restrict ourselves to the class of crystal lattices whose standard realizations are injective
on the set vertices.

13Legend has it that the origin is in their curiosity to the shapes of various crystals.
14In general, Kn stands for the complete graph with n vertices, that is, the graph such that

any two vertices are joined by a single edge.
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Figure 7. K4

the barycenter O). Looking at the projections of 1-chains e1, e2, e3, f1, f2, f3 onto
H1(K4,R), and expressing them as linear combinations of c1, c2, c3, we obtain

v(e1) = −1
4
c2 +

1
4
c3, v(e2) =

1
4
c1 − 1

4
c3, v(e3) = −1

4
c1 +

1
4
c2,

v(f1) =
1
2
c1 +

1
4
c2 +

1
4
c3, v(f2) =

1
4
c1 +

1
2
c2 +

1
4
c3,

v(f3) =
1
4
c1 +

1
4
c2 +

1
2
c3.

Since the vectors ±v(e1),±v(e2),±v(e3), ±v(f1),±v(f2),±v(f3) give a building
block, we get a complete description of the K4 crystal.

Figure 8. K4 crystal

More useful to see how edges are joined mutually is the following observation.
In the K4 crystal, the terminuses p1, p2, p3 of three edges with a common origin p
form an equilateral triangle with the barycenter p; thus being contained in a plane,
say α. If β is the plane containing the equilateral triangle for the origin p3 (see
Figure 9), then the dihedral angle θ between α and β satisfies cos θ = 1/3; that is,
θ is the dihedral angle of the regular tetrahedron.

The K4 crystal looks no less beautiful than the diamond crystal. Its artistic
structure has intrigued me for sometime. The reader may agree on my senti-
ments if he would produce a model by himself by using a chemical kit15. An
interesting feature observed in this model is that non-planar decagons all of which

15As a matter of fact, there are no readymade models of the K4 crystal so that one must put
existing pieces in a kit together by oneself.



10 TOSHIKAZU SUNADA

Figure 9. Configuration of edges in the K4 crystal

are congruent form together the K4 crystal. Figure 10 exhibits a decagonal ring
projected onto two particular planes16 which is obtained from the closed path17

(e1, f3, e2, e3, f2, e1, e2, f3, f2, e3) of length 10. More interestingly, the K4 crystal
has chirality; namely, its mirror image can not be superposed on the original one
by a rigid motion. This is quickly checked by taking a look at a decagonal ring
which itself has chirality. In contrast, the diamond crystal has no chirality.

Figure 10. Decagonal ring projected onto planes

At present, the K4 crystal is purely a mathematical object. Because of its beauty,
however, we are tempted to ask if the K4 crystal exists in nature, or possibility to
synthesize the K4 crystal. More specifically, one may ask whether it is possible to
synthesize it by using only carbon atom. In connection with this question, it should
be pointed out that, just like the Fullerene C60, a compound of carbon atoms18,
whose model is (the 1-skeleton of) the truncated icosahedron with suitably arranged
double bonds19, we may arrange double bonds, at least theoretically, in such a way
that every atom has valency 4. Indeed the lifting of double bonds in K4 as in Figure
11 yields such an arrangement in the K4 crystal.

16These projections give covering maps of the K4 lattice onto the 2-dimensional lattices in
Figure 10.

17This closed path is homologous to zero, so that its lifting to the K4 lattice is also closed.
There are 6 decagonal rings such that every decagonal ring is a translation of one of them.

18Its existence was confirmed in 1990.
19A double bond should be thought of representing a chemical characteristic of bonding, and

hence does not mean a multiple edge.
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Figure 11. K4 with double bonds

Strongly isotropic crystals

Leaving the non-mathematical question aside, we go back to our primary prob-
lem. The following theorem states that there are no other 3-dimensional crystal
lattices with the strong isotropic property than the diamond and K4 lattices.

Theorem 3. The degree of a 3-dimensional crystal lattice with the strong isotropic
property is three or four. The one with degree four is the diamond lattice, and the
one with degree three is the K4 lattice.

The proof runs roughly as follows. For a d-dimensional crystal lattice X with
the strong isotropic property, one can easily show that its degree n is less than or
equal to d + 1 (use the standard realization). In particular, for d = 3, we conclude
that n = 3 or 4 (the case n = 2 is excluded since a crystal lattice of degree two is
the 1-dimensional standard lattice).

First take a look at the case n = 4. Let Φ be the standard realization of X, and
T : Aut(X) −→ M(3) be the injective homomorphism induced from Φ (Theorem
1). Put O = Φ(x), and let P1, P2, P3, P4 be the points determined by

−−→
OPi = v(ei)

(Ex = {e1, e2, e3, e4}). Then K = P1P2P3P4 is a regular tetrahedron with the
barycenter O. The strong isotropic property leads us to the following alternatives:

(1) the point symmetry Si with respect to the midpoint of OPi (i = 1, 2, 3, 4)
belongs to T

(
Aut(X)

)
, or

(2) the reflection Ri with respect to the plane going vertically through the mid-
point of OPi (i = 1, 2, 3, 4) belongs to T

(
Aut(X)

)
.

If the case (2) occurs, then, say R1R2 is the rotation whose angle is twice
the dihedral angle θ of the regular tetrahedron so that the crystallographic group
T

(
Aut(X)

)
must contain a rotation of infinite order since θ/π is irrational, thereby

leading to a contradiction. We thus have (1), which implies that the standard
realization of X is the diamond crystal. Therefore X is the diamond lattice.

The proof for the claim that X with n = 3 is the K4 lattice is also elementary,
although demanding more care in chasing down the cases of the relation between
Φ(Ex) and Φ(Ey) for adjacent vertices x, y. The key is to verify that the factor
group K of Aut(X) by the maximal abelian subgroup is a finite subgroup of the
rotation group SO(3) which is reflected in the chilarity of the K4 crystal, and allows
us to employ the classification of finite subgroups of SO(3). On the other hand, the
group K acts transitively on V0 in a natural manner. In view of the fact that the
possible order of elements in K is 1, 2, 3, 4 or 6, we may prove that K is isomorphic
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to the octahedral group20, from which it follows that |V0| = 4, and hence X0 = K4.
An easy argument leads to the conclusion that X is the maximal abel cover of K4.

We are now on the final stage. It is checked that a realization of the diamond
lattice with maximal symmetry is the diamond crystal. We can also demonstrate,
again in an ad-hoc manner, that a realization of the K4 lattice with maximal
symmetry is the K4 crystal or its mirror image21. To sum up, we have found out
that there are only three kinds of crystal structures in space with maximal symmetry
and the strong isotropic property, that is, the diamond crystal, the K4 crystal, and
its mirror image. This is what we primarily aimed to observe in this article.

It is a challenging problem to list all crystal lattices with the strong isotropic
property in general dimension. A typical example is the d-dimensional diamond lat-
tice, a generalization of the hexagonal and diamond lattices, defined as the maximal
abelian covering graph over the finite graph with two vertices and d + 1 multiple
edges joining them. The maximal abelian covering graph over the complete graph
Kn also gives an example, whose dimension is (n− 1)(n− 2)/2.
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