
ON BERNOULLI DECOMPOSITIONS
FOR RANDOM VARIABLES, CONCENTRATION BOUNDS,

AND SPECTRAL LOCALIZATION
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Abstract. As was noted already by A. N. Kolmogorov, any random variable
has a Bernoulli component. This observation provides a tool for the extension

of results which are known for Bernoulli random variables to arbitrary distri-

butions. Two applications are provided here: i. an anti-concentration bound
for a class of functions of independent random variables, where probabilistic

bounds are extracted from combinatorial results, and ii. a proof, based on the

Bernoulli case, of spectral localization for random Schrödinger operators with
arbitrary probability distributions for the single site coupling constants. For a

general random variable, the Bernoulli component may be defined so that its

conditional variance is uniformly positive. The natural maximization problem
is an optimal transport question which is also addressed here.
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1. Introduction

This article has a twofold purpose. As a general observation it is noted that in
any random variable one may find a Bernoulli component. A decomposition which
is based on the above observation allows then to extend results which for systems
of Bernoulli variables are available by combinatorial methods to systems of random
variables of arbitrary distribution.

A Bernoulli decomposition of a real-valued random variable X is a representation
of the form

X
D= Y (t) + δ(t) η , (1.1)

where Y (·) and δ(·) ≥ 0 are functions on (0, 1), the variable t is uniformly dis-
tributed in (0, 1), and η is a Bernoulli random variable taking the values {0, 1}
with probabilities {1 − p, p} independently of t. The relation in (1.1) is to be un-
derstood as expressing equality of the distributions of the corresponding random
variables.

Bernoulli decompositions are constructed here for arbitrary random variables
of non-degenerate distributions. For certain purposes it is useful to have positive
uniform conditional variance of the Bernoulli term, i.e.,

inf
t∈(0,1)

δ(t) > 0 . (1.2)

We present such a representation below and discuss related issues of optimality.
Two applications mentioned here: i. anti-concentration bounds for monotone,

though not necessarily linear, functions of independent random variables, and ii.
a proof, based on the Bernoulli case [BK], of spectral localization for random
Schrödinger operators with arbitrary probability distributions for the single site
coupling constants.

In the first application, we consider functions Φ(X1, . . . , XN ) of independent
non-degenerate random variables {Xj} whose distributions are either identical or,
in a sense explained below, are of widths greater than some common bX > 0. It is
shown here that if for some ε > 0 the function satisfies

Φ(u + vej)− Φ(u) > ε (1.3)

for all v ≥ bX , all u ∈ RN , and j = 1, . . . , N , where ej is the unit vector in the
j-direction, then the following concentration bound applies:

sup
x∈R

P ({Φ(X1, . . . , XN ) ∈ [x, x + ε]}) ≤ CX√
N

, (1.4)

with a constant CX < ∞ which depends on the uniform bounds on the distri-
butions of {Xj}. The proof employs the Bernoulli representation along with the
combinatorial bounds of Sperner [S], and the more general LYM lemma [E].

The use of combinatorial estimates for concentration bounds first appeared in
the context of Bernoulli variables in P. Erdös’ variant of the Littlewood-Offord
Lemma [Er]. The presence of a Bernoulli component in any random variable was
noted implicitly in the work of A. N. Kolmogorov [Ko] where it was put to use in an
improvement of the earlier concentration bounds of W. Doeblin and P. Lévy [DoL,
Do] on linear functions of independent random variables. Initially, Kolmogorov did
not extract the maximal benefit from the method by not connecting it with Sperner
theory, and in particular the concentration bound in [Ko] includes an unnecessary
logarithmic factor; the corresponding improvement was made by B. A. Rogozin [R1].
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The bounds were further improved in a series of works, in particular [Es, K, R2]
where use was also made of other methods. One may note here that perhaps
quite naturally a general method like the Bernoulli decomposition is not optimized
for specific applications. Nevertheless, it has the benefit of providing a simple
perspective on a number of topics.

In our second application, we establish spectral localization for a broad class
of continuum, alloy-type random Schrödinger operators (cf. (4.1)), building on a
result of J. Bourgain and C. Kenig [BK] for the Bernoulli case. The model and
the results are presented more explicitly in Section 4. The main point to be made
here is that the understanding of spectral localization for the Bernoulli case can
be extended through the Bernoulli decomposition to random operators with single
site coupling parameters of arbitrary distribution (cf. Theorem 4.2).

2. Bernoulli decompositions for random variables

Randomness often is in the eyes of the beholder, as probability measures are used
to express averages over specified sets of rather varied nature. However, it may be
true that the most elementary model underlying the basic popular perception of
probability is the simple ‘coin toss’, with two possible outcomes: heads or tails,
which is modeled by a Bernoulli random variable: a binary variable equal to 1 with
probability p and equal to 0 with probability 1− p.

2.1. The decomposition in two variants. The following statement assert that
any real valued random variable has a Bernoulli component, which can even be
chosen to be of uniformly positive variance.

