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ABSTRACT

Vacuum Energy in Quantum Graphs. (April 2007)

Justin Howard Wilson
Department of Physics and Mathematics

Texas A&M University

Fellows Co-Advisor: Dr. Stephen A. Fulling
Department of Mathematics

Department of Physics

Fellows Co-Advisor: Dr. Gregory Berkolaiko
Department of Mathematics

We calculate the vacuum energy in quantum graphs. Vacuum energy arose

in quantum physics but has an independent mathematical interest as a functional

carrying information about the eigenvalue spectrum of a system. A quantum graph

is a metric graph with a Hamiltonian applied to it, and recent research in quantum

graphs has been directed towards their eigenvalue statistics. Quantum graphs provide

an interesting model, intermediate between one-dimensional and higher-dimensional

systems, in which we can study aspects of vacuum energy. In order to find the

expression for vacuum energy, we use two methods: direct computation with the

trace formula and the method of images (i.e. multiple reflection). The latter method

also directly gives the vacuum energy density. Both methods are done heuristically for

star graphs then rigorously for general graphs. We also discuss some properties of the

vacuum energy in quantum graphs including: repulsive Casimir forces, convergence

and continuity in bond lengths. This thesis was completed in part at the Isaac

Newton Institute for Mathematical Sciences with financial help from the National

Science Foundation.
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CHAPTER I

INTRODUCTION

In what is to follow, we discuss vacuum energy in the context of quantum graphs. In

this chapter we discuss some of the motivation for our work and the general results.

In chapter II, we discuss the definitions and notation that will be used. In chapter III,

we concentrate our analysis on quantum star graphs using more heuristic arguments

to obtain results expounded upon in later chapters. We also make some observations

and make reference to the recent paper [1] for some consequences of vacuum energy

in star graphs. In chapter IV, we make the trace formula approach given in section

III.B rigorous. We also discuss how our vacuum energy expression converges and is

continuous in the lengths of the bonds. In chapter V, we make the method of images

first given in section III.C rigorous, and it derives the same expression for the vacuum

energy as in chapter IV. In addition, it also provides an expression for the vacuum

energy density.

A. Motivation

Vacuum energy has theoretical background in quantum field theory, and was first

shown by Casimir [2] to have an observable effect on two perfectly conducting parallel

plates, causing them to attract. Since then, different physical geometries have been

suggested and various experiments have confirmed the effects of vacuum energy, and

there have been various reviews of the literature on vacuum energy [3, 4, 5]. In our

manuscript, we use quantum graphs as models for various mathematical aspects of

vacuum energy.

This thesis follows the style and format of the New Journal of Physics.
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The equations of interest in the study of vacuum energy are those given by free

space Hamiltonians with boundaries1:

Hψn = ω2
nψn, (1.1)

where H is the Hamiltonian for the system (for example, it can be the negative Lapla-

cian) and ωn is an eigenfrequency associated with the eigenfunction ψn. Equation

(1.1) is obtained by separation of variables from the time-dependent Schrödinger’s

equation, i ∂
∂t

Ψ = HΨ, and a general solution to the latter has Ψ as a sum over the

ψn’s. We can also obtain (1.1) by separation of variables in the cylinder equation,

∂2

∂t2
u = Hu as well as other partial differential equations.

The vacuum energy, formally defined, is

E =
1

2

∑

n

ωn. (1.2)

The above expression (1.2) arises in quantum field theory in the context of cavities

and cosmological models [4], and it is formally divergent. To get a meangingful re-

sult from this expression, the vacuum energies for two different configurations are

subtracted from one another, and the behavior of this difference as the intial config-

uration expands to fill all of space gives the vacuum energy, Ec [3]. We call Ec the

regularized vacuum energy and it can be expressed as the regular part of

1

2

∑

n

ωne
−ωnt. (1.3)

This procedure is called “ultra-violet cutoff regularization”.

Solving the eigenvalue problem (1.1) directly gives all the information about the

eigenvalues, but this is not always practical if even possible [6]. The cylinder equation,

1We take ~ = 1 = c throughout.
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Hu = ∂2

∂t2
u, has a Green’s function for t > 0 which we shall call the cylinder kernel,

T (t; x, y). It has been shown in [7] that given a space Ω in which we are solving our

eigenvalue problem and

Tr T (t) =

∫

Ω

T (t; x, x) dx, (1.4)

the cylinder kernel is related to the vacuum energy by

−1

2

∂

∂t
Tr T (t) =

1

2

∑

n

ωne
−ωnt. (1.5)

This procedure also yields an expression that can be interpreted as the regularized

vacuum energy density,

−1

2

∂

∂t
T (t; x, x) =

1

2

∑

n

ωne
−ωnt|ψn(x)|2. (1.6)

Using a cylinder kernel approach, Liu and Fulling have found the vacuum energy

between a plate with Robin boundary conditions and a plate with Dirichlet boundary

conditions [8]. Their method uses the method of images (i.e. the method of multiple

reflection) on the free space cylinder kernel to create the cylinder kernel for their

parallel plate case. We use an analogue of this method in section III.C and chapter

V to construct the cylinder kernel for a quantum graph.

In some of the calculations for energy, it simplifies the discussion to put movable

pistons in place of stationary walls, so that the energy causes an attractive or repulsive

force on the pistons. This has been investigated for a two dimensional box by Caval-

canti with the result that the force is attractive between the piston and the nearest

wall [9]. Other attractive piston conditions have been investigated by Hertzberg, et

al. [10]. Quantum graphs, on the other hand, provide one model where the vacuum

energy actually gives a repulsive force on pistons [1] under certain conditions.

Quantum chaos is related to the semi-classics of the system and to the eigenvalue
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statistics. A plausible initial conjecture was that chaos, by spreading eigenvalues

apart, reduces the magnitude of the vacuum energy and hence of the Casimir effect.

Following up this idea was one motivation of the work of [7] on vacuum energy in a

twisted line bundle; they found that the twisting did indeed spread the eigenvalues

and reduce the size of the vacuum energy (and even change its sign). However,

that model does not exhibit chaos, so chaos is not a necessary condition for damping

vacuum energy. Because of calculational complexity, there are no explicit calculations

addressing sufficiency, and the consensus seems to be that chaos and vacuum energy

are not closely related. Nevertheless, Federico Capasso, a well-known experimentalist

in the field, has suggested that a connection between vacuum energy and eigenvalue

statistics still deserves investigation [11], and that remark was an important influence

on the choice of the topic of this research project. Thus, in order to investigate

vacuum energy in the context of eigenvalue statistics, we look at quantum graphs.

In the past decade, a great body of research has developed in quantum graphs in

eigenvalue statistics and consequently, in quantum chaos. For a detailed discussion

of quantum chaos and how it relates to classical chaos see [6] and [12].

Informally, a quantum graph is just a network of wires attached at the nodes.

Mathematically, it is a metric graph with a differential operator applied to it (i.e.

a Hamiltonian). Quantum graphs are well suited for analysis since they are a one-

dimensional system, and as a result, the semi-classical approach is exact. For a review

of the literature on quantum graphs see [13]. Since a quantum graph is a ‘physical

system’ in the sense that we have a Hamiltonian on it, we can theoretically find the

vacuum energy contained within it.

In chapter II, we define quantum graphs. We define an equation similar to (1.1)

to obtain a spectrum, {ωn}, on a quantum graph. Each vertex in a quantum graph

must have boundary conditions to define the self-adjoint operator on the graph. A
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full analysis of what boundary conditions apply has been done by Kostrykin and

Schrader [14, 15, 16] and is given in a different form in [17]. The spectrum we find

can be analyzed with periodic orbits on the graph as described by the trace formula

first found by Roth [18]. Subsequent versions of it have been discussed and derived by

Kottos and Smilansky [19], Kostrykin, Potthoff, and Schrader [20], and others (such

as [21]). While Kottos and Smilansky derived it from a secular determinant, Roth

and Kostrykin, Pothoff, and Schrader derived it in the context of multiple reflections.

The derivation given for the trace formula in these texts assumes that the S matrix

(see section II.C) is independent of the wave number, k.

Quantum graphs exhibit statistics characteristic of a chaotic system (see [22] for

more details), so in the context of quantum graphs, we can study how the vacuum

energy may depend on the chaos of a system. Berkolaiko has discussed in [23] how

the spectral statistics for quantum star graphs (see definition II.8) when the number

of vertices tends to infinity, are the same as those found for S̆eba billiards. Winn

has discussed in [24] the relationship between quantum graphs and quantum chaos

with emphasis also on quantum star graphs. In the end, Winn relates the results he

obtains to families of billiards. Furthermore, it has been shown that star graphs have

intermediate wave function statistics [25] and they do not have quantum ergodic wave

functions [26]. Thus, while quantum star graphs are a relatively simple system to find

the vacuum energy on (see chapter 3), more general graphs must be considered to

discover how vacuum energy is affected by the spectral statistics.

Fulling in [27] has looked at the effect of the energy density near a quantum graph

vertex by construction of the cylinder kernel for an infinite star graph (a graph with

one vertex and B bonds extending to infinity). The quantum field theory origins of

this (in a graph context) were given by Bellazzini and Mintchev [28]. The construction

of the cylinder kernel for an infinite star graph provides the ground work for the
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method of images in section III.C and chapter V.

The classic example of the method of images (i.e. multiple reflection) is a charge

between two parallel conduction plates, as can be found in most books on electricity

and magnetism. For two plates the method of images can be thought of as tracing out

the path of a photon between them and defining a transformation on some free space

function everytime the photon hits a plate. There have been various paper written

on finding vacuum energy with optical paths in different geometries (see for instance

[29, 30, 31, 32, 8]).

B. General Results

In later chapters, through both the trace formula and the method of images, the

vacuum energy in a quantum graph, Ec, is found to be,

Ec = − 1

2π

∑

p

Ap

Lprp
. (1.7)

In this expression the sum is over periodic orbits on our graph, Ap is the amplitude

of the orbit (as determined by the boundary conditions at the vertices it visits), Lp

is the (metric) length of the orbit, and rp is the repetition number of the orbit (see

section II.B for an explanation of rp). The concise formula (1.7) is convergent and

continuous in the lengths of the bonds. It still remains an open problem to relate

(1.7) to the spectral statistics, but the fact that it is continuous in the lengths of the

bonds hints that there is not a strong connection between vacuum energy and the

chaos of a system.

In the context of star graphs, we can obtain repulsive forces from this expression

for a large number of bonds as discussed in chapter III and in [1]. In that paper, our

coauthor L. Kaplan finds that the vacuum energy expression converges numerically.



7

The method of images given in chapter V derives the trace of an arbitrary integral

kernel on the graph and with application of the resolvent kernel, provides another

derivation of the trace formula. More directly though, application of the free space

cylinder kernel to the method of images provides the vacuum energy, and it reproduces

the result obtained by using the trace formula.

Furthermore, the method of images gives an expression for the vacuum energy

density. The trace formula, on the other hand, does not give directly a method to

find the vacuum energy density.

The expression in (1.7) and the two methods provided here to obtain it should

provide insight into how the vacuum energy behaves on quantum graphs and what

connection there may be to quantum chaos.
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CHAPTER II

DEFINITIONS AND NOTATION

In this chapter, we develop the physical system we are to deal with: the quantum

graph. Once that is developed, vacuum energy is introduced formally. The definitions

and notation presented here will be the groundwork for chapters IV and V while

chapter III will include some of the basics and leave out some of the directed bond

formalism.

A. Topology of Graphs

A graph G(V,B) is a set of vertices V and a set of bonds B whose elements are

characterized by two vertices which they are said to connect. Throughout, the sizes

of the sets are |V| = V , |B| = B, and the vertices will be numbered 1, . . . , V while

the bonds will be numbered 1, . . . , B arbitrarily. In this way the notation ℓ ∈ B will

be mixed with ℓ ∈ {1, . . . , B}. An example of a graph is shown in figure 1.

If i 6= j, let (i, j) ⊂ B be the set of bonds connecting vertices i and j, and

(i, i) ⊂ B be the set of loops connecting i to itself. In figure 1 we have two loops on

vertex one, and three bonds connecting vertices one and two.

Usually, a vertex connectivity matrix, C(V ), is defined as a V × V matrix such

Fig. 1. A graph with 4 vertices and 11 bonds.
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that

C
(V )
ij =















|(i, j)| if i 6= j

2|(i, j)| if i = j.

(2.1)

This describes the topology of the graph. Note, a loop contributes twice to its entry

in the connectivity matrix; the reason for this becomes clear with the definition of

valency of vertex i,

vi =

V
∑

j=1

Cij. (2.2)

Valency can be thought of as the number of bonds coming out of a vertex. A loop

contributes two because it adds two ways to leave a vertex i.

Definition II.1. A subgraph G′(V′,B′) consists of V′ ⊆ V and B′ ⊆ B such that

all ℓ ∈ B′ connect vertices in V′ only.

Definition II.2. A graph is connected if there do not exist two non-empty subsets

of the vertices which partition V with the property that there is no bond connecting

the subsets.

In all of our discussion, we will look at connected graphs. If a graph is discon-

nected, then we can use our analysis on each of the connected components separately.

Within this framework, we can define different types of graphs.

Definition II.3. A graph is simple if it contains no loops or multiple bonds. (i.e.

|(i, j)| ∈ {0, 1} and |(i, i)| = 0 for all i, j ∈ V.)

In our quantum graphs, we will be able to change any graph into a simple graph

without changing the spectrum or wave functions (see [22] for details). So we will use

simple, connected graphs frequently in our discussion and without loss of generality

from more arbitrary graphs.
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Fig. 2. A complete graph, a ring, and a star graph, from left to right.

Definition II.4. A simple graph is complete if every vertex is connected to every

other vertex (i.e. each vertex has valency v = V − 1).

Definition II.5. A simple, connected graph is a ring if V = B and each vertex has

valency v = 2. A nontrivial ring has V ≥ 2.

Definition II.6. A graph is simply connected if there does not exist a nontrivial ring

as a subgraph.

