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Abstract

In high accuracy long-time integration of differential equations,
round-off errors may dominate truncation errors. This article stud-
ies the influence of round-off on the conservation of first integrals such
as the total energy in Hamiltonian systems. For implicit Runge–Kutta
methods, a standard implementation shows an unexpected propaga-
tion. We propose a modification that reduces the effect of round-off
and shows a qualitative and quantitative improvement for an accurate
integration over long times.

Keywords: probabilistic error propagation, implicit Runge–Kutta
methods, long-time integration, efficient implementation.

1 Introduction

The long-time integration of differential equations with high accuracy is
common in astronomy (e.g., the numerical computation of the solar system
and the long-term solution for the insolation quantities of the Earth [6]; it
is expected to be used for age calibrations of paleo-climatic data over 40
to 50 Myr). As soon as the local truncation error is close to (or below)
the round-off unit, the main contribution to the local error of the numerical
solution is due to the finite precision arithmetic on the computer. We are
interested in better understanding the influence of this source of error to a
numerical integration over long times.

In the present article we are mainly concerned with Hamiltonian systems,
although much of the discussion can be extended straight-forwardly to the
conservation of first integrals in arbitrary differential equations or to the
propagation of the global error in integrable systems. Let

ṗ = −∇qH(p, q), q̇ = ∇pH(p, q), (1)
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where H(p, q) is a smooth function, called the energy of the system. This en-
ergy is a first integral of (1), which means that H

(
p(t), q(t)

)
= Const along

solutions of the system. The numerical energy H(pn, qn), where (pn, qn) ap-
proximates the solution at time tn = nh, is not constant. With exact arith-
metic, the error grows linearly with time in general, but remains bounded
and small without any secular drift for symplectic integration methods; see
[3, Chap. IX]. Assuming that the round-off error of one step is a random vari-
able with mean zero and variance proportional to the square of the round-off
unit eps, the error contribution due to round-off will grow like (Brownian
motion) the square-root of time. This is often called Brouwer’s law [1] in
the literature [2]. This model of round-off error was exploited in a detailed
study by Henrici [4, 5]. Much attention has been paid to the propagation
of round-off with linear multistep methods [8, 2] and composition methods
[7]; we know of no such studies for Runge–Kutta methods.

This article is organized as follows. Section 2 presents numerical expe-
riments of standard implementations of various integration methods, where
the step size is chosen small enough to guarantee that the truncation error is
below round-off. The rather surprising observation is that for composition
methods the round-off error grows as expected like square-root of time, but
that for Runge–Kutta methods shows a linear error growth. The reasons
for this phenomenon are discussed in Section 3. We also propose modifi-
cations of a standard implementation of Runge–Kutta methods that allows
us to recover the optimal (square-root of time) growth of round-off errors.
A probabilistic explanation of the growth of round-off errors for the differ-
ent implementations is given in Section 4. Finally, in Section 5 we discuss
the statistical behaviour of round-off errors when our new constant step
size implementation of the Gauss–Runge–Kutta methods is applied to the
Hénon–Heiles problem and to the outer solar system.

2 Observed propagation of round-off

An efficient computation of very accurate numerical approximations for ordi-
nary differential equations requires the use of integrators of high order. One
can use high order multistep, Runge–Kutta, or composition and splitting
methods. We do not discuss multistep methods in the present article. Our
limited experiments have shown that they have remarkably good round-off
error propagation.

Composition based on Störmer–Verlet. For a basic numerical scheme
Φh(y) (usually symmetric and of order two) the symmetric composition

Ψh = Φγsh ◦ Φγs−1h ◦ . . . ◦ Φγ2h ◦ Φγ1h, (2)

where γs+1−i = γi for all i, allows one to get high order for suitable choices
of the parameters γi. For the numerical experiments of the present arti-
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cle we have chosen the coefficients of Suzuki & Umeno (order 8 and s =
15) as given in [3, p. 157]. As basic numerical scheme we consider the
Störmer–Verlet discretization which, for Hamiltonian systems with sepa-
rable H(p, q) = T (p) + U(q) reads as

qn+1/2 = qn +
h

2
∇pT (pn),

pn+1 = pn − h∇qU(qn+1/2),

qn+1 = qn+1/2 +
h

2
∇pT (pn+1).