Given a real random variable X by default we shall denote its probability dis-
tribution by µ and let G : (0, 1) → (−∞,∞) be the function defined by

G(t) := inf{u ∈ R : µ ((−∞, u]) ≥ t} . (2.1)

One may observe that G is the ‘inverse’ distribution function of µ, which takes
values in the essential range of X. It can alternatively be described by

G(t) ≤ u ⇐⇒ µ ((−∞, u]) ≥ t , (2.2)

and satisfies µ ((−∞, G(t)− ε]) < t ≤ µ ((−∞, G(t)]) for all t ∈ R and ε > 0.

Theorem 2.1. Let X be a non-degenerate real-valued random variable with a prob-
ability distribution µ. Then, for each p ∈ (0, 1), X admits a decomposition of the
form:

X
D= Yp(t) + δ+

p (t) η , (2.3)

in the sense of equality of the corresponding probability distributions, where:
(1) η and t are independent random variables, with η a binary variable taking

the values {0, 1} with probabilities {1− p, p}, correspondingly, and t having
the uniform distribution in (0, 1),

(2) Yp : (0, 1) 7→ (−∞,∞) is the monotone non-decreasing function

Yp(t) := G((1− p)t) , (2.4)

(3) δ+
p : (0, 1) 7→ [0,∞) is the function

δ+
p (t) := G(1− p + pt)−G((1− p)t) , (2.5)
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(4) for at least one value of p ∈ (0, 1) we have

β+(p, µ) := inf
t∈(0,1)

δ+
p (t) > 0 . (2.6)

Some explicit expressions for β+(p, µ) are mentioned in Remark 2.1 below. The
Bernoulli component of the measure is not a uniquely defined notion, and other
representations similar to (2.3) but with different distributions for the conditional
variance of the Bernoulli component, i.e., for δ(t), can also be obtained. In the
following construction its uniform positivity may be lost but one gains the feature
that the range of values which δ assumes reaches up to the diameter of the support
of the measure µ.

Theorem 2.2. Let X be a non-degenerate real-valued random variable with prob-
ability distribution µ. Then, for each p ∈ (0, 1), X admits a decomposition of the
form:

X
D= Yp(t) + δ−p (t) η (2.7)

where t, η and the function Yp are as in Theorem 2.1, satisfying the above (1) and
(2), but instead of (3) and (4) the following holds

(3’) δ−p : (0, 1) 7→ [0,∞) is the non-increasing function:

δ−p (t) := G(1− pt)−G((1− p)t) , (2.8)

(4’) for any x− < x+ and p± > 0 such that

P ({X ≤ x−}) ≥ p− and P ({X > x+}) > p+ , (2.9)

at the particular value p = p+
p−+p+

we have

Pt

({
δ−p (t) > x+ − x−

})
≥ p− + p+ , (2.10)

where the probability is with respect to the uniform random variable t.

In the proofs we employ two versions of what is called here the Pac-Man algo-
rithm for the construction of a joint distribution ρ of a pair of random variables, of
the form {Y1(t), Y2(t)}, whose marginal probability measures, ρ1, ρ2, satisfy

µ = (1− p) ρ1 + p ρ2 . (2.11)

The representations (2.3) and (2.7) correspond to letting:

Yp(t) := Y1(t)

δ±p (t) := Y2(t)− Y1(t) . (2.12)

The two Theorems will be proven in reverse order.

Proof of Theorem 2.2: We start by recalling the known observation that for any
continuous function φ ∈ C(R):∫ 1

0

φ(G(s)) ds =
∫

R
φ(x)dµ(x) . (2.13)

This relation allows to represent, in terms similar to (2.7), as

X
D= G(t) , (2.14)

with t the random variable with the uniform distribution in [0, 1].
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Extending the above representation, we now define a pair of coupled random
variables through the following functions of t ∈ [0, 1]:

Y1(t) := G ((1− p)t)
Y2(t) := G (1− pt) (2.15)

As is the case of G in (2.14), the functions Y1 and Y2 are made into random
variables by assigning to them the joint probability distribution which is induced
by Lebesgue measure on [0, 1]. Their marginal distributions satisfy (2.11), since for
any continuous function φ ∈ C(R)

(1− p)
∫ 1

0

φ(Y1(t)) dt + p

∫ 1

0

φ(Y2(t)) dt

= (1− p)
∫ 1

0

φ(G((1− p)t)) dt + p

∫ 1

0

φ(G(1− pt)) dt

=
[∫ 1−p

0

+
∫ 1

1−p

]
φ(G(s)) ds =

∫
φ(x)dµ(x) (2.16)

where the last equality is by (2.13).
By (2.16) the random variable seen on the right side of (2.7) has the same

distribution as X. The statement (2) readily follows from the definition (2.15) and
(2.12).

For a proof of (4’) we note that (2.9) is equivalent to

G(p−) ≤ x− and G(1− p+) > x+ . (2.17)

This implies δ+
p (t) > x+ − x− for all t ≤ p+ + p−, and hence (2.10) holds true. �

In the above proof, one may regard the functions Y1(t) and Y2(t) defined by (2.15)
as describing the motion of a pair of markers which move along R consuming the
µ-measure at the steady rates of (1− p) and p, correspondingly. The markers leap
discontinuously over intervals of zero µ-measure and, conversely, linger at points of
positive mass. Their motion invokes the image of a linear version of the Pac-Man
game, and hence we shall refer to the construction by this name. Whereas in the
above construction the Pac-Men move towards each other, we shall next use the
Pac-Man algorithm with one marker chasing the other.