Definition II.7. A graph is a tree if it is simple, connected, and simply connected.

Definition II.8. A graph is a star graph if it has one vertex with valency V − 1 and

all other vertices are connected to it and have valency 1.

Examples of a complete graph, a ring and a star are shown in figure 2. Star

graphs will be used at first in our discussion of vacuum energy due to their simplicity.

This will give us the necessary insight to look at arbitrary graphs.

For any vertex i,

S(i) :=
⋃

j∈V

(i, j) (2.3)

is the star of vertex i.

Henceforth, we will consider connected, simple graphs to simplify some particu-

lars in the definitions.



11

Note that (i, j) means the same thing as (j, i). On occassion it is necessary to

distinguish between directions along a bond, hence the following definition.

Definition II.9. Given a bond ℓ ∈ (i, j) with i < j we associate two directed bonds

with it, ℓ+ = (ℓ,+) going from i to j and ℓ− = (ℓ,−) going from j to i. The set of

directed bonds going from i to j is denoted by [i, j].

Even though we can still define directed bonds on loops, the need for an i = j

case is eliminated since we are only considering simple graphs.

The set of directed bonds, D, is defined as D =
⋃

ℓ∈B{ℓ+, ℓ−}. With this defini-

tion, it is clear that |D| = 2B. Greek letters will be used to represent directed bonds

while latin letters (particularly ℓ) will be reserved for undirected bonds.

Definition II.10. Given a directed bond α = (ℓ, d) where d ∈ {+,−}, we define the

following

• The reversal of α, denoted by ᾱ, is given by ᾱ = (ℓ,−d).

• We denote the undirected bond associated with α as |α| := ℓ.

• If α ∈ [i, j], then define o(α) = i as the origin of α and t(α) = j as the terminus

of α.

Similar to the star of vertex i, we can define the outgoing star at vertex i, S+(i),

and the incomming star at vertex i, S−(i), as

S+(i) =
⋃

j∈V

[i, j], and S−(i) =
⋃

j∈V

[j, i]. (2.4)

Much like the vertex connectivity matrix, we can define the directed bond con-

nectivity matrix, C(D), as a 2B × 2B matrix with

C
(D)
βα =















1 if for some i ∈ V, α ∈ S−(i) and β ∈ S+(i)

0 otherwise.

(2.5)
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In other words, C
(D)
βα = 1 implies that β follows α on the graph. This allows us to

define a path on a graph easily.

Definition II.11. The ordered set of bonds p = (α1, . . . , αn) is a path if for all

i ∈ {1, . . . , n− 1}, C(D)
αi+1αi = 1.

• A path is closed if C
(D)
α1αn = 1.

• A periodic orbit is a class of closed paths that only differ by a cyclic permutation,

and is denoted as p = (α1, . . . , αn). (See appendix A.1 for more explanation of

this equivalence class.)

The periodic orbits will play a central role in our arguments since we will be able

to express our vacuum energy as a sum over periodic orbits. If we take a periodic

orbit over n bonds (which we denote as p ∈ Pn), p = (α1, . . . , αn), we can make

another periodic orbit: p2 = (α1, . . . , αn, α1, . . . , αn) over 2n bonds. Similarly, we can

construct any pr for r ∈ N. This leads us to the notion of a primitive periodic orbit.

Definition II.12. A periodic orbit p0 is primitive if it cannot be represented as

p0 = pr for any other periodic orbit p and any natural number r.

With this definition, we can write any periodic orbit p, as p = pr
0 where p0 is a

primitive periodic orbit. If p is primitive, r = 1 and p = p0. This representation in

terms of a primitive periodic orbit is unique, and r is called the repetition number of

the orbit (sometimes written as rp to emphasize the dependence on p).

B. Metric Graphs

In addition to the graph structure in section II.A, we add coordinates along each

bond. Each ℓ ∈ B is given a length Lℓ, and because length does not depend on

direction, we can write Lℓ+ = Lℓ− := Lℓ. Now, to specify a point in the graph, we
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need to specify the bond and a length along the bond from a predetermined point.

There are two natural points to measure distance from: the two vertices of a bond.

This leads us to coordinates defined on directed bonds.

We define a coordinate on a directed bond α ∈ [i, j] so that xα is zero at i, is

Lα at j, and increases linearly between i and j. From this, it can be shown that

xᾱ = Lα − xα for all α ∈ D. Whenever we speak of coordinates along an undirected

bond ℓ, we tacitly assume we have picked the ℓ+ coordinates. Also, in general, we

will not include the subscript on xα since from context it should be clear which bond

we are talking about.

Now we take the common definition of the set of square integrable functions on

an interval and construct the analogue for the graph as

L2(G) := L2[0, L1] ⊕ · · · ⊕ L2[0, LB].

We have informally said we have numbered the bonds 1, . . . , B. We can adopt

a similar numbering for directed bonds if ℓ+ is numbered the same as ℓ and ℓ− is

numbered as ℓ + B. In this way, we have numbered our directed bonds 1, . . . , 2B.

Now, u ∈ L2(G)⊕L2(G) is a vector of functions along the directed bonds if uα(x) =

uᾱ(Lα − x) for all α ∈ D. By specifying the directed bond α and coordinate along

that bond x, we obtain the value of u at that point on the graph, uα(x). We impose

uα(x) = uᾱ(Lα − x) to maintain that u gives only one value for every point on the

graph. Here, we have eliminated the need for the subscript on the x by having the

directed bond information on our function.

To relate these terms easily, we define the function on α:

iᾱα(x) := Lα − x. (2.6)

Since this is a function on α, the corresponding function on ᾱ is iᾱᾱ(x) = x. Thus,
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this function iᾱα can be described as taking a point with coordinate on α and giving

the corresponding coordinate for it on ᾱ.

In the previous section, we defined paths on non-metric graphs. We can generalize

this to metric graphs in the following definition.

Definition II.13. A metric path over n > 1 bonds from point x on directed bond

α1 to point y on directed bond αn is defined as px,y = (x, α1, . . . , αn, y) such that for

all i ∈ {1, . . . , n− 1}, we have C
(D)
αi+1αi = 1.

• The length of px,y is Lpx,y
= yαn

− xα1 + Lα1 + · · · + Lαn−1 . (xα1 and yαn
are

the coordinates of the points on α1 and αn respectively)

• A metric path on only one bond (so px,y = (x, α, y)) must have yα > xα and

the length is Lpx,y
= yα − xα.

• A metric path from from x to y is closed if x and y are the same point (i.e. they

lie on the same undirected bond and iᾱ1α1(x) = iᾱ1αn
(y)), and we say that path

begins and ends at x (or equivalently, at y).

• A metric path is a periodic path if it is closed and αn = α1.

• A metric path is a bounce path if it is closed but not periodic. If a particle is

imagined traveling along a bounce path, it returns to the point it originated

from with the opposite momentum.

Pictures of how these paths look are given in figure 3. Notice that for a periodic

path Lpx,x
= Lα1 + · · ·+ Lαn−1 while for a bounce path

Lpx,x
= 2Lα1 − 2xα1 + Lα2 + · · ·+ Lαn−1 = 2xᾱ1 + Lα2 + · · ·Lαn−1 .
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Fig. 3. A metric path from x to y on a graph, a periodic path, and a bounce path,

from left to right.

As before, we can obtain periodic orbits from our definition of periodic metric

paths. As an example, if p = (α1, α2 . . . , αn) is a closed (non-metric) path, it is

equivalent to p′ = (αi, αi+1, . . . , αn, α1, α2, . . . , αi−1) (i.e. p ∈ p and p′ ∈ p; see

appendix A.1). Similarly, if

px,x = (x, α1, α2, . . . , αn, α1, x),

it is equivalent to

py,y = (y, αi, αi+1, . . . , αn, α1, α2, . . . , αi−1, αi, y)

for any y on the bond αi.

This equivalence relation gives us the same interpretation of periodic orbits as

before and can be described as taking out the beginning and ending point information.

For example, px,x has the information of all the bonds it travels on in addition to the

fact that it begins and ends at point x, but for a periodic orbit, the information of

where it begins and ends is lost so that we know only the bonds it travels on.
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C. Quantum Graphs

To make metric graphs into quantum graphs, we now define differential operators on

them. In the literature one commonly finds the Schrödinger operator applied to the

graph (see for example, [22]). This operator takes the form,

Hα =

(

1

i

d

dxα

+ Aα

)2

+ Vα(x). (2.7)

Here, Aα is related to a magnetic vector field, and it has the property that Aα = −Aᾱ,

d
dxα

is the derivative along the bond α (it too has the property that d
dxα

= − d
dxᾱ

) and

Vα(x) is a potential on the graph. In our manuscript, we set Aα = 0 and Vα(x) ≡ 0

for all α, so Hα reduces to the Laplacian,

Hα = − d2

dx2
. (2.8)

The subscript on the x is dropped since d2

dx2
α

= d2

dx2
ᾱ
.

With (2.8), the eigenvalue equation is

Hαuα(x) = k2uα(x) (2.9)

for all α ∈ D. We will refer to k2 as the energy and k as the wave number.

This does not complete our quantum graph, for we still need to know what

happens at the vertices to define our self-adjoint operator. The conditions at the

vertices will be referred to as the boundary conditions. Commonly in the literature

one finds the Neumann (also called Kirchhoff) boundary conditions for a single vertex

i:

uα(0) = φi, ∀α ∈ S+(i), (2.10)

∑

α∈S+(i)

u′α(0) = 0. (2.11)
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In passing, we mention (2.11) can be generalized to Robin conditions by changing

it to:
∑

α∈S+(i)

u′α(0) = λφi. (2.12)

The other common boundary condition is pure Dirichlet,

uα(0) = 0, ∀α ∈ S+(i). (2.13)

In general, the boundary conditions for a vertex i can be written in the form due

to Kostrykin and Schrader [14],

Au|S+(i)(0) +Bu′|S+(i)(0) = 0, (2.14)

where u|S+(i)(0) is the vector of functions on the directed bonds contained in S+(i)

evaluated at 0 (at vertex i), and u′|S+(i)(0) is the same for their derivatives. Since

vi = |S+(i)| (the valency), A and B are vi by vi matrices. They have the properties

that

• (A,B) is of maximal rank, and

• AB† is self-adjoint.

With these conditions, A + ikB is invertible for all k > 0 and one can construct a

unitary scattering matrix for that vertex (see [14] and [15]) which we will call σ(i)(k),

σ(i)(k) = −(A+ ikB)−1(A− ikB). (2.15)

This vi by vi matrix is indexed by undirected bonds in S(i). Thus, σ
(i)
ℓ′ℓ(k) de-

scribes transmission from bond ℓ to ℓ′ through vertex i. Since σ(i)(k) is unitary,

σ(i)(k)(σ(i)(k))† = I where (σ(i)(k))† means the conjugate transpose of σ(i)(k).

To sketch where this comes from, consider an incoming plane wave on bond ℓ

incident on vertex i (i.e. ℓ ∈ S(i)). After reflections and transmissions we should
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obtain the following (assuming an infinite star graph):

uℓ′(x) =















e−ikx + σ
(i)
ℓℓ (k)eikx if ℓ′ = ℓ

σ
(i)
ℓ′ℓ(k)e

ikx otherwise,

∀ℓ′ ∈ S(i). (2.16)

This equation defines the scattering matrix; we can find the values using our boundary

conditions. Evaluating uℓ′ and its derivative at zero, we obtain that,

uℓ′(0) = δℓ′ℓ + σ
(i)
ℓ′ℓ(k)

u′ℓ′(0) = ik(−δℓ′ℓ + σ
(i)
ℓ′ℓ(k)).

From these equations one can read of two matrices, one for the values at the ver-

tices and another for the derivatives at the vertices. Putting these into the general

boundary conditions in (2.14),

A(I + σ(i)(k)) + ikB(−I + σ(i)(k)) = 0. (2.17)

Naively solving this, we obtain (2.15). This is handled more rigorously in the above

cited papers by Kostrykin and Schrader.

Example. To construct the boundary conditions given in (2.10) and (2.11) for a

vertex i with valency vi we use the following two vi by vi matrices:

A =

























1 −1 0 · · · 0

0 1 −1 · · · 0

...
...

. . .
...

0 0 0 · · · −1

0 0 0 · · · 0

























, B =

























0 0 0 · · · 0

0 0 0 · · · 0

...
...

. . .
...

0 0 0 · · · 0

1 1 1 · · · 1

























. (2.18)

These satisfy the properties: (A,B) is of maximal rank and AB† is self-adjoint. Thus,
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we can find σ(i) using (2.15), getting

σ(i) =



















2
vi
− 1 2

vi
· · · 2

vi

2
vi

2
vi
− 1 · · · 2

vi

...
...

. . .
...

2
vi

2
vi

· · · 2
vi
− 1



















. (2.19)

With a σ(i)(k) for each vertex i, the scattering matrix for the whole graph can

be given as a 2B by 2B matrix indexed by directed bonds,

Sβα(k) =















σ
(t(α))
|β||α| (k) if C

(D)
βα = 1

0 otherwise.

(2.20)

This matrix is also unitary since it is a direct product of unitary vertex scattering

matrices.

For much of what we do we will consider the scattering matrix to be independent

of the wave number, k. This vastly simplifies things, and is characteristic of both

Neumann and Dirichlet data at vertices. If the Robin data in (2.12) is used, the

scattering matrix becomes k-dependent and harder to work with in practice.

The following theorem, due to Kostrykin and Schrader [15], characterize k-

independent scattering matrices.

Theorem II.1. If the scattering matrix for vertex i, σ(i), is k-independent, then

A(I + σ(i)) = B(I − σ(i)) = 0, (σ(i))2 = I and consequently, σ(i) = (σ(i))†.

Proof. This is given in the papers by Kostrykin and Schrader, but here we offer a

little proof using (2.17) and the fact that A + ikB is invertible.

We know that σ(i) must solve (2.17) for k > 0, but σ(i) is independent of k, so
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the following two equations hold (for k = 2 and k = 1 respectively),

A(I + σ(i)) + 2iB(−I + σ(i)) = 0,

A(I + σ(i)) + iB(−I + σ(i)) = 0.

