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Abstract. We study homogeneous, independent percolation on general quasi-transitive
graphs. We prove that in the disorder regime where all clusters are finite almost surely,
in fact the expectation of the cluster size is finite. This extends a well-known theorem by
Menshikov and Aizenman & Barsky to all quasi-transitive graphs. Moreover we deduce that
in this disorder regime the cluster size distribution decays exponentially, extending a result
of Aizenman & Newman. Our results apply to both edge and site percolation, as well as long
range (edge) percolation. The proof is based on a modification of the Aizenman & Barsky
method.

1. Introduction

Percolation theory is devoted to the study of geometric properties of random subgraphs
of a given graph. In particular one wants to understand which disorder regimes exhibit the
existence of an infinite cluster, i.e. an infinite component of the subgraph generated by the
percolation process.

For percolation models on graphs the low density phase is often defined as the regime of
randomness where the expected cluster-size is finite, whereas the high density phase is defined
as the disorder regime where there exists an infinite cluster almost surely. More specifically,
for identically distributed, independent models there is only one scalar disorder parameter
(usually denoted by p) which measures the extent of the randomness. If one denotes the
supremum of the parameter values which correspond to the low density regime by pT , and
the infimum of the parameter values which correspond to the high density regime by pH ,
then the statement pT = pH is called sharpness of the phase transition. In other words, an
intermediate phase between the low and high density regime reduces to (at most) a single
value of the parameter p.

This result has been proven by Menshikov in [11] (see also [12] by Menshikov, Molchanov &
Sidorenko) and Aizenman & Barsky in [1] for a large class of percolation processes on graphs.
More precisely the results of [11, 12] cover independent site percolation on quasi-transitive
graphs of subexponential growth. The percolation parameter can be different for the different
classes of vertices. In [12], where the proof of [11] is explained in more detail, it is noted in
Remark 6.1 that the method of proof works also with a relaxed growth condition on the graph,
however, that it is not possible to eliminate it completely. The results of [1] hold for directed
and undirected, independent, site and bond, short range percolation models on Zd. Since the
considered graphs are essentially Cayley graphs of Zd their volume growth is polynomially
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bounded. The results of [1] furthermore apply to so called long range edge percolation, a
model where edges may be present between any pair of vertices, with probability decreasing
in the distance between the vertices.

Any edge percolation process can be transformed into a site percolation process by passing
to the line graph. If the original graph has a finite number of edge orbits under the auto-
morphism group action, the resulting line graph will be quasi-transitive. Thus the results
of [11, 12] apply to edge percolation, too. In contrast to this, if we transform a long range
edge percolation process to a site percolation process via the line graph construction we lose
quasi-transitivity. More precisely, to avoid triviality for long range edge percolation we need
to have an infinite number of different percolation parameters assigned to the edges. Thus
the edge set decomposes into an infinite number of classes, which means that the line graph
will have infinitely many vertex types, violating the quasi-transitivity property.

We adapt the method of differential inequalities used in [1] for the study of Zd-models, to
show that the sharpness of the phase transition actually holds for all quasi-transitive graphs.
Again we can treat short range site and edge percolation, as well as long range edge percola-
tion. On the technical level the differences to [1] are the following: In [1] finite torus graphs
are used to approximate the infinite Zd graph, which has the advantage that the approximat-
ing graph is still homogeneous, i.e. transitive. In the general case this is not possible, thus
we work with finite approximation graphs which have a ‘boundary’. As a consequence of this
and quasi-transitivity rather than transitivity, in comparison to [1] additional finite volume
terms appear in the differential inequalities. We control these correction terms to show that
the modified inequalities still lead to a proof of the sharpness of the phase transition.

All graphs mentioned so far have a rich algebraic structure which is formulated in terms
of transitivity or quasi-transitivity. Looking at the modifications of the Aizenman & Barsky
method needed for quasi-transitive graphs one gets the impression that one can adopt the
proof to obtain the same results for graphs which have uniform local combinatorial complexity
bounds, without having necessarily a large automorphism group. An example would be the
Penrose tiling, whose percolation properties were studied by Hof in [7]. For such graphs the
finite volume effects can probably be controlled in a similar way as for quasi-transitive graphs.

Apart from the fact that the equality pT = pH establishes for homogeneous, independent
models on Zd that percolation has only one phase transition, it has also played a crucial
role for the proof of Kesten’s theorem [8] that on the two dimensional lattice Z2 we have
pT = pH = 1/2.

Closely related to the sharpness of the phase transition are the results [2] by Aizenman &
Newman. On the one hand they prove the divergence of the expectation value of the cluster
size as the disorder parameter approaches pT from below, a statement which is used in [1] for
the proof of pT = pH . On the other hand, Aizenman & Newman show the exponential decay
of the cluster size distribution for p < pT . We deduce that these results hold actually for all
quasi-transitive graphs.

Our interest in the sharpness of the phase transition stems from the study of percolation
Hamiltonians, more precisely adjacency and combinatorial Laplacians on percolation sub-
graphs, and in particular their integrated density of states (IDS). While for the definition of
the IDS for general graphs with a free, amenable, quasi-transitive group action, cf. [16, 17],
an understanding of the phase transition(s) is not necessary, it seems that for the proof of
Lifshitz asymptotics such understanding is crucial.
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Lifshitz tails describe the asymptotic behaviour of the IDS near the boundaries of the
spectrum and have been established for independent site percolation on Zd by Biskup & König
[5] and independent edge percolation on Zd by Kirsch & Müller, resp. Müller & Stollmann
in [10, 13]. In [4, 3] we study subcritical independent site and edge percolation on amenable
Cayley graphs. For the adjacency and the combinatorial Laplace operator we obtain the
asymptotics of the IDS at the spectral edge. Our results depend on the decay rate of the
cluster size distribution. They apply in particular to Lamplighter graphs which are amenable
but have exponential volume growth. Let us also remark, that the methods of [3] can be
extended to combinatorial Laplacians on long range percolation graphs in the subcritical
phase. This explains our objective to derive the exponential decay of the subcritical cluster
size also for graphs with arbitrary growth behaviour, and for long range edge percolation.

The structure of this paper is as follows: In the next section we define our percolation
model and state the main results. In Section 3 we state some basic facts which are common
for site and for edge percolation. The two subsequent sections are devoted to (short range)
edge percolation. Namely, in Section 4 we introduce the (finite volume) order parameters ← →

and in Section 5 we show that they obey certain differential inequalities. In Section 6 we
establish the same facts for site percolation. This allows us to complete the proof of our
main result for both types of percolation processes in Section 7. The last section contains an
extension of our main result to long range edge and oriented percolation.

2. Notation and results

Let G = (V,E) be an infinite, countable, connected graph, with vertex set V and edge
set E. The fact that the vertices x and y are adjacent will be denoted by x ∼ y and
[x, y] will stand for the unoriented edge which connects x and y. By d : V × V → R we
denote the usual graph distance, that is d(x, y) is the length of a shortest path between
two vertices x and y. For a vertex x and a nonnegative integer n, B(x, n) is the ball, with
center x, of radius n, in the above metric. For the sphere of radius n around x we shall
write S(x, n) := {y ∈ V |d(y, x) = n}. The group of graph automorphisms will be denoted by
Aut(G). For any subgraph G′, |G′| will stand for the number of vertices in G′, which may be
infinite. When a subgraph G′ is given, we will say that two neighboring vertices of G, x and
y, are directly connected in G′ if the edge [x, y] is an edge of the graph G′. For two subgraphs
G1 = (V1, E1) and G2 = (V2, E2) we define their intersection G1 ∩ G2 := (V1 ∩ V2, E1 ∩ E2).
Notice that the intersection is always well defined. The notation G′ ⊂ G means that G′ is
either a proper subgraph of G or G itself.

A graph G is called quasi-transitive if there exists a finite set of vertices F such that for
any vertex x there is a y ∈ F and γ ∈ Aut(G) such that γy = x. In the following we will
always assume that the set F is minimal with respect to inclusion. Such an F will be called
fundamental domain. For any graph G we can consider the action of the group Aut(G) on
the set of vertices V . Thus, a graph is quasi-transitive if and only if the set of vertices is
decomposed into finitely many orbits, with respect to this action. A fundamental domain
is then any set of vertices which intersects each orbit in exactly one vertex. The number of
elements in any fundamental domain is the same. If a fundamental domain contains only one
element we call the graph transitive.