Proof of Theorem 2.1. For the representation (2.3) we shall employ the following
variant of (2.15):

Y1(t) := G ((1− p)t)
Y2(t) := G (1− p + pt) (2.18)

In this case, both Y1 and Y2 are monotone non-decreasing in t and

Y1(t) ≤ G(1− p) ≤ G(1− p + 0) ≤ Y2(t) (2.19)

for all t ∈ (0, 1), where G(1 − p + 0) = limε↓0 G(1 − p + ε). Moreover, for any
T ∈ (0, 1) we have the lower bound

β+(p, µ) ≥ min {G(1− p)− Y1(T ), Y2(T )−G(1− p + 0)} , (2.20)

since

δ+
p (t) ≥

{
G(1− p)− Y1(T ) if 0 < t ≤ T ,

Y2(T )−G(1− p + 0) if T ≤ t < 1 .
(2.21)
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For a sufficient condition for the uniform positivity of δ+
p (t) = Y2(t) − Y1(t) let

us consider the arrival/departure times:

T1 = inf{t ∈ (0, 1) : Y1(t) = G(1− p)} (arrival time of Y1) ,

T2 = sup{t ∈ (0, 1) : Y2(t) = G(1− p + 0)} (departure time of Y2) .

The times T1, T2 are non-random and depend on p and µ only. If

T1 > T2 , (2.22)

then for each T ∈ (T2, T1) we have

β+(p, µ) ≥ min {G(1− p)− Y1(T ), Y2(T )−G(1− p + 0)} > 0. (2.23)

The collection of p ∈ (0, 1) such that (2.22) is not empty whenever the support of
the measure includes more than one point. �

Remark 2.1. (i) Explicit lower bounds on β+. For the Bernoulli decompo-
sition which is presented in Theorem 2.1 (i.e., based on the ‘chasing Pac-Men’
algorithm), an expression for the lower bound β+(p, µ) in terms of the distribution
function of µ is given in (2.34) below. A simple lower bound can be obtained in
terms of just the “half-time” points for the two markers. i.e., from (2.20) with
T = 1

2 :

β+(p, µ) ≥ min
{[

G(1− p)−G

(
1− p

2

)]
,

[
G

(
2− p

2

)
−G(1− p)

]}
. (2.24)

This shows that for continuous measures µ one has β+(p, µ) > 0, i.e., (2.6), for any
p ∈ (0, 1).

If the support of µ consists of exactly two points the representation (2.7) is
trivially available, though at a unique value of p ∈ (0, 1). If the support of µ
contains more than two points, there exists at least one x̂ ∈ R such that

µ ((−∞, x]) < µ ((−∞, x̂]) if x < x̂ ,

0 < µ ((−∞, x̂)) ≤ µ ((−∞, x̂]) < 1 .
(2.25)

At the particular value p = 1− µ ((−∞, x̂)) we then have G(1− p) = x̂ and

β+(p, µ) ≥min {x̂−G((1− p)t), G(1− p + pt)− x̂} > 0

for each t such that
µ ({x̂})

p
< t < 1 .

(2.26)

(ii) An alternative form. For another form of a Bernoulli decomposition, with
a binary random variable σ = ±1, let

σ = 2η − 1 and W = Yp + 1
2δ+

p . (2.27)

When such a substitution is made in (2.3) the two resulting functions W (t) and
δ+
p (t) are monotone non-decreasing in t and δ+

p (·) is constant over each interval of
constancy of W (·). It follows that the value of δ+

p (t) can be expressed in terms of
W (t), and thus one obtains a representation of the form:

X
D= W + b(W )σ , (2.28)

with W and σ independent random variables, and b(·) a measurable function which
is determined by µ and p.
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(iii) Some precedents. As was commented above, the Bernoulli decomposition
of Theorem 2.2 with p = 1/2 has appeared already in a work of A. N. Kolmogorov
[Ko]. For random variables with values in Z, the representation (2.3) of Theo-
rem 2.1 is related to the somewhat similar representation (though with δ = 0, 1,
not necessarily positive) which D. McDonald showed to be useful for the analysis
of local limit theorems for integer random variables ([M]).

2.2. Optimality of the Pac-Man algorithm. In applications of the decompo-
sition it is desirable to maximize the conditional variance of the binary term. We
shall now address related questions from an optimal transport perspective, and in
particular establish optimality, in a certain limited sense, of the ‘chasing Pac-Men’
construction.

In addition to the explicit choices presented in Theorems 2.1 and 2.2 there are
other possibilities for a Bernoulli decomposition of the form (2.3). With a change
of variables as in (2.12), such representations can alternatively be expressed in
terms of joint distributions of the variables Y1, Y2 with the properties listed in the
following definition.