Subtracting the second from the first, we obtain B(I − σ(i)) = 0 and it follows that

A(I + σ(i)) = 0. Consequently,

A(I + σ(i))(I − σ(i)) = 0,

A(I − (σ(i))2) = 0.

Similarly, B(I − (σ(i))2) = 0. From this, it is seen that (A + ikB)(I − (σ(i))2) = 0,

and A + ikB is invertible implies that I − (σ(i))2 = 0. Thus, σ(i) is its own inverse

and since σ(i) is unitary, its inverse is (σ(i))†. Thus, σ(i) = (σ(i))†.

This theorem will be important later when we address the method of images and

cancellation of bounce orbits (see section III.C and chapter V).

Returning to (2.9), take a solution, ψ ∈ L2(G), to this equation, whose elements

solve Hℓ+ψℓ+ = k2ψℓ+ , ∀ℓ ∈ B. We can extend ψ to L2(G) ⊕ L2(G) naturally by

ψℓ−(x) = ψℓ+(Lℓ − x). Thus, in what is to follow we drop the ‘+’ from the ℓ+ with

the understanding that we measure ℓ in ℓ+ coordinates.

The inner product 〈·|·〉 on L2(G) is given by,

〈ψ|φ〉 :=

B
∑

ℓ=1

∫ Lℓ

0

ψ∗
ℓ (x)φℓ(x)dx, ∀ψ, φ ∈ L2(G), (2.21)

just a sum over all L2[0, Lℓ] inner products, and here ψ∗ refers to complex conjugate

of ψ. Orthogonal functions, ψ and φ, on L2(G) satisfy 〈ψ|φ〉 = 0.

Equation (2.9) can be written as Hℓψℓ = k2ψℓ in coordinates or ∆ψ = k2ψ with

ψ ∈ L2(G) and ∆ = (H1, . . . , HB). Let {ψn ∈ L2(G)}∞n=1 be normalized orthogonal
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eigenfunctions with corresponding eigenvalues {kn}∞n=1. The kn degeneracy is removed

by having a number of orthogonal eigenfunctions equal to the multiplicity of kn. The

facts that we get a discrete spectrum and a complete set of eigenfunctions from our

quantum graphs are well known (but nontrivial to prove).

If we write a function u as a linear combination of these eigenfunctions,

u =
∑

n

anψn, or in terms of bonds, uℓ(x) =
∑

n

anψn;ℓ(x). (2.22)

The an can be expressed in terms of inner products, notably an = 〈ψn|u〉. Writing

this out,

an =

B
∑

ℓ=1

∫ Lℓ

0

ψ∗
n(x)u(x)dx. (2.23)

This will be needed in the next section when understanding how we can obtain vacuum

energy.

D. Vacuum Energy in Quantum Graphs

With the necessary tools in place to study our graphs, we now discuss what we are

to find in these graphs: vacuum energy.

With our units of ~ = c = 1, we have kn = ωn, and introducing an exponential

cutoff function (see chapter I) the vacuum energy is

E(t) =
1

2

∑

n

kne
−knt, t > 0. (2.24)

For a system, the regular part of (2.24) contributes to the force while the divergent

part does not contribute and can thus be discarded in our vacuum energy calculations

(see [3] for more details). In all the problems we will study in detail, this divergent

part amounts to the free space energy without boundaries imposed and we will call it
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Eweyl(t) due to its connection with the Weyl term in the spectral asymptotics. Thus,

the energy we are interested in is

Ec = lim
t→0+

[

1

2

∑

n

kne
−knt −Eweyl(t)

]

. (2.25)

For our graphs, Eweyl(t) = L
2πt2

where L is the total length of the graph (i.e.

L = L1 + L2 + · · · + LB). This is clearly divergent and its connection to the Weyl

term will be clear later (see section III.B and chapter IV).

We will be largely concerned with the vacuum energy Ec and to a lesser extent

with the vacuum energy density (with ξ = 1
4
, see [33]).

The vacuum energy density at point x on bond ℓ is ρℓ(x, t) and is given by

ρℓ(x, t) =
1

2

∑

n

kne
−knt|ψn;ℓ(x)|2, t > 0. (2.26)

Here we have that |ψn;ℓ(x)|2 = ψ∗
n;ℓ(x)ψn;ℓ(x). Notice that since each ψn is assumed

to be normalized,

∑

ℓ

∫ Lℓ

0

ρℓ(x, t)dx =
1

2

∑

n

kne
−knt 〈ψn|ψn〉 = E(t). (2.27)

We can construct E(t) with the help of the cylinder kernel [27]. For this we add

a t-dependence (such as a time) to our graphs, with t > 0 being the region of interest

and consider the partial differential equation,

HℓΨℓ(x, t) =
∂2

∂t2
Ψℓ(x, t), (2.28)

with the same boundary conditions at the vertices as discussed in the previous section.

This is a separable equation and we can write a solution to it as Ψℓ(x, t) = ψℓ(x)φ(t).

This gives us the eigenvalue problem (2.9) and an equation for φ,

Hℓψℓ(x) = k2ψℓ(x) and
∂2

∂t2
φ(t) = k2φ(t). (2.29)
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With t > 0 and the condition that φ → 0 as t → ∞, φn(t) = e−knt and the general

solution is of the form,

Ψℓ(x, t) =
∑

n

anψn;ℓ(x)e
−knt (2.30)

The cylinder kernel, T , solves (2.28) with the initial condition,

Tℓℓ′(0; x, y) =















δ(x− y), if ℓ = ℓ′

0, otherwise.

(2.31)

Using (2.23) it can be shown that,

Tℓℓ′(t; x, y) =
∑

n

ψ∗
n;ℓ′(y)ψn;ℓ(x)e

−knt. (2.32)

Notice that ρℓ(x, t) = −1
2

∂
∂t
Tℓℓ(t; x, x). Calculating the trace of T ,

Tr T (t) =
∑

ℓ

∫ Lℓ

0

Tℓℓ(t; x, x)dx =
∑

n

e−knt, (2.33)

we can find E(t) by the relation,

E(t) = −1

2

∂

∂t
Tr T (t). (2.34)

Thus, if we can find T for a graph, E(t) (and therefore Ec) can be calculated

from it. Moreover, ρ can also be found from T similarly.

Finally, to obtain a force, we must differentiate Ec with respect to a length which

changes in our problem (for example, in the two parallel plate case, the distance

between the plates).
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CHAPTER III

QUANTUM STAR GRAPHS

To begin our discussion, we consider star graphs as defined by definition II.8 and seen

in figure III. This chapter lacks the mathematical rigor apparent in chapters IV and

V, and focuses on more physical and heuristic arguments to obtain all the results for

star graphs in the context of vacuum energy. Many of the results in later chapters

are summarized here as well as results found for just star graphs. A lot of this can

also be found in the recent paper by S. A. Fulling, L. Kaplan, and J. H. Wilson [1].

Also, due to the nature of star graphs, directed bonds are not used in this discussion.

A. Setting up the Star Graph and Equal Bond Lengths

The first attempt at evaluating (2.25) will be to find the spectrum explicitly. We will

find that this requires us to assume the bond lengths must be equal for our star graph

(i.e. L1 = · · · = LB := L).

We label our bonds 1, . . . , B and since there are B + 1 vertices. The B end

vertices are labeled by the bond they are attached to and the central vertex is labeled

by 0. Notice that in this specific case, labeling by vertices and bonds is equivalent,

Fig. 4. A star graph with unequal bond lengths.
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so bond ℓ has end vertex ℓ. This particular labeling for star graphs will be used in

later sections.

The eigenvalue equation is (dropping directed bonds),

− d2

dx2
ψℓ(x) = k2ψℓ(x). (3.1)

We take each ℓ+ to go from the central vertex out, so the coordinates of ℓ start

at 0 at the central vertex and attain Lℓ at each end vertex. The conditions at the

vertices will be completely Neumann as in (2.10) and (2.11), and we will write them

in the form,
∑

ℓ

ψ′
ℓ(0) = 0 (3.2)

ψ1(0) = · · · = ψB(0) = C (3.3)

ψ′
ℓ(Lℓ) = 0 ∀ℓ ∈ B. (3.4)

Solutions of (3.1) with (3.4) imposed have the form

ψℓ(x) = Aℓ cos(k(Lℓ − x)). (3.5)

Thus, imposing (3.2) and (3.3) should give us our spectrum, {kn}. There are two

cases to consider for this:

1. ψ1(0) = · · · = ψB(0) 6= 0. In this case, C = Aℓ cos(kLℓ) 6= 0, ∀ℓ ∈ B, and

so ψℓ(x) = C cos(k(Lℓ−x))
cos(kLℓ)

. Differentiating ψℓ with this data and using (3.2) we

obtain,
B

∑

ℓ=1

tan(kLℓ) = 0. (3.6)

Solving this for k, the part of the spectrum for this case is found (which we call

{k(1)
n }). In the special case where each Lℓ is incommensurate (i.e.

∑

ℓmℓLℓ = 0

with mℓ ∈ Z, has no solution except when mℓ = 0 ∀ℓ ∈ B, see [22]) this
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expression gives all the eigenvalues, but finding a closed form for them is not

feasible although a case 2 is not necessary anymore. To get a closed form, we

assume that L1 = · · · = LB := L, and we get,

sin(k(1)
n L) = 0 ⇒ k(1)

n =
nπ

L
, n ∈ N. (3.7)

We introduce the notation k
(1)
n to differentiate these eigenvalues from those in

case 2 below. Each of these eigenvalues does not have a degeneracy associated

with it.

2. ψ1(0) = · · · = ψB(0) = 0. In this case, eigenvalues come from,

Aℓ cos(kLℓ) = 0,

but since we have equal bond lengths and disregard the trivial solution, our

values satisfy,

cos(k(2)
n L) = 0 ⇒ k(2)

n =

(

n+
1

2

)

π

L
, n ∈ N. (3.8)

To get degeneracy for these eigenvalues we have to return to (3.2) to obtain,

B
∑

ℓ=1

Aℓ = 0,

which will give B − 1 distinct solutions. Thus, each k
(2)
n has a degeneracy of

B − 1.

Now, we can find Tr T (t) from (2.33) by breaking up our spectrum into k
(1)
n and
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Fig. 5. A model of a B = 4 bond star graph with pistons. The (Neumann) pistons

model the end vertices of the star graph and feel an outward force from the

vacuum energy.

k
(2)
n ,

Tr T (t) =
∞

∑

n=0

e−
nπ
L

t + (B − 1)
∞

∑

n=0

e−(n+ 1
2)

π
L

t

=
BL

π

1

t
+

1

2
− (B − 3)π

24L
t+O(t2). (3.9)

Now, using (2.34) and (2.25) with the knowledge that Eweyl(t) = BL
2πt2

, we obtain the

vacuum energy directly,

Ec =
(B − 3)π

48L
. (3.10)

To obtain the overall force on the graph, we differentiate with respect to the

length, L. In this equal bond case, we obtain a repulsive force for B > 3. This force

can be imagined by considering Neumann pistons in the place of end vertices as seen

in figure 5. The Casimir force pushes or pulls on these pistons based on the number

of bonds, as we found; this example is in [1]. The significance of the repulsive pistons

is also dicussed in [1] as well as numerical evaluations of the force for unequal bond

lengths. It is found that even with unequal bonds, the force is repulsive for a high

number of bonds.
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B. Trace Formula on a Star Graph

For a star graph, the vertex scattering matrix for the central vertex, σ(0), is of main

interest. All other end vertices have σ(i) = (±1) (+1 for a Neumann vertex and −1

for a Dirichlet vertex), so by (2.20) we can obtain S in block matrix form as a 2B by

2B matrix,

S =







0 σ(0)

(±1)B 0






, (3.11)

where (±1)B is a B by B square matrix with an assortment of +1 and −1 along its

diagonal depending on if an end vertex is Neumann or Dirichlet respectively. For all

Neumann conditions (±1)B = I.

We use the form of the trace formula found in [22] (for Hℓ = − d2

dx2 ),

d(k) :=
∑

n

δ(k − kn) =
L
π

+ Re
1

π

∑

p

Ap
Lp

rp
eikLp. (3.12)

In this expression, the spectrum {kn} has been related to the periodic orbits p. The

value L = L1 + · · · + LB is the total length of the graph and the value rp is the

repetition of the periodic orbit as explained in section II.B. For a given periodic orbit

p = (α1, . . . , αn) going over n bonds, Ap = Sα1αn
Sαnαn−1 · · ·Sα2α1 is the amplitude of

the orbit and Lp = Lα1 + · · ·+Lαn
is the length of the orbit. Also, note the first term

is the Weyl term and is sometimes written as dweyl(k) = L
π
.

To obtain vacuum energy we just apply the function f(k) = 1
2
ke−kt, to get that,

E(t) =
1

2

∫ ∞

0

ke−ktd(k) dk. (3.13)

Substituting this in and evaluating it (skipping all of the problems which arise),
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we obtain

E(t) =
L

2πt2
− Re

1

2π

∑

p

Ap

Lprp
+O(t). (3.14)

It can be seen from this that the divergent first term is just Eweyl(t) which we said

was the divergent part and is to be discarded to find Ec. So, using (2.25) the vacuum

energy is found,

Ec = − 1

2π
Re

∑

p

Ap

Lprp

. (3.15)

At no point have we assumed we were dealing with star graphs, so this expression is

true for general graphs as will be shown carefully in chapters IV and V. Also, the ‘Re’

is not needed in the above expression, as explained in appendix A.2. This expression

can be reformulated in terms of primitive periodic orbits, p0, as defined in definition

II.12,

Ec = − 1

2π
Re

∑

p0

∞
∑

r=1

(Ap0)
r

Lp0r
2
. (3.16)

Both (3.15) and (3.16) are equivalent.

