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ABSTRACT. A multiscale method for computing the effective behaviba class
of stiff and highly oscillatory ordinary differential eqtians (ODES) is presented.
The oscillations may be in resonance with one another andlijgyenerate hid-
den slow dynamics. The proposed method relies on correettking a set of
slow variables whose dynamics is closed up foerturbation, and is sufficient
to approximate any variable and functional that are sloweuride dynamics of
the ODE. This set of variables is detected numerically asprpcessing step in
the numerical methods. Error and complexity estimates lr&imed. The advan-
tages of the method is demonstrated with a few examplesidimgj a commonly
studied problem of Fermi, Pasta, and Ulam.

1. INTRODUCTION

Solutions of ordinary differential equations (ODES) oftemolve a wide range of
time scales. In many problems, one is only interested in kv dynamics, or
on the long-time behavior of the solutions. However, it ikenfthe case that fast
oscillations, or an otherwise small perturbation build apah observable effect
that cannot be neglected. A typical example, suggested @& Dahlquist, is
the drift path of a mechanical alarm clock when it set off oreadhsurfacé The
rapid vibrations of the clock’s arm are not precisely synmueflogether with the
heavy, inhomogeneous internal structure and the interaegtith the surface these
oscillations can cause the clock to drift slowly in a comalex trajectory that is
difficult to calculate or predict. Moreover, this drift seeito be deterministic and
does not resemble a random walk.

Within the large literature considering dynamical systehet evolve on two or

more well separated time scales, analytic averaging tqaesi[3, 33] have been
found to be one of the methods of choice for providing apprate solutions. In

this paper such an averaging theorem is used to construghariaal method for

integrating stiff ODE systems that may include oscillatand resonant compo-
nents. Our method follows the framework of the heteroges@auitiscale method
(HMM) [9, 10, 12].

A short clip showing the trajectory of a vibrating alarm dtods available at
www.ma.utexas.edu/CNA/alarm_clock/alarm.htm
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Consider an ODE system of the general form
(1.1) % = f(x) + g(x). x(0) = xq,

where( < e < ¢ is a small parameter that characterizes the separatiomef ti
scales in the problem. In this paper we consider solutioasiounded domair €
D, C R? and in a bounded time interval= [0, T'|. We assume that the solution of
(1.1) exists in/ Although the solution of (1.1} (¢; €), depends on the parameter
this dependence is suppresses and for short hand we oftEx\( = x(¢; €).

Typically, the fast dynamics in equations such as (1.1) s ohtwo types. The
first are modes that are attracted to a low dimensional mianifoe time scale.
These modes are called transient or dissipative modes. €domd type are modes
that oscillate with a frequency that is inversely proporéibtoe. One of the main
difficulties in numerical integration of (1.1) using exptimethods is that stability
requirements force a step size that is of ordeiThis generally implies that the
computational complexity of such explicit methods for aegrating (1.1) over a
fixed timeT is at least of the order af !.

Several different approaches have been suggested, eacpaafe to some class
of ODEs. Dahlquist laid down the fundamental work for desigrliinear multi-
step methods [5, 6, 7, 8] and studied their stability propertProblems with fast
transients can be optimally solved by implicit schemes §,24]. The Chebyshev
methods [1, 28] as well as the projective integrator apgrdaé] provide stable
and explicit computational strategies for this class obpgms in general. For har-
monic oscillatory problems, traditional approaches agteta filter out or fit fast,
O(e™!) oscillations to some known functions in order to reduce threglexity, e.g.
[15, 25, 34], or use some notion of Poincaré map to deterniave changes in the
orbital structure [17, 32]. A general class of approachesrag at Hamiltonian sys-
tems are geometric integration schemes that preserve @i@ise@rsion of certain
invariance. We refer the readers to [18] and [29] for moreesive list of litera-
tures. In certain applications, special consideratioagjaren to the expensive cost
of evaluating non-local potential in large systems, seeteggimpulse method [14]
as the cost may be even more than dealing with the fast demilathat appear in
the systems. Using matrix exponentials and the [21], we factevely compute
oscillatory solutions to a class of problems with leadingin@nic oscillations.

For problems in meteorology [4, 26] or celestial mechanig,[it is possible to
carefully prepare suitable initial conditions near acteigbservational data so that
the fast modes in the system will not be exerted, and thus tiomg solutions can
be computed accurately using large time steps.

The different methods described above vary not only in s@pkunderling as-
sumptions, but also in their approach to broader questidnsname a few, how
to characterize or capture the "slow constituents" of theadyics which may in-
volve non-trivial functionals of the state variabt® How can one obtain slowly

varying observables out of trajectories that evolve on tefasme scale? Which
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observables should the multiscale integrator approxiraatein what sense? Fi-
nally, which variables or observables are essential to ld@righm and which are
not? This question is related to the closure problem in th@ditation of averaged
equations.

In many examples, itis not clear how to characterize the gplasts of the dynamics
in systems such as (1.1). To this end we define slow varialllebservables as
follows.

Definition 1.1. Letx(t) = x(t; €) € D, denote the solution of (1.1) for some initial
conditions.

e A smooth function(t) = a(t; €) is said to be slow ifda/dt| < Cjy,for some
constant’y independentofint € [.

e A smooth function(x) : Dy — R is said to be a slow variable with respect
to x(¢) if

(1.2) (x(t)]| < Co, t €T

—Q
dt
for some constant, independent of.
e A bounded functiona} : C''(Dy) x [0,T] — R is said to be a slow observ-
able with respect ta(¢) if

(1.3) B(t) = / B(x(r), 7)dr,

or
t+1
(L.4) (B0 = [ Kot = )3lx(r). )

where K, () = n~'K(-/n) for some kernel functio” € C' with support

on[—1,1] and ffl K (t)dt = 1. Functionals of the second kind will also be
referred to as local time averages.

In section 4 we show that under appropriate scaling wfith €, (d/dt)(3),(t) is
indeed slow.

Next we define a concept which we call "effective closurei$ B necessary condi-
tion for the macroscopic slow variables in our schemes.

Definition 1.2. We say that the dynamics ¢fis effectively closed if0, 7] with
respect tc if £ satisfies an equation of the form

% - fl(faﬂ + 6fII(§7t7Z(t>>7 % - 9(5727”

in a time interval[0, T'], whereT < oo is independent of, and f;, f;;, and g are

smooth and bounded iR, x [0, T7.
3



In the next section it is shown that if a sufficient number afdpendent slow vari-

ables are approximated accurately by the algorithm, tieset variables are effec-
tively closed. Furthermore, the same variables can be wseoisistently approx-

imate any other slow variable and functional. The algorithescribed in the next

section indeed achieves this goal and the accuracy of therefit approximations

is calculated.

In this paper we propose an HMM algorithm that first constrogta numerical
procedure, a transformation— £(x) such that (x(t)) are slow for all solution of
(1.1)x(¢) and its dynamics are effectively closed. This means thag fvenx(0)
and the corresponding evolutiext), £(t) := £(x(t)) is well described for smaH
by an effective equation of the form

(1.5) §=F(§), £(0) = & = (%),

for ¢t € 1. Note that we do not assume that the effective equation {d &)ailable
as an explicit formula. Instead, the idea behind the HMM athm is to evaluate
F(¢) by numerical solutions of (1.1) on significantly reduceddimtervals. In this
way, the HMM algorithm approximates an assumed effectiveaggn whose form
is typically unknown.

