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ABSTRACT. A multiscale method for computing the effective behavior of a class
of stiff and highly oscillatory ordinary differential equations (ODEs) is presented.
The oscillations may be in resonance with one another and thereby generate hid-
den slow dynamics. The proposed method relies on correctly tracking a set of
slow variables whose dynamics is closed up toε perturbation, and is sufficient
to approximate any variable and functional that are slow under the dynamics of
the ODE. This set of variables is detected numerically as a preprocessing step in
the numerical methods. Error and complexity estimates are obtained. The advan-
tages of the method is demonstrated with a few examples, including a commonly
studied problem of Fermi, Pasta, and Ulam.

1. INTRODUCTION

Solutions of ordinary differential equations (ODEs) ofteninvolve a wide range of
time scales. In many problems, one is only interested in the slow dynamics, or
on the long-time behavior of the solutions. However, it is often the case that fast
oscillations, or an otherwise small perturbation build up to an observable effect
that cannot be neglected. A typical example, suggested by Germund Dahlquist, is
the drift path of a mechanical alarm clock when it set off on a hard surface1. The
rapid vibrations of the clock’s arm are not precisely symmetric. Together with the
heavy, inhomogeneous internal structure and the interaction with the surface these
oscillations can cause the clock to drift slowly in a complicated trajectory that is
difficult to calculate or predict. Moreover, this drift seems to be deterministic and
does not resemble a random walk.

Within the large literature considering dynamical systemsthat evolve on two or
more well separated time scales, analytic averaging techniques [3, 33] have been
found to be one of the methods of choice for providing approximate solutions. In
this paper such an averaging theorem is used to construct a numerical method for
integrating stiff ODE systems that may include oscillatoryand resonant compo-
nents. Our method follows the framework of the heterogeneous multiscale method
(HMM) [9, 10, 12].

1A short clip showing the trajectory of a vibrating alarm clock is available at
www.ma.utexas.edu/CNA/alarm_clock/alarm.htm
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Consider an ODE system of the general form

(1.1) ẋ = ε−1f(x) + g(x), x(0) = x0,

where0 < ε ≤ ε0 is a small parameter that characterizes the separation of time
scales in the problem. In this paper we consider solutions ina bounded domainx ∈
D0 ⊂ R

d and in a bounded time intervalI = [0, T ]. We assume that the solution of
(1.1) exists inI Although the solution of (1.1),x(t; ε), depends on the parameterε,
this dependence is suppresses and for short hand we often writex(t) ≡ x(t; ε).

Typically, the fast dynamics in equations such as (1.1) is one of two types. The
first are modes that are attracted to a low dimensional manifold in ε time scale.
These modes are called transient or dissipative modes. The second type are modes
that oscillate with a frequency that is inversely proportional toε. One of the main
difficulties in numerical integration of (1.1) using explicit methods is that stability
requirements force a step size that is of orderε. This generally implies that the
computational complexity of such explicit methods for a integrating (1.1) over a
fixed timeT is at least of the order ofε−1.

Several different approaches have been suggested, each appropriate to some class
of ODEs. Dahlquist laid down the fundamental work for designing linear multi-
step methods [5, 6, 7, 8] and studied their stability properties. Problems with fast
transients can be optimally solved by implicit schemes [5, 19, 24]. The Chebyshev
methods [1, 28] as well as the projective integrator approach [16] provide stable
and explicit computational strategies for this class of problems in general. For har-
monic oscillatory problems, traditional approaches attempt to filter out or fit fast,
O(ε−1) oscillations to some known functions in order to reduce the complexity, e.g.
[15, 25, 34], or use some notion of Poincaré map to determine slow changes in the
orbital structure [17, 32]. A general class of approaches aiming at Hamiltonian sys-
tems are geometric integration schemes that preserve a discrete version of certain
invariance. We refer the readers to [18] and [29] for more extensive list of litera-
tures. In certain applications, special considerations are given to the expensive cost
of evaluating non-local potential in large systems, see e.g. the impulse method [14]
as the cost may be even more than dealing with the fast oscillations that appear in
the systems. Using matrix exponentials and the [21], we can effectively compute
oscillatory solutions to a class of problems with leading harmonic oscillations.

For problems in meteorology [4, 26] or celestial mechanics [27], it is possible to
carefully prepare suitable initial conditions near accurate observational data so that
the fast modes in the system will not be exerted, and thus longtime solutions can
be computed accurately using large time steps.

The different methods described above vary not only in scopeand underling as-
sumptions, but also in their approach to broader questions.To name a few, how
to characterize or capture the "slow constituents" of the dynamics which may in-
volve non-trivial functionals of the state variablex? How can one obtain slowly
varying observables out of trajectories that evolve on a faster time scale? Which
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observables should the multiscale integrator approximateand in what sense? Fi-
nally, which variables or observables are essential to the algorithm and which are
not? This question is related to the closure problem in the formulation of averaged
equations.

In many examples, it is not clear how to characterize the slowparts of the dynamics
in systems such as (1.1). To this end we define slow variables or observables as
follows.

Definition 1.1. Letx(t) = x(t; ε) ∈ D0 denote the solution of (1.1) for some initial
conditions.

• A smooth functiona(t) = a(t; ε) is said to be slow if|da/dt| ≤ C0,for some
constantC0 independent ofε in t ∈ I.

• A smooth functionα(x) : D0 7→ R is said to be a slow variable with respect
to x(t) if

(1.2) | d
dt
α(x(t))| ≤ C0, t ∈ I

for some constantC0 independent ofε.
• A bounded functionalβ : C1(D0)× [0, T ] 7→ R is said to be a slow observ-

able with respect tox(t) if

(1.3) β̄(t) =

∫ t

0

β(x(τ), τ)dτ,

or

(1.4) 〈β(x)〉η(t) =

∫ t+η

t−η

Kη(t− τ)β(x(τ), τ)dτ,

whereKη(·) = η−1K(·/η) for some kernel functionK ∈ C1 with support
on [−1, 1] and

∫ 1

−1
K(t)dt = 1. Functionals of the second kind will also be

referred to as local time averages.

In section 4 we show that under appropriate scaling ofη with ε, (d/dt)〈β〉η(t) is
indeed slow.

Next we define a concept which we call "effective closure." Itis a necessary condi-
tion for the macroscopic slow variables in our schemes.

Definition 1.2. We say that the dynamics ofξ is effectively closed in[0, T ] with
respect toε if ξ satisfies an equation of the form

dξ

dt
= fI(ξ, t) + εfII(ξ, t, z(t)),

dz

dt
= g(ξ, z, t)

in a time interval[0, T ], whereT < ∞ is independent ofε, andfI , fII , andg are
smooth and bounded inD0 × [0, T ].
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In the next section it is shown that if a sufficient number of independent slow vari-
ables are approximated accurately by the algorithm, then, these variables are effec-
tively closed. Furthermore, the same variables can be used to consistently approx-
imate any other slow variable and functional. The algorithmdescribed in the next
section indeed achieves this goal and the accuracy of the different approximations
is calculated.

In this paper we propose an HMM algorithm that first construct, by a numerical
procedure, a transformationx → ξ(x) such thatξ(x(t)) are slow for all solution of
(1.1)x(t) and its dynamics are effectively closed. This means that, for a givenx(0)
and the corresponding evolutionx(t), ξ(t) := ξ(x(t)) is well described for smallε
by an effective equation of the form

(1.5) ξ̇ = F (ξ), ξ(0) = ξ0 = ξ(x0),

for t ∈ I. Note that we do not assume that the effective equation (1.5)is available
as an explicit formula. Instead, the idea behind the HMM algorithm is to evaluate
F (ξ) by numerical solutions of (1.1) on significantly reduced time intervals. In this
way, the HMM algorithm approximates an assumed effective equation whose form
is typically unknown.

The layout of the paper is as follows. Section 2 presents a well-known averaging
theorem. Based on this theorem we prove that by using an appropriate set of slow
variables, all slow observables admitted by (1.1) are approximated by a class of
HMM schemes. The outline of the algorithm is also described.Section 3 gives an
example of a particular, limited class of ODEs, in which thisset of slow variables
are polynomial inx. Several strategies for identifying these polynomials aresug-
gested. Section 4 considers local time averages which form an essential part of the
HMM algorithm. Section 5 describes high order explicit schemes. In Section 6 we
estimate the global accuracy and complexity of the method. Section 7 presents sev-
eral numerical examples. We conclude in Section 8 by suggesting different possible
generalizations of our algorithm and compare to other techniques.