Now, considering a quantum star graph, all periodic orbits can be written as

p = (ℓ+1 , ℓ
−
1 , ℓ

+
2 , ℓ

−
2 , . . . , ℓ

+
n , ℓ

−
n ), so instead of a sum over p we can sum over p̄ =

(ℓ1, ℓ2, . . . , ℓn). This construction in terms of this p̄ is unique to star graphs due to

the form all p on the star graph take. It can be seen that Lp = 2Lp̄ and rp = rp̄.

To simplify Ap, we assume Neumann conditions at the end vertices as we did in the

previous section. This makes the amplitude unaltered when it hits an end vertex, so

we are in effect only looking at the central vertex. The amplitude becomes simply

Ap = Ap̄ = Sℓ+1 ℓ−n
Sℓ+n ℓ−n−1

· · ·Sℓ+2 ℓ−1
= σ

(0)
ℓ1ℓn

σ
(0)
ℓnℓn−1

· · ·σ(0)
ℓ2ℓ1

.

Note that elements of σ(0) are indexed by undirected bonds unlike the S matrix.

Making these substitutions to change p to p̄ we we can rewrite (3.15) for star graphs
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as,

Ec = − 1

4π
Re

∑

p̄

Ap̄

Lp̄rp̄
(3.17)

We can break up the sum over p̄ into two sums: the first as a sum over the number

of undirected bonds traversed, n, and the second as a sum over p̄ that traverse n bonds

(we write this as p̄ ∈ P̄n). If we also assume that all bonds are equal, then for all

p̄ ∈ P̄n, Lp̄ = nL, and

Ec = − 1

4πL
Re

∞
∑

n=1

1

n

∑

p̄∈P̄n

Ap̄

rp̄

. (3.18)

Now, we use the following two facts to put the energy in terms of matrix eigen-

values.

•
∑

p̄∈P̄n

Ap̄

rp̄
= Tr (σ(0))n

n
. The proof of this mirrors that of lemma IV.1 (with s = 0).

• If {λj}B
j=1 are the eigenvalues of σ(0), then Tr (σ(0))n =

∑B
j=1(λj)

n

With these, Ec for star graphs with equal bond lengths can be put in terms of

the central vertex scattering matrix eigenvalues (with Neumann conditions at the end

vertices),

Ec = − 1

4πL
Re

B
∑

j=1

∞
∑

n=1

(λj)
n

n2
. (3.19)

Now, to check this against what we have already found for equal bond lengths,

we need the scattering matrix for a Neumann vertex found in (2.19). In the star

graph, v0 = B, and finding the eigenvalues for this matrix, we get λ1 = 1 and

λ2 = λ3 = · · · = λB = −1. With these, Ec can be evaluated exactly and it is just

(3.10). Thus, these methods agree for equal bonds. This same approach can be taken

for the S matrix discussed at the beginning of this section, but the calculations are

a bit more difficult and a connection to the method of images described in the next

section would not be clear. Because the first method of images given for star graphs
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in the next section focuses on the central vertex, we will find (3.17).

C. Method of Images on a Star Graph

The method of images takes a free space solution to a partial differential equation and

finds a corresponding solution to a problem constrained with boundary conditions.

We will apply this method to the free space cylinder kernel,

T0(t; |x− y|) =
t/π

t2 + (x− y)2
. (3.20)

This comes from solving − ∂2

∂x2T0(t; x) = ∂2

∂t2
T0(t; x) on the whole x-axis and t > 0

with the intial condition T0(0; x) = δ(x). With (3.20), we can construct the cylinder

kernel for our graph by the method of images below and thus, we obtain the vacuum

energy and its density.

To do the method of images, we can take a free space solution to the one di-

mensional problem (something which can separate into − d2

dx2u(x) = k2u(x) as the x

part) and propagate it through all metric paths (see definition II.13) beginning at a

point y on bond ℓ and ending at a point x on bond ℓ′. Starting at point y amounts

to shifting the coordinates of the function at this point, so in effect we can define

ū(x) := u(x − y) and we now have ū starting at point 0. In this way, we will only

consider the method of images on functions u(x) with our transformations going over

a metric path p0,x. In the end, applying u(x − y) to this method (instead of u(x))

gives the most general solution. As we can see by (3.20), our cylinder kernel has the

form T0(t; |x− y|), so we will apply our method below to its x variable.

When speaking of metric paths, we discuss paths that go from y on ℓ to x on ℓ′,

but due to the above argument, when we write down an expression we will set y = 0.

Everytime a metric path passes through a vertex the solution is transformed, much
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like reflection in the case of two plates. The details of this transformation will be left

for chapter V (where it is called the K-transformation), but we just note here that Nℓ

is the transformation associated with vertex ℓ while Kℓ′ℓ describes the effect of going

from bond ℓ to ℓ′ through the central vertex. These transformations are determined

by the boundary conditions at the vertices which they describe.

Example. For a completely Neumann graph, it turns out that

[Nℓu](x) = u(2Lℓ − x), and (3.21)

[Kℓ′ℓu](x) =

(

2

B
− δℓ′ℓ

)

u(−x). (3.22)

The coefficient in (3.22) bears similarity to (2.19). This resemblence is no coincidence

as is described below in (3.24).

Indeed, if u solves a partial differential equation which separates into − d2

dx2ψ(x) =

k2ψ(x) as its x part, then so do the above two transformed functions. If we consider

uℓ(x) = u(x)+ [Nℓu](x), then u′ℓ(x) = u′(x)−u′(2Lℓ −x) and thus, u′ℓ(Lℓ) = 0, so Nℓ

makes u satisfy the Neumann condition at the end vertex.

On the other hand, if we consider uℓ′(x) = u(x)δℓ′ℓ + [Kℓ′ℓu](x), then we have,

u1(0) = u2(0) = · · · = uB(0) =
2

B
u(0) and

B
∑

ℓ′=1

u′ℓ′(0) = u′(0) −
[

B
2

B
− 1

]

u′(0) = 0,

so the Kℓ′ℓ transformation makes the solution satisfy the Neumann (i.e. Kirchhoff)

condition at the central vertex. Note that we had the original solution originate on

bond ℓ here.

For our star graphs, we can separate all metric paths from a point y(= 0) on ℓ

to x on ℓ′ into four types listed below and shown in figure 6.
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Fig. 6. The four types of metric paths from y to x on a star graph.

1. Beginning at y on ℓ going towards the central vertex and ending at x on ℓ′ going

away from the central vertex.

2. Beginning at y on ℓ going away from the central vertex and ending at x on ℓ′

going away from the central vertex.

3. Beginning at y on ℓ going towards the central vertex and ending at x on ℓ′ going

towards the central vertex.

4. Beginning at y on ℓ going away from the central vertex and ending at x on ℓ′

going towards the central vertex.

We will construct a metric path of type 1 and from that get 2,3 and 4.

A metric path of type 1 can be written as

py,x = (y, ℓ−, ℓ+1 , ℓ
−
1 . . . , ℓ

+
n , ℓ

−
n , ℓ

′+, x)

and we propagate u along this path so that

u(x)
py,x7−→ [Φℓ′,ℓn,...,ℓ1,ℓu](x) := [Kℓ′ℓn

Nℓn
Kℓnℓn−1 · · ·Nℓ2Kℓ2ℓ1Nℓ1Kℓ1ℓ u](x).

Here Kℓ1ℓ describes u propagating from ℓ to ℓ1 through the central vertex, Nℓ1 de-

scribes the reflection off of the end vertex, ℓ1, and so on. Note that in the special

case when n = 0 we set Φℓ′,ℓ = Kℓ′ℓ. Also, y is not included in the expression due to

setting it to zero as justified above.
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Using this, the four types can be represented in the following manner,

1. u(x) 7−→ [Φℓ′,ℓn,...,ℓ1,ℓ u](x)

2. u(x) 7−→ [Φℓ′,ℓn,...,ℓ1,ℓNℓ u](x)

3. u(x) 7−→ [Nℓ′Φℓ′,ℓn,...,ℓ1,ℓ u](x)

4. u(x) 7−→ [Nℓ′Φℓ′,ℓn,...,ℓ1,ℓNℓ u](x)

Adding up all possibilities of metric paths (y = 0 to x) just amounts to a sum

over all n and all possibilities of ℓ1, . . . , ℓB. This gives us a solution to the problem

on bond ℓ′. If ℓ′ = ℓ we must add the free space solution by itself and Nℓu which we

have neglected in this development (though it is of type 4). The solution then takes

the form:

uℓℓ′(x) = δℓℓ′(u(x) + [Nℓ u](x)) +
∞

∑

n=0

∑

pn

[Φℓ′,pn,ℓ u](x)+

[Φℓ′,pn,ℓNℓ u](x) + [Nℓ′Φℓ′,pn,ℓ u](x) + [Nℓ′Φℓ′,pn,ℓNℓ u](x) (3.23)

This construction is completely general (in the context of star graphs) and even

k-dependent scattering matrices can be used though relating these to the given trans-

formations is difficult. For our purposes, we will assume that our transformation at

the end vertices is the Neumann transformation given in (3.21) while at the central

vertex we have a k-independent σ(0) and thus,

[Kℓ′ℓ u](x) = σ
(0)
ℓ′ℓ u(−x). (3.24)

Using these two transformations, the solution can be re-written withApn
= σ

(0)
ℓnℓn−1

· · ·σ(0)
ℓ2ℓ1
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and Lpn
= Lℓ1 + · · · + Lℓn

as,

uℓℓ′(x) = δℓℓ′(u(x) + u(2Lℓ − x))+

∞
∑

n=0

∑

pn

Aℓ′pnℓ u(−2Lpn
− x) + Aℓ′pnℓ u(2(Lℓ + Lpn

) + x)+

Aℓ′pnℓ u(−2(Lpn
+ Lℓ′) + x) + Aℓ′pnℓ u(2(Lℓ + Lpn

+ Lℓ′) − x). (3.25)

It is interesting to note that the argument of u in each case is the length of the metric

path described (with y = 0).

The formula (3.25) can now be applied to the free space cylinder kernel in (3.20)

to get a cylinder kernel for our quantum star graph which satisfies the initial condition

given in (2.31) and the boundary conditions at the vertices. As mentioned before,

these transformations act on the x variable in (3.20), and we obtain,

Tℓℓ′(t; x, y) = δℓℓ′(T0(t; |x− y|) + T0(t; |2Lℓ − x− y|))

+

∞
∑

n=0

∑

pn

[Aℓ′pnℓ T0(t; | − 2Lpn
− x− y|)

+ Aℓ′pnℓ T0(t; |2(Lℓ + Lpn
) + x− y|)

+ Aℓ′pnℓ T0(t; | − 2(Lpn
+ Lℓ′) + x− y|)

+ Aℓ′pnℓ T0(t; |2(Lℓ + Lpn
+ Lℓ′) − x− y|)]. (3.26)



36

Now set ℓ = ℓ′ and x = y,

Tℓℓ(t; x, x) = T0(t; 0) + T0(t; |2Lℓ − 2x|)+
∞

∑

n=0

∑

pn

[Aℓpnℓ T0(t; |2Lpn
+ 2x|) + Aℓpnℓ T0(t; |2(Lℓ + Lpn

)|)+

Aℓpnℓ T0(t; |2(Lpn
+ Lℓ)|)+

Aℓpnℓ T0(t; |2(2Lℓ + Lpn
) − 2x|)]. (3.27)

This accounts for all closed metric paths beginning and ending at x and it should

be noted that the first and last terms in the sum are due to bounce paths (for the

definition of bounce paths, see definition II.13) while the middle two are periodic

paths (and T0(t; |2Lℓ − 2x|) is also due to a bounce path).

We see from the previous vacuum energy expression (3.15) that only periodic

paths will end up contributing, and it will be shown formally in chapter V that

bounce paths all sum to a constant in the trace, called CBP here. This “cancellation”

of bounce paths hinges on theorem II.1. The constant CBP is related to an index

theory for graphs and is discussed in [34]. Here, on the other hand, we will just

discard the bounce paths.

Using (2.33) for the trace of T ,

Tr T (t) = T0(t; 0)L + CBP +
∞

∑

n=0

B
∑

ℓ=1

∑

pn

Aℓpnℓ T0(t; |2(Lℓ + Lpn
)|)2Lℓ, (3.28)

where CBP is the constant described above. Let ℓ = ℓ0 and change variables in the

sum so that ℓ0 → ℓ1 (i.e. n→ n + 1) to obtain,

Tr T (t) = T0(t; 0)L + CBP +
∞

∑

n=1

∑

pn

2Apnℓ1 T0(t; 2Lpn
)Lℓ1 . (3.29)

Note, Apnℓ1 = σ
(0)
ℓ1ℓn

σ
(0)
ℓnℓn−1

· · ·σ(0)
ℓ2ℓ1

= Ap̄ with Ap̄ defined in the previous section
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and p̄ ∈ P̄n. In a similar manner, we get Lpn
= Lp̄. These values are independent of

cyclic permutations, so we can break up the sum over pn into the equivalence class of

cyclic permutations of pn and the cyclic permutations themselves (see appendix A.1

for explanation of this equivalence class). These equivalence classes are the periodic

orbits given by p̄. The sum of cyclic permutations is then,

∞
∑

n=1

∑

p̄∈P̄n

∑

pn∈p̄

2Ap̄ T0(t; 2Lp̄)Lℓ1 =

∞
∑

n=1

∑

p̄∈P̄n

2Ap̄ T0(t; 2Lp̄)
Lp̄

rp̄
(3.30)

The appearance of rp̄ is due to the fact that if σ is the permutation transformation,

then after np̄ := n/rp permutations σnp̄(pn) = pn. Therefore,
∑

pn∈p̄ Lℓ1 = Lp̄0 where

p̄0 is the primitive periodic orbit such that p̄
rp̄

0 = p̄. Furthermore, Lp̄0 = Lp̄/rp̄. Thus,

our expression can be rewritten in terms of p̄,

Tr T (t) = T0(t; 0)L + CBP +

∞
∑

n=1

∑

p̄∈P̄n

2Ap̄
Lp̄

rp̄
T0(t; 2Lp̄). (3.31)

In the end, the T0(t; 0)L term becomes the Eweyl(t) term where L is still the total

length of the graph.