The layout of the paper is as follows. Section 2 presents &kmelwn averaging
theorem. Based on this theorem we prove that by using an jppat® set of slow
variables, all slow observables admitted by (1.1) are apprated by a class of
HMM schemes. The outline of the algorithm is also descril&&ection 3 gives an
example of a particular, limited class of ODEs, in which thé$ of slow variables
are polynomial inx. Several strategies for identifying these polynomialssug-
gested. Section 4 considers local time averages which faressential part of the
HMM algorithm. Section 5 describes high order explicit stles. In Section 6 we
estimate the global accuracy and complexity of the methedti@ 7 presents sev-
eral numerical examples. We conclude in Section 8 by sunpggedifferent possible
generalizations of our algorithm and compare to other teghas.

2. THE HMM SCHEME

We begin with a well-known averaging theorem. A proof can testructed along
the lines of Sanders and Verhulst [33]; e.g. Thereom 3.2nlfage 39.

2.1. An averaging theorem. Let (£(t), ¢(t),v(t)) denote the solution of

éi - F(§7 ¢7 ’Y)? 5(0) - 50
(2.1) =€) +G(0,7), 6(0)=¢o
y=—e'H(y), 7(0) =70,

in a bounded domai® x S' x Dy, whereD C R” andD; < R4 "L, In this
paper, we identify5! asR /Z, i.e., the spac® modulus one, with the corresponding

topology and Lebesgue measure. In this construction, thetiins, /', G, H and
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Q areC! and independent af Additionally, we assume th& > m > 0 and{(1)
remains bounded far < ¢ < 7.

The functionH (v) is chosen such that, for ajl € Dy, y(t) is attracted on aatime
scale to an invariant manifoldy1, on which~ is relaxed to be of ordetr. More
specifically, it is assumed that
C

)] < =——,
|’7( )‘ — D—|— (t/G)l
for some constant§’, D;I > 1. Hence,y are transient, or dissipative variables
which are relaxed to zero after an initial time layer thatighas in the limit — 0.

(2.2)

Let ((¢) denote the solution of

23) (= PO = [ P¢Goy=0)do, (0) = £(0)

Then,

(2.4) sup  |£(t) — C(t)] < eCTe T,
0<To(e)<t<T

whereL > 0is a Lipschitz constant of, C' > 0 is a constant that is indpendent of
e andTy(e) = o(1) is the time required for the relaxation of the dissipativedes
which depends on the rate of decayyofl. This theorem suggests that simulating
the averaged equation fgrintroduces an error on the order«f

The above condition on the dissipative modes can be gepeddld a case in which
the equation fory € R4~"~! has the form

F=etg(€),
whereg is such thaty is attracted to an + 1 dimensional invariant manifoldy1,,
on whichg(¢&, ) is of ordere. See [31] for sufficient conditions that guaranty stabil-
ity and unigueness of this manifold and a proof thatecays toM; exponentially
fast on a time scale of the order @f For simplicity, we do not consider the inter-
esting problem of turning points. The algorithm describethie following section
automatically guaranties that all dissipative models ael@wed and that the dynam-
ics stays close toV\;. This generalization is not discussed any further since the
main interest of this paper are the oscillatory modes.

Assume that there exists a change of variables
DDy CR'—=DeER xS xR d(x) = (£(x), p(x),7(x))

such that for the solutions of (1.1), the functigf(g) = £(x(¢)), o(t) = o(x(1)),
and~y(t) = v(x(t)) satisfy some equations in the form (2.1). Pox ¢ < 1, the
fast dynamics in the new coordinate system appears onfytinand~(t). Hence,
the effective behavior of the system can be described(by which approximates

§(1).
The most important aspect of equation (2.3) is that it isexlips.e., the time deriv-

ative of  is expressed in terms @falone. As a result, it is possible to construct
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an algorithm that only approximatés Later, it is shown that it is approximated
accurately, then all slow variables and observables aceagproximated consis-
tently.

System (1.1) can be analyzed and computed efficiently iktlb&ists a diffeomor-
phism betweerx and (¢, ¢, ). Clearly, the choice o is not unique. However,
since we are only interested in the slow parts of the dynanticsenough to find

a sufficient number of slow variablés= (¢, ..., ¢,) such that{/ox has rank-.
Onceé(x) is identified,F'(&) = F(£(x)) is easily calculated. The key step is then
to relax all dissipative modes and average ayé¢o obtain the unknown function

F(¢). In section 4, we show that this can be approximated by lawed &verages
F(&) ~ (F(E(x(1))))-

£(t) = F(€) is then used in an integrator to obtairat some later time + H.
Efficiency is attained iff > 7 since we do not need to evolve the stiff systems for
x(t) for all time.

2.2. Algorithm. The first step in our algorithm is to numerically find the diffe
morphism® and identify the slow variablegx). Then, the ODE (1.1) is integrated
using a two level algorithm; each level corresponds to thegiation of (1.1) in a
different time scale. The first is a Macro-solver, which graes the averaged
equation (2.3). The second level is a micro-solver that weked whenever the
Macro-solver calls for it. Each time the micro-solver isoked, it computes a short
time solution of (1.1) using a suitable initial data. For@xde, suppose the Macro-
solver applies a forward Euler scheme with step gizeHigher order methods are
described in Section 5. Sample times of the Macro-solvedamoted, . . ., ¢y,
whereN = T'/H. The output of the Macro-solver is denoteg . . . , x,. The out-
put of the micro-solver with step siZe initiated at timet,, with initial conditions
x, is denotedx’, ..., xM, whereM = 2n/h is an even integer. The coordinates
of [ are denoted”(¢) = (F1(¢), ..., F.(¢))T. We also assume that the averaging
kernel K" is symmetric with respect to its mid-point. This impliesttiial\/h >> ¢,
then all transient modes practically vanish at the midpoirte outline of the al-
gorithm, depicted in Figure 1 for a one dimensional example ia 2 for a two
dimensional case, is as follows.

(1) Construction of slow variables:
Find functions¢; (x), ..., &.(x) such that, for allk € Dy, N {F # 0},
|Vx&x| < Cp and rankd¢ /0x) = r. See Section 3 for details.
(2) Multiscale evolution:
(a) Initial conditionsx(0) = x, andn = 0.
(b) Force estimation:
(i) micro-simulation: Solve (1.1) it € [t,,t, + 2n] with initial
conditionsx,,. _
(i) averaging: approximate(t,, + n) by

(E0n(tn +n) = (K * S)(tn;r n) = (=Ky ) (tn +n).



(c) Macro-step (forward Euler example):
Xpi1 = ng/2+H5x, wheredx is the least squares solution to the linear
system
0x - V& = Fi(§) = (i
foralli=1...r.
(d) n =n + 1. repeat steps (b) and (c) to tirfie

Note that there is no need to actually change the original @DE) to the form
used in the averaging theorem (2.1).

3
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FIGURE 1. The cartoon depicts the time steps taken by the HMM
scheme. At the-th macro step, a micro-solver with step sizmte-
grates (1.1) to approximatgt) in a time segment,, ¢, + 2n|. This
data is used to approximafé(¢) by (¢(x(t))),. Then, the Macro-
solver takes a big step of siZz&jx, wheredx is consistent Witl’(@n,
i.e.,0x - V& = (&), for the identified slow variables.

micro—solver<'
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FIGURE 2. The cartoon depicts the outline of the HMM scheme for
a simple two dimensional system that oscillates with a feeqy of
the ordere~! and expands on af(1) time scale (c.f. Section 7.1).
The dotted line depicts the trajectory obtained by the msolver.
The bold arcs depict the steps taken by the Macro-solver.
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2.3. Approximation of slow quantities. With the proposed algorithng, is im-
plicitly and accurately evolved. Thus we are able to comphugeslow variables in
Definition 1.1.