2. THE HMM SCHEME

We begin with a well-known averaging theorem. A proof can be constructed along
the lines of Sanders and Verhulst [33]; e.g. Thereom 3.2.10 on page 39.

2.1. An averaging theorem. Let (ξ(t), φ(t), γ(t)) denote the solution of

(2.1)











ξ̇ = F (ξ, φ, γ), ξ(0) = ξ0

φ̇ = ε−1Ω(ξ) +G(ξ, φ, γ), φ(0) = φ0

γ̇ = −ε−1H(γ), γ(0) = γ0,

in a bounded domainD × S1 × D1, whereD ⊂ R
r andD1 ⊂ R

d−r−1. In this
paper, we identifyS1 asR/Z, i.e., the spaceR modulus one, with the corresponding
topology and Lebesgue measure. In this construction, the functions,F , G, H and
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Ω areC1 and independent ofε. Additionally, we assume thatΩ ≥ m > 0 andξ(t)
remains bounded for0 ≤ t ≤ T.

The functionH(γ) is chosen such that, for allγ ∈ D1, γ(t) is attracted on anε time
scale to an invariant manifold,M, on whichγ is relaxed to be of orderε. More
specifically, it is assumed that

(2.2) |γ(t)| ≤ C

D + (t/ε)l
,

for some constantsC,D, l > 1. Hence,γ are transient, or dissipative variables
which are relaxed to zero after an initial time layer that vanishes in the limitε→ 0.

Let ζ(t) denote the solution of

(2.3) ζ̇ = F̄ (ζ) =

∫

S1

F (ζ, σ, γ = 0)dσ, ζ(0) = ξ(0).

Then,

(2.4) sup
0≤T0(ε)≤t≤T

|ξ(t) − ζ(t)| ≤ εCTeLF̄ T ,

whereLF̄ > 0 is a Lipschitz constant of̄F ,C > 0 is a constant that is indpendent of
ε andT0(ε) = o(1) is the time required for the relaxation of the dissipative modes,
which depends on the rate of decay ofγ, l. This theorem suggests that simulating
the averaged equation forζ introduces an error on the order ofε.

The above condition on the dissipative modes can be generalized to a case in which
the equation forγ ∈ Rd−r−1 has the form

γ̇ = ε−1g(ξ, γ),

whereg is such thatγ is attracted to anr + 1 dimensional invariant manifold,M1,
on whichg(ξ, γ) is of orderε. See [31] for sufficient conditions that guaranty stabil-
ity and uniqueness of this manifold and a proof thatγ decays toM1 exponentially
fast on a time scale of the order ofε. For simplicity, we do not consider the inter-
esting problem of turning points. The algorithm described in the following section
automatically guaranties that all dissipative models are relaxed and that the dynam-
ics stays close toM1. This generalization is not discussed any further since the
main interest of this paper are the oscillatory modes.

Assume that there exists a change of variables

Φ : D0 ⊂ R
d 7→ D ∈ R

r × S1 × R
d−r−1, Φ(x) = (ξ(x), φ(x), γ(x))

such that for the solutions of (1.1), the functionsξ(t) = ξ(x(t)), φ(t) = φ(x(t)),
andγ(t) = γ(x(t)) satisfy some equations in the form (2.1). For0 < ε � 1, the
fast dynamics in the new coordinate system appears only inφ(t) andγ(t). Hence,
the effective behavior of the system can be described byζ(t), which approximates
ξ(t).

The most important aspect of equation (2.3) is that it is closed, i.e., the time deriv-
ative of ζ is expressed in terms ofζ alone. As a result, it is possible to construct
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an algorithm that only approximatesζ . Later, it is shown that ifζ is approximated
accurately, then all slow variables and observables are also approximated consis-
tently.

System (1.1) can be analyzed and computed efficiently if there exists a diffeomor-
phism betweenx and(ξ, φ, γ). Clearly, the choice ofΦ is not unique. However,
since we are only interested in the slow parts of the dynamics, it is enough to find
a sufficient number of slow variablesξ = (ξ1, . . . , ξr) such that∂ξ/∂x has rankr.
Onceξ(x) is identified,F (ξ) = F (ξ(x)) is easily calculated. The key step is then
to relax all dissipative modes and average overφ to obtain the unknown function
F̄ (ξ). In section 4, we show that this can be approximated by local time averages

F̄ (ξ) ∼ 〈F (ξ(x(t)))〉η.
ξ̇(t) = F̄ (ξ) is then used in an integrator to obtainξ at some later timet + H.
Efficiency is attained ifH > η since we do not need to evolve the stiff systems for
x(t) for all time.

2.2. Algorithm. The first step in our algorithm is to numerically find the diffeo-
morphismΦ and identify the slow variablesξ(x). Then, the ODE (1.1) is integrated
using a two level algorithm; each level corresponds to the integration of (1.1) in a
different time scale. The first is a Macro-solver, which integrates the averaged
equation (2.3). The second level is a micro-solver that is invoked whenever the
Macro-solver calls for it. Each time the micro-solver is invoked, it computes a short
time solution of (1.1) using a suitable initial data. For example, suppose the Macro-
solver applies a forward Euler scheme with step sizeH. Higher order methods are
described in Section 5. Sample times of the Macro-solver aredenotedt0, . . . , tN ,
whereN = T/H. The output of the Macro-solver is denotedx0, . . . ,xN . The out-
put of the micro-solver with step sizeh, initiated at timetn with initial conditions
xn is denotedx1

n, . . . ,x
M
n , whereM = 2η/h is an even integer. The coordinates

of F̄ are denoted̄F (ζ) = (F̄1(ζ), . . . , F̄r(ζ))
T . We also assume that the averaging

kernelK is symmetric with respect to its mid-point. This implies that if Mh >> ε,
then all transient modes practically vanish at the midpoint. The outline of the al-
gorithm, depicted in Figure 1 for a one dimensional example and in 2 for a two
dimensional case, is as follows.

(1) Construction of slow variables:
Find functionsξ1(x), . . . , ξr(x) such that, for allx ∈ D0 ∩ {F 6= 0},
|∇

x
ξẋ| ≤ C0 and rank(∂ξ/∂x) = r. See Section 3 for details.

(2) Multiscale evolution:
(a) Initial conditions:x(0) = x0 andn = 0.
(b) Force estimation:

(i) micro-simulation: Solve (1.1) int ∈ [tn, tn + 2η] with initial
conditionsxn.

(ii) averaging: approximatėξ(tn + η) by

〈ξ̇〉η(tn + η) = (Kη ∗ ξ̇)(tn + η) = (−K̇η ∗ ξ)(tn + η).
6



(c) Macro-step (forward Euler example):
xn+1 = x

M/2
n +Hδx, whereδx is the least squares solution to the linear

system
δx · ∇ξi = F̄i(ξ) = 〈ξ̇i〉η,

for all i = 1 . . . r.
(d) n = n+ 1. repeat steps (b) and (c) to timeT .

Note that there is no need to actually change the original ODE(1.1) to the form
used in the averaging theorem (2.1).

micro−solver
h

η η

Macro−solver

x

ξ
H

FIGURE 1. The cartoon depicts the time steps taken by the HMM
scheme. At then-th macro step, a micro-solver with step sizeh inte-
grates (1.1) to approximatex(t) in a time segment[tn, tn +2η]. This
data is used to approximatēF (ξ) by 〈ξ(x(t))〉η. Then, the Macro-
solver takes a big step of sizeHδx, whereδx is consistent with〈ξ̇〉η,
i.e.,δx · ∇ξi = 〈ξ̇i〉η for the identified slow variablesξi.

micro−solver

micro−solver

H

H

x1

x2

FIGURE 2. The cartoon depicts the outline of the HMM scheme for
a simple two dimensional system that oscillates with a frequency of
the orderε−1 and expands on anO(1) time scale (c.f. Section 7.1).
The dotted line depicts the trajectory obtained by the microsolver.
The bold arcs depict the steps taken by the Macro-solver.
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2.3. Approximation of slow quantities. With the proposed algorithm,ξ is im-
plicitly and accurately evolved. Thus we are able to computethe slow variables in
Definition 1.1.

Letα(x) ∈ R be a slow variable with respect tox(t), i.e.,| d
dt
α(x(t))| ≤ C0. Denote

α̃(ξ, φ, γ) = α(Φ−1(ξ, φ, γ)), andα̃(t) = α̃(ξ(t), φ(t), γ(t)) = α(x(t)) = α(t).
Differentiating with respect to time, we have

d

dt
α =

d

dt
α̃ = α̃ξ · ξ̇ + α̃φ · φ̇+ α̃γ · γ̇,

whereα̃ξ, α̃φ andα̃γ denote partial derivatives with respect toξ, φ andγ, respec-
tively. This implies that ifα(x) is slow, then

α̃(ξ, φ, γ) = α̃(ξ, φ0, 0) + εC(ξ, φ, γ),

whereC(ξ, φ, γ) is bounded independent ofε. However, sinceα or equivalently,
α̃ is independent ofε, we have thatC ≡ 0. In other words, any slow variable is
a function ofξ alone. Consequently, if the algorithm approximatesξ(t), then any
smooth functioñα(ξ(t)) is also approximated.