(3)

This method is explicit and the implementation of the corresponding com-
position method is straight-forward.

Implicit Runge–Kutta methods. For general first order differential
equations ẏ = f(y), Runge–Kutta methods are defined by

Yi = yn + h

s∑

j=1

aijf(Yj) (4)

yn+1 = yn + h
s∑

i=1

bif(Yi), (5)

where the integer s and the coefficients aij , bi determine the method. We
exclusively consider Gauss methods, which have highest possible order r =
2s, and are symplectic and symmetric. Their implementation is not straight-
forward, because a nonlinear system has to be solved for the internal stages
Y1, . . . , Ys. If the problem is non-stiff, it is common to apply fixed-point
iteration. In our näıve implementation we iterate until the increment of two
successive approximations satisfies

∆(k) := max
i=1,...,s

∥∥Y
(k)
i − Y

(k−1)
i

∥∥
∞

≤ δ (6)

where δ ≈ 2 · 10−16 (problem dependent) is chosen as the smallest positive
number such that this criterion is satisfied before the increments start to
oscillate due to round-off. In the update formula (5) the vector field f(y) is

evaluated at the most recent approximation Y
(k)
i to the internal stages.

Numerical experiment. We consider the Hénon–Heiles model which is
Hamiltonian with

H(p, q) =
1

2

(
p2
1 + p2

2

)
+

1

2

(
q2
1 + q2

2

)
+ q2

1q2 − 1

3
q3
2,

and we choose initial values q1(0) = 0, q2(0) = 0.3, p2(0) = 0.2, and the
positive value p1(0) such that the Hamiltonian takes the value H0 = 1/8
(the solution is chaotic; see [3, Section I.3]). On an interval of length 2π ·106

we apply the integrators mentioned above; a composition method of order 8,
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Hénon–Heiles

Gauss–R
unge–K

utta

composition

Figure 1: Propagation of round-off in the numerical Hamiltonian for the
standard implementation of an implicit Runge–Kutta method of order 8
(step size h = 2π/140), and for a composition method of order 8 (basic step
size h = 2π/240). The dotted grey lines have slopes 1 and 1/2, respectively.

which is explicit, and the Gauss–Runge–Kutta method of order 8, where the
nonlinear system is solved by fixed-point iteration. For both integrators we
apply compensated summation (see [3, Section VIII.5]). This can be seen as
performing the addition in yn+1 = yn + hβn in higher precision, so that the
round-off error is reduced by a factor of h. We use step sizes such that in a
computation with quadruple precision the maximal error in the Hamiltonian
is approximately 10−18, i.e., below the round-off unit. Notice that both
integrators are symplectic so that there is no drift in the Hamiltonian due
to the discretization error.

Figure 1 shows the absolute value of the error in the Hamiltonian as a
function of time (in double logarithmic scale). Since the truncation error is
very small, the curves represent the contribution of round-off. For the com-
position method it increases, as expected for a random walk, like the square
root of time (this corresponds to lines with slope 1/2). More surprisingly,
the round-off error of the implicit Runge–Kutta method is a superposition
of a statistical error which grows like square root of time and is dominant
until about t = 104, and of a deterministic error which grows linearly with
time. This error is about 7.5 × 10−21 per step, or 3 × 10−4 ulp per step.
Here 1 ulp (= units in the last place) is 2−55, for machine eps = 2−52 and
H0 = 1/8. So the linear drift is very small and not simply due to a naive
accumulation of a few ulp per step, but rather due to a tiny non-zero bias
in the pattern of positive and negative rounding errors.

3 Reducing the influence of round-off

The objective of this paper is to find the reasons of the linear growth of
round-off errors in a standard implementation. We propose modifications
that allow us to recover the expected square root of time behaviour.
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Sources of the unexpected growth of round-off. After many numerical
experiments with various methods and problems we came to the conclusion
that there are essentially two sources of non-statistical errors that lead to
the linear error growth of round-off.