Differentiating to find E(t) and thus Ec, the constant for bounce paths falls out

and we get the same expression as before,

Ec = − 1

4π

∞
∑

n=1

∑

p̄∈P̄n

Ap̄

Lp̄rp̄
= − 1

4π

∑

p̄

Ap̄

Lp̄rp̄
. (3.32)

This may look different from (3.18), but in fact they are equal (see appendix A.2).

The real part is only kept in the trace formula approach to emphasize that the energy

is real-valued.

The vacuum energy density can be found from (3.27) with

ρℓ(x, t) = −1

2

∂

∂t
Tℓℓ(t; x, x),
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but no particular insight can be immediately seen from writing this out. Analyzing

this object would be of interest, and it remains an open problem at the moment. All

that can be said at the moment is if bounce paths are not taken into account in the

vacuum energy density, then the vacuum energy density is a constant throughout the

graph.

D. Analyzing the Vacuum Energy Expression

The equation in (3.15) is what we are to analyze. A full explanation of the numerical

analysis associated with this is found in [1]. In all of our analysis, we have assumed

Neumann boundary conditions at the end vertices, and that gave us (3.6) as the

secular equation which gives us the spectrum, {kn}. If instead we put Dirichlet

conditions on some vertices, our secular equation becomes

B
∑

ℓ=1

tan(kLℓ + θℓ) = 0, (3.33)

where θℓ = 0 if vertex ℓ is Nemann and θℓ = π if vertex ℓ is Dirichlet.

What is to follow is due to independent work by our collaborator Lev Kaplan.

The expression for vacuum energy in terms of the spectrum given in (2.25) can be

numerically evaluated to any degree of accuracy as described in [1]. In this way, we

can analyze our periodic orbit expression while comparing it to the actual energy.

As in eq. (24) in [1], we can take the contribution to the vacuum energy due to the

shortest primitive periodic orbits with a central Neumann vertex,

Eshortest
c = − 1

4π

B
∑

ℓ=1

∞
∑

r=1

1

r2

(

2

B
− 1

)r
cos(rθℓ)

Lℓ
. (3.34)

Using this along with numerical comparisons with the actual energies, we find

that not only do we get repulsive casimir forces for unequal bond lengths, but Eshortest
c
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gives a relatively simple way to guess the sign of the force (and hence its repulsive or

attractive nature) for a large numbers of bonds (again, see [1] for more details).

We can further add on longer periodic orbits numerically and test how the expres-

sion we have found converges. This is done in the same paper as above by cutting off

the sum at a maximum periodic orbit length, Lmax. The error in the case of Neumann

pistons in a star graph goes as L−1
max. In the case of mixed Neumann and Dirichlet

parts, the orbits of different length contribute with different sign since due to θℓ above;

the error in this case falls off as L
−3/2
max . Thus, the expression for vacuum energy seems

to converge. In the next chapter, we will find that in general, the vacuum energy

expression does converge. It is in fact conditionally convergent, but any reasonable

grouping of terms should give a sensible result.

The insight given by studying quantum star graphs leads naturally to more gen-

eral graphs where we will find the same vacuum energy expression.
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CHAPTER IV

THE TRACE FORMULA APPROACH

In the previous chapter, we found the vacuum energy through two main methods, but

we left out the main details of the mathematical derivation of each. We first show

that the vacuum energy found in (3.15) is convergent, though conditionally. Using

the ideas here, we go back to the trace formula and formally derive (3.15). With this,

it will be shown that the vacuum energy is continuous in the lengths of the bonds.

The results in this chapter will be in a paper by G. Berkolaiko, J. Harrison, and J.

H. Wilson [35].

A. Convergence of Vacuum Energy Expression

As stated in section III.B, (3.15) is true for any graph with a k-independent scattering

matrix, not only for star graphs. This is because the trace formula is derived in [19]

for general graphs with k-independent scattering matrices. Here we drop the ‘Re’

because of the argument given in appendix A.2.

The grouping we will consider is,

Ec = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

Lprp
. (4.1)

The sum over p ∈ Pn is a finite sum, and we represent it as
∣

∣

∣

∣

∣

∑

p∈Pn

Ap

Lprp

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

p∈Pn

∫ ∞

0

Ap

rp
e−sLpds

∣

∣

∣

∣

∣

. (4.2)

The equality can be established by simple evaluation of the integral given. To find

an upper bound for these terms, we establish a lemma.
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Lemma IV.1.
∑

p∈Pn

Ap

rp
e−sLp =

1

n
Tr (e−sLS)n

with e−sL defined below in (4.5).

Proof. To begin, recall that if p ∈ Pn, then p = (α1, . . . , αn). Furthermore, n
rp

:= np

is the number of p ∈ p where p are merely vectors of directed bonds. For further

explanation of this see appendix A.1. Therefore the following equality holds,

n
∑

p∈Pn

Ap

rp
e−sLp =

∑

p∈Pn

∑

p∈p

Ape
−sLp . (4.3)

Given this, we have p = (α1, . . . , αn),

Ap = Sα1αn
Sαnαn−1 · · ·Sα2α1 ,

and Lp = Lα1 + · · · + Lαn
. Applying this,

∑

p∈Pn

∑

p∈p

Ape
−sLp =

∑

p∈Pn

e−sLαnSα1αn
e−sLαn−1Sαnαn−1 · · · e−sLα1Sα2α1 , (4.4)

where we have introduced Pn as the set of vectors of n directed bonds. Now define

the following matrix,

e−sL =













































e−sL1 0 · · · 0 0 0 · · · 0

0 e−sL2 · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · e−sLB 0 0 · · · 0

0 0 · · · 0 e−sL1 0 · · · 0

0 0 · · · 0 0 e−sL2 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · e−sLB













































. (4.5)
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With the matrix multiplication e−sLS, we can write (4.4) as,

∑

α1

∑

α2

· · ·
∑

αn

(e−sLS)α1αn
(e−sLS)αnαn−1 · · · (e−sLS)α2α1 = Tr (e−sLS)n. (4.6)

With this lemma, we can prove convergence of (4.1).

Theorem IV.1. If Lmin = minj{Lj}, then

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

Lprp

∣

∣

∣

∣

∣

≤ 2B

n2Lmin

.

Thus, (4.1) with the given grouping, converges.

Proof. Beginning with (4.2), we can interchange the sum and the integral since the

sum is finite and using lemma IV.1,
∣

∣

∣

∣

∣

∑

p∈Pn

Ap

Lprp

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

1

n
Tr (e−sLS)n ds

∣

∣

∣

∣

. (4.7)

Now consider Lmin = minα{Lα}, so that Lα = Lmin +L′
α with L′

α ≥ 0 for all α. Using

this with (4.5), e−sL = e−sLmine−sL
′

and the trace becomes,

Tr (e−sLS)n = e−snLminTr (e−sL
′

S)n. (4.8)

To obtain an upper bound to the trace, let Q(s) = e−sL
′

S. Take the eigenvalues

{λα}2B
α=1 and left eigenvectors eigenvectors {vα}2B

α=1 normalized to one, then

〈

Q†(s)vα, Q
†(s)vα

〉

= |λα|2. (4.9)

The left-hand side of (4.9) can be written as
〈

vα, Q(s)Q†(s)vα

〉

. Looking at

Q(s)Q†(s) then,

Q(s)Q†(s) = e−sL
′

SS†e−sL
′

= e−2sL
′

.
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The last equality is established since S is unitary (i.e. SS† = I).

Thus, using the above and minα L′
α = 0,

〈

Q†(s)vα, Q
†(s)vα

〉

=
〈

vα, e
−2sLvα

〉

≤ max
||v||=1

〈

v, e−2sLv
〉

= e−2s minα L′

α = 1.

From (4.9) and the above we obtain |λα| ≤ 1, and therefore,

|Tr (e−sL
′

S)n| = |Tr (Q(s))n| ≤
2B
∑

α=1

|λα|n ≤ 2B. (4.10)

With this we can obtain from (4.7),

∣

∣

∣

∣

1

n

∫ ∞

0

Tr (e−sLS)n ds

∣

∣

∣

∣

≤ 1

n

∫ ∞

0

e−snLmin|Tr (e−sL
′

S)n| ds ≤ 2B

n2Lmin
.

B. Proof of the Vacuum Energy Expression

With the ideas of the previous section, we return to the trace formula and derive the

expression for the vacuum energy, Ec. The trace formula we will use here, in contrast

to (3.12) will be convergent.

Theorem IV.2. Given the definition of Ec in (2.25), we find for general quantum

graphs with k-independent scattering matrices that,

Ec = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

Lprp
.

Proof. The convergent trace formula as given in [22] is

d(k) :=
∑

n

δǫ(k − kn) =
L
π

+
1

π

∞
∑

n=1

∑

p∈Pn

Ap
Lp

rp

cos(kLp)e
−ǫLp, ǫ > 0, (4.11)

where δǫ(k) = ǫ/π
ǫ2+k2 (so that δǫ(k) → δ(k) as ǫ → 0). This may look different from
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(3.12), but in fact, they are equivalent and appendix A.2 discusses this.

It can be shown that,

lim
ǫ→0+

1

2

∫ ∞

0

ke−ktd(k) dk =
1

2

∑

n

kne
−knt = E(t). (4.12)

Therefore, equating both sides,

E(t) =
L
2π

∫ ∞

0

ke−kt dk+ lim
ǫ→0+

1

2π

∞
∑

n=1

∑

p∈Pn

Ap
Lp

rp

∫ ∞

0

k cos(kLp)e
−kt dk e−ǫLp (4.13)

Considering the integral inside the sum by itself and applying the Laplace transform

for it and the inverse Laplace transform,

Lp

∫ ∞

0

k cos(kLp)e
−kt dk = − ∂

∂t

[

Lp

∫ ∞

0

cos(kLp)e
−kt dk

]

= − ∂

∂t

[

Lpt

L2
p + t2

]

= − ∂

∂t

[

t

∫ ∞

o

cos(st)e−sLp ds

]

= −
∫ ∞

0

cos(st)e−sLp ds+ t

∫ ∞

0

s sin(st)e−sLp ds. (4.14)

We now take the same grouping as in (4.1), so that the element of interest is,

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

rp

[

−
∫ ∞

0

cos(st)e−sLp ds+ t

∫ ∞

0

s sin(st)e−sLp ds

]

e−ǫLp

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ ∞

0

∑

p∈Pn

Ap

rp
cos(st)e−sLp−ǫLp ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t

∫ ∞

0

∑

p∈Pn

Ap

rp
s sin(st)e−sLp−ǫLp ds

∣

∣

∣

∣

∣

. (4.15)

In the last expression, we used the triangle inequality since the sum is finite. Looking



45

at the first term then,
∣

∣

∣

∣

∣

∫ ∞

0

∑

p∈Pn

Ap

rp
cos(st)e−(s+ǫ)Lp ds

∣

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

rp
e−(s+ǫ)Lp

∣

∣

∣

∣

∣

|cos(st)| ds

≤
∫ ∞

0

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

rp
e−(s+ǫ)Lp

∣

∣

∣

∣

∣

ds. (4.16)

Now we can apply lemma IV.1 so that,

∫ ∞

0

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

rp
e−(s+ǫ)Lp

∣

∣

∣

∣

∣

ds =

∫ ∞

0

∣

∣

∣

∣

1

n
Tr (e−(s+ǫ)LS)n

∣

∣

∣

∣

ds, (4.17)

and following the proof of theorem IV.1 exactly, we obtain,

∣

∣

∣

∣

∣

∫ ∞

0

∑

p∈Pn

Ap

rp

cos(st)e−(s+ǫ)Lp ds

∣

∣

∣

∣

∣

≤ 2B

n2Lmin

. (4.18)

Since we send t → 0+, we can say t < 1 and applying the same argument to the

second term with sin(st), we get a similar inequality. In fact,

∣

∣

∣

∣

∣

∫ ∞

0

∑

p∈Pn

Ap

rp
s sin(st)e−(s+ǫ)Lp ds

∣

∣

∣

∣

∣

≤ 2B

n3L2
min

. (4.19)

After evaluating the integral inside the sum in (4.13) we obtain,

∣

∣

∣

∣

∣

−
∑

p∈Pn

Ap
Lp

rp

∂

∂t

[

t

L2
p + t2

]

e−ǫLp

∣

∣

∣

∣

∣

≤ 2B

n2Lmin
+

2B

n3L2
min

. (4.20)

Thus, the sum converges absolutely by comparison to a
∑∞

n=1 n
−2 series, and the

convergence does not depend on ǫ or t, so it converges uniformly in both of these

variables and we can bring the limit ǫ→ 0+ inside the sum, so

E(t) =
L

2πt2
− 1

2π

∞
∑

n=1

∑

p∈Pn

Ap
Lp

rp

∂

∂t

[

t

L2
p + t2

]

. (4.21)
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Returning to our definition of Ec in (2.25) we get,

Ec = lim
t→0+

− 1

2π

∞
∑

n=1

∑

p∈Pn

Ap
Lp

rp

∂

∂t

[

t

L2
p + t2

]

. (4.22)

As stated previously, the term inside the sum is uniformly convergent in t, so we can

bring the limit inside the sum, and obtain,

Ec = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

Lprp
. (4.23)

This argument proves our equation for vacuum energy in quantum graphs and

its convergence. With this, we can do some formal analysis on our expression.

C. Analysis of the Vacuum Energy

Consider the case when all bonds of the graph are equal, so that if p ∈ Pn, then

Lp = nL.

Corollary IV.1. If all bonds on a quantum are all equal to L, then the vacuum

energy can be written as,

Ec = − 1

2πL

2B
∑

α=1

∞
∑

n=1

(λα)n

n2
,

where {λα}2B
α=1 are the eigenvalues of the S matrix.