Leta(x) € R be a slow variable with respecttdt), i.e.,| 4 a(x(t))| < C,. Denote
Q& 0,7) = a(@1( ¢,7)), anda(t) = a((t), ¢(t),~(t)) = a(x(t)) = a(t).
Differentiating with respect to time, we have
do_ a5
at” = at”
whereay, &, anda, denote partial derivatives with respectgtop and+, respec-
tively. This implies that ifa(x) is slow, then

a(&, 0,7) = a(&, ¢o,0) + €C (€, 0, 7),

whereC' (¢, ¢, ) is bounded independent ef However, sincex or equivalently,
& is independent of, we have that” = 0. In other words, any slow variable is
a function of¢ alone. Consequently, if the algorithm approximatés, then any
smooth functionv(£(t)) is also approximated.

=G¢ €+ d+ay 7,

The second type of slow observables we consider are timagegrof the form
(B(x(+))),- The discussion above implies that

(2.5) <6(X()>>n = (B(x(§, 9, 'Y))>n = (B(&, ¢, 7))777

for some functions. However, the variables decay to zero and, as shown in
section 4, for sufficiently large time averages can be approximated by averaging
over the angle variable. Therefore, we have that

26) (&6~ [ B, = 0)do = Be).

which is a function of¢ alone and hence a slow variable. The discussion above
shows that the algorithm approximates the valugii)),. In practice the time
average((x)), can be calculated from the output of the micro-simulatiati-in
ated at each Macro-step. The error introduced in approxigaime averages by
angular ones, and vice versa, is analyzed in Section 4.

Convergence of functionals follows from the observatiaat for any smooth func-
tionsa(x, t),

is slow sincd (d/dt)a(t)| = |a(x(t),t)| < Cp for x(t) € Dy.

In the simple case in which the integrangk, ¢) is a slow variable itself, the func-

tional fot a(x(7), 7)dr can be approximated by quadrature over the sample points of
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the Macro-solver. In generalx(t), t) can exhibits fast oscillations with frequency
proportional to—!. However, we observe thatt) solves the ODE

27 {d = a(®7(,6,7).7)

Po=1,

which complies to the form required by the averaging theordrherefore,a(t)
can be integrated by the proposed HMM scheme as a passiabheaait the macro-
scopic level. In other words, it can be approximated by

a(t)~ [ (otx(r)r

3. S.ow VARIABLES

The idea behind the proposed method is to find (by numericadtaaction) a set of
slow variables so that the dynamics of the given system isdposed into this set

of slow variables, ainglefast oscillator and dissipative modes. The slow variables
share some resemblance with action-angle variables inaihtext of Hamiltonian
dynamics.

In this section, we consider a class of equations, of a lessrgeform than (1.1),
for which it is possible to analytically classify the slowriables and describe the
diffeomorphism®. We should mention that the HMM algorithm described in sec-
tion 2 applies to the general form (1.1).

3.1. Polynomial slow variables. Consider a system of ODEs of the form

T :e_lA;L'—l—f](.CE,y,Z,t)
(3.1) y = fulx,y,2,1)
z = (x,y)+ fin(z,y, 2, 1),

wherex = (z,y,2) € R¢withz € R,y € R andz € R%,d, +d, +d, =d, A

is a real, diagonalizablé, x d, matrix whose eigenvalues are non zero and either
have a negative real part or are purely imaginary. Eigemgalith negative real
parts are denoted \q, - - - — \;. Purely imaginary eigenvalues appear in complex
conjugate pairs and are denoted, with multiplicityw, . . . , +iw,, SOl + 2r = d,.
Without loss of generality, we may take. > 0, 1 < k < r. In addition, f;, f;;

and f;;; areC' in a bounded domai®, C R¢ to which the solution is restricted.

p = (p1,-..,pas.) are polynomials such that the monomializ, ) are not slow.
Initial conditions arex(0) = (z(0), y(0), 2(0)) = (zo, Yo, 20). Note that the singular
part of 2 does not have to be linear, however, it may not depend on arlyeof

coordinates ot itself.
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Supposes is a change of variables that diagonalizesWe obtain the following
decoupled scalar equations for !x

(3.2) {ﬁf(t) = i\ () + fE k=17

() = —e T Xpyi(t) + fo E=1...1

Here, fi and 5 are linear combinations of the components/afWe refer to the
variable pairs{(J;,9;)};_, as oscillators and t¢; }\_, as transient, or dissipa-
tive modes. Note that by hypothesgs,are bounded independentfo for initial
conditions away from the origin, we expect thf}%t(t) # 0 for a time interval larger
than thec time scale.

The assumption that is diagonalizable can be relaxed to include cases in which
only the Jordan blocks corresponding to purely imaginaggmvalues are diagonal
while blocks that correspond te)\; are not. This is the minimal condition to insure
that the solution of (3.1) does not blow up on th@me scale.

Lemma 3.1. There exists a diffeomorphism
P:xecld CRY — (6B O p) e R" x R™! x ST,

such thatt® = (&7 ¢y e Rrande® = (9, ¢?)) e R are slow
variables with respect to (3.1), where= R?" — {f,EE) #0,k=1...r}

The Lemma shows that one may consi@éf’, £, ¢) as a new coordinates system
for the subspace spanned by the oscillatory modes.ofhe slow variableg®)
correspond to the total energy (kinetic + potential) of theiltators{ (J;", 9, ) }7_;.

The slow variableg®) correspond to a chain of relative phases between the oscilla
tors. They capture the relative progress of the oscillatosg their period. Using
) and<@, all the fast oscillations are driven bysinglefast process € S*.

Proof. Consider the following mag : C* — C" given by® = (®1,..., y,) =
CD(C) with C = (Cla tey CQT) and
ékz = Qok—1Gok, k=1...7
(3.3) iy = (Cor) ™ (Corr1) + (Cono1)“+ (Coppa)*, k=1...7—1
&)27“ - 217{WT7
where we definarg[z], the argument of, to be in(r, 7]. Its inverse irE, = {(;. #
0, k=1...2r}is given by
CQT - &);;
CQr—l - ér/(?ra

10
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and the rest of the varlabIG{Sk are given recursively by

Cor = Cgkﬂ { PLARE \/<I>2‘”k“ 4@;@1}

Cok1 = i/ Cog

(3.5)

Next, let
3.6) (6B, ¢® ¢) = d(x) = (él, B, (27T)_1arg[<i>2,«]> (5 L),

Recall thatY is a complex matrix that diagonalizes the real matfixi.e, z =
Y], 97, ..., 95, 9,7). We note that the columns &f ! consists of complex con-
jugate pairs. Hencey,_1(>X!(z)) is the complex conjugate @f;._,(X"!(x)) for
all £ = 1...k. Substituting into (3.3) we see thé&tx) is indeed real valued, dif-
ferntiable and has a differentiable inverse. We concludedhs a diffeomorphism

on{vi #0, k=1...7}.

Finally, differentiating with respect to time shows tifaf) and¢® are slow with
respect to (3.1). This is easily verified by noting the)) is slow with respect to
(3.2). WE conclude thad is a diffeomorphism ov.