Now we introduce the usual nearest neighbor Bernoulli bond percolation model. We fix
some parameter 0 ≤ p ≤ 1. For each edge of the graph G we say that it is open with
probability p and closed with probability 1 − p, independently of all other edges. That is,
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for each edge e ∈ E we take a probability space (Ωe, P (Ωe),Pe), where Ωe = {0, 1}, P (Ωe) is
the power set of Ωe and Pe(1) = p, Pe(0) = 1− p. The percolation probability space (Ω,A,P)
is defined as the product of these probability spaces, that is Ω :=

∏
e∈E

Ωe, A :=
⊗
e∈E

P (Ωe)

and P :=
⊗
e∈E

Pe. The probability measure P obviously depends on p. This dependence will

sometimes be stressed by writing Pp instead of P. The same holds for the expectation E.
Elements of Ω will be called configurations because each of them uniquely represents some

configuration of open and closed edges. For a given configuration ω and a given edge e, the
value ωe will be called the state of e. By G(ω) denote the subgraph of G obtained by deleting
all closed edges with respect to the configuration ω, i.e. for the set of vertices of G(ω) we
take the set of vertices of the graph G, while the set of edges of G(ω) is the set of open edges
with respect to the configuration ω. Connected components of G(ω) are called clusters. The
cluster containing the vertex x will be denoted by Cx(ω). The probability measure is invariant
under the graph automorphisms and so, in the case of a transitive graph, the probabilistic
properties of Cx(ω) do not depend on the choice of x. Thus, in this case, we will often assume
that a certain vertex x is fixed and denote the cluster Cx(ω) by C(ω).

The nearest neighbor site percolation model is introduced in an analogous way. For each
vertex x we say it is open with some probability p ∈ [0, 1] and otherwise closed, indepen-
dently of all other vertices. In other words we consider the probability space (Ω,A,P) :=∏
x∈V (Ωx, P (Ωx),Px), where (Ωx, P (Ωx),Px) is defined in the same way as (Ωe, P (Ωe),Pe)

before. Now for some given configuration ω the percolation graph G(ω) is defined simply as
the subgraph induced by the set of open vertices with respect to the configuration ω. Clusters
are again defined as connected components of G(ω). We will use the same notation as in the
bond model. Note that subgraphs G(ω) do not have to contain all the vertices of G and thus
the event {|Cx| = 0} has positive probability (namely equal to 1− p).

Remark 1. Everything we mentioned above can be defined for any subgraph G′ = (V ′, E′).
Of course, the probability space will be different, but every event T in the new probability
space can (and will) be identified with the cylinder set T ×

∏
e/∈E′ Ωe (T ×

∏
x/∈V ′ Ωx in the

case of the site model). In the corresponding probability spaces these events have the same
probabilities. Thus we use the same notation for the corresponding probability measures.
Since the notion of clusters in G′ and G is not the same, we will denote by CG

′
x the cluster of

x in the graph G′.

Since the statements in the present section hold equally for site and for bond percolation,
we will use in this section simply the term percolation.

Next we will describe the most basic properties of the percolation without proofs. In
Remark 8 in the next section we briefly sketch how these properties are proven.

An important property of the percolation is the existence of a phase transition between
a percolating and a non-percolating phase. Consider some fixed vertex x and the event
{|Cx| =∞}. The probability of this event Pp(|Cx| = ∞) is equal to 0 when p = 0 and 1
when p = 1. Furthermore, it can be shown that Pp(|Cx| = ∞) is a non-decreasing function
of p. Thus, if we define pH := sup {p ∈ [0, 1]; Pp(|Cx| =∞) = 0}, we see that the probability
Pp(|Cx| = ∞) is equal to 0 if p < pH and strictly positive if p > pH . In the case p < pH
there is no infinite cluster almost surely, while in the case p > pH there exists an infinite
cluster almost surely. The value of pH does not depend on the vertex x. It is often called the
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percolation threshold. The case p < pH is called subcritical phase, the case p > pH is called
supercritical phase, while p = pH is called critical phase.

If pH < 1 it is obvious that Ep(|Cx|) =∞ for all p > pH . The behavior of Ep(|Cx|) in the
subcritical phase is much more interesting. The expectation Ep(|Cx|) has value 1 at p = 0
and is infinite at p = 1. It can be shown that it is a non-decreasing function of p. So, if we
define pT := sup {p ∈ [0, 1],Ep(|Cx|) <∞}, we see that Ep(|Cx|) is finite if p < pT and infinite
if p > pT . Like the value of pH , the value of pT is also independent of the choice of vertex x.

The relation pT ≤ pH between the critical values is obvious. Our goal is to prove equality
of the two values. Our main result is the following.

Theorem 2. For every quasi-transitive graph G we have pT = pH .

As mentioned in the introduction, for general percolation models on the lattice the equality
of the two critical points was proven in [1]. The method of proof was the use of differential
inequalities for certain (finite volume) order parameters. In [1] one can also find a discussion of
the use of such differential inequalities in other models of statistical physics. Using a different
method, sharpness of the phase transition for site percolation on quasi-transitive graphs with
subexponential growth was proven in [11], see Remark 4 below.

Similarly as in the lattice setting [1], Theorem 2 holds also for long range and oriented
percolation on quasi-transitive graphs. To show this, one has only to modify certain steps in
the proof of the basic version of Theorem 2. We present and explain these modification in
the last section of this paper.

It is well known that, in the lattice case, the probabilities of the events of the form
{|Cx| ≥ n} in subcritical phase decay exponentially in n. The same result holds in the case
of quasi-transitive graphs.

Theorem 3. Let G be a quasi-transitive graph and let p < pH . We can find a constant αp > 0
such that for any positive integer n we have

Pp(|Cx| ≥ n) ≤ e−αpn, for any vertex x.

In the lattice case, exponential decay was first proven for all p such that Ep(|C|) < ∞.
This result follows from Theorem 5.1 in [9]. The same result was proven for more general
models on transitive graphs in Proposition 5.1 in [2]. Consequently the exponential decay in
the subcritical phase is just a corollary of the equality of critical points pT and pH . The proof
of Proposition 5.1 from [2] extends directly from transitive graphs to quasi-transitive ones.
Thus Theorem 3 follows directly from Theorem 2.

Remark 4. In [11, 12] Menshikov et al. pursued a different route of argument. They first show
that for site percolation with p < pH on quasi-transitive graphs of subexponential growth the
cluster radius distribution decays exponentially. More precisely, for every p < pH there exists
a constant α̃p > 0 such that for all x ∈ V and all n ∈ N

(1) Pp(Cx ∩ S(x, n) 6= ∅) ≤ e−α̃pn

holds. By the subexponential growth condition on the graph, this implies that the expected
cluster size is finite. The key step in the proof of (1) is an estimate on the conditional
expectation

Ep( |δ{Cx ∩ S(x, n) 6= ∅}| | Cx ∩ S(x, n) 6= ∅),
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where |δA| denotes the number of pivotal sites for the event A. Note that the estimate (1)
on the cluster radius distribution is weaker than the one in Theorem 3 on the cluster size
distribution.

In the proof of Theorem 2 we will need the following result.

Proposition 5. For percolation on a quasi-transitive graph, we have for every vertex x:

(2) lim
p↑pT

Ep(|Cx|) =∞.

In particular EpT (|Cx|) =∞ for any x ∈ V .

In the lattice case the divergence of EpT (|Cx|) was proven in Corollary 5.1 in [9]. The
stronger statement (2) was then proven for more general percolation processes on transi-
tive graphs in Lemma 3.1 in [2]. The proof of this statement for quasi-transitive graphs is
essentially the same.

The versatility of the differential inequalities method as presented in [1] is illustrated by
the fact that on the way to prove Theorem 2 one obtains as an aside a bound on the critical
exponent δ, cf. (40) for a definition.

Proposition 6. The critical exponent satisfies δ ≥ 2.

This is a direct consequence of Lemma 22.

3. Basic facts

Now we shall present some basic definitions and results from percolation theory. To be
able to treat both the site and the bond model simultaneously, we shall denote, in the bond
case, the edge set of a given graph G by S. In the site case S will denote the vertex set of G.

Definition 7. a) We say that the event A ∈ A is increasing if

ω ∈ A, ω ≤ ω1 ⇒ ω1 ∈ A.
Here elements of Ω are ordered as functions from S to {0, 1}.

b) We say that a random variable N is increasing if for any two configurations ω1 and
ω2, such that ω1 ≤ ω2 we have N(ω1) ≤ N(ω2).

c) We say that an event A depends only on finitely many states if it is contained in some
finite dimensional cylinder set in A.

d) For two increasing events A1 and A2, which depend only on finitely many states, we
define the event

A1 ◦A2 := {ω ∈ Ω; there are disjoint S1, S2 ⊂ suppω, such that for any ω1, ω2 ∈ Ω

ωi|Si = 1⇒ ωi ∈ Ai, i = 1, 2} ,
where suppω := {s ∈ S;ωs = 1}.

e) For an increasing event A and ω ∈ Ω we say that s0 ∈ S is pivotal for A with respect to
ω if ω1 ∈ A and ω0 /∈ A, where ω0 and ω1 have the same values as ω on all elements of
S except on s0 where ωi has value i (i = 0, 1). The set {s0 is pivotal for the event A}
is obviously an event.