• Iterative solution of the nonlinear Runge–Kutta equations. Fixed-point
iteration acts like the power method and the error tends to the eigen-
vector of the dominating eigenvalue of the linearized equation.

• Inexact Runge–Kutta coefficients. In general, the coefficients aij and
bi are not machine numbers, and the computations are done with
rounded coefficients âij and b̂i which do not exactly satisfy the or-
der conditions of the Runge–Kutta method. This is a systematic er-
ror, because the same (rounded) coefficients are used throughout the
integration.1

Notice that for composition methods based on the Störmer–Verlet scheme
none of these error sources is present. These methods are explicit and no
iterative solution of nonlinear equations is involved. They are symplectic
even for inexact coefficients γi. Thus the use of inexact coefficients does not
contribute a term that grows linearly in time to the Hamiltonian, merely
one that is bounded in time and of the order of roundoff. This explains the
good long-time behaviour of the composition method in Fig. 1.

Remedies. To avoid these systematic errors in the implementation of im-
plicit Runge–Kutta methods we have done many numerical computations
over very long time intervals, and we came to the conclusion that the fol-
lowing modifications are the most efficient.

• Iteration until convergence. Instead of using the stopping criterion (6),
we propose to iterate until either ∆(k) = 0 or ∆(k) ≥ ∆(k−1) which
indicates that the increments of the iteration start to oscillate due to
round-off. This stopping criterion has the advantage of not requiring
a problem- and method-dependent δ. For the up-date formula (5) we

use the values f(Y
(k−1)
i ).

• Simulating exact Runge–Kutta coefficients. Our first idea was to use
coefficients in quadruple precision. This can, however, be avoided by
a trick inspired by compensated summation. We split the coefficients
into

bi = b∗i + b̃i, aij = a∗ij + ãij , (7)

1The use of inexact coefficients in Taylor series methods (multiplication by 1/3 instead
of division by 3) leads to the same numerical phenomenon; c.f. the talk by Carlos Simó at
the Castellón Conference on Geometric Integration.
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where b∗i and a∗ij are exact machine numbers, e.g., rational approxi-

mations to bi, aij with denominator 210, and we compute the internal
stages as

Yi = yn + h
( s∑

j=1

a∗ijf(Yj)
)

+ h
( s∑

j=1

ãijf(Yj)
)
,

and the up-date formula in a similar way. Since the coefficients b̃i and
ãij are small, this procedure permits one to recover the missing few
digits in the Runge–Kutta coefficients.

With regard to iteration until convergence, we note that in the experiments
on Hénon–Heiles, a final value of ∆ = 0 was obtained in about 99.6% of
time steps. In the other 0.4% of time steps, the mean of the final ∆ values
was 2 ulp, with a maximum of 4 ulp or 1.1×10−16, the latter occurring only
55 times in 960 000 steps. The experiments confirm that it is not the size of
the final errors that is significant, but the lack of systematic bias.

Numerical confirmation. We consider the Hénon–Heiles problem with
the same data as in Section 2. Besides a quadruple precision implementa-
tion which shows the size of the truncation error, we consider the following
implementations of implicit Runge–Kutta methods:

grk-co The stopping criterion is changed to “iteration until convergence”
as described above.

grk-ex The Runge–Kutta coefficients are split according to (7). This pro-
duces results as if coefficients with higher precision were used.

grk-co-ex Both modifications are applied; the “iteration until convergence”
procedure as well as the simulation of Runge–Kutta coefficients with
higher precision.

In all implementations, compensated summation is employed to reduce the
influence of round-off in the up-date formula.

From Fig. 2, where again the error in the Hamiltonian is drawn as a
function of time, we can draw the following conclusions. The errors for the
implementation “grk-co” are not much different from those for the standard
implementation of Fig. 1. The idea of using (or simulating) Runge–Kutta
coefficients with higher precision is much more important and improves con-
siderably the propagation of round-off. However, on very long time intervals
both implementations, “grk-co” and “grk-ex” show an undesired linear error
growth of round-off in the Hamiltonian. Only the implementation “grk-co-
ex” which combines both improvements, shows an optimal square root of
time growth of the round-off error. It behaves very similar to the compo-
sition method in Fig. 1. With these modification of the implementation we
could achieve Brouwer’s law also for implicit Runge–Kutta methods.
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Figure 2: Error in the Hamiltonian of various implementations of implicit
Runge–Kutta methods.