4

As an example, consider the simple case of two real valuellaiscs with fre-
guencye !,

T = 671372 + fi(x)
(

(3.7) $:2 = —€e 'z + fo(x)
Trs = ZL’4 +f3( )
ty = —e w4 fa(x)

The slow variables given by (3.6) are

= al+ o)

(3.8) éE) = 23 + 73

&) = 1123 + ma24,
which correspond to the internal energy of the two oscitlaémd the cosine of their
relative phase. The fast variable can be taken t@ bearctan(zy/x;). However,
our algorithm does not require identifing it. If the frequiescof the two oscillators
(21, z2) and(z3, x4) is different, therffg) will have a more complicated form. For
example, if the matrix4 in (3.1) is real, and the ratio; /w;,, is rational, ther¢(®
can be taken to be polynomial (see 7.2 for an example in wiif¢lis cubic). This
is made clear by the following lemma.

Lemma 3.2. Supposenw;, = nwy1 With integerm,n > 0. Then, there exists a
polynomial, p, such that(J; (x), 9, , (x)) is slow with respect ta(t), the solution
of (3.1), for all initial conditions.

11



Proof. It is easily verified that

(3.9) 9 = 00)" Wiy)" + )" ()",
isindeed a real valued slow variable. Since the eigenfansfiy; }7_, are obtained
by diagonalization¢ @ () = £ (£7'z) is polynomial inz. O

The next lemma states that thevariables will result in some new slow variables
of the polynomial form. For convenience, we introduce mintex notation of
vectors inR?. Letn = (ny,n,,--- ,n,) denote al-tuple of non-negative integers;
In| = ny+no+- - +ng. Forx = (z1,...,z4) € R we denotex® = x'a5? - - - 2))e,
Using this notation, am’th degree polynomial ok can be written as

where {c, }jnj<nm is @ family of real coefficients that determinggx). Note that
vectors inR? or Z¢ are denoted with bold letters while lower dimensional ve;to
for exampler andy, are not.

Lemma 3.3. Given a system of (3.1) with the standing hypothesis. Thestsea
polynomialQ(z, y) of degreem such thatt®) = z — Q(x, y) is slow with respect

to (x(t),y(t), 2(1)).

Proof. Without loss of generality, assume tl§at is a scalar and that is diagonal
with eigenvalueg, . . . uq, . Differentiating with respect to time yields
(3.10)

6(2) =z+ v(w,y)Q(xa y) ’ (x,y) = 671 [p(:E, y) - VxQ(xa y) ’ A.CL'] + f3(xa Y, 2)7

whereV, ., denotes the gradient with respect to botandy andV , with respect
to only z. Thus¢® is slow if |p(z, y) — V,.Q(z,y) - Az| < Cie. For a polynomial
p as described above, one can Wite, y) = 31 jjj<m. k=1 a2y’ Then,

C
Qlx,y) = > k’lkx'“yl,

[kl <rm, K210 P

satisfiesV,Q(z,y) - Ax = p(x,y) for all x andy, where, for a multi-index =
(K1, ... ka,), we definedu - k = 327 i;k;. Note thaty - k = 0 if and only if
the monomiak*y' is a slow variable. In this case, there are two possible optio
If z¥y! vanishes, or is of order, thene~'2*y! is bounded independent efand

2z — Q(z,y) is still slow. On the other hand, if*y’ is of order one, then the variable
z leavesD, on a time scale of ordet which is a case not considered in this paper.
The proof above generalizes directlydo= YA, O

Lemmas 3.1-3.3 yield the following theorem:
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Theorem 3.4.Let(™ = yand¢ = (€8, €0 ¢W) ¢()), Then,

O(x) = O(x,y,2) = (P (2),y,2 — Qz,9)) = (7, ,€)
= (7,6,6,69 €W €2

is a diffeomorphism ofi¢'” +£ 0}.

(3.11)

Proof. The Jacobia®®/0x is given by

( 1 0 ) 0 0
-1
00 _ 1 N0 (5)
ox 0 1 0
_9Q _9Q 1
ox Yy
Using Lemma 3.1det(0®/0x) # 0. O

In section 7 we consider several example systems, inclutim§ermi-Pasta-Ulam
problem, that satisfy the assumptions of Lemmas 3.1-3.8 hemce theorem 3.4
holds.

3.2. ldentifying slow variables. Theorem 3.4 constructs a diffeomorphisim:

R? — R? that decomposes into slow and fast variables, such that the slow vari-
ables lie in aR?~1*4- dimensional space. Previously, we concluded that the-effec
tive behavior of the system can be described by functionsioctionals of these
slow variables. Under our definition, the choice of slow abhes is not unique and
we do not necessarily have to use the ones that are definee jpréfious sub-
section. The essential criterion is to have a sufficient remalb independent slow
variablest = {¢,} such that rank¢ /0x = 2r — 1 + d,, in some open set.

The general idea is to decompose the vector field locally thyogional projections

of the right hand sidg, to the subspace that is orthogonal to the gradient of the
slow variables. One should then search for sufficient nurobstow variablest
such that the projection

o, VERVE
pessi) = (1= g ) 4o

cannot contain any possible slow variables with respegf(tp. This way, by ap-
plying the averaging theorem, the dynamicsta$ effectively closed and can be
evolved to track the effective behavior of the system. Bele describe our ra-
tionale and strategy of using a numerical procedure to ohetera sufficient set of
slow variables.

Let £(x) be a potential slow variable with respectt(). Following our definition
for slow variables, this implies tha (x(t))/dt = Vx{(x) - dx/dt, is expected to

be bounded independent af More importantly, this is expected to hold for the
13



dynamics that originate from initial values in an non-emppen set. Therefore,
we may attempt to solve the minimization problem

(3.12) wnin /A 19El) 000 P,

feX

here¢(x) denotes the functiodx/dt, i.e., the right hand side of (3.1), or more
generally (1.1).4 is some open set iR endowed with a measurk:, andX is an
a priori chosen function space.

Based on Lemmas 3.1-3.3, we propose to search for slow \esiabthe space of
polynomials of the unknown variables of the original eqoiatik. Polynomials are
also used to locally approximate the potential functionsertain problems. We
proceed by looking for a polynomial with no constant term

(3.13) p(x) = Z X"

1<|n|<m
that minimizes (3.12).
In order to choose the sgt and measuréy,, consider the following Lemma.

Lemma 3.5. For any nonzera: € R andx, € R, consider the gridx, + an|1 <
In| < m}. For any point on this grid we assign a valag. Then, there exists a
unique polynomiab(x) = 21<|n\gm cnx™ in RY of orderm such thaip(xg+an) =
by forall 1 < |n| < m.

Proof. We wish to show that the Vandermonde sys@”{kwgm cn(Xp+an)?, 1 <

In| < m has a unique solution for aflb, }1<nj<». Since the number of equations
is equal to the number of unknown, it is sufficient to show thathomogeneous
systemp,, = 0, Vn has only the trivial solution.

The cased = 1 orm = 0 are trivial. The rest is proved by induction: Without loss
of generality, letc, = 0 and denotex = (x4, ..., z4) and similarly forn. Consider
q(x) = p(x1 = 0) = 321 jnj<mni—o CaX". Itis a polynomial inR?~! of degreem.