Fundamental Tools. a) For any increasing event A the function p 7→ Pp(A) is non-
decreasing.

b) For any increasing random variable N , the function p 7→ Ep(N) is non-decreasing.
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c) Russo formula
Suppose A is an increasing event which depends only on states of elements in some
finite set S′, more precisely, on ω|S′, where S′ ⊂ S is finite. Let p = (ps)s∈S′ be a
given vector, such that ps ∈ [0, 1], for all s ∈ S′. Let Pp be the product probability
measure constructed in the same way as the percolation measure before, by declaring
an s ∈ S′ to be open with probability ps. Then the function p 7→ Pp has all first partial
derivatives, which satisfy

dPp

dps
= Pp(s is pivotal for A), for any s ∈ S′.

d) FKG inequality
For any increasing events A1 and A2 we have P(A1 ∩A2) ≥ P(A1)P (A2).

e) BK inequality
For any increasing events A1 and A2, which depend only on finitely many states, we
have P(A1 ◦A2) ≤ P(A1)P(A2).

For the proofs of these Fundamental Tools and more background see Chapter 2 in [6].

Remark 8. Having these results we can easily prove some claims from the previous section.
Since the event {|Cx| =∞} is increasing, the function p 7→ Pp(|Cx| = ∞) is non-decreasing.
Similarly, the random variable |Cx| is increasing which implies that the function p 7→ Ep(|Cx|)
is non-decreasing. Using the FKG inequality one can easily show that the constants pT and
pH do not depend on the choice of the vertex x. To see this, first notice

(3) {x is connected to y} ∩ {|Cy| =∞} ⊆ {|Cx| =∞} .

Now, because G is connected, Pp(x is connected to y) > 0 and thus the FKG inequality and
(3) imply Pp(|Cy| = ∞) > 0 ⇒ Pp(|Cx| = ∞) > 0. Because of the symmetry of the role
played by x and y, pH does not depend on x. To prove the claim for pT , one decomposes

Ep(|Cx|) in the form Ep(|Cx|) =
∞∑
n=1

Pp(|Cx| ≥ n) and uses a relation similar to (3) for the

increasing event {|Cx| ≥ n}.

4. The order parameter

In this and the following section we shall work exclusively in the nearest neighbor Bernoulli
bond percolation model. The site model will be discussed in section 6.

In the remainder of the paper it will be more convenient to work with the parameter β > 0
such that p = 1 − e−β, instead with p. Assuming pH < 1 we can define βT and βH as
pT = 1 − e−βT and pH = 1 − e−βH . We will prove Theorem 2 in the context of βT and βH ,
but our proof works also in the case pH = 1 (this case corresponds to βH =∞). Also we will
abuse notation by writing Pβ for the probability measure which corresponds to percolation
with parameter p = 1− e−β, and use a similar notation for the expectation.

From now on we will assume that we are given a fixed quasi-transitive graph G. Subgraphs
of G, which we will consider, will not be required to be quasi-transitive. Moreover, we will
assume that some fundamental domain F is chosen and fixed. For each positive integer l we
define a subgraph Λl as follows. For the set of vertices of the graph Λl take

⋃
x∈F B(x, l) and

connect two vertices if and only if they are connected in the graph G.
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To prove Theorem 2, we will follow the arguments in [1]. The idea of the proof there was to
consider a so called order parameter, a function of two variables which contains information
about both Pβ(|Cx| =∞) and Eβ(|Cx|). For any vertex y we define the order parameter with
respect to y by

My : ]0,∞[2 → [0, 1], My(β, h) := 1−
∑
n∈N

Pβ(|Cy| = n)e−nh.

The order parameter M is defined as

M : ]0,∞[2→ R, M(β, h) :=
∑
x∈F

Mx(β, h).

When a finite subgraph G′ is given, we can define an analog function with respect to G′.
Namely for y in G′ we define MG′

y (β, h) := 1 −
∑
n∈N

P(|CG′y | = n)e−nh. Particularly inter-

esting for our purposes will be the finite volume order parameter, defined as MΛl(β, h) :=∑
x∈F

MΛl
x (β, h).

In the following Lemmata and Propositions we establish certain basic properties of the
order parameter.

Lemma 9. Let G′ be an arbitrary subgraph of G and y an arbitrary vertex in G′. The
following formula holds

(4) MG′
y (β, h) =

∑
n∈N

P(|CG′y | ≥ n)(e−(n−1)h − e−nh).

In particular (4) holds in the cases G′ = G and G′ = Λl.

Proof. The proof is straightforward, using P(|CG′y | ≥ n) = 1−
n−1∑
k=1

P(|CG′y | = k). �

Proposition 10. The order parameter M has the following properties.
a) M is a non-decreasing function in both variables.
b) M has a continuous partial derivative in h, and we have the formula

(5)
∂M

∂h
(β, h) =

∑
x∈F

∑
n∈N

nPβ(|Cx| = n)e−nh.

The analogous claims hold for the finite volume order parameter.

Proof. a) Since the event {|Cy| ≥ n} is an increasing event, the probability Pβ(|Cy| ≥ n)
is a non-decreasing function of β. From Lemma 9 it is clear thatM is non-decreasing in
β. On the other hand, from the definition it is clear that M is even strictly increasing
in h.

b) To prove this claim we just have to show that the series of formal partial derivatives∑
n∈N

nPβ(|Cy| = n)e−nh converges locally uniformly. But this is clear since

∑
n∈N

nPβ(|Cy| = n)e−nh ≤
∑
n∈N

ne−nh

and the latter series converges absolutely and locally uniformly.
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�

The functions M and ∂M
∂h are positive on ]0,∞[2, h 7→ M(β, h) is non-decreasing and

h 7→ ∂M
∂h (β, h) is non-increasing. The last claim is clear from the formula (5). Thus the limits

limh↓0M(β, h) and limh↓0
∂M
∂h (β, h) are well-defined with values in [0,∞[, respectively [0,∞].

The next proposition gives the probabilistic interpretation of these limits.

Proposition 11. For every β ∈]0,∞[ we have the following

(6) lim
h↓0

M(β, h) =
∑
x∈F

Pβ(|Cx| =∞), lim
h↓0

∂M

∂h
(β, h) =

∑
x∈F

Eβ(|Cx|; |Cx| <∞).

Proof. Since limh↓0 e
−nh = 1, for every n ∈ N, using the Lebesgue monotone convergence

theorem, we get lim
h↓0

Mx(β, h) = 1−
∑
n∈N

Pβ(|Cx| = n) = Pβ(|Cx| =∞). Now follows the first

equality in (6). The second one can be proved in the same manner, using formula (5). �

Thus we obtain — as indicated earlier — the functions β 7→
∑

x∈F Pβ(|Cx| = ∞) and
β 7→

∑
x∈F Eβ(|Cx|; |Cx| <∞), which we wanted to understand in the first place, as marginals

of M and ∂M
∂h . Now we give two lemmata, which will be used repeatedly in the proof of the

key inequalities presented in Propositions 17 and 18.

Lemma 12. a) Let G1 be any subgraph of G, and G2 any finite subgraph of G1, con-
taining some vertex x. For any nonnegative integer n we have

(7) P(|CG2
x | ≥ n) ≤ P(|CG1

x | ≥ n).

Moreover, MG2
x (β, h) ≤MG1

x (β, h), for all positive β and h.
b) Let y be a vertex of Λl and x be the unique element of F in the same orbit as y. For

any nonnegative integer n we have

(8) P(|CΛl
y | ≥ n) ≤ P(|Cy| ≥ n) = P(|Cx| ≥ n).

c) For any vertex x ∈ F and n ≤ l we have

(9) P(|CΛl
x | ≥ n) = P(|Cx| ≥ n).

Proof. a) Let A be an arbitrary connected subgraph of G2, containing the vertex x. The
identification from Remark 1 implies that the probabilities of the events

{
CG2
x = A

}
and {A is the component of Cx ∩G2 containing x} are equal. Similarly the probabil-
ity of the event

{
A is the component of CG1

x ∩G2 containing x
}

is equal to probabil-
ity of {A is the component of Cx ∩G2 containing x}. So we can write

P(CG2
x = A) = P(A is the component of CG1

x ∩G2 containing x).