Proof. First, if p ∈ Pn, then Lp = nL, and we can use the expression for vacuum

energy in theorem IV.2 to show,

Ec = − 1

2πL

∞
∑

n=1

1

n

∑

p∈Pn

Ap

rp
. (4.24)
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Using lemma IV.1 with s = 0 we then get,

Ec = − 1

2πL

∞
∑

n=1

1

n2
Tr (Sn). (4.25)

If {λα}2B
α=1 are the eigenvalues of S, then the corollary follows directly.

We can also show that our expression is continuous in the lengths of the bonds.

For 0 < ǫ ≤ Lmin, theorem 4.1.1 can be modified to state,

∣

∣

∣

∣

∣

∑

p∈Pn

Ap

Lprp

∣

∣

∣

∣

∣

≤ 2B

n2ǫ
. (4.26)

This tells us that Ec converges uniformly in L = (L1, . . . , LB) for the domain, [ǫ,∞)B,

and is thus continuous in L on those intervals. This does not imply that it converges

uniformly on (0,∞)B though. Now, we define the new notation Np = (N
(1)
p , . . . , N

(B)
p )

so that, Lp = Np · L. Each N
(ℓ)
p is how many times the periodic orbit, p, went over

bond ℓ. This is used to state the following:

Theorem IV.3. The expression derived in theorem IV.2,

Ec(L) = − 1

2π

∞
∑

n=1

∑

p∈Pn

Ap

(Np · L)rp

is infinitely differentiable with respect each Lℓ and each derivative can be computed by

differentiating term by term. Each derivative is itself uniformly convergent on [ǫ,∞)

with ǫ > 0 for each bond length and each derivative is continuous in the lengths of the

bonds.

Proof. To appear in the upcoming paper [35].

Physical arguments aside, the first derivative with respect to bond Lℓ gives the

force tending to extend or contract a bond ℓ, and this shows that the force is contin-

uous in the bond lengths and can be differentiated term by term.
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D. Remarks

In this chapter, we have shown that the vacuum energy expression we found converges,

rigorously derived the vacuum energy expression, and argued that it is continuous in

the lengths of the bonds (as well as infinitely differentiable). These give a solid

foundation for the expression of vacuum energy using the trace formula. Though we

have gained many insights into the vacuum energy in quantum graphs, this approach

offers no direct way to find the vacuum energy density. This motivates the alternate

approach presented in section III.C and chapter V of the method of images which, in

effect, re-derives the trace formula.
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CHAPTER V

THE METHOD OF IMAGES ON QUANTUM GRAPHS

Here we refine, abstract and give rigorous treatment to the method of images as

described in section III.C. This will in effect, re-derive the trace formula, but more

directly than that, this method can be applied to the cylinder kernel to obtain the

vacuum energy and its density. This chapter will focus on this method and give as

two of its results: the vacuum energy expression and its density. We also discuss

briefly the connection this has with the actual trace formula and how the bounce

paths give us an index theory for graphs as is discussed in the paper by S. A. Fulling,

P. Kuchment, and J. H. Wilson [34].

A. The K transformation and a General Solution on a Quantum Graph

We begin our discussion with what is called the K transformation. We first develop

the transformation for infinite star graphs and call it κ(i) (constructed for vertex i).

Upon going to general finite graphs, we will construct the K transformation in a

similar manner to how we constructed the S matrix in section II.C.

Consider the infinite star graph with coordinates starting with 0 at vertex i

and increasing away from the vertex on each bond (see figure 7). There are boundary

conditions at the central vertex and a partial differential equation on the bonds which

is separable in the graph coordinate (for example, (2.28) separates in the coordinate

as seen in (2.29)). If u solves this same partial differential equation on the whole real

line, we call it a free space solution. In our arguments we will only discuss the graph

coordinate x, suppressing the other coordinate from the partial differential equation.

An example is given in section III.C where the free space solution, T0, given in

(3.20) solves − ∂2

∂x2T0(t; x) = ∂2

∂t2
T0(t; x). In graph coordinates this equation was just
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(2.28) which separated into (2.29). We will return to T0 when we discuss the trace of

the cylinder kernel for arbitrary graphs and hence, the vacuum energy.

With u as our free space solution, the κ(i) transformation is defined to be the

non-trivial transformation such that,

uℓ′(x) =















u(x) + [κ
(i)
ℓℓ u](x), if ℓ = ℓ′,

[κ
(i)
ℓ′ℓu](x), otherwise,

(5.1)

solves the partial differential equation on the graph and satisfies the boundary con-

ditions at the vertex i for all choices of ℓ. Using κ(i), and we can obtain Kβα for an

arbitrary finite graph by,

[Kβαu](x) =















κ
(t(α))
|β||α| {u ◦ iαᾱ}, if C

(D)
βα = 1

0, otherwise.

(5.2)

The introduction of iαᾱ (2.6) here is due to u being on bond α whereas in the above

construction of κ(i) it was technically on bond ᾱ, so κ
(t(α))
|β||α| works on functions with ᾱ

coordinates while u is in α coordinates.

Now, we will construct the general solution under the method of images in much

the same way as is done in section III.C. This part is merely motivation and not proof

(the proof is given in appendix B). At the beginning of section III.C, we discussed

why py,x can be reduced to p0,x by defining a separate ū(x) := u(x − y). The same

Fig. 7. An infinite star graph with 5 bonds.
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Fig. 8. The four types of metric paths from y to x on a general graph.

argument holds for general graphs. Therefore, to get a solution that begins at y(= 0)

on directed bond α and is measured at x on directed bond β, we propagate u through

all metric paths between them; a metric path which accomplishes this is one of four

types:

1. The metric path starts at y going in the α direction and ends at x going in the

β direction.

2. The metric path starts at y going in the ᾱ direction and ends at x going in the

β direction.

3. The metric path starts at y going in the ᾱ direction and ends at x going in the

β̄ direction.

4. The metric path starts at y going in the α direction and ends at x going in the

β̄ direction.

In the case of a closed path, 1 and 3 would be periodic paths whereas 2 and 4 would

be bounce paths. Pictures of these 4 types are included in figure 8.

To continue this construction, we assume that for each metric path we have the

K transformation acting on u everytime it goes between two directed bonds, so if
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p0,x = (0, α, α1, α2, . . . , αn−1, β, x),

u
p0,x7−→ Φβαn−1···α1α u := Kβαn−1Kαn−1αn−2 · · ·Kα2α1Kα1α u.

This will sometimes be written as Φβpn−1α where pn−1 = (α1, . . . , αn−1) and if n = 1,

Φβα = Kβα. As before, we can write the above 4 types as:

1. u 7−→ Φβpn−1α u

2. u 7−→ Φβpn−1ᾱ u

3. u 7−→ Φβ̄pn−1ᾱ u

4. u 7−→ Φβ̄pn−1α u

Now to obtain a general solution, we sum over the number of bonds an orbit goes

over (n = 1 to ∞) and all the orbits of this size (we write as pn−1 ∈ Pn−1). This

construction yields the general formula given in the theorem below.

Theorem V.1. If u is a free space solution to the partial differential equation applied

to our graph, then a formal solution to the same partial differential equation applied

to every bond of a quantum graph with boundary conditions at the vertices takes the

form (suppressing any other coordinate),

uβα(x) =

∞
∑

n=1

∑

pn−1∈Pn−1

[ [Φβpn−1α u](x) + [Φβpn−1ᾱ {u ◦ iαᾱ}](x)

+ [Φβ̄pn−1ᾱ {u ◦ iαᾱ}] ◦ iβ̄β(x) + [Φβ̄pn−1α u] ◦ iβ̄β(x)]

+































u(x) if β = α

u ◦ iαᾱ(x) if β = ᾱ

0 otherwise,
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for all β and x measured on directed bond β; uβα is also a function on directed bonds

β (i.e. uβα = uβ̄α ◦ iβ̄β).

Proof. See appendix B.

The mapping iβ̄β appears in this theorem because [Kβ̄αn
u] outputs a function in

β̄ coordinates, so applying iβ̄β puts us back in β coordinates. Similarly, iαᾱ appears

since u is initially on bond α, so for Kα1ᾱ to act on it, we must first apply iαᾱ to it.

In the next section, we will find an appropriate K transformation to analyze a

partial differential equation which can be separated into our well known eigenvalue

problem, Hαuα = k2uα.

B. Relating K Transformations to the S matrix

The above construction implies that all we need to find is a κ(i) transformation for

every vertex i. Naturally, there is a connection to the vertex scattering matrix, σ(i)

when these matrices are k-independent. The following theorem gives this connection.

Theorem V.2. Consider (1) a quantum graph with H := H1 = · · · = HB = −∂2/∂x2

and boundary conditions which give a k-independent scattering matrix, S, (2) a sep-

arable equation Hu(t, x) = H̄tu(t, x) where H̄t is some linear differential operator on

u acting on its t coordinate (e.g. H̄t = ∂2/∂t2 for the cylinder equation), and (3) a

free space solution of the partial differential equation, u. Then the K-transformation

(5.2) is

[Kβαu](t, x) = Sβαu(t, Lα + x)

Proof. To establish this, we consider an infinite quantum star graph on a vertex i

with boundary conditions as defined in (2.14) and we will suppress the t coordinate
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in u. These become for our infinite star graph,

Aū(0) +Bū′(0) = 0 (5.3)

with the conditions on A and B discussed in section II.C. In this case, ū = (u1, . . . , uB)

is the vector of functions on each infinite bond and ū(0) amounts to evaluating all of

these at 0 (the vertex i).

The first claim is [κ
(i)
ℓ′ℓu](x) = σ

(i)
ℓ′ℓu(−x). Since u is a free space solution, (5.1)

implies that we need to check if

uℓ′(x) = δℓ′ℓu(x) + σ
(i)
ℓ′ℓu(−x), (5.4)

is a solution to the infinite star graph for all ℓ. For one, since each term is a solution

to the above partial differential equation, this too is a solution to it on each bond by

superposition. Thus, we just need to check if this satisfies the boundary conditions.

If (5.4) is a solution for all ℓ then the boundary conditions must be satisfied for

the matrix ū = Iu(x) + σ(i)u(−x). To see if this fits the boundary conditions, define

the matrix C as,

C := Aū(0) +Bū′(0) = A(I + σ(i))u(0) +B(I − σ(i))u′(0). (5.5)

By theorem II.1, A(I + σ(i)) = B(I − σ(i)) = 0 for k-independent σ(i). Thus, C = 0

and therefore, the boundary conditions are satisfied, so [κ
(i)
ℓ′ℓu](x) = σ

(i)
ℓ′ℓu(−x) is a

legitimate transformation.

The K-transformation is then,

[Kβαu](t) = [κ
(t(α))
|β||α| {u ◦ iαᾱ}](x) = σ

(t(α))
|β||α| u(Lα + x), if C

(D)
βα = 1.

The σ
(t(α))
|β||α| term is the same as for the S matrix in (2.20), so [Kβαu](x) = Sβαu(Lα+x)

if C
(D)
βα = 1, and both the K transformation and S give 0 when C

(D)
βα = 0. Thus,
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[Kβαu](x) = Sβαu(Lα + x) for all β and α.

After establishing our K-transformation, we can rewrite the formal solution in

theorem VI.1 (suppressing the t-coordinate),

uβα(x) =

∞
∑

n=1

∑

pn−1∈Pn−1

[ Aβpn−1αu(Lα + Lpn−1
+ x) + Aβpn−1ᾱu(−Lpn−1

− x)

+ Aβ̄pn−1ᾱu(−Lpn−1
− Lβ + x) + Aβ̄pn−1αu(Lα + Lpn−1

+ Lβ − x)]

+































u(x) if β = α

u(Lα − x) if β = ᾱ

0 otherwise.

(5.6)

In the expression, we introduce,

Aβpn−1α = Sβαn−1Sαn−1αn−2 · · ·Sα2α1Sα1α

and Lpn−1
= Lα1 + · · ·+ Lαn−1 .

Issues of convergence aside, we will apply this expression to a general kernel to

obtain the trace of it. Different H̄t can be used for different kernels. For instance, to

obtain the cylinder kernel we use H̄t = ∂2/∂t2. This will lead to the vacuum energy

and its density.

The general kernel we discuss has the form G0(t; |x − y|) in free space, and the

method above is applied to the x-coordinate. The solution will be the equivalent

kernel for the graph. The initial conditions that a kernel on the graph satisfies are,

Gβα(0; x, y) =































δ(x− y), if β = α

δ(Lα − x− y), if β = ᾱ

0, otherwise.

(5.7)
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In the expression for Gβα(t; x, y), x is measured along bond β and y is measured along

bond α. Originating G0(t; |x− y|) on bond α and applying the method of images in

(5.6) to the x-coordinate gives a solution which satisfies the above initial conditions.

As the first step in obtaining the trace of G, we set β = α = ℓ+ and y = x after

applying (5.6),

Gℓℓ(t; x, x) = G0(t; 0) +

∞
∑

n=1

∑

pn−1∈Pn−1

[ Aℓ+pn−1ℓ+G0(t;Lℓ + Lpn−1
)

+ Aℓ+pn−1ℓ−G0(t;Lpn−1
+ 2x) + Aℓ−pn−1ℓ+G0(t;Lpn−1

+ Lℓ)

+ Aℓ−pn−1ℓ−G0(t; 2Lℓ + Lpn−1
− 2x)]. (5.8)

The first and third terms in the above sum are due to the periodic paths while the

second and fourth are due to bounce paths.

C. The Trace of a Kernel on a Quantum Graph

Before discussing and proving the main theorem of this section, we separate out the

parts of the trace,

Tr G(t) = Gweyl(t) +GBP(t) +GPO(t). (5.9)

The three parts of the trace are due to the Weyl term, the bounce paths (BP), and

the periodic orbits (PO) respectively. Writing these out,

Gweyl(t) =

B
∑

ℓ=1

∫ Lℓ

0

G(t; 0) dx = LG(t; 0), (5.10)

GBP(t) =

B
∑

ℓ=1

∫ Lℓ

0

∞
∑

n=1

∑

pn−1∈Pn−1

[Aℓ+pn−1ℓ−G0(t;Lpn−1
+ 2x)

+ Aℓ−pn−1ℓ−G0(t; 2Lℓ + Lpn−1
− 2x)] dx, (5.11)
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and

GPO(t) =

B
∑

ℓ=1

∫ Lℓ

0

∞
∑

n=1

∑

pn−1∈Pn−1

[Aℓ+pn−1ℓ+G0(t;Lℓ + Lpn−1
)

+ Aℓ−pn−1ℓ+G0(t;Lpn−1
+ Lℓ)] dx. (5.12)

Clearly, we have

Gweyl(t) +GBP(t) +GPO(t) =

B
∑

ℓ=1

∫ Lℓ

0

Gℓℓ(t; x, x) dx.