The second type of slow observables we consider are time averages of the form
〈β(x(·))〉η. The discussion above implies that

(2.5) 〈β(x(·))〉η = 〈β(x(ξ, φ, γ))〉η ≡ 〈β̃(ξ, φ, γ)〉η,

for some functionβ̃. However, the variablesγ decay to zero and, as shown in
section 4, for sufficiently largeη time averages can be approximated by averaging
over the angle variableφ. Therefore, we have that

(2.6) 〈h̃(ξ, φ, γ)〉η ∼
∫

S1

h̃(ξ, φ, γ = 0)dφ ≡ B(ξ),

which is a function ofξ alone and hence a slow variable. The discussion above
shows that the algorithm approximates the value of〈β(x)〉η. In practice the time
average〈β(x)〉η can be calculated from the output of the micro-simulation initi-
ated at each Macro-step. The error introduced in approximating time averages by
angular ones, and vice versa, is analyzed in Section 4.

Convergence of functionals follows from the observation that for any smooth func-
tionsα(x, t),

ᾱ(t) =

∫ t

0

α(x(s), s)ds

is slow since|(d/dt)ᾱ(t)| = |α(x(t), t)| ≤ C0 for x(t) ∈ D0.

In the simple case in which the integrandα(x, t) is a slow variable itself, the func-
tional

∫ t

0
α(x(τ), τ)dτ can be approximated by quadrature over the sample points of
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the Macro-solver. In general,α(x(t), t) can exhibits fast oscillations with frequency
proportional toε−1. However, we observe that̄α(t) solves the ODE

(2.7)

{

˙̄α = α(Φ−1(ξ, φ, γ), τ)

τ̇ = 1,

which complies to the form required by the averaging theorem. Therefore,ᾱ(t)
can be integrated by the proposed HMM scheme as a passive variable at the macro-
scopic level. In other words, it can be approximated by

ᾱ(t) ∼
∫ t

0

〈α(x(τ))〉ηdτ.

3. SLOW VARIABLES

The idea behind the proposed method is to find (by numerical construction) a set of
slow variables so that the dynamics of the given system is decomposed into this set
of slow variables, asinglefast oscillator and dissipative modes. The slow variables
share some resemblance with action-angle variables in the context of Hamiltonian
dynamics.

In this section, we consider a class of equations, of a less general form than (1.1),
for which it is possible to analytically classify the slow variables and describe the
diffeomorphismΦ. We should mention that the HMM algorithm described in sec-
tion 2 applies to the general form (1.1).

3.1. Polynomial slow variables. Consider a system of ODEs of the form

(3.1)











ẋ = ε−1Ax+ fI(x, y, z, t)

ẏ = fII(x, y, z, t)

ż = ε−1p(x, y) + fIII(x, y, z, t),

wherex = (x, y, z) ∈ Rd with x ∈ Rdx, y ∈ Rdy andz ∈ Rdz , dx + dy + dz = d,A
is a real, diagonalizabledx × dx matrix whose eigenvalues are non zero and either
have a negative real part or are purely imaginary. Eigenvalues with negative real
parts are denoted−λ1, · · · − λl. Purely imaginary eigenvalues appear in complex
conjugate pairs and are denoted, with multiplicity,±iω1, . . . ,±iωr, sol+ 2r = dx.
Without loss of generality, we may takeωk > 0, 1 ≤ k ≤ r. In addition,fI , fII

andfIII areC1 in a bounded domainD0 ⊂ Rd to which the solution is restricted.
p = (p1, . . . , pdz

) are polynomials such that the monomials inp(x, y) are not slow.
Initial conditions arex(0) = (x(0), y(0), z(0)) = (x0, y0, z0). Note that the singular
part of ż does not have to be linear, however, it may not depend on any ofthe
coordinates ofz itself.
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SupposeΣ is a change of variables that diagonalizesA. We obtain the following
decoupled scalar equations forΣ−1

x

(3.2)

{

ϑ̇±k (t) = ±iε−1ωkϑ
±
k (t) + f±

1 k = 1 . . . r

γ̇k(t) = −ε−1λkγk(t) + f2 k = 1 . . . l.

Here,f±
1 andf±

2 are linear combinations of the components offI . We refer to the
variable pairs{(ϑ+

i , ϑ
−
i )}r

k=1 as oscillators and to{γk}l
k=1 as transient, or dissipa-

tive modes. Note that by hypotheses,f±
1 are bounded independent ofε, so for initial

conditions away from the origin, we expect thatϑ±k (t) 6= 0 for a time interval larger
than theε time scale.

The assumption thatA is diagonalizable can be relaxed to include cases in which
only the Jordan blocks corresponding to purely imaginary eigenvalues are diagonal
while blocks that correspond to−λk are not. This is the minimal condition to insure
that the solution of (3.1) does not blow up on theε time scale.

Lemma 3.1. There exists a diffeomorphism

Φ : x ∈ U ⊂ R
2r 7→ (ξ(E), ξ(θ), φ) ∈ R

r × R
r−1 × S1,

such thatξ(E) = (ξ
(E)
1 , . . . , ξ

(E)
r ) ∈ Rr andξ(θ) = (ξ

(θ)
1 , . . . , ξ

(θ)
r−1) ∈ Rr−1 are slow

variables with respect to (3.1), whereU = R2r − {ξ(E)
k 6= 0, k = 1 . . . r}.

The Lemma shows that one may consider(ξ(E), ξ(θ), φ) as a new coordinates system
for the subspace spanned by the oscillatory modes ofA. The slow variablesξ(E)

correspond to the total energy (kinetic + potential) of the oscillators{(ϑ+
i , ϑ

−
i )}r

k=1.
The slow variablesξ(θ) correspond to a chain of relative phases between the oscilla-
tors. They capture the relative progress of the oscillatorsalong their period. Using
ξ(E) andξ(θ), all the fast oscillations are driven by asinglefast processφ ∈ S1.

Proof. Consider the following map̃Φ : C
2r → C

2r given byΦ̃ = (Φ̃1, . . . , Φ̃2r) =
Φ̃(ζ) with ζ = (ζ1, . . . , ζ2r) and

(3.3)

Φ̃k = ζ2k−1ζ2k, k = 1 . . . r

Φ̃k+r = (ζ2k)
ωk+1(ζ2k+1)

ωk + (ζ2k−1)
ωk+1(ζ2k+2)

ωk , k = 1 . . . r − 1

Φ̃2r = ζ
1/ωr

2r ,

where we definearg[z], the argument ofz, to be in(π, π]. Its inverse inΞ0 = {ζk 6=
0, k = 1 . . . 2r} is given by

(3.4)
ζ2r = Φ̃ωr

2r

ζ2r−1 = Φ̃r/ζ2r,
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and the rest of the variables{ζk}2r−2
k=1 are given recursively by

(3.5)
ζ2k =

1

2
ζ−ωk

2k+1

[

Φ̃
ωk+1

k +

√

Φ̃
2ωk+1

k − 4Φ̃ωk

k+1

]

ζ2k−1 = Φ̃k/ζ2k.

Next, let

(3.6) (ξ(E), ξ(θ), φ) = Φ(x) =
(

Φ̃1, . . . , Φ̃2r−1, (2π)−1arg[Φ̃2r]
)

(Σ−1x).

Recall thatΣ is a complex matrix that diagonalizes the real matrixA, i.e, x =
Σ(ϑ+

1 , ϑ
−
1 , . . . , ϑ

+
r , ϑ

−
r ). We note that the columns ofΣ−1 consists of complex con-

jugate pairs. Hence,ζ2k−1(Σ
−1(x)) is the complex conjugate ofζ2k−1(Σ

−1(x)) for
all k = 1 . . . k. Substituting into (3.3) we see thatΦ(x) is indeed real valued, dif-
ferntiable and has a differentiable inverse. We conclude thatΦ is a diffeomorphism
on{ϑ±k 6= 0, k = 1 . . . r}.

Finally, differentiating with respect to time shows thatξ(E) andξ(θ) are slow with
respect to (3.1). This is easily verified by noting thatΦ̃(ϑ) is slow with respect to
(3.2). WE conclude thatΦ is a diffeomorphism onU .