Since the events on the right side are disjoint for different A’s, we can write

P(|CG2
x | ≥ n) =

∑
A;|A|≥n

P(CG2
x = A) =

∑
A;|A|≥n

P(A is the component of CG1
x ∩G2 containing x)

≤ P(|CG1
x ∩G2| ≥ n) ≤ P(|CG1

x | ≥ n).(10)

The last inequality follows from
{
|CG1
x ∩G2| ≥ n

}
⊂
{
|CG1
x | ≥ n

}
. The sums in (10)

are taken over all connected subgraphs of G2, which contain x and which are of size
greater or equal than n. Since G2 is a finite graph, these sums are finite. Now the
claim MG2

x (β, h) ≤MG1
x (β, h) follows directly from Lemma 9.
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b) The first inequality follows directly from part a) if we take G2 = Λl and G1 = G. The
second (in)equality follows from the fact that there is an automorphism τ such that
x = τy and that the probability measure is invariant under τ .

c) For any k < l and any connected subgraph A of Λl of size k, which contains x, the
edge set and the edge boundary of A are contained in Λl. So it is clear that for any
such A we have P(CΛl

x = A) = P(Cx = A). Taking the sum over all possible A’s,
when k is fixed, we obtain P(|CΛl

x | = k) = P(|Cx| = k). Taking the sum over k < n
and subsequently complements yields the result.

�

Lemma 13. Let y be a vertex of Λl and x the unique element of F in the same orbit as y.
Then, for all (β, h) ∈]0,∞[2, the following inequality holds

(11) MΛl
y (β, h) ≤MΛl

x (β, h) + e−lh.

Proof. Using Lemma 9 we can write
(12)

MΛl
y (β, h) =

l∑
n=1

P(|CΛl
y | ≥ n)(e−(n−1)h − e−nh) +

∑
l+1≤n<∞

P(|CΛl
y | ≥ n)(e−(n−1)h − e−nh).

Using parts b) and c) of Lemma 12 we can bound the first summand

(13)
l∑

n=1

P(|CΛl
y | ≥ n)(e−(n−1)h − e−nh) ≤

l∑
n=1

P(|Cx| ≥ n)(e−(n−1)h − e−nh)

=
l∑

n=1

P(|CΛl
x | ≥ n)(e−(n−1)h − e−nh) ≤MΛl

x (β, h).

The second summand can be easily bounded

(14)
∑

l+1≤n<∞
P(|CΛl

y | ≥ n)(e−(n−1)h − e−nh) ≤
∑

l+1≤n<∞
(e−(n−1)h − e−nh) = e−lh.

Inserting (13) and (14) into (12) we get the result. �

Remark 14. In [1], where percolation on the lattice Zd was analyzed, the finite graphs Λl where
chosen to be tori, i.e. cubes with periodic boundary conditions. This has the advantage that
percolation on the finite graphs is still homogeneous under translations. In this situation,
(11) simplifies to MΛl

y (β, h) = MΛl
x (β, h). In particular there is no finite volume correction

term e−lh.

Notice that subgraphs Λl exhaust the whole graph G as l goes to ∞. Therefore, in the
macroscopic limit l → ∞, we can expect the finite volume order parameters to behave like
the order parameter. The proof of this claim is the content of the next proposition.

Proposition 15. The finite volume order parameters MΛl and its partial derivatives ∂MΛl

∂h

converge pointwise to M and ∂M
∂h respectively, i.e. for all (β, h) ∈]0,∞[2 we have

lim
l→∞

MΛl(β, h) = M(β, h), lim
l→∞

∂MΛl

∂h
(β, h) =

∂M

∂h
(β, h).
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Proof. Fix some x ∈ F . Lemma 12 c) implies liml→∞ P(|CΛl
x | ≥ n) = P(|Cx| ≥ n), for any

positive integer n. Using Lemma 9 and the Lebesgue dominated convergence theorem we get

lim
l→∞

MΛl
x (β, h) = Mx(β, h), for all (β, h) ∈]0,∞[2,

for any x ∈ F . Taking the sum over x ∈ F we get the desired result for the order parameter.
The claim for the partial derivative is obtained in the same way using the formula

∂MΛl

∂h
=
∑
x∈F

∑
n∈N

nPβ(|CΛl
x | = n)e−nh,

which is proved in the same way as the formula for ∂M
∂h in Proposition 10 b). �

Another way of looking at the order parameter is through the idea of ”colored sites”, which
was used in the paper [1]. Fix a positive real h > 0. For every vertex y say that it is blue with
the probability 1 − e−h independently of all other vertices. The corresponding probability
space is defined similarly as the site percolation probability space before. For each vertex y
define the probability space (Ωy, P (Ωy),Py), where Ωy := {0, 1}, P (Ωy) is the power set of
Ωy and Py(1) = 1 − e−h, Py(0) = e−h. The probability space (Ω′,A′,P′h) is defined as the
product of these probability spaces. From now on, we shall actually work on the probability
space (Ω,A,Pβ) × (Ω′,A′,P′h). The probability measure will be denoted by Pβ,h, but again
we will often omit the subscript. The random set of blue sites will be denoted by B. Analog
functions can be defined on subgraphs of G, and in this case we use the same notation as
before.

The event that some vertex y is connected to some blue site with an open path will be
denoted by {y ↔ B} or by {Cy ∩B 6= ∅}, while {y = B} and {Cy ∩B = ∅} will stand for
the complement of this event. For connectedness with open edges which have end-vertices in
some given set A we will use {y ↔A B}, while for connectedness with open edges which are
also edges of some subgraph G′ = (V ′, E′) we will write {y ↔G′ B}. If V ′ is a given finite
set of vertices and A : Ω → P (V ′) a function from Ω to the power set of V ′ then {y ↔A B}
will denote the set of ω’s for which there is an open path which connects y with an element
in B and contains only vertices in A(ω). If A is such that for any subset V ′′ ⊂ V ′, the set
{A(ω) = V ′′} is an event, the set {y ↔A B} is also an event. Similar notation will be used
for random subgraphs.

The blue sites are, in some sense, identified with ”infinity”. For example, for some fixed
vertex x, the event {x↔ B} is the generalization of {|Cx| =∞}, because the open path from
x which reaches some vertex in B is considered to have escaped to infinity. Intuitively, if the
parameter h decreases to 0, the density of blue sites decreases to 0, and they ”move further
and further away” from x. So, their effect on the whole picture gets less relevant and in
the limit h ↓ 0 we should expect to return to our original percolation setting. Namely the
probability of the event {x↔ B} should converge to the probability of the event {|Cx| =∞}.
This is actually a direct consequence of Proposition 11 in view of Proposition 16. The next
proposition shows the relationship between the order parameter and blue sites.

Proposition 16. Let G′ ⊂ G be a subgraph of a quasi-transitive graph G and y some vertex
in G′. Using the above notation we have

(15) My(β, h) = Pβ,h(y ↔ B), MG′
y (β, h) = Pβ,h(y ↔G′ B).



12 T. ANTUNOVIĆ AND I. VESELIĆ

Proof. We prove the first equality in (15), while the second one can be proven in the same
way. It is enough to show

(16) P(y = B) =
∑
n∈N

P(|Cy| = n)e−nh.

For any positive integer n we have

P(|Cy| = n, y = B) =
∑

A;|A|=n

P(Cy = A,A ∩B = ∅) =
∑

A;|A|=n

P(Cy = A)P(A ∩B = ∅),

where the last equality is obtained using the independence of bond and site variables and
the sums are taken over all connected subgraphs with n vertices containing y. Obviously
P(A ∩B = ∅) = e−h|A| and so one obtains,

(17) P(|Cy| = n, y = B) = P(|Cy| = n)e−nh.

Now, we are left to estimate P(|Cy| = ∞, y = B). Define the random variable kn :=
min {m; |Cy ∩B(y,m)| ≥ n} which obviously has only finite values on the event {|Cy| =∞}.
Next we can write

(18) P(kn = m, y = B) ≤
∑
A

P(Cy ∩B(y,m) = A,A ∩B = ∅)

≤
∑
A

P(Cy ∩B(y,m) = A)e−h|A| ≤ e−hnP(kn = m),

where the sum is taken over all possible realization of Cy∩B(y,m) = A such that the condition
kn = m is fulfilled. Since

P(|Cy| =∞, y = B) ≤ P(kn <∞, y = B) =
∞∑
m=0

P(kn = m, y = B),

for all positive integers n, using (18) we obtain P(|Cy| = ∞, y = B) ≤ e−hn for all positive
integers n and thus

(19) P(|Cy| =∞, y = B) = 0.