To establish the next theorem, we will need one crucial lemma in order to obtain

that the bounce paths reduce down to a nice closed form.

Lemma V.1. If the scattering matrix S of a graph is k-independent, then

2B
∑

αn=1

Aαnαn−1···α1ᾱn
= δα1ᾱn−1Aαn−1···α1 .

Proof. We know Aαnαn−1···α1ᾱn
= Sαnαn−1Sαn−1αn−2 · · ·Sα2α1Sα1ᾱn

by definition. Thus,

we can write our sum as,

2B
∑

αn

Aαnαn−1···α1ᾱn
= Aαn−1···α1

2B
∑

αn=1

Sα1ᾱn
Sαnαn−1 .

For both elements in the sum on the right-hand side to be nonzero, we must have

t(αn−1) = o(α1) =: i and αn ∈ S+(i). Thus, using |αn| = |ᾱn| and the equivalence of

S+(i) to S(i),

2B
∑

αn=1

Sα1ᾱn
Sαnαn−1 =

∑

αn∈S+(i)

σ
(i)
|α1||αn|

σ
(i)
|αn||αn−1|

=
∑

ℓ∈S(i)

σ
(i)
|α1|ℓ

σ
(i)
ℓ|αn−1|

.
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It has already been established in theorem II.1 that (σ(i))2 = I, so

∑

ℓ∈S(i)

σ
(i)
|α1|ℓ

σ
(i)
ℓ|αn−1|

= δα1ᾱn−1 .

Theorem V.3. Assume the conditions of theorem V.2 and that G0(t; |x− y|) is the

free space kernel of HG0 = H̄tG0. Assume further that (5.8) converges uniformly for

x ∈ [0, Lℓ], then the trace of the corresponding kernel, G, for a graph is

Tr G(t) = LG0(t; 0) +
1

2

[

2B
∑

α=1

Sᾱα

]

∫ ∞

0

G0(t; x) dx+
∑

p

Ap
Lp

rp
G0(t;Lp).

The sum over p is a sum over all periodic orbits and Ap, Lp, and rp are respectively

the amplitude, length and repetition number of the periodic orbit p.

Proof. The condition that (5.8) converge uniformly for x ∈ [0, Lℓ] allows us to ma-

nipulate the sums and integrals. Such a condition may be able to be relaxed in favor

of conditions on G0.

First, this will be broken up into two parts. We have already established that

Gweyl(t) = LG(t; 0), we just need to work with the periodic orbit part and the bounce

path part.

Periodic Orbit Part

From (5.12) above, there is no x dependence, so we can integrate through by x

and simplify,

GPO(t) =
∞

∑

n=1

∑

pn−1∈Pn−1

B
∑

ℓ=1

[Aℓ−pn−1ℓ− + Aℓ+pn−1ℓ+ ]G(t;Lpn−1
+ Lℓ)Lℓ.

The two amplitudes given here decouple if instead of ℓ we sum over the directed bond
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αn, so

B
∑

ℓ=1

[Aℓ−pn−1ℓ− + Aℓ+pn−1ℓ+ ]G(t;Lpn−1
+ Lℓ)Lℓ

=

2B
∑

αn=1

Aαnpn−1αn
G(t;Lpn−1

+ Lαn
)Lαn

.

Using this and combining αn into pn−1 to get pn, the sum becomes,

GPO(t) =
∞

∑

n=1

∑

pn∈Pn

Apnαn
G(t;Lpn

)Lαn
.

Now we break up the sum over pn into a sum over periodic orbits, p, and a sum of

vectors in these orbits. Note from appendix A.1 that if pn ∈ p, Apnαn
= Ap and

Lpn
= Lp, and thus,

GPO(t) =
∞

∑

n=1

∑

p∈Pn

∑

pn∈p

ApG(t;Lp)Lαn

In the last sum,
∑

pn∈p Lαn
= Lp0 where p0 is the primitive periodic orbit such that

p = p
rp

0 . This length can be represented as Lp0 = Lp/rp, so the sum simplifies down,

GPO(t) =
∞

∑

n=1

∑

p∈Pn

Ap
Lp

rp

G(t;Lp). (5.13)

Bounce Path Part

Similar to the first lines of the periodic orbit part above, we can collect terms

and decouple the amplitudes, so changing our ℓ to αn as before,

GBP(t) =
1

2

∞
∑

n=1

∑

pn−1∈Pn−1

2B
∑

αn=1

Aαnpn−1ᾱn

∫ Lpn−1+2Lαn

Lpn−1

G(t; x) dx.
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We now simplify this expression by considering the cutoff function,

H(y − x) =















1, x ≤ y

0, x > y.

Instead of G(t; x) in the integral, consider Ĝ(t; x) = G(t; x)H(y − x). Then we know

that there exists m ∈ N such that (m− 1)Lmin ≤ y and mLmin > y, then for n ≥ m

and all pn ∈ Pn and αn+1, we have Lpn
> y and that implies,

∫ Lpn+2Lαn+1

Lpn

Ĝ(t; x) dx = 0.

This cuts off our sum in n at the value n = m and we now utilize the two cases:

• If y < Lpm−1
, then

∫ Lpm−1+2Lαm

Lpm−1
Ĝ(t; x) dx = 0 =

∫ y

Lpm−1
Ĝ(t; x) dx.

• If y ≥ Lpm−1
, then (m − 1)Lmin ≤ Lpm−1

and so using mLmin > y we obtain

y < Lpm−1
+ Lmin < Lpm−1

+ 2Lαm
, and we can then equate the two integrals:

∫ Lpm−1+2Lαm

Lpm−1
Ĝ(t; x) dx =

∫ y

Lpm−1
Ĝ(t; x) dx.

Both of these cases show that,

∫ Lpm−1+2Lαm

Lpm−1

Ĝ(t; x) dx =

∫ y

Lpm−1

Ĝ(t; x) dx.

Therefore, we have the bounce path part with the given cutoff,

ĜBP(t) =
1

2

m
∑

n=1

∑

pn−1∈Pn−1

2B
∑

αn=1

Aαnpn−1ᾱn

∫ Lpn−1+2Lαn

Lpn−1

Ĝ(t; x) dx

=
1

2

m−1
∑

n=1

∑

pn−1∈Pn−1

2B
∑

αn=1

Aαnpn−1ᾱn

∫ Lpn−1+2Lαn

Lpn−1

Ĝ(t; x) dx

+
1

2

∑

pm−1∈Pm−1

2B
∑

αm=1

Aαmpm−1ᾱm

∫ y

Lpm−1

Ĝ(t; x) dx. (5.14)
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Utilizing lemma V.1 and concentrating on the second set of sums in (5.14),

∑

pm−1∈Pm−1

2B
∑

αm=1

Aαmpm−1ᾱm

∫ y

Lpm−1

Ĝ(t; x) dx

=
∑

pm−3∈Pm−3

2B
∑

αm−2=1

Aαm−2pm−3ᾱm−2

∫ y

Lpm−3+2Lαm−2

Ĝ(t; x) dx. (5.15)

This was the mth term in the series. For the m − 1 term, the bullets above can be

modified to show that y < Lpm−2
+ 2Lαm−1 and this gives the result,

∫ Lpm−2+2Lαm−1

Lpm−2

Ĝ(t; x) dx =

∫ y

Lpm−2

Ĝ(t; x) dx.

Similar to (5.15), we can separate out the m− 1 term and write it as,

∑

pm−2∈Pm−2

2B
∑

αm−1=1

Aαm−1pm−2ᾱm−1

∫ y

Lpm−2

Ĝ(t; x) dx

=
∑

pm−4∈Pm−4

2B
∑

αm−3=1

Aαm−3pm−4ᾱm−3

∫ y

Lpm−4+2Lαm−3

Ĝ(t; x) dx. (5.16)

The next step in this argument is also the inductive step. If we separate out the m−2

term and add it to the simplifed m term in (5.15) note that we get two integrals added

together:
∫ Lpm−3+2Lαm−2

Lpm−3
+

∫ y

Lpm−3+2Lαm−2
=

∫ y

Lpm−3
. Then lemma V.1 can be applied

again. This is done for both the m term and m− 1 term separately all the way down

to the first and second terms, which gives,

ĜBP(t) =
1

2

2B
∑

α1

Aα1ᾱ1

∫ y

0

Ĝ(t; x) dx+
1

2

2B
∑

α1=1

δα1ᾱ1

∫ y

Lα1

Ĝ(t; x) dx.

Clearly, δα1ᾱ1 = 0 and in the first term, we can take y → ∞ to get back GBP(t):

GBP(t) =
1

2

[

2B
∑

α=1

Sαᾱ

]

∫ ∞

0

G(t; x) dx (5.17)

With (5.13) and (5.17) we have Tr G(t).
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As discussed above, the condition of uniform convergence on (5.8) may be able

to be relaxed to conditions on G0. This should even go back to conditions on u which

make (5.6) converge. In the discussion to follow, it is taken for granted that (5.8)

converges uniformly on x.

D. Applications of the Kernel Trace including Vacuum Energy

A number of things can be found through the expression in theorem V.3. To begin,

recall from (2.19) that in the case of Neumann conditions ∀i ∈ V and ℓ, ℓ′ ∈ S(i),

σ
(i)
ℓ′ℓ = 2

vi
− δℓ′ℓ where vi = |S(i)| is the valency of i.

Looking at the bounce path contribution then,

2B
∑

α=1

Sᾱα =

V
∑

i=1

∑

ℓ∈S(i)

σ
(i)
ℓℓ =

V
∑

i=1

(

2

vi
− 1

)

vi = 2(V − B). (5.18)

The term V − B is the Euler characteristic of our graph, and this constant term is

related to an index theory on graphs as is discussed in [34]. Indeed, there is such

an index theorem for any quantum graph with k-independent boundary conditions,

although the index is not equal to the Euler characteristic in general.

This bounce term is a ‘trace’ in the sense that it is a sum of traces as observed

in (5.18). This motivates the definition,

Tr S :=

2B
∑

α=1

Sᾱα =

V
∑

i=1

Tr σ(i) (5.19)

For the bounce path contribution to add up to a constant the integral,
∫ ∞

0
G0(t; x) dx,

must be independent of the extra variable t. For example, this is true for the free
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space cylinder kernel T0 and the free space heat kernel K0,

T0(t; |x− y|) =
t/π

t2 + (x− y)2
(5.20)

K0(t; |x− y|) =
1√
4πt

e−
(x−y)2

4t . (5.21)

In the case of T0, H̄t = ∂2

∂t2
, and in the case of K0, H̄t = − ∂

∂t
. We can also apply this

method to the resolvent kernel given by,

G0(k
2; |x− y|) =

i

2k
eik|x−y| (5.22)

Since this is an integral kernel, to get it in terms of k we need to consider d(k2) =

2k dk. Thus, G0(k; |x − y|) = ieik|x−y|. Applying this by itself will give something

divergent (it will be a sum of delta functions). To get around this, we apply Ḡ0(k; |x−

y|) = ieik|x−y|−ǫ|x−y| for some small ǫ > 0. Now from,

1

π
Im Tr Ḡ(k) =

∑

n

δǫ(k − kn), (5.23)

with δǫ(k) = ǫ/π
ǫ2+k2 so that as ǫ → 0, δǫ(k) → δ(k). The {kn} is the spectrum given

by the eigenvalue problem we have considered throughout. Using this, we obtain by

theorem V.3,

∑

n

δǫ(k − kn) =
L
π

+
1

2
(Tr S)δǫ(k) +

1

π

∑

p

Ap
Lp

rp

cos(kLp)e
−ǫLp. (5.24)

This is the convergent trace formula, and if we let ǫ → 0 we get the trace formula

(4.11).

Returning to the vacuum energy, we apply T0 to theorem V.3,

Tr T (t) =
L
πt

+
1

4
Tr S +

∑

p

Ap
Lp

rp

t/π

t2 + L2
p

. (5.25)

Indeed, the bounce paths now cancel when differentiating and using (2.34) to get E(t)
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and then applying (2.25) to get

Ec = − 1

2π

∑

p

Ap

Lprp
, (5.26)

our familiar Ec for quantum graphs. We can also go back in our derivation to (5.8)

and apply T0 to obtain Tℓℓ(t; x, x), and hence ρℓ(t, x) = −1
2

∂
∂t
Tℓℓ(t; x, x).
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CHAPTER VI

CONCLUSIONS

We have found by the trace formula and the method of images the vacuum energy

expression for general quantum graphs with k-independent scattering matrices using

an ultra-violet cutoff,

Ec = − 1

2π

∑

p

Ap

Lprp

.

Both methods given were first done in chapter III in the context of quantum star

graphs without the same amount of rigor as was covered for general graphs in chapters

IV and V. Several results though were special to quantum star graphs. In modeling

this system with tiny pistons as the end vertices, we find (with Neumann conditions)

that the vacuum energy causes a repulsive force for a larger number of bonds (when

B > 3 for the equal bond case). In addition, through numerical calculations [1] one

finds that this expression converges if the periodic orbit lengths are cut off at some

Lmax.