4 Probabilistic explanation of the error growth

To understand the long-time behaviour of round-off errors (experiments of
Section 3) we make use of probability theory, an approach that has been
developed in the classical book of Henrici [5].

Effect of rounded Runge–Kutta coefficients. In the equations (4)-(5),
with bi, aij replaced by their rounded machine numbers b̂i, âij , we consider
the internal stages and the numerical approximation at the grid points as
random variables with expected values Y i and yn, respectively. Assuming
that the evaluation of the vector field is not biased and that our new stop-
ping criterion does not give rise to systematic errors in the solution of the
nonlinear system, the computed approximations satisfy the Runge–Kutta
equations where a random vector is added, each component of which is in-
dependent with mean zero. The expected values of the internal stages and
the numerical approximation then satisfy

Y i = yn + h

s∑

j=1

âijf(Y j), yn+1 = yn + h

s∑

i=1

b̂if(Y i).

If we denote by yn+1 = Φh(yn) the discrete flow of the Runge–Kutta method
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(in exact arithmetic), the difference Φh(yn) − yn+1 can be expanded into a
Taylor series around h = 0 and yields the familiar formula

Φh(yn) − yn+1 = h
( s∑

i=1

bi −
s∑

i=1

b̂i

)
f(yn)

+
h2

2

( s∑

i,j=1

bi aij −
s∑

i,j=1

b̂i âij

)
f ′(yn)f(yn) + . . . .

(8)

It precisely shows the systematic (local) error due to round-off in (implicit
and explicit) Runge–Kutta methods. This systematic error is responsible
for the linear growth of round-off errors as observed in Fig. 1. Depending
on how well the rounded coefficients satisfy the order conditions, the error
growth will be more or less pronounced.

Error growth of round-off in the energy. We consider sufficiently small
step sizes so that the local truncation error is close to or below round-off.
Considering a few terms of the modified Hamiltonian

H̃(y) = H(y) + hpHp+1(y) + hp+1Hp+2(y) + . . . (9)

in the sense of backward error analysis [3, Section IX.3]), we can safely
assume that H̃(Φh(y)) = H̃(y) for the numerical flow with exact Runge–
Kutta coefficients. In this case the error contribution over one step in the
modified Hamiltonian,

H̃( yn+1) − H̃( yn) = εn,

can be considered as a sequence of independent random variables. Their
expected value is proportional to the expression in (8) and is negligible if
the actually used Runge–Kutta coefficients b̂i and âij are sufficiently close to
bi and aij. Their standard deviation is proportional to the round-off unit eps.
The use of compensated summation now ensures that the expected absolute
round-off error in H̃ (or in yn) per step is proportional to eps h. Brouwer’s
argument now gives E[|H̃(yn) − H̃(y0)|] = Cepsh1/2 t1/2 for t = nh for
some constant C. Since the perturbation in (9) is close to round-off and
remains bounded, it does not affect the long-time behaviour of the error
in the Hamiltonian. In contrast, if inexact Runge–Kutta coefficients are
used that do not define a symplectic integrator, there will be no modified
Hamiltonian and a linear growth of energy errors will result.

The same considerations apply to any first integral of any differential
equation as long as there exists a modified first integral for the modified
differential equation of the numerical integrator. This is the case for the
angular momentum in N -body problems solved with a symplectic integrator,
but it is not the case for the Runge–Lenz–Pauli vector in the Kepler problem.
The error in this first integral increases linearly with time even with exact
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Runge–Kutta coefficients and in exact arithmetics and we cannot hope for
doing better with our implementation.

For a composition method we directly consider the modified Hamiltonian
corresponding to the method with rounded coefficients (which is also sym-
plectic). The same analysis then shows that round-off errors in the energy
always verify Brouwer’s law.

5 Statistical confirmation

A single experiment, as that of Fig. 2, could lead to wrong conclusions due to
the statistical nature of round-off errors. We first consider the Hénon–Heiles
equation, and we repeat the same calculation many times with randomly
perturbed initial values all with the same initial value of the Hamiltonian.