From (17) and (19) we get (16), and hence the proof is completed. �

5. Differential inequalities for the order parameter

In the following we will prove two differential inequalities involving the order parameter
MΛl . These inequalities differ from the inequalities (3.1) and (3.2) in [1], by the additional
term e−hl. This finite volume correction appears in our situation, since for general auto-
morphism groups we cannot use “periodic” boundary conditions and thus percolation on the
finite graph Λl is no longer homogeneous. For residually finite automorphism groups it may
be possible to use periodic boundary conditions and thus eliminate the correction term e−hl.

The abovementioned differential inequalities will be crucial for the proof of Theorem 2,
because they contain essential information about the behavior of the order parameter M(β, h)
when h approaches 0. In the proof of Theorem 2 we will forget about the percolation and
probability setting, and work with these inequalities instead, using analytic methods. As for
the proof of these inequalities, we will use the notion of blue sites extensively.
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Proposition 17. There exists a constant K > 0 such that

(20)
∂MΛl

∂β
≤ K(MΛl + e−lh)

∂MΛl

∂h
, for all positive β and h.

Proof. The event {x↔Λl
B} is increasing and depends on the states of only finitely many

edges. Using the Russo formula for this event, we obtain

∂MΛl
x

∂β
=

∑
[y,z]∈Λl

e−βP([y, z] is pivotal for the event {x↔Λl
B}),

where the sum is taken over all edges [y, z] in Λl. Since P([y, z] is closed) = e−β, and the
events {[y, z] is closed} and {[y, z] is pivotal for the event {x↔Λl

B}} are independent, we
get

∂MΛl
x

∂β
=

∑
[y,z]∈Λl

P([y, z] is closed, [y, z] is pivotal for the event {x↔Λl
B}).

One should notice that

{[y, z] is closed, [y, z] is pivotal for the event {x↔Λl
B}}

= {x =Λl
B, [y, z] is pivotal for the event {x↔Λl

B}}

=
{
CΛl
x ∩B = ∅, y ∈ CΛl

x , z ↔Λl\C
Λl
x
B
}⋃{

CΛl
x ∩B = ∅, z ∈ CΛl

x , y ↔Λl\C
Λl
x
B
}
.

Here Λl\CΛl
x stands for the graph obtained by deleting the vertices in CΛl

x and all adjacent
edges of the graph Λl. Similar notation will be used often in the rest of the paper. Now we
pass from a sum over undirected edges to a sum over directed ones and write

∂MΛl
x

∂β
=

∑
(y,z)∈Λ2

l
y∼z

P(CΛl
x ∩B = ∅, y ∈ CΛl

x , z ↔Λl\C
Λl
x
B)

=
∑

(y,z)∈Λ2
l

y∼z

∑
A;y∈A

P(CΛl
x = A,A ∩B = ∅, z ↔Λl\A B),(21)

where the last sum is taken over all connected subgraphs A of Λl containing x and y. The
event

{
CΛl
x = A

}
depends only on the states of edges which have at least one end-vertex in A.

The event
{
z ↔Λl\A B

}
depends only on the states of edges which do not have end-vertices

in A and on the states of vertices outside A. Finally the event {A ∩B = ∅} depends only on
the states of vertices in A. Hence these events are independent. Using this independence and
Proposition 16, equation (21) can be rewritten as

(22)
∂MΛl

x

∂β
=

∑
(y,z)∈Λ2

l
y∼z

∑
A;y∈A

P(CΛl
x = A)MΛl\A

z e−h|A|.
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Lemmata 12 a) and 13 imply MΛl\A
z ≤MΛl

z ≤MΛl + e−lh. Inserting this into (22) we obtain

∂MΛl
x

∂β
≤ K(MΛl + e−lh)

∑
A

∑
y;y∈A

P(CΛl
x = A)e−h|A|

= K(MΛl + e−lh)
∑
A

|A|P(CΛl
x = A) e−h|A|,(23)

where the sum is taken over all possible graphs A for CΛl
x and K is the maximal vertex degree

in the graph G. Now grouping together all A’s for which |A| = n, we get

(24)
∑
A

|A|P(CΛl
x = A)e−h|A| =

∑
n∈N

nP(|CΛl
x | = n)e−nh =

∂MΛl
x

∂h
.

Inserting (24) into (23) and taking the sum over x ∈ F we have proven the proposition. �

Proposition 18. The finite volume order parameter satisfies the following inequality

(25) MΛl ≤ h∂M
Λl

∂h
+
(
MΛl

)2 + β(MΛl + e−lh)
∂MΛl

∂β
, for all positive β and h.

Proof. In the proof of this part and especially in summations, A will denote vertex sets.
To prove this part we have to change both our graph and probability space. Let n be an
arbitrary, but fixed positive integer. For every pair of adjacent vertices y ∼ z in Λl we replace
the edge [y, z] with n edges which will be denoted by [y, z]1, [y, z]2, . . . [y, z]n. In this way
we obtain a new graph G′n. We shall consider bond percolation on the graph G′n, and so
we define the canonical percolation product probability space in the usual way. A cluster
containing some vertex x will be denoted by C

G′n
x and its vertex set by V

G′n
x . Notice that,

for percolation on Λl with percolation parameter 1 − e−β and for percolation on G′n with
percolation parameter 1 − e−β/n, the probabilities that two adjacent vertices are directly
connected in the percolation graph are the same. This implies the fact that the probability
of the event

{
V
G′n
x = A

}
in the new probability space is equal to the probability of the event{

V Λl
x = A

}
in the old probability space, for all possible sets of vertices A, if the parameter

is changed from β to β/n. Here V Λl
x stands for the vertex set of CΛl

x . Next we define a
graph Gn, which will contain G′n as a subgraph, by adding to G′n a new vertex b, which
will be connected to each of the vertices of G′n with exactly n edges. The role of the blue
sites will be played by the edges adjacent to b. So, to addition to the percolation on G′n,
we do the following. We fix h′ > 0 and for every edge adjacent to b we say that it is open
with probability 1 − e−h

′
, independently of the states of all other edges in the graph Gn.

Notice that the events that some vertex is blue, in the old probability space, and that some
vertex is directly connected to b, in the new probability space, have the same probabilities, if
h′ = h/n holds for the respective parameters. This implies that the probabilities of the events
{x↔Λl

B} and {x↔Gn b} are the same if both parameters β and h are divided by n. We
will abbreviate the notation for the event {x↔Gn b} by writing simply by {x↔ b}. So from
now on we will assume that β and h are fixed and we shall work in the new probability space
with parameters β/n and h/n, and we will keep in mind that the probabilities of the events
mentioned above remain unchanged. The probability measure will still be denoted with P.
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We define the sets Fi, i = 1, 2, 3, as follows:

F1 :=
{

There is a unique open edge of Gn which connects some vertex of CG
′
n

x with b
}
,

F2 := {x↔ b} ◦ {x↔ b} = {There are two edge disjoint paths from x to b} ,

F3 :=
⋃

(y,z)∈Λ2
l

y∼z

n⋃
i=1

{[y, z]i is open and pivotal for {x↔ b} ,

{
z ↔Gn\[y,z]i b

}
◦
{
z ↔Gn\[y,z]i b

}}
,

where Gn\[y, z]i denotes the graph obtained from Gn by deleting the edge [y, z]i. It is easy
to see that these sets are events. Lemma 3.5 from [1] implies that {x↔ b} is a disjoint union
of Fi’s and so MΛl

x = P(x↔ b) = P(F1) + P(F2) + P(F3).
The probability P(F1) can be easily bounded from above

P(F1) =
∑
A

P(V G′n
x = A,A is directly connected to b with a unique open edge)

=
∑
A

P(V G′n
x = A)P(A is directly connected to b with a unique open edge)

=
∑
A

P(V Λl
x = A)n|A|(1− e−h/n)e−(|A|−1/n)h

= n(eh/n − 1)
∑
A

|A|P(V Λl
x = A)e−|A|h

= n(eh/n − 1)
∂MΛl

x

∂h
.(26)

Here the sums are taken over all possible realizations A of the set of vertices V G′n
x . The second

equality follows from the independence of the bond variables in G′n and bond variables which
correspond to edges adjacent to b. The last equality follows from (24).

The probability of the event F2 is easily bounded from above using the BK-inequality

(27) P(F2) ≤ P(x↔ b)2 = (MΛl
x )2.

Now we bound the probability of the event F3. Let CG
′
n\[y,z]i

x be the cluster in the graph
G′n\[y, z]i, containing x and V

G′n\[y,z]i
x its vertex set. The event F3 can be partitioned with

respect to realizations of V G′n\[y,z]i
x . For a given set of vertices A we write

{
A

d↔ b
}

for the

event that an edge between b and some vertex in A is open, and
{
A 6 d↔ b

}
for the complement

of this event. We obtain

F3 =
⋃

(y,z)∈Λ2
l

y∼z

n⋃
i=1

⋃
A;y∈A

{
V G′n\[y,z]i
x = A, [y, z]i is open, A 6 d↔ b,

{
z ↔Gn\A b

}
◦
{
z ↔Gn\A b

}}
.

