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es, NTNU, NO-7491 Trondheim, Norway.email: David.Cohen, Brynjulf.Owren, Xavier.Raynaud�math.ntnu.noThe Camassa-Holm partial di�erential equation is ri
h in geometri
 stru
-ture, it is 
ompletely integrable, bi-Hamiltonian, and it represents geodesi
sfor a 
ertain metri
 in the group of di�eomorphism. Here two new multi-symple
ti
 formulations for the Camassa-Holm equation are presented, andthe asso
iated lo
al 
onservation laws are shown to 
orrespond to 
ertainwell-known Hamiltonian fun
tionals. The multi-symple
ti
 dis
retisation ofea
h formulation is exempli�ed by means of the Euler box s
heme. Numeri
alexperiments show that the s
hemes have good 
onservative properties, andone of them is designed to handle the 
onservative 
ontinuation of peakon-antipeakon 
ollisions.1 Introdu
tionThe aim of this paper is to study multi-symple
ti
 algorithms for the numeri
al integra-tion of the Camassa�Holm equation [6, 7℄

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0, u|t=0 = u0. (1)This partial di�erential equation has re
eived 
onsiderable attention during the lastde
ade. It is known to be ri
h on geometri
 stru
ture and it supports non-smoothtraveling wave solutions. Thus, it seems natural to apply s
hemes whi
h are knownto retain at least some of these stru
tures. We shall here be 
on
erned in parti
ular withthe property of multi-symple
ti
ity and investigate to whi
h extent a simple numeri
als
heme with a similar property o�er a worthwhile alternative to other known methodsfor this problem. In parti
ular we are interested in understanding how the 
hoi
e of amulti-symple
ti
 formulation 
an be used as a guide for a
hieving the near-
onservationof designated invariants. 1



We begin by reviewing 
ertain important properties of the Camassa-Holm equation.The equation models propagation of unidire
tional gravitational waves in a shallow waterapproximation, with u representing the �uid velo
ity, see [6, 28℄. The Camassa-Holmequation also has appli
ations in 
omputational anatomy, see [36℄ and [27℄. Equation (1)
an be rewritten in an equivalent manner as the following system
ut + uux + Px = 0, (2a)
P − Pxx = u2 +

1

2
u2

x. (2b)The Camassa�Holm equation 
an be derived from a least a
tion prin
iple and it 
orre-sponds to the geodesi
 equation in the group of di�eomorphism with respe
t to a givenright-invariant metri
, see [17, 18℄. The equation has a bi-Hamiltonian stru
ture [21℄ andis 
ompletely integrable [13℄. It has in�nitely many 
onserved quantities, see, e.g., [32℄.In parti
ular, for smooth solutions the quantities
∫

udx,

∫

(u2 + u2
x)dx,

∫

(u3 + uu2
x)dx (3)are all time independent (in this paper, we will not write the integration domain, whatis important is that the boundary terms vanish when integrating by parts).The Camassa-Holm equation also possesses solutions of a soliton type, whi
h, be
auseof their shape, have been given the name of peakons. In the 
ase of the real line, a singlepeakon is given by

u(x, t) = c e−|x−ct|,thus, the traveling speed c is proportional to the height of the peak. In the periodi
 
asewith period a, the periodized version of this single peakon is
u(x, t) = c

cosh(d(x − ct) − a
2 )

cosh(a
2 )where d(x) = min

k∈Z

|x − ka|. For initial time t = 0, the previous expression simpli�es to
u(x, 0) = c

cosh(x − a
2 )

cosh(a
2 )

.By taking a linear 
ombination of peakons one obtains what is 
alled a multipeakonsolution. In the 
ase of the real line, the multipeakons have the following form
u(x, t) =

n
∑

i=1

pi(t) e−|x−qi(t)| (4)where pi and qi are solutions of the Hamiltonian system
q̇i =

∂H

∂pi
, ṗi = −

∂H

∂qi
, (5)2



0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

t = 2t
∗

t = 0

t = t
∗ − 0.4

t = t
∗ − 0.2

t = t
∗ − 0.8

Figure 1: Symmetri
 peakon-antipeakon 
ollision.with a Hamiltonian fun
tion H(p, q) = 1
2