�

As an example, consider the simple case of two real valued oscillators with fre-
quencyε−1,

(3.7)



















ẋ1 = ε−1x2 + f1(x)

ẋ2 = −ε−1x1 + f2(x)

ẋ3 = ε−1x4 + f3(x)

ẋ4 = −ε−1x3 + f4(x)

The slow variables given by (3.6) are

(3.8)

ξ
(E)
1 = x2

1 + x2
2

ξ
(E)
2 = x2

3 + x2
4

ξ
(θ)
1 = x1x3 + x2x4,

which correspond to the internal energy of the two oscillators and the cosine of their
relative phase. The fast variable can be taken to beφ = arctan(x2/x1). However,
our algorithm does not require identifing it. If the frequencies of the two oscillators
(x1, x2) and(x3, x4) is different, thenξ(θ)

1 will have a more complicated form. For
example, if the matrixA in (3.1) is real, and the ratioωi/ωi+1 is rational, thenξ(θ)

can be taken to be polynomial (see 7.2 for an example in whichξ(θ) is cubic). This
is made clear by the following lemma.

Lemma 3.2. Supposemωk = nωk+1 with integerm,n > 0. Then, there exists a
polynomial, p, such thatp(ϑ+

k (x), ϑ−k+1(x)) is slow with respect tox(t), the solution
of (3.1), for all initial conditions.

11



Proof. It is easily verified that

(3.9) ξ̃(θ) = (ϑ+
k )m(ϑ−k+1)

n + (ϑ−k )m(ϑ+
k+1)

n,

is indeed a real valued slow variable. Since the eigenfunctions{ϑ±k }r
k=1 are obtained

by diagonalization,ξ(θ)(x) = ξ̃(θ)(Σ−1x) is polynomial inx. �

The next lemma states that thez variables will result in some new slow variables
of the polynomial form. For convenience, we introduce multi-index notation of
vectors inR

d. Let n = (n1, n2, · · · , nd) denote ad-tuple of non-negative integers;
|n| = n1+n2+· · ·+nd. Forx = (x1, . . . , xd) ∈ Rd we denotexn = xn1

1 x
n2
2 · · ·xnd

d .
Using this notation, anm’th degree polynomial ofx can be written as

p(x) =
∑

|n|≤m

c
n
x

n

where{c
n
}|n|≤m is a family of real coefficients that determinesp(x). Note that

vectors inRd or Zd are denoted with bold letters while lower dimensional vectors,
for examplex andy, are not.

Lemma 3.3. Given a system of (3.1) with the standing hypothesis. There exists a
polynomialQ(x, y) of degreem such thatξ(z) = z − Q(x, y) is slow with respect
to (x(t), y(t), z(t)).

Proof. Without loss of generality, assume thatξ(z) is a scalar and thatA is diagonal
with eigenvaluesµ1 . . . µdx

. Differentiating with respect to time yields
(3.10)
ξ̇(z) = ż + ∇(x,y)Q(x, y) · (ẋ, ẏ) = ε−1 [p(x, y) −∇xQ(x, y) · Ax] + f3(x, y, z),

where∇(x,y) denotes the gradient with respect to bothx andy and∇x with respect
to onlyx. Thusξ(z) is slow if |p(x, y) −∇xQ(x, y) · Ax| ≤ C1ε. For a polynomial
p as described above, one can writep(x, y) =

∑

|k|+|l|≤m,|k|≥1 ck,lx
kyl. Then,

Q(x, y) =
∑

|k|+|l|≤m,|k|≥1,µ·k 6=0

ck,l

µ · kx
kyl,

satisfies∇xQ(x, y) · Ax = p(x, y) for all x andy, where, for a multi-indexk =

(k1, . . . , kdx
), we definedµ · k =

∑dx

j=1 µjkj. Note thatµ · k = 0 if and only if
the monomialxkyl is a slow variable. In this case, there are two possible options.
If xkyl vanishes, or is of orderε, thenε−1xkyl is bounded independent ofε and
z−Q(x, y) is still slow. On the other hand, ifxkyl is of order one, then the variable
z leavesD0 on a time scale of orderε, which is a case not considered in this paper.
The proof above generalizes directly toA = ΣΛΣ−1. �

Lemmas 3.1-3.3 yield the following theorem:
12



Theorem 3.4.Let ξ(y) = y andξ = (ξ(E), ξ(θ), ξ(y), ξ(z)). Then,

(3.11)
Φ(x) = Φ(x, y, z) = (Φ̃−1(x), y, z −Q(x, y)) = (γ, φ, ξ)

= (γ, φ, ξ(E), ξ(θ), ξ(y), ξ(z))

is a diffeomorphism on{ξ(E)
i 6= 0}.

Proof. The Jacobian∂Φ/∂x is given by

∂Φ

∂x
=









(

1 0

0
(

∂Φ
∂x

)−1

)

0 0

0 1 0

−∂Q
∂x

−∂Q
∂y

1









Using Lemma 3.1,det(∂Φ/∂x) 6= 0. �

In section 7 we consider several example systems, includingthe Fermi-Pasta-Ulam
problem, that satisfy the assumptions of Lemmas 3.1-3.3, and hence theorem 3.4
holds.

3.2. Identifying slow variables. Theorem 3.4 constructs a diffeomorphismΦ :
Rd → Rd that decomposesx into slow and fast variables, such that the slow vari-
ables lie in aR2r−1+dz dimensional space. Previously, we concluded that the effec-
tive behavior of the system can be described by functions or functionals of these
slow variables. Under our definition, the choice of slow variables is not unique and
we do not necessarily have to use the ones that are defined in the previous sub-
section. The essential criterion is to have a sufficient number of independent slow
variablesξ = {ξj} such that rank∂ξ/∂x = 2r − 1 + dz in some open set.

The general idea is to decompose the vector field locally by orthogonal projections
of the right hand sidefε to the subspace that is orthogonal to the gradient of the
slow variables. One should then search for sufficient numberof slow variablesξ
such that the projection

P∇ξfε(x) :=

(

I − ∇ξ ⊗∇ξ
|∇ξ|2

)

fε(x)

cannot contain any possible slow variables with respect tox(t). This way, by ap-
plying the averaging theorem, the dynamics ofξ is effectively closed and can be
evolved to track the effective behavior of the system. Below, we describe our ra-
tionale and strategy of using a numerical procedure to determine a sufficient set of
slow variables.

Let ξ(x) be a potential slow variable with respect tox(t). Following our definition
for slow variables, this implies thatdξ(x(t))/dt = ∇

x
ξ(x) · dx/dt, is expected to

be bounded independent ofε. More importantly, this is expected to hold for the
13



dynamics that originate from initial values in an non-emptyopen set. Therefore,
we may attempt to solve the minimization problem

(3.12) min
ξ∈X

∫

A⊂Rd

|∇
x
ξ(x) · φ(x)|2dµ

x
,

hereφ(x) denotes the functiondx/dt, i.e., the right hand side of (3.1), or more
generally (1.1).A is some open set inRd endowed with a measuredµ

x
andX is an

a priori chosen function space.

Based on Lemmas 3.1-3.3, we propose to search for slow variables in the space of
polynomials of the unknown variables of the original equation,x. Polynomials are
also used to locally approximate the potential functions incertain problems. We
proceed by looking for a polynomial with no constant term

(3.13) p(x) =
∑

1≤|n|≤m

c
n
x

n

that minimizes (3.12).

In order to choose the setA and measuredµ
x

consider the following Lemma.

Lemma 3.5. For any nonzeroa ∈ R andx0 ∈ Rd, consider the grid{x0 + an|1 ≤
|n| ≤ m}. For any point on this grid we assign a valueb

n
. Then, there exists a

unique polynomialp(x) =
∑

1<|n|≤m cnx
n in Rd of orderm such thatp(x0+an) =

b
n

for all 1 ≤ |n| ≤ m.

Proof. We wish to show that the Vandermonde system
∑

1≤|n|≤m cn(x0+an)n, 1 ≤
|n| ≤ m has a unique solution for all{b

n
}1≤|n|≤m. Since the number of equations

is equal to the number of unknown, it is sufficient to show thatthe homogeneous
system,b

n
= 0, ∀n has only the trivial solution.