The union is taken over all possible realizations A of the set of vertices V G′n\[y,z]i
x . Here

Gn\A stands for the set of vertices of the graph Gn which are not elements of A. The event{
V
G′n\[y,z]i
x = A

}
depends only on the states of edges of G′n which have at least one endpoint

in A, but not on [y, z]i. The event
{
A

d↔ b
}

depends on the state of edges between b and the
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vertices in A. Finally, the event
{
z ↔Gn\A b

}
◦
{
z ↔Gn\A b

}
depends only on the state of

edges of Gn which have no endpoints in A. So we see that these events are independent and
also independent of the event {[y, z]i is open}. Using this independence and the trivial fact
P([y, z]i is open) = (eβ/n − 1)P([y, z]i is closed), we get

(28) P(F3) ≤ (eβ/n − 1)
∑

(y,z)∈Λ2
l

y∼z

n∑
i=1

∑
A;y∈A

P(V G′n\[y,z]i
x = A)P([y, z]i is closed)

P
( {
z ↔Gn\A b

}
◦
{
z ↔Gn\A b

} )
P(A 6 d↔ b).

Notice that the BK inequality, Lemma 12 a) and Lemma 13 imply

(29) P
( {
z ↔Gn\A b

}
◦
{
z ↔Gn\A b

} )
≤ P(z ↔Gn\A b)

2 ≤ P(z ↔Gn\A b)(M
Λl(β, h) + e−lh).

Inserting (29) into (28) and using the independence again we obtain

(30) P(F3) ≤ (eβ/n − 1)(MΛl + e−lh)∑
(y,z)∈Λ2

l

n∑
i=1

∑
A;y∈A

P(V G′n\[y,z]i
x = A, [y, z]i is closed)P(A 6 d↔ b)P(z ↔Gn\A b).

In the last sum there are no contributions from A’s which contain z, because, for such A’s,
the set

{
z ↔Gn\A b

}
is empty. So we can take the sum over all possible realizations A of

V
G′n\[y,z]i
x which contain y but not z. For such A’s it is clear that{

V G′n\[y,z]i
x = A, [y, z]i is closed

}
=
{
V G′n
x = A

}
.

So (30) can be written in the form

P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∑

(y,z)∈Λ2
l

y∼z

∑
A;y∈A

P(V G′n
x = A)P(A 6 d↔ b)P(z ↔Gn\A b).

The events
{
V
G′n
x = A

}
,
{
A 6 d↔ b

}
and

{
z ↔Gn\A b

}
have the same probabilities as the events{

V Λl
x = A

}
, {A ∩B = ∅} and

{
z ↔Λl\A B

}
respectively. Since the latter events are indepen-

dent, we can write

P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∑

(y,z)∈Λ2
l

y∼z

∑
A;y∈A

P(V Λl
x = A,A ∩B = ∅, z ↔Λl\A B).

Using (21), we obtain

(31) P(F3) ≤ n(eβ/n − 1)(MΛl + e−lh)
∂MΛl

x

∂β
.

Summing (26), (27) and (31) we get

MΛl
x ≤ n(eh/n − 1)

∂MΛl
x

∂h
+ (MΛl

x )2 + n(eβ/n − 1)(MΛl + e−lh)
∂MΛl

x

∂β
.

For fixed β and h let n go to ∞ and obtain

(32) MΛl
x ≤ h

∂MΛl
x

∂h
+ (MΛl

x )2 + β(MΛl + e−lh)
∂MΛl

x

∂β
.
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Sum (32) over x ∈ F , use the fact
∑
x∈F

(MΛl
x )2 ≤ (

∑
x∈F

MΛl
x )2 and (25) is proved. �

6. Site model

In this part we shall explain how to obtain inequalities similar to those in (20) and (25), in
the case of the site model. In the next section we shall use this inequalities to prove Theorem
2. We will follow the arguments from the bond model and explain modifications necessary
to proceed in the site case. In the following, just like before, G will always denote a quasi-
transitive graph. Throughout the section, G′ will denote the subgraph induced by the set of
vertices which lie in the subgraph G′ or have a neighbor in G′.

First we shall slightly change the notion of the cluster. We shall adopt the definitions from
Section 7 in [1]. Let G be an arbitrary quasi-transitive graph, x an arbitrary element of G
and ω an arbitrary site configuration. We define the modified cluster C̃x(ω) as the subgraph
of G induced by the following set of vetrices:

x ∪ {y; there is a path from x to y including only open sites and x} .

The distribution of the random variable |C̃x| will clearly change. However the probabilities
P(|C̃x| = n), n ∈ N ∪ {∞} will be proportional to P(|Cx| = n), n ∈ N ∪ {∞}. Therefore the
critical values pH and pT will remain the same and the property of exponential decay below
pH will be preserved.
For any finite subgraph G′, the cluster C̃G

′
x (ω) will be defined accordingly. Since the state of

the site variable at some vertex x is irrelevant for the properties of the cluster at x, we shall
actually define the cluster C̃G

′
x (ω) for all vertices x and all subgraphs G′ such that x ∈ G′.

Note that the relation ”x lies in the cluster of y” is not symmetric anymore and thus
clusters can no longer be represented as connected components of some percolation subgraph.

The functions My, M and their finite volume counterparts will be defined in the same way
as before, where one just replaces Cx by C̃x. Note that for these definitions as well as for
Lemma 9, and Propositions 10 and 11 one only needs to define the notion of cluster, while
the underlying model is completely irrelevant. This is why these results transfer directly to
the site percolation setting. Lemma 12 holds in the site model as well and the proof remains
practically the same. This also holds for Lemma 13 and Proposition 15. The notion of blue
sites is introduced in the same way as in section 4. Similarly as above, the state of the site
variable at some vertex x is irrelevant for the connectedness to any other vertex and so by
x ↔G′ B we will denote the event that x is connected to some blue variable by a path in
which all vertices, except maybe x, lie in a subgraph G′. Proposition 16 remains unchanged
in the site setting.

Now we establish differential inequalities for the site model. In the proofs one has to be
careful not to mix two types of site variables, those which correspond to the percolation
process and those which correspond to blue sites. In particular, pivotality will refer only to
percolation variables. Similarly as before Λl\G′ will denote the subgraph of Λl obtained by
deleting all vertices in G′ and all edges which are adjacent to some vertex in G′.

The formula in Proposition 17 remains the same in the site percolation setting.

Proposition 19. There exists a constant K > 0 such that

(33)
∂MΛl

∂β
≤ K(MΛl + e−lh)

∂MΛl

∂h
, for all positive β and h.
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Proof. The proof is analogous to the proof of Proposition 17. Using the Russo formula one
obtains

∂MΛl
x

∂β
=
∑
y∈Λl

P(y is closed, y is pivotal for the event {x↔Λl
B}).

We notice that

{y is closed, y is pivotal for the event {x↔Λl
B}}

=
{
C̃Λl
x ∩B = ∅, y ∈ C̃Λl

x , y ↔
Λl\ eCΛl

x

B

}
.

Now using independence and presenting the above events as unions over possible realizations
of C̃Λl

x we obtain by means of the site version of Proposition 16

(34)
∂MΛl

x

∂β
=
∑
y∈Λl

∑
A⊂Λl

y∈A\A

P(C̃Λl
x = A)MΛl\A

y e−h|A|.

Using the site versions of Lemmata 12 a) and 13 we get

∂MΛl
x

∂β
≤ (MΛl + e−lh)

∑
A⊂Λl

|A\A|P(C̃Λl
x = A)e−h|A|

≤ K(MΛl + e−lh)
∑
A⊂Λl

|A|P(C̃Λl
x = A) e−h|A|

= K(MΛl + e−lh)
∂MΛl

x

∂h
,(35)

where K is again the maximal vertex degree in G. The last equality in (35) is proven just
like its bond analogue (see (23)). �

In Proposition 18 we will modify one term on the left hand side. This is due to the fact
that we will not change the graph Λl so dramatically as in the proof of Proposition 18.

Proposition 20. The finite volume order parameter satisfies the following inequality

(36) MΛl ≤ h∂M
Λl

∂h
+
(
MΛl

)2 + (eβ − 1)(MΛl + e−lh)
∂MΛl

∂β
, for all positive β and h.