Definition 2.1. A (1 − p, p) Bernoulli decomposition of a probability measure µ
on R is a probability measure ρ(dY1 dY2) on R2 whose marginals ρ1 and ρ2 satisfy:

(1− p) ρ1 + p ρ2 = µ . (2.29)

This concept can of course be easily generalized to variables with values in Rd,
or C. For real variables the defining condition (2.29) is conveniently expressed in
terms of the distribution functions, as

(1− p) F1(x) + p F2(x) = F (x) (2.30)

where F (x) = µ((−∞, x]), and Fj(x) = ρ({Yj ≤ x}) for j = 1, 2.
For each Bernoulli decomposition of a probability measure on R we denote:{

β#

β∗

}
(p, ρ) := essρ

{
sup
inf

}
(Y2 −Y1) . (2.31)

Theorem 2.3. For any (1−p, p), among all the Bernoulli decomposition of a given
probability measure µ on R:

(1) The minimal conditional variation β∗(p, ρ) is maximized by the ‘chasing
Pac-Men’ algorithm which is presented in the proof of Theorem 2.1, i.e. for
any Bernoulli decomposition

β∗(p, ρ) ≤ β+(p, µ) := ess inft∈(0,1)δ
+
p (t) , (2.32)

where ess inft∈(0,1) yields the same value as inft∈(0,1).
(2) The maximal conditional variation β#(p, ρ) is maximized by the ‘colliding

Pac-Men’ algorithm of Theorem 2.2, for which β#(p, ρ) equals the diameter
of the essential support of µ.

The equality: essinft∈[0,1]δ
+
p (t) = inft∈[0,1]δ

+
p (t) is a simple consequence of the

left-continuity property of the chasing Pac-Men algorithm, where Yj(t) = Yj(t− 0)
and hence also δ+(t) = δ+(t− 0).

To prove (2.32) let us first establish a helpful expression for β+(p, µ). Denoting
by F+

j the distribution functions corresponding to Y1 and Y2 of (2.18) we have:
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Lemma 2.1. For the ‘chasing Pac-Men’ construction, of Theorem 2.1:

F+
1 (x) =

1
1− p

min {F (x), 1− p} , F+
2 (x) =

1
p

max {F (x) + p− 1, 0} (2.33)

and

β+(p, µ) = sup
{
b ∈ R : F+

1 (x) ≥ F+
2 (x + b) for all x ∈ R

}
. (2.34)

Proof. The statements (2.33) follow directly from the definition of the Pac-Man
process (2.18). In the derivation of (2.34), we shall use the fact that for all t ∈ (0, 1)
and ε > 0:

F+
j (Y +

j (t)− ε) < t ≤ F+
j (Y j+(t)) (2.35)

Let S := sup
{
b ∈ R : F+

1 (x) ≥ F+
2 (x + b) for all x ∈ R

}
. Clearly, for any u >

S, there is x ∈ R such that

F1(x) < F2(x + u) . (2.36)

It follows that for any t ∈ (F1(x), F2(x + u)):

Y2(t) ≤ x + u and Y1(t) > x , (2.37)

and therefore δ+(t) = Y2(t)− Y1(t) ≤ u. Thus: inft∈(0,1)δ
+
p (t) ≤ S.

For the converse direction, let us note that due to the monotonicity of F the
condition on b in (2.34) is satisfied by all u < S. Thus, if u < S, then, for all x ∈ R:

F+
2 (x + u) ≤ F+

1 (x− 0) , (2.38)

and hence for any t ∈ (0, 1):

F+
2 (Y +

1 (t) + u) ≤ F+
1 (Y +

1 (t)− 0) ≤ t , (2.39)

which implies that Y +
1 (t) + u ≤ Y +

2 (t). Therefore

inf
t∈(0,1)

(
Y +

2 (t)− Y +
1 (t)

)
≥ u . (2.40)

It follows that inft∈[0,1]δ
+
p (t) ≥ S, which completes the proof of (2.34). �

Proof of Theorem 2.3 . The second assertion is an elementary consequence of (2.8).
To prove (1) we shall show that for any b > β+(p, µ) it is also true that b > β∗(p, ρ).

The condition (2.30) readily implies that (1 − p) F1(u) ≤ F (u), or F1(x) ≤
min

{
(1− p)−1F (x), 1

}
, and hence

F1(x) ≤ F+
1 (x)

F2(x) ≥ F+
2 (x) . (2.41)

Now, by Lemma 2.1, for any b > β+(p, µ) there exist some t, u ∈ R, such that
F+

1 (u) = t < F+
2 (u + b) and therefore, due to (2.41), also

F1(u) ≤ t < F2(u + b) . (2.42)

Eq. (2.42) means that ρ ({Y1 ≤ u}) ≤ t and ρ ({Y2 > u + b}) < 1 − t. Since the
probabilities of the two events add to less than 1 the complement of their union is
of positive probability, and this implies:

ρ ({Y2 − Y1 ≤ b}) > 0 , (2.43)

and hence b > β∗(p, ρ). This concludes the proof of (2.32). �
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Remark 2.2. The idea of seeking optimal joint realizations of random variables
with constrained marginals has allowed to present a wide range of analytical results
from a common ‘optimal transport’ perspective (see, e.g., [V]). The most familiar
variants of the problem concern couplings which minimize a distance function be-
tween the two coupled variables. As our discussion demonstrates, it may also be of
interest to seek couplings which maximize the difference between the two variables
with constrained marginals.