The casesd = 1 orm = 0 are trivial. The rest is proved by induction: Without loss
of generality, letx0 = 0 and denotex = (x1, . . . , xd) and similarly forn. Consider
q(x) = p(x1 = 0) =

∑

1≤|n|≤m,n1=0 cnx
n. It is a polynomial inR

d−1 of degreem.
By induction,q(x) is the zero polynomial, i.e.,c

n
= 0 for all {1 ≤ |n| ≤ m,n1 =

0}. Hence,p(x) can be divided byx1. Let w(x) = p(x)/x1, a polynomial inRd

of degreem − 1 that vanishes on the gridan, |n| ≤ m, n1 = 0. By the induction
hypothesis,w(x) is the zero polynomial. Hence,c

n
= 0 of all n. �

In light of this lemma, the setA can be taken to be the discrete set of pointsA =
{x0 + an : a 6= 0, 1 ≤ |n| ≤ m} anddµ

x
the counting measure. In other word, we

minimize

(3.14) min
p∈Pm(Rd)

∑

1≤|n|≤m

|∇
x
p(x0 + an) · φ(x0 + an)|2,

wherePm(Rd) is the set of all polynomials inRd, and anyx0 ∈ R
d, a 6= 0. As

before,φ(x) denotes the functiondx/dt. a andx0 should be chosen such thatA is
a constant distance away from the zero offε.
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This is a least square problem whose unknowns are the coefficients of the polyno-
mial p. Theorem 3.4 and Lemma 3.5 suggest that this minimum should be of order
one. Using, for instance, singular value decomposition, one can find a basis to the
space of all polynomials. The eigenvectors, i.e., the coefficients, that correspond to
eigenvalues of the order one define our slow variables.

For systems of the form (3.1), we know that we should search for r+dz polynomials
that can serve as a change of coordinates. In general, we begin be searching for low
degree polynomials that involve only a small number of coordinates and gradually
look for more complicated ones. Once a slow variable is detected, the procedure is
repeated with an additional constraint that the coefficients of the new polynomial
are perpendicular (in the space of coefficients) to the ones already detected. The
constraint can be implemented as a penalty to the minimization. Once a new slow
variableξi is identified, we check the rank of∂ξ/∂x at an appropriate set of points
(also on a gridx0 + an). If ∂ξ/∂x does not have full rank, then the new slow
variable is discarded. For high dimensional problems, it issometimes possible to
reduce the number of free parameters using symmetries of theparticular equations
of interest.

In addition, it is often useful to try identify linear combinations of the slow variables
that involve the least possible number of non-zero entries.We employed a “clean
up” algorithm in order to obtain a simple set of slow variables that can help in our
understanding of the slow dynamics. This process is not essential for the HMM
algorithm.

4. TIME AVERAGING

In this section we estimate the difference between angle andlocal time averages
for integrable functionsα(x). Our estimates applies to any system of ODEs that,
following a change of variablesΦ : x → (ξ, φ, γ), takes the form (2.1) along with
dissipative variables, i.e.,

(4.1)

{

ξ̇ = F (ξ, φ, γ)

φ̇ = ε−1Ω(ξ) +G(ξ, φ, γ),

where|γ| ≤ C/(D + (t/ε)l), for somel > 0 andf, g,Ω ∈ C1. For the rest of
the paper we useC andD as generic positive constants whose values may change
between expressions.

Let α(x) = α(Φ−1(ξ, φ, γ)) ≡ α̃(ξ, φ, γ). For simplicity, we drop the tilde nota-
tion. We recall that

(4.2) 〈α〉(t) ≡ 〈α(x(·))〉η(t) =

∫ t+η

t−η

Kη(t− τ)α(x(τ))dτ.

and

(4.3) ᾱ(t) ≡ ᾱ(ξ, φ)(t) =

∫

S1

α(ξ(t), φ, γ = 0)dφ.

15



Let α(q)(t) denote theq-th time derivative andα[q](t) a q’th anti-derivative of aCq

functionα. In particular,α(0) = α[0] = α. The integration constant will be specified
in each case.

Definition 4.1. let Kp,q denote the space ofCq functions which are even, supported
on [−1, 1], normalized and havep vanishing moments, i.e.

(4.4)
∫ 1

−1

K(τ)τ νdτ =

{

1 ν = 0

0 ν = 1 . . . p.

The following well-known Lemma will be useful.

Lemma 4.2. Letβ(t) denote an integrable function with periodT0. ForK ∈ Kp,q,
for some positive constantC,

(4.5)
∣

∣Kη(·) ∗ β(ε−1·) − β̄
∣

∣ ≤ C||β||∞||K||W 1,q

(

ε

η

)q

,

where|| · ||∞ denotes the sup norm inD0,

(4.6) ||β||∞ = sup
x∈D0

|β(x)|,

and

(4.7) ||K||W 1,q =

∫ 1

−1

K(q)(t)dt.

A proof can be found in [12].

The following theorem estimates the difference|〈α〉η − ᾱ| for any C1 function
α(x) = α(ξ, φ, γ). It is a generalization of a similar theorem found in [12]. Without
loss of generality, we taket = 0.

Theorem 4.3. Let x(t) solve (1.1) in[−η, η], 0 < η < 1, with initial conditions
x(−η) = x−η = (ξ−η, φ−η, γ−η) ∈ D. Also, suppose thatK ∈ Kp,q andξ(t) ∈ C1.
Then

(4.8) |〈α(x)〉η(0) − ᾱ(ξ0)| ≤ C max

{

η, ηl,

(

ε

η

)q}

,

whereξ0 = ξ(0).

Proof. Denoteξ(t) := ξ(x(t)), γ(t) := γ(x(t)), and

φ̇ = Ω(ξ(t)) + εg(ξ(t), φ(t), γ(t)), θ(−η) = φ−η;

ψ̇ = Ω(ξ0), ψ(−η) = φ−η.

For |t| ≤ η, expandingα(ξ(t), ψ(t), γ(t)) aroundα(ξ0, φ(t), 0) we obtain

α(ξ(t), φ(t), γ(t)) = α(ξ0, ψ(t), 0)+RI(ξ, ψ, γ, t)+RII(ξ, ψ, γ, t)+RIII(ξ, ψ, γ, t)

where|RI | ≤ C|ξ(t) − ξ0|, |RII | ≤ C|ψ(t) − φ(t)|, and|RIII | ≤ |γ(t)| for some
positive constantC. For smoothξ(t), RI is thus bounded by the Lipschitz constant
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of ξ(t); i.e. |RI | ≤ C1η. By the hypothesis on|γ|, |RIII | ≤ C̃ηl. Let w(t) =
φ(t) − ψ(t), then we have the inequalitieṡw ≤ C1|ξ(t) − ξ0| + εC3 ≤ C4(η + ε).
Using the initial conditionw(−η) = 0, we have that for|t| ≤ η,

|φ(t) − ψ(t)| = |w(t)| ≤ C4(η
2 + ηε).

Now average (4) by the kernelKη:

Kη ∗ α(ξ(·), φ(·), γ(·)) =

Kη ∗ α(ξ0, ψ(·), 0) +Kη ∗ (RI(ξ, ψ, γ, ·) +RII(ξ, ψ, γ, ·) +RIII(ξ, ψ, γ, ·)) .
Using Lemma 4.2, and the estiamtes obtained above,|ᾱ(x) − 〈α(x)〉 | =

|ᾱ(x)−Kη∗α(ξ0, ψ(·), 0)+Kη∗(RI(ξ, ψ, γ, ·) +RII(ξ, ψ, γ, ·) +RIII(ξ, ψ, γ, ·)) |.
�

The above theorem shows that time averages approximate averages using angular
coordinates for any systems of ODEs that takes the form of (4.1). However, the
estimate (4.8) is not tight. Improved bounds can be obtainedfor particular cases.
For example, we consider a simple case with no dissipative modes and constanṫφ,
i.e.,Ω ≡ ω.

Theorem 4.4. LetK ∈ Kp,q andα ∈ Cp+1. Suppose also thatξ(t) = ξ(x(t)) ∈
Cp+1. Then,

(4.9) |ᾱ(t) − 〈α〉(t)| ≤ C

(

p
∑

k=0

||α(k)||∞
)

||K||W 1,q max

{

ηp+1,

(

ε

η

)q}

.

Proof. The proof is essentially the same as the proof of Theorem 4.3.The only
difference is thatξ(t) andα(ξ(t), φ) are expanded to orderp+ 1:

(4.10)

ξ(τ) = ξ0 +

p
∑

k=1

τk ξ
(k)(0)

k!
+ τp+1 ξ

(p+1)(τ ∗)

(p+ 1)!