Proof. As in the proof of Proposition 18 we will change both our graph and probability space.
Rather than considering the probability space of blue sites we shall add a new vertex b to
the graph Λl. This vertex will be connected to each vertex in Λl by exactly n edges. Notice
that the new graph, which will be denoted by Gn, contains Λl as a subgraph. We shall
now consider a mixed site-bond percolation model in which each vertex of Λl is open with
probability 1− e−β and in which each bond adjacent to b is open with probability 1− e−h/n.
Again we shall compare this process with the usual percolation model with blue sites which
are generated on each vertex with probability 1 − e−h. For the relation between these two
processes see the discussion at the beginning of the proof of Proposition 18. The event
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{x↔Gn b} can be partitioned into following disjoint events:

F1 :=
{

There is a unique open edge which connects some vertex of C̃Λl
x with b

}
,

F2 := {x↔Gn b} ◦ {x↔Gn b}
= {There are two paths from x to b, which have no common vertices other than x and b} ,

F3 :=
⋃
y∈Λl

{
y ∈ C̃Λl

x is open and pivotal for {x↔Gn b} , {y ↔Gn b} ◦ {y ↔Gn b}
}
,

The probability of the first event can be calculated in the same way as in the bond case. We
obtain:

(37) P(F1) = n(eh/n − 1)
∂MΛl

x

∂h
.

Since P(x↔Gn b) = P(x↔Λl
B), the BK inequality implies

(38) P(F2) ≤ P(x↔Gn b)
2 = (MΛl

x )2.

The last event can be rewritten as

F3 =
⋃
y∈Λl

⋃
A;y∈A\A

{
C̃Λl\{y}
x = A,A 6 d↔ b, y open ,

{
y ↔Gn\A b

}
◦
{
y ↔Gn\A b

}}
,

where the second union is taken over all possible realizations A of C̃Λl\{y}
x , for which y ∈ A\A

(note that A is defined as the closure of A in Λl). Considering the above formula and using
independence we obtain

P(F3) ≤ (eβ − 1)
∑
y∈Λl

∑
A;y∈A\A

P(C̃Λl\{y}
x = A, y is closed)P

({
y ↔Gn\A b

}
◦
{
y ↔Gn\A b

})
P(A 6 d↔ b)

(39)

≤ (eβ − 1)(MΛl + e−lh)
∑
y∈Λl

∑
A;y∈A\A

P(C̃Λl
x = A)MΛl\A

y e−h|A|

= (eβ − 1)(MΛl + e−lh)
∂MΛl

x

∂β

In the second inequality we used the BK inequality and the site versions of Lemma 12 a),
Lemma 13 and Proposition 16 in the same way as in the proof of Proposition 18. In the last
equality we used (34). Now the result follows after taking the sum of (37), (38) and (39) and
letting n tend to ∞.

�

7. Completion of the proof of Theorem 2

In this section we will complete the proof of our main result, using the differential inequal-
ities (20) and (25).

The next result will be useful in the proof of Lemma 22. It is a special case of Lemma 4.1
in [1].

Lemma 21. Let M : R+ → R be an increasing differentiable function of h obeying

lim
h↓0

M(h) = 0, lim
h↓0

M(h)
h

=∞ and M ≤ hdM
dh

+M2 + kM2dM

dh
, for all h > 0,
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for some positive constant k. Then there exists a constant c > 0 such that for all h > 0 small
enough we have

M(h) ≥ c
√
h.

Lemma 22 and Proposition 23 are the final steps of the proof of Theorem 2. They cor-
respond to Theorem 4.2 and Lemma 5.1 from [1]. We just need some adjustments in the
proof of Proposition 23 because of somewhat different differential inequalities. As an aside
we obtain an upper bound on the critical exponent defined as

(40) δ := lim inf
h↓0

lnh
M(βT , h)

.

Lemma 22. There is a constant c > 0, such that for h > 0 small enough

(41) M(βT , h) ≥ c
√
h.

In particular, the critical exponent (40) obeys δ ≥ 2.

Proof. First notice that M satisfies the following differential inequality

(42) M(β, h) ≤ h∂M
∂h

(β, h) +M2(β, h) +KβM2(β, h)
∂M

∂h
(β, h),

in the bond case, respectively

(43) M(β, h) ≤ h∂M
∂h

(β, h) +M2(β, h) +K(eβ − 1)M2(β, h)
∂M

∂h
(β, h),

in the site case. These inequalities can be proven by inserting (20) into (25) in the bond case
(or inserting (33) into (36) in the site case) and letting l go to ∞. If limh↓0M(βT , h) > 0
there is nothing to prove. Suppose limh↓0M(βT , h) = 0. This implies by Proposition 11 that
PβT

(|Cx| =∞) = 0, for all vertices x and

lim
h↓0

∂M

∂h
(βT , h) =

∑
x∈F

EβT
(|Cx|; |Cx| <∞) =

∑
x∈F

EβT
(|Cx|) =∞,

by Proposition 5. Now the Mean Value Theorem implies

(44) lim
h↓0

M(βT , h)
h

=∞.

In view of (42) (respectively (43) in the site case) and (44), the claim follows directly from
Lemma 21. �

Except for having to control the term e−hl in (33) and (36), the proof of the next proposition
is the same as the proof of Lemma 5.1 in [1].

Proposition 23. For any β′ > βT we can find a positive constant d > 0 such that

(45) lim
h↓0

M(β, h) ≥ d(β − βT )

holds for every β ∈ [βT , β′].
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Proof. Let’s consider the bond case first. Change the variables (β, h) to (β, lnh), i.e. define

u := lnh and M̃Λl(β, u) = MΛl(β, h). Now
∂ ln M̃Λl

∂u
(β, u) =

h

MΛl(β, h)
∂MΛl

∂h
(β, h) and so

(25) can be rewritten as

(46) 1 ≤ ∂ ln M̃Λl

∂u
(β, u) + M̃Λl(β, u) + β

(
1 +

e−le
u

M̃Λl(β, u)

)∂M̃Λl

∂β
(β, u),

for every u ∈ R. Now fix some 0 < h1 < h2, define u1 := lnh1 and u2 := lnh2 and integrate
(46) over the rectangle [βT , β1] × [u1, u2], where β1 is an arbitrary real number between βT
and β′. Using the fact that M̃Λl is increasing in both β and u and switching back to h, we
get

(β1 − βT ) ln
h2

h1
≤ (β1 − βT ) ln

MΛl(β1, h2)
MΛl(βT , h1)

+ (β1 − βT ) ln
h2

h1
MΛl(β1, h2)

+ β′ ln
h2

h1

(
1 +

e−lh1

MΛl(βT , h1)

)
(MΛl(β1, h2)−MΛl(βT , h1)).

Let l go to ∞ and obtain

(47) β1 − βT ≤ (β1 − βT )
ln M(β1,h2)

M(βT ,h1)

ln h2
h1

+ (β1 − βT )M(β1, h2) + β′(M(β1, h2)−M(βT , h1)).

Now notice

(48)
ln M(β1,h2)

M(βT ,h1)

ln h2
h1

=
lnM(β1, h2)− lnM(βT , h1)

lnh2 − lnh1
=

lnM(β1,h2)
lnh1

− lnM(βT ,h1)
lnh1

lnh2
lnh1
− 1

.

Using Lemma 22 and (48) we get

(49) lim sup
h1↓0

ln M(β1,h2)
M(βT ,h1)

ln h2
h1

≤ 1
2
.

Inserting (49) to (47) and letting h1 ↓ 0 leads to
1
2

(β1 − βT ) ≤M(β1, h2)(β1 − βT + β′)− β′ lim
h1↓0

M(βT , h1) ≤ (2β′ − βT )M(β1, h2).

Let h2 ↓ 0 and the proof is over.
In the site model we start by changing the variables (β, h) to (p, u) := (1 − e−β, lnh)

(i.e. now we define M̃Λl : ]0, 1[×R→ R such that M̃Λl(p, u) := MΛl(β, h)). Now (36) can be
rewritten as

(50) 1 ≤ ∂ ln M̃Λl

∂u
(p, u) + M̃Λl(p, u) + p

(
1 +

e−le
u

M̃Λl(p, u)

)∂M̃Λl

∂p
(p, u).

This inequality replaces (46) but has the same form. Thus the proof continues the same way
as in the bond case after making the transformations βT 7→ pT := 1 − e−βT and β′ 7→ p′ :=
1− e−β′ . �

Proof of Theorem 2. Proposition 23 tells us that limh↓0M(β, h) is positive as soon as β > βT .
In the view of Proposition 11 this proves the main result. �
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8. Extension of results to general bond models

In this section we will explain how the methods presented above can be applied to more
general bond percolation models on quasi-transitive graphs. The model we present here is
the partially oriented long-range model which was considered in [1] for the lattice case.