3. Concentration Bounds

We shall now demonstrate how the Bernoulli decomposition yields probabilistic
bounds from combinatorial results. If there is any novelty in this section it is
in the formulation of the bounds for the non-linear case, as the two main ideas
were noted before in the context of linear functions: P. Erdös [Er] observed that
concentration bounds for linear functions of Bernoulli variables can be derived from
the combinatorial theory of E. Sperner [S], and B. A. Rogozin [R1] has used the
Bernoulli decomposition of A. N. Kolmogorov [Ko] for the further extension of these
bounds to arbitrary random variables.

First, we present some essentially known results of Sperner theory; in the second
subsection these results will be combined with the Bernoulli decomposition to yield
concentration bounds for functions of independent random variables.

3.1. Probabilistic Sperner Estimates. The configuration space {0, 1}N for a
collection of Bernoulli random variables η = {η1, ..., ηN} is partially ordered by the
relation defined by:

η ≺ η′ ⇐⇒ for all i ∈ {1, ..., N} : ηi ≤ η′i . (3.1)

A set A ⊂ {0, 1}N is said to be an antichain if it does not contain any pair of
configurations which are compatible in the sense of “≺”. The original Sperner
Lemma states that for any such set: |A| ≤

(
N

[ N
2 ]

)
. A more general result is the LYM

inequality for antichains (cf. [An]):∑
η∈A

1(
N
|η|
) ≤ 1 , (3.2)

where |η| =
∑

ηj .
The LYM inequality has the following probabilistic implication.

Lemma 3.1. Let {ηj} be independent copies of a Bernoulli random variable η with

P ({η = 1}) = p , P ({η = 0}) = q := 1− p , (3.3)

where p ∈ (0, 1). Then for any antichain A ⊂ {0, 1}N :

P ({η ∈ A}) ≤ Θ
ση

√
N

, (3.4)

where η = (η1, . . . , ηN ), ση =
√

pq is the standard deviation of η, and Θ is an
independent constant which does not exceed 2

√
2.

Proof. Let Ak be the subset of A consisting of configurations with |η| = k. Then:

P ({η ∈ A}) =
N∑

k=0

pkqN−k |Ak| =
N∑

k=0

b(k;N, p)
|Ak|(

N
k

) ≤ max
k=0,1,...,N

b(k;N, p), (3.5)
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where b(k;N, p) := pkqN−k
(
N
k

)
is the binomial distribution, and the inequality is

by (3.2). The maximum of b(k;N, p) over k, which is known to occur near k = pN
(cf. [F, Theorem 1 on p. 140]) yields (3.4). �

The bound (3.4) has the virtue of being valid for all N ; for N →∞ it holds with
a smaller constant which tends to the asymptotic value Θ → 1/

√
2π (implied by

(3.5) and Stirling’s formula).
Following is an extension of Lemma 3.1 to the case of non-identically distributed

random variables.

Lemma 3.2. Let η = (η1, . . . , ηN ), where {ηj} are independent Bernoulli random
variables with possibly different values of pj, and set

α := min
j=1,2,...,N

min {pj , 1− pj} ∈ (0, 1/2] . (3.6)

Then, for any antichain A ⊂ {0, 1}N :

P{η ∈ A} ≤ Θ̃
α
√

N
, (3.7)

where Θ̃ is an independent constant which does not exceed 4.

The proof gives us the chance to introduce the technique of ‘double sampling’.

Proof. We start from the observation that any Bernoulli variable η with parameter
pη as in (3.3) may be decomposed in terms of two independent Bernoulli variables
χ and ξ as

η
D= ξ χ , (3.8)

with pξ pχ = pη.
By the definition of α, eq. (3.6), pj ∈ [α, 1 − α] for all j = 1, 2, . . . , N . Hence

the variables η may be represented as in (3.8) with independent identically dis-
tributed (iid) Bernoulli variables {χj} with common pχ := 1 − α. We abbreviate
this representation as ξ χ := (ξ1χ1, . . . , ξNχN ). Evaluating the probability by first
conditioning on the values of ξ, one has

P{η ∈ A} = E [P {ξ χ ∈ A | ξ}] (3.9)

For specified values of the variables χ , the event A depends only on the values of
χj with j in the set Jξ := {j : ξj 6= 0}, and as such it is an antichain in {0, 1}Jξ .
Bounding its conditional probability by Lemma 3.1 we obtain

P {ξ χ ∈ A | ξ} ≤ min

{
1,

Θ
σχ

√
|Jξ|

}
, (3.10)

where σχ =
√

α(1− α) is the common standard deviation of χj .
To conclude the proof of (3.7) it remains to estimate the expected value of

the right hand side of (3.10), where |Jξ| =
∑N

j=1 ξj . Noting that E(ξj) = pξj
=

pj/(1− α) ≥ α/(1− α), we see that the mean satisfies:

E(|Jξ|) ≥ αN

1− α
. (3.11)
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The event {|Jξ| ≤ αN/2(1− α)} is of exponentially small probability, as can be
seen by a standard large deviation estimate for independent variables. It then
readily follows that

E

(
min

{
1,

Θ
σχ

√
|Jξ|

})
≤ Θ̃

α
√

N
, (3.12)

with a constant for which elementary estimates yield Θ̃ ≤ 4. �

Remark 3.1. The above notions and results have natural extensions to integer
valued independent random variables, τ = (τ1, τ2, . . . , τN ), whose configuration
space, ZN , is also partially ordered by the natural extension of the relation (3.1).
The Bernoulli decomposition (2.7) can be used for an extension of the probabilistic
bound of Lemma 3.2 to this more general case. One way to derive the general state-
ment is through the application of the bound (3.7) to the conditional probability
for the Bernoulli component, as in the arguments which appear below. Alterna-
tively, one may note that the statement directly follows from Theorem 3.1 which is
presented in the next section.

For completeness it should be added that in addition to the anti-concentration
upper bounds it is of interest to know the asymptotic behavior. That is covered by
known results, such as is presented in Engel [E, Theorem 7.2.1]:

lim
N→∞

σµ

√
2πN

{
max

A⊂{0,1,...,k}N antichain
P{τ ∈ A}

}
= 1 , (3.13)

which amounts to a ‘local’ central limit theorem (CLT).

3.2. Concentration Bounds for Functions of Independent Random Vari-
ables. We shall now employ the Bernoulli decomposition of Section 2, along with
the results presented in the previous subsection, for an upper bound on the con-
centration probability

QZ(ξ) := sup
x∈R

P ({Z ∈ [x, x + ξ]}) (3.14)

for random variables of the form

Z = Φ(X1, X2, . . . , XN ) , (3.15)

where {Xj} are independent random variables.

Theorem 3.1. Let X = (X1, . . . , XN ) be a collection of independent random vari-
ables whose distributions satisfy, for all j ∈ {1, ..., N}:

P ({Xj ≤ x−}) ≥ p− and P ({Xj > x+}) > p+ (3.16)

at some p± > 0 and x− < x+, and Φ : RN 7→ R a function such that for some
ε > 0

Φ(u + vej)− Φ(u) > ε (3.17)
for all v ≥ x+ − x−, all u ∈ RN , and j = 1, . . . , N , with ej the unit vector in
the j-direction. Then, the random variable Z which is defined by (3.15) obeys the
concentration bound

QZ(ε) ≤ 4√
N

√
1

p+
+

1
p−

, (3.18)

where 4 can also be replaced by the constant Θ̃ of (3.7).
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Proof. We start by selecting p ∈ (0, 1) by the condition p = p+
p++p−

. Next, we
represent the variables {Xj} using Theorem 2.2:

X
D= Y (t) + δ(t) η :=

(
Yp,1(t1) + δ−p,1(t1) η1, . . . , Yp,N (tN ) + δ−p,N (tN ) ηN

)
,

(3.19)
with η = (η1, . . . , ηN ) a collection of iid Bernoulli variables taking values {0, 1} with
probability {1− p, p}. From (2.10) one may conclude that for all j ∈ {1, . . . , N}:

Pt(
{
δ−p,j(t) ≥ x+ − x−

}
) ≥ p+ + p− . (3.20)

We express the probability of the event {Z ∈ [x, x+ε]} through first conditioning
on the {tj} variables. For all x ∈ R:

P ({Z ∈ [x, x + ε]}) = E
[
P
(
At

∣∣ t)] (3.21)

where
At :=

{
η ∈ {0, 1}N : Φ(Y (t) + δ(t)η) ∈ [x, x + ε]

}
. (3.22)

By virtue of (3.17), the set At is an antichain in its dependence on {ηj}j∈Jt
with

Jt := {j : δj(tj) ≥ x+ − x−}. Lemma 3.1 thus yields

P
{
At

∣∣ t, {ηj}j 6∈Jt

}
≤ min

{
1,

Θ
ση

√
|Jt|

}
(3.23)

with ση =
√

p(1− p). We conclude by the large-deviation argument used in the
proof of Lemma 3.2. Using (3.20) the expected value of |Jt| =

∑N
j=1 1{j : δj(tj)≥x+−x−}

is bounded below:
E (|Jt|) ≥ (p+ + p−)N . (3.24)

Therefore {|Jt| ≤ 1
2 (p+ + p−)N} is a large deviation event and its probability is

exponentially bounded. Elementary estimates lead to

E

(
min

{
1,

Θ
ση

√
|Jt|

})
≤ Θ̃√

N

√
1

p+
+

1
p−

, (3.25)

with the same constant Θ̃ as in (3.7). �

Remark 3.2. (i) A simpler proof for iid variables. For iid non-degenerate
random variables X1, . . . , XN the theorem has a simpler proof using the binary de-
composition of Theorem 2.1; there is no need for the large deviation argument. The
constants in the theorem will then depend on the value of p and its corresponding
lower bound in (2.6).