Through rigorous application of the trace formula, we formally found the vac-

uum energy expression for general graphs (with k-independent scattering matrices) in

chapter IV. This proof also showed that the expression is uniformly convergent in the

lengths of the bonds for each Lℓ ∈ [ǫ,∞) and thus continuous in those bond lengths

on the same intervals. This hints that the vacuum energy does not vary wildly for

small perturbations in the bond lengths. As expected though, as one of the bonds

ℓ0 shrinks so Lℓ0 → 0, then the expression does diverge. This can be seen by just

considering the orbit on ℓ0, p = (ℓ+0 , ℓ
−
0 ), then L−1

p → ∞. The same thing happens in

the very short distance limit in standard Casimir-effect calculations disregarding the

atomic makeup of the plates.
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Furthermore, the vacuum energy has continuous first derivatives in the lengths

of the bonds (and by theorem IV.3, all derivatives are also continuous). The Casimir

force is found by differentiating the vacuum energy with respect to a changing length,

and thus, this expression is also continuous in bond lengths. All of this will appear

in the upcoming paper [35].

Putting in equal bonds into the equation for the vacuum energy, corollary IV.1

relates the vacuum energy to the eigenvalues, {λα}, of the scattering matrix S,

Ec = − 1

2πL

2B
∑

α=1

∞
∑

n=1

(λα)n

n2
.

By inspection it is clear that this is convergent since |λα| = 1 because S is unitary.

We also applied the method of images to our quantum graph in chapter V.

This method takes a free space solution to a problem and outputs a solution which

applies on the entire quantum graph. In principle the method of images can be

applied to scattering matrices that are k-dependent. The biggest problem here is

handling the resulting K transformation becomes difficult. It is possible that by

using an asymptotic approach information about the vacuum energy with these other

transformations could be obtained, but this has yet to be looked into. With the

knowledge of how the cylinder kernel is related to the vacuum energy, the cylinder

kernel for a graph can be obtained by this method and analyzed for the vacuum

energy. This method reproduces the result of the trace formula. An advantage to

this approach over the trace formula comes from the fact that one can obtain the

vacuum energy density to analyze. It is not clear that the expression for the density

reduces down to such a nice formula like Ec, but seeing how it behaves, even just

numerically, would be of interest. Another advantage of this method of images is

that it is applicable other systems than graphs (such as billiards, manifolds, etc.).
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Now that there is an expression for the vacuum energy in quantum graphs, it

should be possible to see what connection it has to the spectral statistics of the

system. With the connection that quantum graphs have to other systems, this could

shed light on how other systems’ vacuum energy behaves.
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APPENDIX A

COMBINATORICS

1. Periodic Orbits as Equivalence Classes

The information in this part of the appendix is not new but is placed here for complete-

ness and to help understanding of the finer points of the periodic orbits as equivalence

classes.

Consider the vector of directed p = (α1, . . . , αn). If each C
(D)
αi+1αi = 1, then p is

a path, and if C
(D)
α1αn = 1, then it is periodic. We need not assume this vector is a

periodic path since we have Ap := Sα1αn
Sαnαn−1 · · ·Sα2α1 and this is zero if p is not a

periodic path.

Now take σ to be the permutation transformation on a vector of directed bonds,

so that

σ((α1, α2, . . . , αn)) = (α2, . . . , αn, α1) (A.1)

Now, there exists a minimum np ∈ N such that σnp(p) = p. With this, we have

the equivalence class defined by σ on p, so

p = {p, σ(p), σ2(p), . . . , σnp−1(p)}. (A.2)

We have np|n and rp is defined by rpnp = n. This is the repetition number of

the path much like we have discussed in definition II.12 when we defined primitive

periodic orbits.

Observe that Ap = Aσ(p) = · · · = Aσnp−1(p) =: Ap and similarly, we can equate

Lp = Lp since lengths of all paths in p are the same. Also, rp = rp is still the

repetition number of the periodic orbit as is described at the end of section II.A.
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2. Equivalence of Trace Formulae

The trace formula in (4.11) is equivalent to (3.12) given here with the ǫ term,

d(k) :=
∑

n

δǫ(k − kn) =
L
π

+ Re
1

π

∑

p

Ap
Lp

rp
eikLp−ǫLp. (A.3)

This trace formula is derived for k-independent scattering matrices, and when the

boundary conditions are of the type given by (2.14) we have σ(i) = (σ(i))† for all

i ∈ V as shown in theorem II.1. Now consider p = (α1, α2, . . . , αn) and define the

time reversal of p as p∗ = (ᾱn, . . . , ᾱ2, ᾱ1).

Clearly, Lp∗ = Lp and rp∗ = rp. Furthermore,

Ap∗ = Sᾱnᾱ1Sᾱ1ᾱ2 · · ·Sᾱn−1ᾱn
= σ

(t(ᾱ1))
|ᾱn||ᾱ1|

σ
(t(ᾱ2))
|ᾱ1||ᾱ2|

· · ·σ(t(ᾱn))
|ᾱn−1||ᾱn|

.

Now in the above t(ᾱ1) = o(ᾱn) = t(αn) and similarly t(ᾱj) = o(ᾱj−1) = t(αj−1) for

1 < j ≤ n. Using this, the fact that σ(i) = (σ(i))†, and |ᾱ| = |α|,

Ap∗ =
(

σ
(t(αn))
|α1||αn|

)∗ (

σ
(t(α1))
|α2||α1|

)∗

· · ·
(

σ
(t(αn−1))
|αn||αn−1|

)∗

= (Sα1αn
Sαnαn−1 · · ·Sα2α1)

∗ = (Ap)
∗.

Now define,

S :=
∑

p

Ap
Lp

rp
eikLp−ǫLp. (A.4)

This can be rewritten so that,

S =
∑

p

Ap∗
Lp∗

rp∗
eikLp∗−ǫLp∗ =

∑

p

(Ap)
∗Lp

rp

eikLp−ǫLp.

Adding these two together, we obtain a new expression for S,

S =
∑

p

Re{Ap}
Lp

rp
eikLp−ǫLp.
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Then,

Re S =
∑

p

Re{Ap}
Lp

rp
cos(kLp)e

−ǫLp

=
1

2

∑

p

Ap
Lp

rp
cos(kLp)e

−ǫLp +
1

2

∑

p

(Ap)
∗Lp

rp
cos(kLp)e

−ǫLp

=
1

2

∑

p

Ap
Lp

rp
cos(kLp)e

−ǫLp +
1

2

∑

p

(Ap∗)
∗Lp∗

rp∗
cos(kLp∗)e

−ǫLp∗

=
∑

p

Ap
Lp

rp
cos(kLp)e

−ǫLp.

This shows the equivalence of (4.11) to (3.12), and through a similar argument

it can be shown that
∑

p
Ap

Lprp
is real, so (3.17) and (3.32) are also the same and the

real part can be dropped from (3.15).
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APPENDIX B

PROOF OF THE GENERAL METHOD OF IMAGES FORMULA

In this appendix, we prove theorem VI.1. Before proving it, we prove a lemma which

will aid in our proof.

Lemma VI.1. Consider (1) a free space solution, u, to a partial differential equation

and (2) a finite quantum graph with the same partial differential equation applied to

each bond. Then for γ ∈ S−(i),

gǫ(x) = δǫγ̄u ◦ iγγ̄(x) + [Kǫγu](x),

satisfies the partial differential equation for all ǫ ∈ S+(i) and the boundary conditions

at vertex i.

Proof. Let ℓ := |γ| and ℓ′ := |ǫ| and using the definition of the K-transform in (5.2)

at a single vertex (i in this case), [Kǫγu] = [κ
(i)
ℓ′ℓ{u ◦ iγγ̄}]. Also, δǫγ̄ = δℓℓ′ and define

ū := u ◦ iγγ̄ . This ū is also a free space solution and we have,

gǫ = δℓ′ℓū+ [κ
(i)
ℓ′ℓū].

By definition of the κ(i) transformation, this satisfies the boundary conditions at the

vertex i when you consider all ǫ ∈ S+(i).

Theorem VI.1. If u is a free space solution to the partial differential equation applied

to our graph, then a formal solution to the same partial differential equation applied

to every bond of a quantum graph with boundary conditions at the vertices takes the
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form (suppressing any other coordinate),

uβα(x) =

∞
∑

n=1

∑

pn−1∈Pn−1

[ [Φβpn−1α u](x) + [Φβpn−1ᾱ {u ◦ iαᾱ}](x)

+ [Φβ̄pn−1ᾱ {u ◦ iαᾱ}] ◦ iβ̄β(x) + [Φβ̄pn−1α u] ◦ iβ̄β(x)]

+































u(x) if β = α

u ◦ iαᾱ(x) if β = ᾱ

0 otherwise,

for all β and x measured on directed bond β; uβα is also a function on directed bonds

β (i.e. uβα = uβ̄α ◦ iβ̄β).

Proof. To begin with, we first establish that this function is a function on directed

bonds.

Consider,

uβ̄α(x) =

∞
∑

n=1

∑

pn−1∈Pn−1

[ [Φβ̄pn−1α u](x) + [Φβ̄pn−1ᾱ {u ◦ iαᾱ}](x)

+ [Φβpn−1ᾱ {u ◦ iαᾱ}] ◦ iββ̄(x) + [Φβpn−1α u] ◦ iββ̄(x)]

+































u(x) if β̄ = α

u ◦ iαᾱ(x) if β̄ = ᾱ

0 otherwise.

To compute uβ̄α ◦ iβ̄β, notice that iββ̄ ◦ iβ̄β(x) = x and that β̄ = α is equivalent to



76

β = ᾱ while β̄ = ᾱ is equivalent to β = α, so

uβ̄α ◦ iβ̄β(x) =

∞
∑

n=1

∑

pn−1∈Pn−1

[ [Φβ̄pn−1α u] ◦ iβ̄β(x) + [Φβ̄pn−1ᾱ {u ◦ iαᾱ}] ◦ iβ̄β(x)

+ [Φβpn−1ᾱ {u ◦ iαᾱ}](x) + [Φβpn−1α u](x)]

+































u ◦ iαᾱ(x) if β = ᾱ

u(x) if β = α

0 otherwise.

From this, it is easily checked that uβ̄α ◦ iβ̄β(x) = uβα, so it is a function on directed

bonds.

We now break up the sum into many parts (suppressing the x),

u
(n)
βα =

∑

pn∈Pn

[

[Φβpnα u] + [Φβpnᾱ {u ◦ iαᾱ}]
]

+
∑

pn−1∈Pn−1

[

[Φβ̄pn−1α u] + [Φβ̄pn−1ᾱ {u ◦ iαᾱ}]
]

◦ iβ̄β, n > 0 (B.1)

u
(0)
βα = [Kβαu] + [Kβᾱ{u ◦ iαᾱ}] +































u(x), if β = α

u ◦ iαᾱ(x), if β = ᾱ

0, otherwise.

(B.2)

Clearly, we have uβα =
∑∞

n=0 u
(n)
βα . These functions by themselves are not functions on

directed bonds. Individually though, we claim that each u
(n)
βα satisfies the boundary

conditions at any given vertex and thus, by superposition uβα satisfes the boundary

condition at all vertices.

To begin, we look at the n = 0 case. We shall look at the generic vertex i, so we

only have to look at β ∈ S+(i). There are three cases to consider for this,
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• α ∈ S−(i). In this case, Kβᾱ = 0 and we can apply lemma VI.1 with u, γ = α,

and ǫ = β to obtain,

u
(0)
βα = δᾱβu ◦ iαᾱ(x) + [Kβαu] + [Kβᾱ{u ◦ iαᾱ}].

By lemma, for all possibilities of β ∈ S+(i) this satisfies the boundary conditions

at vertex i, and is a solution to the partial differential equation.

• α ∈ S+(i). In this case, Kβα = 0 and we can again apply lemma VI.1 but now

with u ◦ iαᾱ, γ = α, and ǫ = β to obtain,

u
(0)
βα = δαβu(x) + [Kβᾱ{u ◦ iαᾱ}] + [Kβαu].

Again, for all possibilities of β ∈ S+(i) this satisfies the boundary conditions at

vertex i and the partial differential equation on the graph.

• |α| /∈ S(i). In this somewhat trivial case, Kβα = 0 and Kβᾱ = 0, so

u
(0)
βα = [Kβᾱ{u ◦ iαᾱ}] + [Kβαu]

satisfies the boundary conditions at i (though trivially).

Having established (B.2), we now handle the n > 0 cases.

Again, we look at the same vertex i and consider β ∈ S+(i) and αn ∈ S−(i).

Consider the function,

gαn
=

∑

pn−1∈Pn−1

[

[Φαnpn−1α u] + [Φαnpn−1ᾱ {u ◦ iαᾱ}]
]

.

Despite the indexing on this formula, gαn
is defined on the whole real line and is a

free space solution to the partial differential equation, so we can apply it with γ = αn
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and ǫ = β to our lemma VI.1,

gβαn
= δβ̄αn

gαn
◦ iαnᾱn

+ [Kβαn
gαn

]. (B.3)

Thus, gβαn
satisfies the boundary conditions at vertex i and the partial differential

equations. By superposition, so does the following function,

∑

αn∈S−(i)

gβαn
= gβ̄ ◦ iβ̄β +

2B
∑

αn=1

[Kβαn
gαn

], (B.4)

where we have used the fact that Kβαn
= 0 when αn /∈ S−(i).

Evaluating each term,

gβ̄ ◦ iβ̄β =
∑

pn−1∈Pn−1

[

[Φβ̄pn−1α u] + [Φβ̄pn−1ᾱ {u ◦ iαᾱ}]
]

◦ iβ̄β, and (B.5)

2B
∑

αn=1

[Kβαn
gαn

] =
∑

pn∈Pn

[

[Φβpnα u] + [Φβpnᾱ {u ◦ iαᾱ}]
]

. (B.6)

From this it can be seen that,

u
(n)
βα = gβ̄ ◦ iβ̄β +

2B
∑

αn=1

[Kβαn
gαn

].

Thus, each u
(n)
βα satisfies the boundary conditions at vertex i and satisfies the

partial differential equation. Thus, by superposition of solutions, so does uβα. Fur-

thermore, it is a function on directed bonds, so it is a legimate formal solution to the

entire partial differential on the graph. (Formal in the sense that it might diverge).
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