∑n
i,j=1 pi pj e−|qi−qj |. At the peaks, the deriva-tive is dis
ontinuous and the multipeakons 
an only be solutions of (1) in a weak sense,see, e.g. [23℄, for more details on the derivation of (5).When the initial data u0 is smooth enough, that is, u0 ∈ Hs(R) for s > 3

2 , the Cau
hyproblem for the Camassa�Holm equation is well-posed lo
ally in time, see [16℄ and [33, 38℄for the non-periodi
 
ase. For initial data u0 ∈ H1(R) whi
h satis�es the 
ondition that
u0 − u0,xx is a positive Radon measure, the solutions exist globally in time and areunique, see [19℄. However, in the general 
ase, solutions may blow up and they do it inthe following manner. Let T be the time where a smooth solution eventually loses itsregularity, i.e., limt→T ‖u(·, t)‖Hs = ∞ for all s > 1. Then,

lim
t→T

inf
x∈R

ux(x, t) = −∞.There appears a point where the pro�le of u steepens gradually and ultimately the slopebe
omes verti
al. In the 
ontext of water waves, this 
orresponds to the breaking of awave. This fa
t was already noted in the seminal papers of Camassa and Holm ([6, 7℄)and was subsequently proved by Constantin and Es
her ([14, 15℄). After blow-up, thesolution is no longer unique and the Camassa�Holm is indeed not well-posed globallyin time. A good illustration of what is happening is given by the symmetri
 peakon-antipeakon 
ase where two peakons whi
h travel in opposite dire
tions and 
ollide. Sin
ethe peakons have exa
tly opposite height, the solution at the time of 
ollision, t∗, will beidenti
ally zero, see Figure 1.After the time of 
ollision, there exist two 
onsistent ways to prolong the solutions:The �rst one is to let u(x, t) vanish identi
ally for t > t∗, and the other one is to let thepeakon and antipeakon �pass through� ea
h other in a way whi
h is 
onsistent with theCamassa�Holm equation. In the �rst 
ase the energy ∫

(u2 + u2
x)dx de
reases to zero at3



t∗, while in the se
ond 
ase, the energy remains 
onstant ex
ept at t∗. The �rst solution is
alled a dissipative solution and the se
ond one a 
onservative solution. Global dissipativesolutions are studied in [11, 10, 40, 41, 3℄ and will not be 
onsidered in this arti
le. It is
lear that in order to obtain a 
onservative solution from the zero state that the solutionhas rea
hed at 
ollision, we will need extra information. This information is providedby the energy density (u2 + u2
x)dx. In the 
ase of the antisymmetri
 peakon-antipeakon
ollision the density energy (u2 +u2

x)dx tends to a Dira
 measure lo
ated at the point of
ollision and whose magnitude depends on the total energy of the solution, see [25℄ fordetailed 
omputations. A semigroup of global 
onservative 
ollisions has been obtainedin [2℄ and [24℄ via a 
hange of 
oordinates. In [24℄, Lagrangian variables are used andthe key point in the argument 
omes from the fa
t that the energy density satis�es thefollowing transport equation
(u2 + u2

x)t + (u(u2 + u2
x))x = (u3 − 2Pu)x (6)where P is given by (2b). In this arti
le we aim to derive numeri
al methods to obtainthe 
onservative solution. Thus we have to take into a

ount the evolution of the energydensity. After denoting u2 + u2

x by α, we 
an see that (2) and (6) are equivalent to
ut + uux + Px = 0, (7a)
P − Pxx =

1

2
u2 +

1

2
α, (7b)