(ii) The linear case. For linear functions,

Z = Φ(X1, . . . , XN ) =
N∑

j=1

Xj , (3.26)

concentration inequalities as in (3.18) go back to W. Doeblin, P. Lévy [DoL, Do],
P. Erdös [Er] (for the Bernoulli case, where it reduces to the Littlewood-Offord
problem), A. N. Kolmogorov [Ko], B. A. Rogozin [R1], H. Kesten [K] and C. G.
Esseen [Es]. In this case, sharper inequalities than (3.18) are known, e.g. [R3],

QZ(ε) ≤ Θ ε
[ N∑

j=1

ε2
j (1−QXj

(εj))
]−1/2

(3.27)
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where Θ is some constant. A recent application of the discrete case of the concen-
tration bounds is found in [TV].

(iii) An extension. As it is already true for (3.27), the statement of Theorem 3.1
has an immediate extension to functions which in some variables are monotone
increasing and in some are monotone decreasing, satisfying the natural analog of
(3.17). For this extension, one only needs to replace p+ and p− in (3.18) by p̂ =
min{p+, p−}.

(iv) Sperner bounds from concentration inequalities. In the proof of Theorem 3.1
concentration bounds were deduced from the probabilistic Sperner estimate (3.4).
For antichains in the multiset S = {0, 1, . . . ,K}N the implication can also be
established in the opposite direction. For that, one may use the fact that in such
a multiset for any antichain A there is a function Φ : S 7→ R which satisfies the
‘representation condition’ (in the terminology of [E])

Φ(u + ej)− Φ(u) ≥ 1 (3.28)

and for which Φ(u) = 0 if and only in u ∈ A.

4. An Application to Random Schrödinger Operators

As a demonstration of a possible uses of the elementary observations which are
made in this article, let us present the case of spectral localization under random
iid single site potential for an arbitrary probability distribution.

The (continuum) Anderson Hamiltonian is the random Schrödinger operator
given by

Hω = −∆ + Vω on L2(Rd), (4.1)

with

Vω(x) =
∑
ξ∈Zd

ωξ u(x− ξ), (4.2)

where
(1) u(·), the single site potential, is a nonnegative bounded measurable func-

tion on Rd with compact support, uniformly bounded away from zero in a
neighborhood of the origin,

(2) ω = {ωξ}ξ∈Zd is a family of independent identically distributed random
variables, whose common probability distribution µ satisfies: {0,M} ∈
suppµ ⊂ [0,M ], for some M > 0.

The random operator Hω is a function of ω, and as such it is defined over a
probability space which is invariant under the ergodic action of the group of Zd

translations. The induced maps on this operator valued function are implemented
by unitary translations.

Ergodicity considerations carry the implication that there exist fixed subsets of R
so that the spectrum of the self-adjoint operator Hω, as well as its pure point (pp),
absolutely continuous (ac), and singular continuous (sc) components, are equal to
these fixed sets with probability one (c.f. [P, KuS, KiM]). In the case of the random
potential (4.2), the positivity of u(·) and the support properties of µ imply that

σ(Hω) as= [0,∞) . (4.3)
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Although definitions of localization may come in several flavors, they all include
(or imply) spectral localization (i.e., pure point spectrum), as given in the following
definition.

Definition 4.1. A self-adjoint operator H on L2(Rd) is said to exhibit spectral
localization in a closed interval I ⊂ R if σ(H) ∩ I 6= ∅ and the corresponding
spectral projection PI(H) is given by a countable sum of orthogonal projections on
proper eigenspaces.

This property is clearly invariant under translations. The defining condition is
equivalent to the requirement that for a spanning set of vectors the spectral measure
is pure-point within I. The set of ω for which this holds for the random operator
Hω is known to be measurable.

In the one-dimensional case the continuous Anderson Hamiltonian has been long
known to exhibit spectral localization in the whole real line for any non-degenerate
µ, i.e. when the random potential is not constant [GoMP, DSS]. In the multi-
dimensional case, localization at the bottom of the spectrum is already known at
great, but nevertheless not all-inclusive, generality; cf. [St, Kl, BK] and references
therein. The Bernoulli decomposition presented here allows to prove localization
for general non-degenerate single site distributions µ.

More explicitly, the simplest case to deal with, for the different approaches which
yield proofs of localization, has been when the single site probability distribution
is absolutely continuous with bounded derivative. The absolute continuity condi-
tion can be relaxed to Hölder continuity of µ, both in the approach based on the
multiscale analysis which was introduced in [FrS] and is discussed in [Kl], and in
the one based on the fractional moment method of [AM, AE+]. (The basis in the
former case is an improved analysis of the Wegner estimate, which can be found
in [St, CHK].) However, techniques relying on the regularity of µ seem to reach
their limit with log-Hölder continuity. In particular, until recently the Bernoulli
random potential had been beyond the reach of analysis in more than one dimen-
sion. For that extreme case, i.e., of Hω with µ {1} = µ {0} = 1

2 , localization at
the bottom of the spectrum was recently proven by Bourgain and Kenig [BK]. A
crucial step in the analysis of [BK] is the estimation of the probabilities of energy
resonances using Sperner’s Lemma, i.e., the p = 1

2 version of (3.4).
The point which we would like to make here is that the Bernoulli decomposition

of random variables enables one to turn the latter result of Bourgain and Kenig
[BK] into a tool for a general proof of localization at the edge of the spectrum for
arbitrary non-degenerate µ.