By induction,¢(x) is the zero polynomial, i.e¢, = 0 forall {1 < |n| < m,n; =
0}. Hence,p(x) can be divided by:;. Letw(x) = p(x)/z1, a polynomial inR?

of degreem — 1 that vanishes on the grigh, [n| < m, n; = 0. By the induction
hypothesisw(x) is the zero polynomial. Hence,, = 0 of all n. O

In light of this lemma, the setl can be taken to be the discrete set of poitts-
{xp+an:a#0,1 < |n| <m} anddu, the counting measure. In other word, we
minimize

(3.14) min Y |Vup(xo + an) - ¢(xo + an)|?,

€P, (R4
PEPmED | nlem

whereP,,(R%) is the set of all polynomials iiR?, and anyx, € R?, a # 0. As
before,¢(x) denotes the functiotx /dt. a andx, should be chosen such th4tis

a constant distance away from the zerg of
14



This is a least square problem whose unknowns are the ceetscdf the polyno-
mial p. Theorem 3.4 and Lemma 3.5 suggest that this minimum sheudd brder
one. Using, for instance, singular value decompositioe, @an find a basis to the
space of all polynomials. The eigenvectors, i.e., the aoefits, that correspond to
eigenvalues of the order one define our slow variables.

For systems of the form (3.1), we know that we should seanchal, polynomials
that can serve as a change of coordinates. In general, we lbegearching for low
degree polynomials that involve only a small number of cowtés and gradually
look for more complicated ones. Once a slow variable is detethe procedure is
repeated with an additional constraint that the coeffisi@fitthe new polynomial
are perpendicular (in the space of coefficients) to the oleady detected. The
constraint can be implemented as a penalty to the mininsizatbnce a new slow
variable¢; is identified, we check the rank of /0x at an appropriate set of points
(also on a gridey + an). If 9¢/0x does not have full rank, then the new slow
variable is discarded. For high dimensional problems, soetimes possible to
reduce the number of free parameters using symmetries gkittieular equations
of interest.

In addition, it is often useful to try identify linear comlaitions of the slow variables
that involve the least possible number of non-zero entiés.employed a “clean
up” algorithm in order to obtain a simple set of slow variabileat can help in our
understanding of the slow dynamics. This process is honéaséor the HMM
algorithm.

4. TIME AVERAGING

In this section we estimate the difference between anglel@al time averages
for integrable functiong(x). Our estimates applies to any system of ODEs that,
following a change of variabled : x — (&, ¢,7), takes the form (2.1) along with
dissipative variables, i.e.,

(4.1) {4) = Q&) + G(€, ¢,7),

where|y| < C/(D + (t/e)"), for somel > 0 and f,g,Q € C'. For the rest of
the paper we us€' and D as generic positive constants whose values may change
between expressions.

Let a(x) = a(P71(E, ¢,7)) = a(€, ¢,v). For simplicity, we drop the tilde nota-
tion. We recall that

(42) (@) = (ala())(®) = [ Kyt = Dala(r)ir
and

(4.3) a(t)

A(E0)(0) = [ ale(t).0.7 = 0)ao,

15



Let (9 (t) denote they-th time derivative andv!?)(t) a ¢’th anti-derivative of aC?
functiona. In particulara® = o[’ = «. The integration constant will be specified
in each case.

Definition 4.1. let KP¢ denote the space 6f functions which are even, supported
on[—1, 1], normalized and havg vanishing moments, i.e.

(4.4) /1K(7)7”d7 _ {é ij

The following well-known Lemma will be useful.

Lemma 4.2. Let 5(¢) denote an integrable function with peri@q. For K € K»4,
for some positive constant,

q
— €
(4.5) 1K) B — ] < ClIBIll K]l (5) ,
where|| - ||, denotes the sup norm iy,
(4.6) |18]|oc = sup [B(x)],
xE€Dy
and
1
(4.7) || K ||wie = / K9(t)dt.
-1

A proof can be found in [12].

The following theorem estimates the differenge), — @| for any C' function
a(x) = a(&, ¢,7v). Itis a generalization of a similar theorem found in [12].thdut
loss of generality, we take= 0.

Theorem 4.3. Let x(¢) solve (1.1) in[—n,n], 0 < n < 1, with initial conditions
z(=n) = x_, = (§&-yy, -, 7—y) € D. Also, suppose that’ € KP4 and{(t) € C.
Then

@8) a0y - atcol < Cmax . ()}
where, = £(0).
Proof. Denoteg(t) := &(x(t)),y(t) := v(x(t)), and

0= Q) +eg(€(1), 9(1).7(1), (=) = dy;

¥ = Q(&), b(=n) = ¢—p-
For|t| < n, expandingx(£(t), (L), ~(t)) arounda(&y, ¢(t),0) we obtain

Oé(f(t), ¢(t)7 7(t>) = a(fO? ¢(t>7 0)+RI(£7 77Z)7 7, t)+RII(§7 77Z)7 7, t)+RIII(§7 77Z)7 7 t)

where|R;| < C[£(t) — &ol, |Rir| < Clo(t) — é(t)|, and|Rrrq| < |y(t)| for some
positive constant’. For smooth(t), R; is thus bounded by the Lipschitz constant
16



of £(t); i.e. |R;| < Cin. By the hypothesis ofy|, |R;;;| < Crnl. Letw(t) =
o(t) — (t), then we have the inequalities < C,|£(t) — &| + €C3 < Cy(n + ¢).
Using the initial conditionu(—n) = 0, we have that foft| < n,

|6(t) =¥ (t)] = lw(t)] < Ca(n* + ne).
Now average (4) by the kernél,:

Ky xal§(),¢(),7() =
K * 06(50,77/)( ) ) + K * (RI(S 77Z) Y ) + RII(Suqu)?/% ) + RIII(§7¢777 )) .
Using Lemma 4.2, and the estiamtes obtained ajaye) — (a(x)) | =

|6é( ) K *Q(§0,¢() )+K *(Rf(é ¢ Y )+RII(§7¢777') +RIII(§7¢7’77'))"
U

The above theorem shows that time averages approximatagagusing angular
coordinates for any systems of ODEs that takes the form af).(4dowever, the
estimate (4.8) is not tight. Improved bounds can be obtaiaegarticular cases.
For example, we consider a simple case with no dissipativéesiand constant,
e, =w.

Theorem 4.4.Let K € K7 anda € CP™!. Suppose also that(t) = £(x(t)) €
CP*1. Then,

(49) la(t) — (o)) < C (Z ||a<'f>uoo) 1. max {n (5)} |

Proof. The proof is essentially the same as the proof of Theorem #tf& only
difference is that (¢) anda(£(t), ¢) are expanded to order+ 1:

~ 1 EW(0) | &)
:fo—l—ZTk I + Pt pr)

(4.10)

&lr), 9) = alo,9) Z Ll ¢)+ p+10‘p+1((;+_17)**>¢),

whereé, = £(0), 7,7 € [—T, 7] andak are some functions af. A calculation
similar to Lemma 4.2 shown that

q
€
@.11) 5 (50| < Clla® Il (£)
In addition, the last term is trivially bounded lay*+* for |7| < ». O

Suppose we identifE(x) = £(x) + d(x), as slow variables instead of the correct
ones{(x). For short hand we denote= £(x(-)) and similarly for¢ andd. As a
consequence, local time averages of a funcii@) ¢) are replaced by

(9(2,0))n = Ky % [9(E+6,0)] = K, * g(€,0) + K, * [0 (€, 9)] + O(6°).
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The last term, which is the leading order term in the erroroehiced using the
wrong slow variable, is of ordey/r.

5. HIGHER ORDER SCHEMES

In this Section we describe how the algorithm outlined intlBec2.2 can be gener-
alized to other explicit Macro-solvers of ordep> 2. For simplicity, we concentrate
on the explicit mid-point method. It is possible to constrther methods in a sim-
ilar fashion.

Let z(¢) denote the solution of
(5.1) 2= f(2), 2(0) = 2.