Figure 3 illustrates the random walk nature of the energy error. The
mean energy error is zero to within sampling error, and the standard devi-
ation is proportional to

√
n. The standard deviation of the energy error is

about 8 × 10−18hn1/2, or 0.3hn1/2 ulp. This is consistent with the above
model of round-off, for in this case the standard deviation in the round-off
error in energy in one step is about 0.6 ulp. Figure 4 shows the histogram
of the energy error at the endpoint of integration. We see that it follows a

0 30000 60000 90000
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0

1

2

3
×10−15

error in Hamiltonian

Henon–Heiles system

Figure 3: Energy error for Hénon–Heiles with h = 0.25, H0 = 1/8, and
1000 initial conditions randomly chosen close to the one of Section 2. The
implementation is “grk-co-ex” and the order is 12. The plot shows the error
as function of time for 200 initial values. The average as a function of time
(µ = 0.05×10−15 at t = 100 000) and the standard deviation (σ = 1.3×10−15

at t = 100 000) over all 1000 trajectories are included as bold curves.
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Figure 4: Histogram of energy errors at t = 100 000 over 1000 samples,
shown against a normal distribution with the same mean and standard de-
viation. The horizontal axis is in units of 10−15 according to Fig. 3.

normal distribution.
As a more realistic example, we consider the outer solar system (sun,

the four outer planets, and Pluto). We take the data and initial values
from [3, Sect. I.2.4] and modify the velocities to get zero linear momentum.
Figure 5 shows the energy errors for many different initial values (we add
random perturbations of size O(10−12) to the positions and keep the velocity

0 2 4 6 8 10

−10

−5

0

5

10
×10−15

error in Hamiltonian

outer solar system
×106

Figure 5: Energy error for the outer solar system with step size h = 500/3
days and 500 initial values. The implementation is “grk-co-ex” with order
12. The error as function of time is shown for 166 initial values. The
average (µ = 0.34×10−15 at t = 10000 000 days) and the standard deviation
(σ = 5.78×10−15 at t = 10000 000 days) over all 500 trajectories are included
as bold curves.
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unchanged). Due to the larger complexity of the differential equation, the
error is slightly larger than in the previous experiment for the Hénon–Heiles
equation. However, the qualitative behaviour (Brouwer’s law) is exactly
the same. The same error growth of round-off can also be observed for the
angular momentum.

Notice that for the initial values of [3, Sect. I.2.4] the linear momentum
is non-zero, so that the positions and hence also the round-off error in the
evaluation of the vector field increase linearly with time. In this case, the
round-off error in the Hamiltonian is expected to grow like t3/2. Brouwer’s
law can be satisfied only if the numerical solution remains in a compact set.

6 Conclusions

Implicit Runge–Kutta methods (based on Gauss quadrature) have a large
potential for an accurate computation in geometric integration:

• Methods of arbitrarily high order are available; for efficiency reason
it is important to use high order methods (order 8 and higher) for
computations close to machine accuracy. For quadruple precision a
much higher order of the methods is recommended.

• For expensive vector field evaluations, all s stages in the Runge–Kutta
formulas can be evaluated in parallel.

• Implicit Runge–Kutta methods can be applied to general differential
equations. In the case of Hamiltonian systems, the Hamiltonian does
not need to be separable.

The present article shows that care has to be taken in the implementation
of implicit Runge–Kutta methods. A standard straight-forward implemen-
tation will produce an undesired linear growth of round-off errors in first in-
tegrals such as the total energy. We have presented an implementation that
leads to a minimal growth of round-off errors. This is not only important for
computations when the local truncation error is smaller than round-off (all
experiments of this paper are of this type to emphasize the effect of round-
off), but also when the local truncation error is larger but close to the ma-
chine epsilon. Since for symplectic methods the energy error in exact arith-
metic remains essentially bounded, it will eventually be dominated by round-
off. The implicit Runge–Kutta code “grk-co-ex” can be downloaded from the
Internet at the homepage <http://www.unige.ch/∼hairer/preprints.html>.
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