First, the Bourgain and Kenig [BK] analysis needs to be extended to Schrödinger
operators which incorporate an additional background potential U ∈ L∞(Rd), and
for which the variances of the Bernoulli terms are uniformly positive, thought not
necessarily uniform. More explicitly, the class is broadened to include operators of
the form

Hη = −∆ + U(x) +
∑
ξ∈Zd

ηξ bξ u(x− ξ) , (4.4)

where u(·) is as in (4.2), satisfying the above condition (1), but instead of (2):
(2’) η = {ηξ}ξ∈Zd are iid Bernoulli random variables taking the values {0, 1}

with probabilities {1− p, p}, and the coefficients {bξ}ξ∈Zd satisfy

0 < b− ≤ bξ ≤ b+ < ∞ for all ξ ∈ Zd, (4.5)
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and
(3) U ∈ L∞(Rd) satisfies, for all x ∈ Rd: 0 ≤ U(x) ≤ U+ < ∞.

Due to the presence of the background potential U the spectrum of Hη need not
be deterministic, i.e., equal to some fixed set with probability one. For our main
purpose it would suffice to restrict attention to U for which the spectrum of Hη

is almost surely [0,∞). Such restriction is not included in the following statement
but instead there is a caveat in the conclusion.

The extended BK result, whose proof is presented in [GK], is:

Theorem 4.1. Given a function u(·) as above, and: p ∈ (0, 1), b± > 0 and
U+ < ∞, there exist E0 > 0 such that any random operator Hη of the form (4.4),
satisfying conditions (1), (2’) and (3), for otherwise arbitrary external potential
U , with probability one, either exhibits spectral localization in [0, E0] or σ(Hη) ∩
[0, E0]=∅.

Theorem 2.1 allows now to deduce the following general statement from the
above non-trivial Bernoulli result.

Theorem 4.2. Let Hω = −∆ + Vω be a Schrödinger operator with the random
potential given by (4.2), satisfying the above conditions (1) and (2). Then for some
E0 > 0 the operator Hω, with probability one, exhibits spectral localization in [0, E0].

Proof. The Bernoulli decomposition (2.3) allows to write the coefficients in the
random potential in the form:

ω
D=
{
Y+(tξ) + δ+

p (tξ) ηξ

}
ξ∈Zd , (4.6)

with t = {tξ}ξ∈Zd a family of independent random variables which are uniformly
distributed in (0, 1), Y+ and δ+

p the functions defined in (2.12) in terms of the
distribution function of µ, and η = {ηξ}ξ∈Zd a family of iid Bernoulli variables,
independent of t, which take values in {0, 1} with probabilities {1− p, p} for some
p ∈ (0, 1) such that (2.6) holds.

As a consequence, the random operator can be written as:

Hω
D= −∆ + Ut + Vt,η =: Ht,η (4.7)

where

Ut(x) :=
∑
ξ∈Zd

Y+(tξ) u(x− ξ) and Vt,η(x) :=
∑
ξ∈Zd

δ+
p (tξ) ηξ u(x− ξ) , (4.8)

and the following bounds hold

0 ≤ Ut(x) ≤ U+ := M

∥∥∥∥∥ ∑
ξ∈Zd

u(· − ξ)

∥∥∥∥∥
∞

< ∞ ,

0 < b− := inf
t∈(0,1)

δ+
p (t) ≤ b+ := M < ∞ . (4.9)

This implies that when conditioned on the values of t the operator Ht,η is of the
form (4.4), with p, U+ and b± independent of t. Thus, by Theorem 4.1 there
exists E0 > 0 such that when conditioned on t with probability one, Ht,η either
exhibits spectral localization or has no spectrum in [0, E0]. However, the latter is
excluded (almost surely, also with respect to the conditional probability) by (4.3)
and Fubini. �
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Remark 4.1. In addition to the spectral localization it is also of interest to estab-
lish the existence of uniform localization length, i.e., to prove that all eigenfunctions
φ of Hω with eigenvalue in [0, E0] satisfy∫

|x−y|≤ 1
2

|φ(y)|2 dy ≤ Cφ e−2|x|/` for all x ∈ Rd . (4.10)

This can be accomplished in the following two ways, for which the details are
presented in [GK].

To establish uniform localization length under the hypotheses of Theorem 4.2
one may use the Bernoulli decomposition (4.6) before performing the multiscale
analysis which is behind the proof of Theorem 4.1. The multiscale analysis is then
executed for the random Schrödinger operator Ht,η in (4.7), in such a way that all
events in the analysis are jointly measurable in t and η.

An alternative proof of Theorem 4.2, which yields also uniform localization
length, can be based on the concentration bound of Theorem 3.1. Namely, the
Bourgain-Kenig proof can be extended to arbitrary single site probability distribu-
tion µ, with the probabilities of energy resonance estimated by the concentration
bound instead of by Sperner’s Lemma as in [BK] (see [GK]).
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