α(ξ(τ), φ) = α(ξ0, φ) +

p
∑

k=1

τkαk(τ = 0, φ)

k!
+ τp+1αp+1(τ = τ ∗∗, φ)

(p+ 1)!
,

whereξ0 = ξ(0), τ ∗, τ ∗∗ ∈ [−τ, τ ] andαk are some functions ofφ. A calculation
similar to Lemma 4.2 shown that

(4.11)
∣

∣Kη ∗ (τkβk)
∣

∣ ≤ C||α(k)||∞||K||W 1,q

(

ε

η

)q

.

In addition, the last term is trivially bounded byCηp+1 for |τ | ≤ η. �

Suppose we identifyΞ(x) = ξ(x) + δ(x), as slow variables instead of the correct
onesξ(x). For short hand we denoteξ = ξ(x(·)) and similarly forφ andδ. As a
consequence, local time averages of a functiong(ξ, φ) are replaced by

〈g(Ξ, φ)〉η = Kη ∗ [g(ξ + δ, φ)] = Kη ∗ g(ξ, φ) +Kη ∗ [δg′(ξ, φ)] +O(δ2).
17



The last term, which is the leading order term in the error introduced using the
wrong slow variable, is of orderδ/η.

5. HIGHER ORDER SCHEMES

In this Section we describe how the algorithm outlined in Section 2.2 can be gener-
alized to other explicit Macro-solvers of orders ≥ 2. For simplicity, we concentrate
on the explicit mid-point method. It is possible to construct other methods in a sim-
ilar fashion.

Let z(t) denote the solution of

(5.1) ż = f(z), z(0) = z0.

Recall the form of a single step of sizeH using the usual second order mid-point
rule for integrating the equation forz(t):

(5.2)
k1 = f(xn), xn+1/2 = xn +

1

2
Hk1

k2 = f(xn+1/2), xn+1 = xn +Hk2.

For the problem at hand, consider first a case in which (1.1) has no dissipative
modes. The benefit of this situation is that it is possible to integrate the ODE (1.1)
both forward and backward in time. Suppose that at timetn, we havex(tn) = xn,
which corresponds to(ξn, φn). We would like to approximate the averaged force
F̄ (ξn) using local time averages. We therefore have

(5.3) f̄(ξn) ∼ 〈ξ̇〉η = (K ′
η ∗ ξ(·)),

whereξ(t) denotesξ(x(t)) as obtained by the micro-solver fort ∈ [tn − η, tn + η],
integrated fromtn backwards totn − η and fromtn forward totn + η with initial
conditionx(tn) = xn. Note that the difference between (5.3) and the expression
appearing in the algorithm described in Section 2.2 is that in (5.3) the average is
evaluated att = tn rather than att = tn + η. In order to integrateξ using the
mid-point rule we take

(5.4)
kη

1 = (K ′
η ∗ ξ(·)), kx

1 = δx

xn+1/2 = xn +
1

2
Hkx

1 ,

whereδx is consistent with〈ξ̇〉η(tn), i.e.,δx·∇ξi(xn) = 〈ξ̇i〉η(tn) for all i = 1 . . . r.
The second half of the step attn+1/2 = tn +H/2 is,

(5.5)
kη

2 = (K ′
η ∗ ξ̃(·)), kx

2 = δx̃

xn+1 = x0 +Hkx

2 ,

where ξ̃(t) denotesξ(x(t)) as obtained by the micro-solver fort ∈ [tn+1/2 −
η, tn+1/2 + η], integrated fromtn+1/2 backwards totn+1/2 − η and from tn+1/2

forward totn+1/2 + η with initial conditionx(tn+1/2) = xn+1/2. As before,δx̃ is
consistent with〈ξ̇〉η(tn+1/2). Using the method described above, the error in each
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step of the Macro-solver isO(H3). Additional integration schemes, for instance,
fourth order Runge-Kutta, are implemented in a similar way.

Generally, if (1.1) has one or more dissipative modes then itis not possible to in-
tegrate the ODE backwards and the method described above needs to be modified.
Our implementation for the second order mid-point scheme isdepicted in Figure 3.
The first step is the same as before:

(5.6)
kη

1 = (K ′
η ∗ ξ(·)), kx

1 = δx

xn+1/2 = x(tn + η) +
1

2
Hkx

1 ,

whereξ(t) denotesξ(x(t)) as obtained by the micro-solver fort ∈ [tn, tn + 2η],
integrated fromtn forward totn+2η with initial conditionsx(tn) = xn andx(tn+η)
denotes the value ofx at the middle of the micro-simulation. For the second step
we would like to evaluate〈ξ̇〉η(tn+1/2) atx = xn+1/2. However, since the kernelK
is symmetric, we need to start the micro-solver a timeη earlier, at a point that is not
known. This initial point can be approximated by taking a step δxn, starting atxn

(rather thanxn+1/2) and consistent with〈ξ̇〉η(tn+1/2 + η). The second step in the
mid-point rule therefore has the form

(5.7)
kη

2 = (K ′
η ∗ ξ̃(·)), kx

2 = δx̃

xn+1 = x0 +Hkx

2 ,

where ξ̃(t) denotes the solution of the micro-solver fort ∈ [tn+1/2, tn+1/2 + 2η]
with initial conditionsx(tn+1/2) = xn +Hδxn/2. This method does not cancel the
second order term (inH) exactly and leaves a residual error of the order ofHη.

6. ACCURACY AND EFFICIENCY

In this Section we analyze the accuracy of the suggested method outlined in Sec-
tion 2.2. Each step of the approximations preformed in our algorithm introduces a
numerical error. In order to optimize performance, the different sources of errors
are balanced to a fixed prescribed accuracy∆. We show how the different parame-
ters:ε, η, h andH scale with∆ in order to have a global accuracy of order∆. Note
that the maximal possible accuracy is∆ = ε, since this is the error introduced by
simulating the averaged equation rather than the original one. We also study the∆
dependence of the complexity of the algorithm.

We begin with estimating the error in our evaluation of the averaged forcēF . There
are several sources of errors:

• Global error in each micro-simulation. Using anm’th order method with
step sizeh the global error isηhm/εm+1.

• Quadrature error inK ′
η ∗ξ: Using a quadrature formula of degreer the error

is ηhm/ε(m+1). However, due to the regularity of the kernel usedK ∈ Cq,
the integrand is smooth and periodic. Hence, the coefficients of its Fourier
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FIGURE 3. The cartoon depicts the implementation of the midpoint
rule using (5.6) and (5.7) for a simple two dimensional system that
oscillates with a frequency of the orderε−1 and expands on anO(1)
time scale. The dotted line depicts the trajectories obtained by the
micro solver. The bold arcs depict the steps taken by the Macro-
solver.

decomposition decay very fast. As a result, it is advantageous to use the
trapezoidal rule, which is exact fore2πikx, k ∈ N. This implies that the
quadrature error is typically very small and can be neglected.

• ApproximatingF̄ by 〈F 〉η: Using a kernelK ∈ Kp,q the error is the larger
betweenηp and(ε/η)q/η. Note that we are loosing one order ofη compared
to lemma 4.2 sincēF is found through integration by parts (cf. Section 2.2).
The above two bounds to the averaging error are equal ifηp+q+1 = εq,
where, for largeη, the termηp dominates, while for smallη the other. Since
we would like to optimize our complexity, it is always preferable to work in
the latter regime. Hence, we can take the averaging error to be (ε/η)q/η.

• Error due to inaccurate slow variables: Denoting the accuracy of the slow
variables byδ < η, the error in〈F 〉η is δ/η. For the rest of this discussion
this error is also neglected.

For simplicity, we describe the error analysis for systems without dissipative modes.
System with dissipative modes may involve additional errors, both from local time
averages, which are evaluated in theorem 4.3, and from the use of high-order meth-
ods, as discussed in section 5. Balancing all terms yields the optimal scaling of the
simulation parameters with∆.

The global accuracy of integrating the original ODE (1.1) totimeT = O(1) using
a Macro-solver of orders with step sizeH is, assuming errors are accumulative,

(6.1) E ≤ Dmax

{

Hs,
ηhm

εm+1
,
εq

ηq+1

}

,
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For someD > 0. For short hand we drop the constant in all following expressions.
Balancing the different sources of errors to a prescribed accuracy∆ yields

(6.2)

η = ε
q

q+1 ∆− 1
q+1

H = ∆
1
s

h = ε
1+ 1

m(q+1) ∆
s+1
sm

+ 1
m(q+1) .

The complexity is With a smooth kernel we can consider theq → ∞ limit.

(6.3) C =
η

h

T

H
= ε−

m+1
m(q+1) ∆− 1

s
− s+1

sm
− m+1

m(q+1) .

In this case the complexity is reduced to

(6.4) C(q → ∞) = ∆− 1
s
− s+1

sm .