Assume that G = (V,E) is again a quasi-transitive graph, with some fixed fundamental
domain F . Now make the graph complete, that is connect each pair of vertices {x, y} with
an unoriented edge [x, y]. Moreover connect x and y with two oriented edges [x, y〉 (oriented
from x to y) and [y, x〉 (oriented from y to x). The distance function on the vertices is the
one inherited from the graph G. Thus it makes sense to define the length of an edge as
the distance (in G) between its endvertices. Paths in our graph can contain both oriented
and unoriented edges, but the orientation of oriented edges must be in accordance with the
orientation of the considered path.

On the complete graph the usual nearest neighbor bond percolation is uninteresting, be-
cause any parameter p > 0 will correspond to the supercritical phase. To avoid this triviality,
one has to introduce certain damping of the probabilities that x and y are connected, as
the distance between x and y goes to infinity. This is done by introducing for each pair of
vertices (x, y) two positive parameters J[x,y] and J[x,y〉. The unoriented edge [x, y] will be
open with probability 1− e−βJ[x,y] and the oriented edge [x, y〉 will be open with probability
1 − e−βJ[x,y〉 . Of course, we assume that all these events are mutually independent and thus
the product probability space can be constructed similarly as before. The structure of the
quasi-transitive graph G is reflected through the invariance of the parameters J : we assume
that the parameters J are invariant under the automorphisms of the graph G. In other words
J[γx,γy] = J[x,y] and J[γx,γy〉 = J[x,y〉, for all γ ∈ Aut(G) and all vertices x and y. Next we
define Jx :=

∑
y∈V (J[x,y] + J[x,y〉). To avoid the triviality mentioned above, we will assume

that

(51) J0 := sup
x∈V

Jx = max
x∈F

Jx <∞.

Without this assumption some vertices would be directly connected with infinitely many other
vertices almost surely.

The subgraphs Λl are also defined similarly as before using the distance function of the
original graph G. The vertex set remains unchanged, but for the set of edges we take all
possible oriented and unoriented edges between pairs of vertices contained in Λl. Percolation
on the graph Λl inherits the probabilities for edges to be open from the percolation on the
whole graph.

Since the graph contains oriented edges, the relation ”being connected in a percolation
subgraph” defined on the set of vertices is not symmetric any more and thus the notion of
the connected components is now meaningless. However, the percolation cluster containing
some vertex x can be defined in a natural way, as the graph Cx(ω) for which the vertex set is
the set of all vertices which can be reached from x by an open path. The edge set is defined
as the set of all open edges between vertices of Cx(ω). A percolation cluster CΛl

x (ω) in Λl is
defined similarly. Using this new definition of clusters, the order parameter M and the finite
volume order parameter MΛl can be defined in the same way as before. The probabilistic
interpretation with colored sites is also applicable just as before, since Proposition 16 is true
in this setting, too.
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The critical parameters βT and βH are defined in the same way as before. In the nearest
neighbor model, the fact that these values are well defined relied on the Fundamental Tools
presented in Section 3. Both Definition 7 and the Fundamental Tools can be generalized to
the present model in a natural way. These results are scattered in the literature. For example,
a general Russo inequality can be found in [14] and a general BK inequality can be found in
[15]. For more explanations, one can also look at the arguments in [1] regarding this general
model. Just as before, these generalizations imply the fact that the critical parameters are well
defined. The generalizations of the Fundamental Tools also ensure that the basic properties
of the order parameter remain valid in the new model. Lemma 9 and Propositions 10 and
11 are still valid in the new setting. One can easily convince oneself that this is also true for
parts a) and b) of Lemma 12. However, we need to be more careful with part c). Rather
than the equality stated in this part, in the general model we obtain an inequality formulated
in Lemma 24 below. This inequality will be used in Lemma 25 which replaces Lemma 13.
Under the same assumptions as in Lemma 13, Lemma 25 gives the following inequality

(52) MΛl
y (β, h) ≤MΛl

x (β, h) + fl(β, h),

where (fl)l∈N is some sequence of positive continuous functions which converges to zero locally
uniformly for l → ∞. Notice that this bound is sufficient to prove differential inequalities
similar to those in (20) and (25). Namely, one obtains the following differential inequalities

∂MΛl

∂β
≤ K(MΛl + fl)

∂MΛl

∂h
, and(53)

MΛl ≤ h∂M
Λl

∂h
+
(
MΛl

)2 + β(MΛl + fl)
∂MΛl

∂β
.(54)

These inequalities are sufficient to conclude the equality of the critical values βH = βT . More
precisely, the proof of Lemma 22 extends to our new setting. For this we use the fact that
Proposition 5 is also true in this general model (this also follows from the proof of Lemma 3.1
in [2]). Proposition 23 still gives the main result, since its proof does not require any special
form of the functions (fl), but only the fact, that they decay locally uniformly for l→∞.

Now we state the mentioned inequality which replaces part c) of Lemma 12.

Lemma 24. There exists a nondecreasing sequence of positive integers (nl)l∈N, which con-
verges to infinity and a sequence of positive continuous functions (gl)l∈N, gl : ]0,∞[→ R which
converges to zero locally uniformly for l→∞, such that the following inequality holds for any
x ∈ F , any l ∈ N, and any positive integer 1 ≤ k ≤ nl
(55) P(|Cx| ≥ k) ≤ P(|CΛl

x | ≥ k) + gl(β), for all β ∈]0,∞[.

Proof. We follow the arguments in the proof of Lemma A.3 from [1]. For any positive real r
define

Jr := max
x∈F

∑
y∈V

d(x,y)≥r

(J[x,y] + J[x,y〉).

Since J0 is finite, limr→∞ Jr = 0. In the following we will use the identification from
Remark 1 in our new setting. We have to estimate P(|Cx| ≥ k, |CΛl

x | < k). For any
ω ∈

{
|Cx| ≥ k, |CΛl

x | < k
}

there exists a path consisting of at most k edges which connects
some x with some vertex outside Λl. This path connects two vertices which are at distance
greater or equal to l. Thus there has to be an edge in this path which has length greater or
equal to l/k. To reach this edge we have to make j steps in the path, for some j such that
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0 ≤ j ≤ k − 1. The probability that there exists an open edge of length greater or equal
than l/k, which can be reached from x by an open open path of length j can be bounded
above by βJl/k (βJ0)j . Here we used the inequality 1 − e−t ≤ t for any positive t. So from
the arguments above we deduce that

(56) P(|Cx| ≥ k, |CΛl
x | < k) ≤ βJl/k

k∑
j=1

(βJ0)j−1.

For any positive integer n define Kn := n
n∑
k=1

(nJ0)k−1. Since limr→∞ Jr = 0, we can find an

increasing sequence of positive integers Ln such that

(57) lim
n→∞

JLn/nKn = 0.

Now define nl := max {n;Ln ≤ l} and gl(β) := βJl/nl

nl∑
k=1

(βJ0)k−1. From (57) it is clear that

liml→∞ gl(β) = 0 locally uniformly on R+. The other claimed properties of the sequences
(nl)l and (gl)l are obvious. Using (56) and the fact that r 7→ Jr is a non-increasing function
we obtain P(|Cx| ≥ k, |CΛl

x | < k) ≤ gl(β). This proves the lemma. �

Using the previous result and part a) of Lemma 12 which, as we said, still holds in our new
setting, one easily obtains liml→∞ P(|CΛl

x | ≥ k) = P(|Cx| ≥ k). This can be used to prove the
pointwise convergence of the finite volume order parameter to the order parameter and the
same claim for the partial derivative in h, that is Proposition 15.

Using Lemma 24 one can easily obtain an inequality as in (52).

Lemma 25. Let y be a vertex of Λl and x be the unique element of F in the same orbit as
y. Then there exists a sequence of positive continuous functions (fl)l∈N, converging locally
uniformly to 0 for l→∞, such that the following inequality holds

(58) MΛl
y (β, h) ≤MΛl

x (β, h) + fl(β, h), for all (β, h) ∈]0,∞[2.

Proof. Using a similar decomposition as in the proof of Lemma 13, and then Lemma 24 and
Lemma 9 we get

MΛl
y (β, h) =

nl∑
k=1

P(|CΛl
y | ≥ k)(e−(k−1)h − e−kh) +

∑
nl+1≤k<∞

P(|CΛl
y | ≥ k)(e−(k−1)h − e−kh)

≤
nl∑
k=1

P(|CΛl
x | ≥ k)(e−(k−1)h − e−kh) +

nl∑
k=1

gl(β)(e−(k−1)h − e−kh) + e−nlh

≤MΛl
x (β, h) + gl(β) + e−nlh.(59)

Since (nl)l converges to infinity, the claim of the lemma is proven. �
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