Recall the form of a single step of siZé using the usual second order mid-point
rule for integrating the equation faft):

1
ki = f(Xn), Xnq1/2 = Xn + éﬂkl

ky = f(Xn+1/2), Xnt1 = X, + Hko.

(5.2)

For the problem at hand, consider first a case in which (1.%)rnwadissipative
modes. The benefit of this situation is that it is possiblentegrate the ODE (1.1)
both forward and backward in time. Suppose that at tigpeve havex(t,,) = x,,
which corresponds t¢,,, ¢,,). We would like to approximate the averaged force
F(&,) using local time averages. We therefore have

(5:3) f(&a) ~ (€ = (K % £()),
where¢(t) denoteg (x(¢)) as obtained by the micro-solver foe [t,, — n, t, + 1],
integrated front,, backwards ta,, — n and from¢,, forward tot,, + n with initial
conditionx(t¢,) = x,. Note that the difference between (5.3) and the expression
appearing in the algorithm described in Section 2.2 is thgbi3) the average is
evaluated at = ¢, rather than at = ¢, + n. In order to integrat& using the
mid-point rule we take

ki = (K % £()), kT = 0x
(5.4) 1
Xn+1/2 =X, + §H]€ic,

wheredx is consistent Withe), (,,), i.e.,0x-VE;(x,) = (&), (t,) foralli = 1...r.
The second half of the stepé@t,,» = t,, + H/2 s,

Ky = (I % £(), k3 = 0%

(5.5) )
Xn+1 = Xp + HkQ,

where £(t) denotes(x(t)) as obtained by the micro-solver for € [t,,1/o —
N, tnt1/2 + 1|, integrated fromt,,,,/, backwards to,;1, — 7 and fromt, ./,
forward tot,, 1/, + n with initial conditionx(t,11/2) = X,41/2. As before,ix is

consistent with(€), (t,11/2). Using the method described above, the error in each
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step of the Macro-solver i©(H?). Additional integration schemes, for instance,
fourth order Runge-Kutta, are implemented in a similar way.

Generally, if (1.1) has one or more dissipative modes th&nbt possible to in-
tegrate the ODE backwards and the method described abogs teebe modified.
Our implementation for the second order mid-point schendescted in Figure 3.
The first step is the same as before:

Rl = (K % £()), kT = 0x

(5.6) 1.
Xni1/2 = X(t, +1) + éﬂku

where{(t) denotest(x(t)) as obtained by the micro-solver fore [t,,t, + 21n],
integrated fromt,, forward tot,,+2n with initial conditionsx(t,,) = x,, andx(t,,+n)
denotes the value of at the middle of the micro-simulation. For the second step
we would like to evaluateéé)n(tnﬂ/g) atx = x,1/2. However, since the kernél

is symmetric, we need to start the micro-solver a tipgarlier, at a point that is not
known. This initial point can be approximated by taking gste,,, starting atx,,
(rather thanx,,/2) and consistent witmé)n(tn+1/2 + 7). The second step in the
mid-point rule therefore has the form

K] = (K (), ks = 6%

(5.7)
Xn+1 = Xp + Hk;,

Whereé(t) denotes the solution of the micro-solver ol [t,11/2,tni1/2 + 27
with initial conditionsx(t,,+1/2) = x, + Hdx, /2. This method does not cancel the
second order term (ii/) exactly and leaves a residual error of the ordef{ ot

6. ACCURACY AND EFFICIENCY

In this Section we analyze the accuracy of the suggestedothethitlined in Sec-
tion 2.2. Each step of the approximations preformed in ogor@hm introduces a
numerical error. In order to optimize performance, theedéht sources of errors
are balanced to a fixed prescribed accuracyVe show how the different parame-
ters:e, n, h and H scale withA in order to have a global accuracy of order Note
that the maximal possible accuracyAs= ¢, since this is the error introduced by
simulating the averaged equation rather than the original ¥Ve also study tha
dependence of the complexity of the algorithm.

We begin with estimating the error in our evaluation of theraged force”. There
are several sources of errors:

e Global error in each micro-simulation. Using atith order method with
step sizeh the global error ig)h™ /e™ 1.
e Quadrature error i} *{: Using a quadrature formula of degrethe error

isnh™ /elm +1). However, due to the regularity of the kernel ugéd: C¢,

the integrand is smooth and periodic. Hence, the coeffgiehits Fourier
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FIGURE 3. The cartoon depicts the implementation of the midpoint
rule using (5.6) and (5.7) for a simple two dimensional gystkat
oscillates with a frequency of the order' and expands on afi(1)
time scale. The dotted line depicts the trajectories obthiny the
micro solver. The bold arcs depict the steps taken by the ddacr
solver.

decomposition decay very fast. As a result, it is advantagé¢o use the
trapezoidal rule, which is exact fe?™**, k ¢ N. This implies that the
guadrature error is typically very small and can be negtecte

e ApproximatingF by (F),: Using a kernelK € KP the error is the larger
between)” and(e/n)?/n. Note that we are loosing one orderpfompared
to lemma 4.2 sincé’ is found through integration by parts (cf. Section 2.2).
The above two bounds to the averaging error are equalt'ift! = ¢4,
where, for large), the termn? dominates, while for smatj the other. Since
we would like to optimize our complexity, it is always predéte to work in
the latter regime. Hence, we can take the averaging errce te/lh)?/n.

e Error due to inaccurate slow variables: Denoting the aayuod the slow
variables by < 7, the error in(F'),, is § /1. For the rest of this discussion
this error is also neglected.

For simplicity, we describe the error analysis for systentsout dissipative modes.
System with dissipative modes may involve additional ex;rboth from local time
averages, which are evaluated in theorem 4.3, and from thefusgh-order meth-
ods, as discussed in section 5. Balancing all terms yieklsptimal scaling of the
simulation parameters with.

The global accuracy of integrating the original ODE (1.1)itoe 7" = O(1) using
a Macro-solver of ordes with step sizef] is, assuming errors are accumulative,
hmo el
(6.1) EgDmax{HS,”— 6—}
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For someD > 0. For short hand we drop the constant in all following expicss
Balancing the different sources of errors to a prescribedracyA yields

a1
n = €t A~ a+1

(6.2) H=A

s+l 1
h = 61+m(q+l) [\ sm RIS

W [

The complexity is With a smooth kernel we can considergthe oo limit.

(6.3) C= %% = ¢RI ATS S ey

In this case the complexity is reduced to

1

(6.4) C(qg— ) = A"

Figure 4 depicts the relative error of the HMM approximatmympared to the
analytical solution of the linear system discussed in $acfi.1 (with dissipative
modes).. The kernel was constructed from polynomials te lexactly two con-
tinuous derivatives and a single vanishing moments,q.e=,2 andp = 1. Fourth
order Runge-Kutta schemes were used for both the micro an#ctro solvers.
The simulation parameters are chosen to balance all esalsaussed above.

10°

slope=1.02

In(relative error in %)

10° 107 10

In(2)
FIGURE 4. A log-log plot of the relative error of the HMM ap-
proximation to a linear ODE compared to the exact solutibn=

maxy, e(o,7] 100 X [Eanin(tn) — Eexact (tn)|/ |Eexact (£0)], @S @ function
of A.