Figure 4 depicts the relative error of the HMM approximationcompared to the
analytical solution of the linear system discussed in Section 7.1 (with dissipative
modes).. The kernel was constructed from polynomials to have exactly two con-
tinuous derivatives and a single vanishing moments, i.e.,q = 2 andp = 1. Fourth
order Runge-Kutta schemes were used for both the micro and the Macro solvers.
The simulation parameters are chosen to balance all errors as discussed above.
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FIGURE 4. A log-log plot of the relative error of the HMM ap-
proximation to a linear ODE compared to the exact solution:E =
maxtn∈[0,T ] 100 × |ξHMM(tn) − ξexact(tn)|/|ξexact(tn)|, as a function
of ∆.

From the parameter scaling (6.2) it is clear that the step size of the Macro-solver,
H, does not depend on the stiffnessε, but only on the prescribed accuracy∆.
Our algorithm is therefore multiscale is the sense that is converge uniformly for
all ε < ε0 [10]. More precisely, denote the sample times of the Macro-solver by
t0 = 0, . . . , tN = T and the corresponding numerical approximations forx by
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x0, . . . ,xN . The exact solution is denotedx(t). We have that, for any variableα(x)
that is slow with respect tox(t)

(6.5) lim
H→0

sup
k=0...N

sup
ε<ε0

|α(x(tk)) − α(xk)| → 0.

Note that the order of the limits is important.

7. EXAMPLES

In this Section we present a few example ODE systems that fallunder the cate-
gory of Equation (3.1) and compare the numerical solution ofthe HMM to other
methods.

7.1. A simple linear example. We begin with a simple example of a linear system
that contains both oscillatory and dissipative modes:

(7.1)











ẋ1 = ε−1x2 + x1 + 2x3

ẋ2 = −ε−1x1 + x2

ẋ3 = −ε−1x3,

with initial conditions(x1, x2, x3)(0) = (1, 0, 1). The solution is

(7.2)

x1(0) = (1 + ε)et cos ε−1t− εe−ε−1t

x2(0) = (1 + ε)et sin ε−1t

x2(0) = e−ε−1t.

The system admits a single slow variableξ = x2
1 + x2

2. Outside a neighborhood of
ξ = 0 the diffeomorphismΦ can be taken as

(7.3) Φ(x) = (x2
1 + x2

2, arctan(x2/x1), x3) ≡ (ξ, φ, γ).

The Jacobian isdet∇Φ = 2 in ξ > 0. Figure 5a depicts the HMM approximation
of x1 andx2 compared to the analytical one (7.2). Our algorithm correctly approxi-
mates the slow variableξ = x2

1+x
2
2, while the phase,φ, and the dissipative variable,

x3, are lost. Simulation parameters areε = 10−5, η = 5.4ε, h = ε/15, T = 10 and
H = 0.5. The kernel used in averaging is:

(7.4) K(t) = Z−1 exp

(

−5

4

1

(t+ 1)(t− 1)

)

,

whereZ is a normalization constant. Hence,K ∈ K∞,1, i.e., C∞ with a single
vanishing moment. Both micro and Macro solvers implement a fourth order Runge-
Kutta scheme. Figure 5b depicts the HMM approximation for several local averages
and functionals. Note that the algorithm correctly approximates the value of the
oscillating observables even though the Macro step size maybe much larger than
their period.
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FIGURE 5. The HMM approximation to the solution of the linear
example (7.1). (a) Trajectory of thex1 and x2 coordinates: The
HMM time steps are denoted by circles while squares denote the
exact solution at the same times. The dotted circles are guides for
the eye. (b) Example local time averages and functionals. The dotted
curve denotes the exact value for〈x2

1x2 − 1〉η, the solid curve of
〈5 cos(x2

1x2)〉η and the dashed curve of
∫ t

0
0.5x2

1(τ)dτ . The HMM
values for the same observables are denoted by plus signs.

7.2. Stellar orbits in a galaxy. The following is a well studied system taken from
the theory of stellar orbits in a galaxy [22, 23]

(7.5)

{

r′′1 + a2r1 = εr2
2

r′′2 + b2r2 = 2εr1r2,

wherer1(s) stands for the radial displacement of the orbit of a star froma reference
circular orbit andr2(s) stands for the deviation of the orbit from the galactic plane.
The time-like variables ∈ [0, ε−1S] denotes the angle of the planets in a reference
plane. Initial conditions arer1(0) = r2(0) = 1 andr′1(0) = r′2(0) = 0. Changing
variable tox = (x1, v1, x2, v2)

T = (r1, r
′
1/a, r2, r2‘/b)

T andt = εs, equation (7.5)
becomes

(7.6) ẋ = ε−1Ax + f(x), x(0) = x0,

where

(7.7) A =









0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0









, f(x) =









0
x2

2/a
0

2x1x2/b









, x0 =









1
0
1
0









.
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To see how resonances occur, consider the following change of variables

(7.8)
ξ1 = x2

1 + v2
1 , tanφ1 = v1/x1

ξ2 = x2
2 + v2

2 , tanφ2 = v2/x2.

The coordinatesξ1 and ξ2 correspond to the amplitudes of the two oscillators,
(x1, y1) and(x2, y2), respectively.φ1 andφ2 correspond to the phase of each one of
the oscillators. Under (7.8), the ODE (7.6) takes the form

(7.9)



















ξ̇1 = 1
2

√
ξ1ξ2 [sin(φ1 + 2φ2) − sin(φ1 − 2φ2)]

ξ̇2 = 1
2

√
ξ1ξ2 [2 cosφ1 − cos(φ1 + 2φ2) − cos(φ1 − 2φ2)]

φ̇1 = −ε−1 +
√
ξ1 sinφ1 sin2 φ2/(2ξ2)

φ̇2 = −ε−1 + 2
√
ξ1 sinφ1 sin2 φ2.

It is clear thatξ1 andξ2 are slow. Averaginġξ1 and ξ̇2 independently overφ1 and
φ2, we obtain the limiting effective equations forζ1 andζ2:

(7.10) ζ̇1 = 0 ; ζ̇2 = 0.

However, for the special cases in which either theφ1 +2φ2 orφ1−2φ2 are slow, the
effective equations become more complicated. Whena = ±2b, the leading term
in the fast evolution ofθ = φ1 ∓ 2φ2 is cancelled exactly andθ is a slow variable.
The system is then said to be in resonance. In our algorithm, the requirement that
θ is slow can be taken into account by adding a third slow variable. The algorithm
described in Section 3.2, identifies the cubic polynomial

(7.11) θ = x1x
2
2 + 2v1x2v2 − x1v

2
2.

The fast variable can be taken to beφ = φ1 although our algorithm does not require
identifying it. The choice of cubic polynomial (7.11) is notunique. However, any
other slow variable can be expressed as a function ofξ1, ξ2 andθ. Figure 6 compares
the HMM solution to a numerical integration of (7.5) using the fourth order Runge-
Kutta method with a step size ofε/50. HMM parameters areε = 10−5, h = ε/50,
H = 0.3 and η = 10.28ε. In graph (b)η = 30.28ε was used. Both micro an
Macro solvers are fourth order Runge-Kutta. It is importantto note that although
θ is constant throughout the simulation, it is not possible toapproximateξ1 andξ2
correctly without taking account ofθ as well.

7.3. Kapitza’s inverted pendulum. The following example, suggested by P.L.
Kapizta [36] considers a pendulum with a rigid arm that is attached at one of its
ends to a mechanical motor. The set up of the system is depicted in Figure 7a. The
motor causes the point of suspension of the arm to vibrate up and down with ampli-
tudeε and frequencyε−1. Surprisingly, the fast vibrations of the motor can cause the
pendulum to oscillate slowly (with aO(1) frequency) around the inverted position,
in which its arm is pointing up. Denoting byθ the angle between the pendulum arm
and the upward direction, the equation of motion for the system becomes

(7.12) lθ̈ =
[

g + ε−1 sin(2πε−1t)
]

sin θ,
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FIGURE 6. Numerical solution of the stellar equations (7.6). The
solid line is the Runge-Kutta solution with step size of order ε while
plus signs are the HMM approximation. Figure (a) shows the slow
variables and figure (b) examples of local time averages.