From the parameter scaling (6.2) it is clear that the step gizhe Macro-solver,
H, does not depend on the stiffnessbut only on the prescribed accuracy.
Our algorithm is therefore multiscale is the sense that r&veage uniformly for
all e < ¢, [10]. More precisely, denote the sample times of the Macilwes by

to = 0,...,ty = T and the corresponding numerical approximationsxfdsy
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Xo, . - ., Xy. The exact solution is denotedt). We have that, for any variabtex)
that is slow with respect tg()

(6.5) lim sup sup|a(x(tx)) — a(xg)| — 0.
H—=0k=0...N e<eo

Note that the order of the limits is important.
7. EXAMPLES
In this Section we present a few example ODE systems thaufaler the cate-

gory of Equation (3.1) and compare the numerical solutiothefHMM to other
methods.

7.1. A simple linear example. We begin with a simple example of a linear system
that contains both oscillatory and dissipative modes:

T, = E_IZL’Q + x1 + 223
(71) i’g = —6_1.1'1 + T2
T3 = —6711'3,

with initial conditions(z1, z2, 23)(0) = (1,0, 1). The solution is

21(0) = (1 +€)et cose 't —ee™ 't
(7.2) 29(0) = (14 €)e’ sine 't
25(0) = e .

The system admits a single slow variable- 27 + x3. Outside a neighborhood of
¢ = 0 the diffeomorphisnmd can be taken as

(7.3) ®(r) = (27 + 23, arctan(w/21), 73) = (€, 6,7)-

The Jacobian idet V® = 2in ¢ > 0. Figure 5a depicts the HMM approximation
of x; andx, compared to the analytical one (7.2). Our algorithm colyegaproxi-
mates the slow variable= %+ 22, while the phasep, and the dissipative variable,
x3, are lost. Simulation parameters are- 107°, n = 5.4¢, h = ¢/15, T = 10 and
H = 0.5. The kernel used in averaging is:

. 5 1
(7.4) K(t)=27 exp( 4(t+1)(t—1))’
where Z is a normalization constant. Henck, ¢ K>!, i.e.,C*> with a single
vanishing moment. Both micro and Macro solvers implementath order Runge-
Kutta scheme. Figure 5b depicts the HMM approximation foesal local averages
and functionals. Note that the algorithm correctly appnmades the value of the
oscillating observables even though the Macro step sizebrayuch larger than

their period.
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FIGURE 5. The HMM approximation to the solution of the linear
example (7.1). (a) Trajectory of the, and x, coordinates: The
HMM time steps are denoted by circles while squares denae th
exact solution at the same times. The dotted circles areegum
the eye. (b) Example local time averages and functionals.dbtted
curve denotes the exact value fariz, — 1),, the solid curve of

(5 cos(w315)), and the dashed curve gf 0.52%(7)dr. The HMM
values for the same observables are denoted by plus signs.

7.2. Stellar orbits in a galaxy. The following is a well studied system taken from
the theory of stellar orbits in a galaxy [22, 23]

™ +a’ry = er’
(7.5) y ) B 2
rh +b°ry = 2eriry,

wherer; (s) stands for the radial displacement of the orbit of a star feor@ference
circular orbit and-,(s) stands for the deviation of the orbit from the galactic plane
The time-like variables € [0, ¢S] denotes the angle of the planets in a reference
plane. Initial conditions are; (0) = r,(0) = 1 andr{(0) = r5(0) = 0. Changing
variable tox = (1, vy, Te, v2)T = (r1,7]/a, 2,79 /b)T andt = es, equation (7.5)
becomes

(7.6) x = ¢ '"Ax + f(x), x(0) = xo,
where
0O a 0 O 0 1
B a 0 0 0 B r3/a o
(77) A - O 0 0 b ) f(X) - O , X0 = 1



To see how resonances occur, consider the following chainggiables
2 2

§i =a7 +vy, tangy = vy /1y

& = a3 + 05, tan gy = va/xs.

(7.8)

The coordinateg; and &, correspond to the amplitudes of the two oscillators,
(x1,11) and(xq, y2), respectivelyo, ande, correspond to the phase of each one of
the oscillators. Under (7.8), the ODE (7.6) takes the form

& = 3VE& (g1 + 20) —sin(g) — 2¢2)]

§2 = 1/&& [2cos ¢y — cos(y + 2¢2) — cos(y — 2¢2)]

gz?l = —e 1 + /& sin ¢y sin® ¢y /(2£3)

dy = —e !+ 2\/& sin ¢, sin? ¢s.

It is clear that¢; andé, are slow. Averaging; and¢, independently ovep; and
¢2, We obtain the limiting effective equations forand(:

(7.10) (1=0;&=0.

However, for the special cases in which eitherdhe- 2¢, or ¢, — 2¢, are slow, the

effective equations become more complicated. When +2b, the leading term
in the fast evolution ofl = ¢; F 2¢, is cancelled exactly an@lis a slow variable.

The system is then said to be in resonance. In our algorithergquirement that
0 is slow can be taken into account by adding a third slow végiabhe algorithm

described in Section 3.2, identifies the cubic polynomial

(7.9)

(711) 0 = Ill’g + 2?]11‘21]2 — xlvg.

The fast variable can be taken tope= ¢, although our algorithm does not require
identifying it. The choice of cubic polynomial (7.11) is naique. However, any
other slow variable can be expressed as a functign @f andd. Figure 6 compares
the HMM solution to a numerical integration of (7.5) using fourth order Runge-
Kutta method with a step size ef50. HMM parameters are = 107>, h = ¢/50,

H = 0.3 andn = 10.28¢. In graph (b)yn = 30.28¢ was used. Both micro an
Macro solvers are fourth order Runge-Kutta. It is importanhote that although
0 is constant throughout the simulation, it is not possiblagproximatet; andé,
correctly without taking account éfas well.

7.3. Kapitza’s inverted pendulum. The following example, suggested by P.L.
Kapizta [36] considers a pendulum with a rigid arm that ia&ted at one of its
ends to a mechanical motor. The set up of the system is ddpictégure 7a. The
motor causes the point of suspension of the arm to vibratedplawn with ampli-
tudee and frequency—!. Surprisingly, the fast vibrations of the motor can cause th
pendulum to oscillate slowly (with &(1) frequency) around the inverted position,
in which its arm is pointing up. Denoting I#ythe angle between the pendulum arm
and the upward direction, the equation of motion for theesysbecomes

(7.12) 16 = [g+ ¢ "sin(2me't)] sin b,
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FIGURE 6. Numerical solution of the stellar equations (7.6). The
solid line is the Runge-Kutta solution with step size of arde/hile
plus signs are the HMM approximation. Figure (a) shows tbessl
variables and figure (b) examples of local time averages.

wherel is the length of the pendulum’s arm ands the gravitational constant. The
averaged dynamics of the pendulum was studied analytica[B0]. Sharp et. al.
[35] used the HMM framework to numerically integrate (7.12)heir approach,

however, is different from the one described in this paper.
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FIGURE 7. (a) Kapitza’s pendulum has arigid arm which is attached
to a motor that is vibrating fast. The centrifugal force pulie arm
upwards. (b) Comparison of the HMM approximation for theusol
tion of the equations describing the dynamics of Kapitzaisgulum

to the Verlet method with step size of ordeiThe solid curve depicts

¢ while the dotted one depicts = 6 + cos 0 cos(2me't)/(2r1).
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In order to put (7.12) in a form for which our method for findipglynomial slow
variables can be applied, let = cos(2me 1), wy = sin(2me't), y; = sind,
Yo = cos andz = 6. Equation (7.12) becomes

i1 = 2me ‘g , Tg = —2me tuy
(7.13) Y1 = Y22, Yo = —Y1%

i =e N aoy + gl
which has the form (3.1). The slow variables admitted by3yake

S1=y1,8% =1

& =]+ a5, & =2z — xy/(27l)
Going back to the original coordinates system, the slowedes are) andy =
6 + cos 6 cos(2me't) /(2nl). Figure 7b depicts the HMM approximation férand
1» compared to numerical integration of (7.12) using the \arlethod with a step

size of order. Simulation parameters ate= 107°, h = ¢/40, andH = 0.25 and
n = 25.4e.