wherel is the length of the pendulum’s arm andg is the gravitational constant. The
averaged dynamics of the pendulum was studied analyticallyin [30]. Sharp et. al.
[35] used the HMM framework to numerically integrate (7.12). Their approach,
however, is different from the one described in this paper.
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FIGURE 7. (a) Kapitza’s pendulum has a rigid arm which is attached
to a motor that is vibrating fast. The centrifugal force pulls the arm
upwards. (b) Comparison of the HMM approximation for the solu-
tion of the equations describing the dynamics of Kapitza’s pendulum
to the Verlet method with step size of orderε. The solid curve depicts
θ while the dotted one depictsψ = θ̇ + cos θ cos(2πε−1t)/(2πl).
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In order to put (7.12) in a form for which our method for findingpolynomial slow
variables can be applied, letx1 = cos(2πε−1t), x2 = sin(2πε−1t), y1 = sin θ,
y2 = cos θ andz = θ̇. Equation (7.12) becomes

(7.13)

ẋ1 = 2πε−1x2 , ẋ2 = −2πε−1x1

ẏ1 = y2z , ẏ2 = −y1z

ż = ε−1l−1x2y1 + gl−1y1

which has the form (3.1). The slow variables admitted by (7.13) are

(7.14)
ξ1 = y1 , ξ2 = y2

ξ3 = x2
1 + x2

2 , ξ4 = z − x1y1/(2πl)

Going back to the original coordinates system, the slow variables areθ andψ =
θ̇ + cos θ cos(2πε−1t)/(2πl). Figure 7b depicts the HMM approximation forθ and
ψ compared to numerical integration of (7.12) using the Verlet method with a step
size of orderε. Simulation parameters areε = 10−5, h = ε/40, andH = 0.25 and
η = 25.4ε.

7.4. The Fermi-Pasta-Ulam model.The Fermi-Pasta-Ulam model [13] is a sim-
ple system of unit mass particles connected by springs. The springs alternate be-
tween stiff linear and soft non-linear ones. Recently, thismodel was considered by
Hairer et. al. [18] as a benchmark problem for studying the long-time properties of
numerical solutions to stiff ODEs using geometric integrators. The model is derived
from the following Hamiltonian

(7.15) H(p, q) =
1

2

2k
∑

i=1

p2
i +

1

4
ε−2

k
∑

i=1

(q2i − q2i−1)
2 +

k
∑

i=0

(q2i+1 − q2i)
4.

The following linear change of variables is convenient since it separates the elon-
gations of the stiff springs and associated momentum:

(7.16) xi = ε−1(q2i−1 − q2i)/
√

2 , vi = (p2i−1 − p2i)/
√

2,

and a second set of variables associated with the soft springs:

(7.17) yi = (q2i−1 + q2i)/
√

2 , ui = (p2i−1 + p2i)/
√

2,

Definingy0 = x0 = y2k+1 = x2k+1 = 0, the equations of motion become
(7.18)


















ẏi = ui

ẋi = ε−1vi

u̇i = −(yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3

v̇i = −ε−1xi + (yi − εxi − yi−1 − εxi−1)
3 + (yi+1 − εxi+1 − yi − εxi)

3.

Typical initial conditions arex1 = y1 = v1 = u1 = 1 and zero otherwise, which
means that initiallyk − 1 of the stiff springs are at rest. The system admits4k − 1
slow variables. First are all the degrees of freedom which are related to the soft
springs:yi andui, i = 1 . . . k. Second, the total energy (kinetic + potential) of the
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stiff springs,Ii = x2
i + v2

i . Finally, the relative phases between the different stiff
springs,φk = x1xi + v1vi, i = 1 . . . k − 1. Any other functionα(x, y, v, u) which
is slow under the dynamics of (7.18) can be written as a function of the4k − 1
variables described above.

On theO(1) time scale the system can be evolved using the algorithm described
in section 2. We find that the energy of the stiff springs and their relative phases
are fixed, while the degrees of freedom that correspond to thesoft springs oscillate
in complicated, non-harmonic way. Figure 8a depicts our results for systems with
three stiff springs,k = 3, and with ten springs,k = 10, in Figure 9a. Simulation
parameters fork = 3 areε = 10−4, h = ε/15, andH = 0.02 andη = 15.4ε. For
k = 10 we usedε = 10−4, h = ε/15, andH = 0.02 andη = 20.4ε.

On theO(ε−1) time scale the dynamics become more interesting as the energiesIi
begin to change [13, 18]. Unfortunately, the averaging theorem can not be generally
extended to theε−1 time scale due to the exponential dependence on time that ap-
pears in (2.4). However, in this case, due to the oscillatorynature of the soft degrees
of freedom, the dynamics undergoes additional averaging. To this end we construct
the Macro-solver to be almost time-reversible, i.e., the integrator is reversible for
ε = 0. A single Macro step is implemented the following way. First, the soft vari-
ablesyi andui are advanced by half a time step,H/2. Then, the stiff variablesxi

andvi are advanced by a full time stepH while keepingyi andui fixed. Finally,yi

andui are advance again by half a step. Although we did not prove convergence of
the scheme in this set up, the numerical results depicted in Figure 8b fork = 3 and
in Figure 9b, agree with integration of the model using the Verlet method with a
step size of orderε. Note that both methods do not approximate the soft degrees of
freedom correctly on the longer,ε−1, time scale. Simulation parameters fork = 3
are ε = 10−4, h = ε/15, andH = 0.02 andη = 20.4ε. For k = 10 we used
ε = 10−4, h = ε/35, andH = 0.02 andη = 35.4ε.

8. CONCLUSION

We have presented a numerical class of algorithms that compute the effective slow
behavior of highly oscillatory solutions to ordinary differential equations. A key
step is to first numerically detect a set of slow variables,ξ, that are effectively
closed, i.e., their dynamics is closed in the limit ofε → 0. The main idea is then to
integrate an averaged equation for these slow variables. The time stepping operates
on two scales. First, a micro-solver evaluates the time derivatives of the identified
slow variables by solving the original system in a short timesegment. The micro-
solver is an explicit integrator with step size of the order of ε. Then, a Macro-solver
evolves the original variables,x, by taking a large step that is consistent with the
time derivative of the slow variables, obtained by the micro-solver. The Macro-
solver, which is effectively integrating the averaged equation, can take steps of size
that is almost independent ofε. Hence, in order to achieve an a priori fixed accuracy
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FIGURE 8. Comparison of the HMM approximation for the solu-
tion of the Fermi-Pasta-Ulam equations of motion (7.18) with 3 stiff
springs,k = 3, to the one obtained using the Verlet method with
step size of the order ofε. (a) soft variables on aO(1) time scale and
(b) I1, I2 andI3 on aO(ε−1) scale. With the above parameters the
HMM algorithm runs an order of magnitude faster than the Verlet
one. The ratio between running times increases with smallerε.
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FIGURE 9. The HMM approximation for the solution of the Fermi-
Pasta-Ulam equations of motion (7.18) with 10 stiff springs, k = 10.
(a) y1, u1, y10 andu10 on aO(1) time scale and (b)I1 . . . I10 on a
O(ε−1) scale. The Verlet method takes too long to integrate.

∆, the overall efficiency of the algorithm is independent ofε asymptotically. This
is achieved by simulating a stiffer version of the original ODE.

An important observation is that the slow behavior of a system can be a result
of internal mutual cancellation of the oscillations. Such cancellations are called
resonance. The slow variables serve as a set of constraints to the fast dynamics of
the system. Keeping track of the evolution of these constraints maintains the correct
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phase difference between different stiff oscillators. As aresult, the resonances are
resolved and fully accounted for.

We applied this approach successfully to several systems, including the Fermi-Past-
Ulam problem. This paper considers predominantly problemswith fast dynamics
in the form of harmonic oscillators. Some of the simpler examples considered in
Section 7 can be integrated by other numerical methods. For example, trigonomet-
ric or exponential integrators [15, 18, 20], or envelope tracking methods [32] may
also be appropriate. In fact, we suspect that most of these schemes will out preform
HMM when applied to reversible linear systems that are not inresonance. However,
the advantage of HMM in general, and the algorithm proposed here in particular,
is its applicability to a wider class of ODE systems, including the difficult case of
resonance. Several directions awaits for further study. Anextension of our ap-
proach to the cases of variable coefficients and to fast anharmonic oscillators will
be presented in a future publication [2]. In addition, already in Fermi-Past-Ulam
problem, we see a need to design a three-scale methods so thatthe ε−1 time scale
can be computed consistently and efficiently.

Finally, as discussed in the introduction, for suitable systems our method correctly
approximates all variables and functionals that are slow with respect to the system
dynamics. It may be argued that this criterion is too strict.It is often the case that
we are only interested in a smaller set of observables. For instance, temperature,
heat capacity, or other statistical averages of a large system. In this case, it is use-
ful to understand which slow variables are essential to a consistent approximation
of particular observables. Another generalization of the methods proposed in this
paper is to stochastic ordinary differential equations, compare [11, 37].
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