(7.14)

7.4. The Fermi-Pasta-Ulam model. The Fermi-Pasta-Ulam model [13] is a sim-
ple system of unit mass particles connected by springs. phegs alternate be-
tween stiff linear and soft non-linear ones. Recently, thaglel was considered by
Hairer et. al. [18] as a benchmark problem for studying timgtome properties of
numerical solutions to stiff ODEs using geometric integrat The model is derived
from the following Hamiltonian

2k k k
1 1 _
(7.15) H(p,q) = 5 ;pf T ’ Z(Qm‘ — i)’ + Z(Q%Jrl — qi)".

=1 =0
The following linear change of variables is convenient siitcseparates the elon-
gations of the stiff springs and associated momentum:

(7.16) T = 6_1(%171 - Q2i)/\/§> Vi = (P2i—1 —p2i)/\/§>
and a second set of variables associated with the soft spring
(7.17) Yi = (qoi1 + Q2i)/\/§ , Uy = (Pai +P2i)/\/§>

Definingyy = xo = yar11 = 22141 = 0, the equations of motion become
(7.18)

Yi = U

T, = ety

;= —(yi —ex; — yim1 — €xi-1)° + (Yip1 — €Tiv1 — Yi — €x;)?

@i = —6711’2' + (y, — €X; — Yi—1 — €$i_1)3 + (y2-+1 — €Tip1 — Yi — EZL’i)g.

Typical initial conditions arer; = y; = v; = u; = 1 and zero otherwise, which
means that initiallyc — 1 of the stiff springs are at rest. The system adnbits- 1
slow variables. First are all the degrees of freedom whiehralated to the soft

springs:y; andu;, i = 1...k. Second, the total energy (kinetic + potential) of the
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stiff springs,[; = z? + vZ. Finally, the relative phases between the different stiff
Springs,px = x1x; +viv;, @ = 1...k — 1. Any other functionn(z, y, v, v) which

is slow under the dynamics of (7.18) can be written as a fanotif the4k — 1
variables described above.

On theO(1) time scale the system can be evolved using the algorithnridesc
in section 2. We find that the energy of the stiff springs arartrelative phases
are fixed, while the degrees of freedom that correspond tedftesprings oscillate
in complicated, non-harmonic way. Figure 8a depicts owltedor systems with
three stiff springsk = 3, and with ten springss = 10, in Figure 9a. Simulation
parameters fok = 3 aree = 1074, h = ¢/15, andH = 0.02 andn = 15.4¢. For
k =10 we used = 107%, h = ¢/15, andH = 0.02 andn = 20.4e.

On theO(e™!) time scale the dynamics become more interesting as theieaérg
begin to change [13, 18]. Unfortunately, the averagingtdmocan not be generally
extended to the~! time scale due to the exponential dependence on time that ap-
pears in (2.4). However, in this case, due to the oscillatatyre of the soft degrees
of freedom, the dynamics undergoes additional averagioghi¥ end we construct
the Macro-solver to be almost time-reversible, i.e., thtegrator is reversible for

e = 0. A single Macro step is implemented the following way. Fitee soft vari-
ablesy; andu; are advanced by half a time ste/2. Then, the stiff variables;
andv; are advanced by a full time stép while keepingy; andu; fixed. Finally,y;
andu; are advance again by half a step. Although we did not proveargence of

the scheme in this set up, the numerical results depictedyuré8b fork = 3 and

in Figure 9b, agree with integration of the model using théefanethod with a
step size of order. Note that both methods do not approximate the soft degffees o
freedom correctly on the longer; !, time scale. Simulation parameters foe= 3
aree = 1074, h = ¢/15, and H = 0.02 andn = 20.4e. Fork = 10 we used
e=10"% h = ¢/35,andH = 0.02 andn = 35.4e.

8. CONCLUSION

We have presented a numerical class of algorithms that ctentpe effective slow
behavior of highly oscillatory solutions to ordinary difémtial equations. A key
step is to first numerically detect a set of slow variablgsthat are effectively
closed, i.e., their dynamics is closed in the limitof- 0. The main idea is then to
integrate an averaged equation for these slow variablestiiite stepping operates
on two scales. First, a micro-solver evaluates the timevdives of the identified
slow variables by solving the original system in a short tsegment. The micro-
solver is an explicit integrator with step size of the ordes.drhen, a Macro-solver
evolves the original variables, by taking a large step that is consistent with the
time derivative of the slow variables, obtained by the misobver. The Macro-
solver, which is effectively integrating the averaged egum can take steps of size

that is almost independent afHence, in order to achieve an a priori fixed accuracy
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FIGURE 8. Comparison of the HMM approximation for the solu-
tion of the Fermi-Pasta-Ulam equations of motion (7.18h\8istiff
springs,k = 3, to the one obtained using the Verlet method with
step size of the order ef (a) soft variables on@(1) time scale and
(b) I, I, and I3 on aO(e ') scale. With the above parameters the
HMM algorithm runs an order of magnitude faster than the aterl
one. The ratio between running times increases with smaller
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FIGURE 9. The HMM approximation for the solution of the Fermi-
Pasta-Ulam equations of motion (7.18) with 10 stiff spririgs- 10.
(@) y1, u1, y10 @anduse on aO(1) time scale and (b); ... ;o on a
O(e™1) scale. The Verlet method takes too long to integrate.

A, the overall efficiency of the algorithm is independent elsymptotically. This
is achieved by simulating a stiffer version of the origin@E)

An important observation is that the slow behavior of a systan be a result
of internal mutual cancellation of the oscillations. Suemeellations are called
resonance. The slow variables serve as a set of constraitits fast dynamics of

the system. Keeping track of the evolution of these congsanaintains the correct
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phase difference between different stiff oscillators. Agsult, the resonances are
resolved and fully accounted for.

We applied this approach successfully to several systewisiding the Fermi-Past-
Ulam problem. This paper considers predominantly problestis fast dynamics
in the form of harmonic oscillators. Some of the simpler egles considered in
Section 7 can be integrated by other numerical methods.¥&wngle, trigonomet-
ric or exponential integrators [15, 18, 20], or envelopekinag methods [32] may
also be appropriate. In fact, we suspect that most of thésases will out preform
HMM when applied to reversible linear systems that are nogsonance. However,
the advantage of HMM in general, and the algorithm proposed n particular,
is its applicability to a wider class of ODE systems, inchglthe difficult case of
resonance. Several directions awaits for further study. eRtiension of our ap-
proach to the cases of variable coefficients and to fast ardrac oscillators will
be presented in a future publication [2]. In addition, alie&n Fermi-Past-Ulam
problem, we see a need to design a three-scale methods sgbehat time scale
can be computed consistently and efficiently.

Finally, as discussed in the introduction, for suitablegeys our method correctly
approximates all variables and functionals that are slotl véaspect to the system
dynamics. It may be argued that this criterion is too stiiicis often the case that
we are only interested in a smaller set of observables. FRbamce, temperature,
heat capacity, or other statistical averages of a largesyslIn this case, it is use-
ful to understand which slow variables are essential to @istent approximation
of particular observables. Another generalization of thethads proposed in this
paper is to stochastic ordinary differential equationsppare [11, 37].
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