αt + (uα)x = (u3 − 2Pu)x. (7
)We now pro
eed to brie�y review 
ertain numeri
al s
hemes for the Camassa-Holmequation (1) found in the literature, but by no means intending to be exhaustive. S
hemesusing a pseudospe
tral spa
e dis
retisation of the Camassa-Holm equation were derivedin [7℄ and in [30℄. This last paper investigates numeri
ally di�erent aspe
ts of periodi
traveling waves and tries to understand the rate of 
onvergen
e of the algorithm. Anapproa
h based on the multipeakons (4) is examined in [8, 9, 23, 26℄. Amongst otherthings, the 
onditions for global existen
e and the 
onvergen
e of the methods are studiedin these arti
les. A 
onvergen
e analysis of �nite di�eren
e s
hemes was given in [22℄and in [12℄. We mention that the s
hemes proposed in [12℄ and in [26℄ 
an also handlepeakon-antipeakon 
ollisions. In [1℄, a �nite volume method is developed to simulate thedynami
s of peakons. This s
heme is adaptive, with high resolution and stable. Finally,a �nite element method is derived in [42℄. The s
heme proposed in this paper is highorder a

urate and nonlinearly stable. Several numeri
al examples are also in
luded inorder to illustrate the behaviour and verify the properties of this method.The rest of this paper is organised as follows: In Se
tion 2 we will review some of thegeneral theory of multi-symple
ti
 PDEs and their numeri
al dis
retisations, followingthe approa
h of Bridges and Rei
h [5℄. In the third se
tion we will present two new multi-symple
ti
 formulations of the Camassa-Holm equation, and dis
uss their momentum andenergy 
onservation laws. We 
onsider dis
retisations by the multi-symple
ti
 Euler boxs
heme and demonstrate their performan
e through numeri
al tests. Sin
e the fo
us of4



our approa
h is mainly geometri
, we shall be parti
ularly interested in the 
onservativeproperties when we present the numeri
al experiments, and we make a
tive use of energy
onservation in order to handle peakon-antipeakon 
ollisions. However, for 
omparisonwith earlier work published in the literature, we also present some numeri
al resultsrelated to 
onvergen
e on �nite time.2 Multi-symple
ti
 PDEs and their multi-symple
ti
dis
retisationThe s
hemes that we propose for the Camassa-Holm equation are based on 
ertain multi-symple
ti
 formulations of the partial di�erential equations (1) or (7). For the sake of
ompleteness, we will in this se
tion review this 
on
ept in a general 
ontext, for moredetails, see e.g. [4, 5, 37℄. A partial di�erential equation F (u, ut, ux, utx, . . .) = 0 is saidto be multi-symple
ti
 if it 
an be written as a system of �rst order equations:
M zt + K zx = ∇zS(z), (8)with z ∈ R

d a ve
tor of state variables, typi
ally in
luding the original variable u as oneof its 
omponents. The matri
es M and K are skew-symmetri
 d × d-matri
es, and Sis a smooth s
alar fun
tion depending on z. The formulation is not ne
essarily uniqueand the dimension d of the state ve
tor may di�er for di�erent formulations. A keyobservation is that M and K de�ne symple
ti
 stru
tures on subspa
es of R
d

ω = dz ∧ Mdz, κ = dz ∧ Kdz.Considering any pair of solutions to the variational equation asso
iated with (8), we have,see [5℄, that the following multi-symple
ti
 
onservation law applies
∂tω + ∂xκ = 0. (9)With the two skew-symmetri
 matri
es M and K, one 
an also de�ne the density fun
-tions

E(z) = S(z) −
1

2
zT
x KT z , F (z) =

1

2
zT
t KT z,

G(z) = S(z) −
1

2
zT
t MT z , I(z) =

1

2
zT
x MT z,whi
h immediately yield the lo
al 
onservation laws

∂tE(z) + ∂xF (z) = 0 and ∂tI(z) + ∂xG(z) = 0, (10)for any solution to (8). Thus, under the usual assumption on vanishing boundary termsfor the fun
tions F (z) and G(z) one obtains the globally 
onserved quantities of (energyand momentum)
E(z) =

∫

E(z)dx and I(z) =

∫

I(z)dx. (11)5



2.1 Multi-symple
ti
 integratorsThere are two standard ways to 
onstru
t multi-symple
ti
 integrators: one is to approx-imate the Lagrangian by a sum and take variations (see for example [35℄), the other (seefor example [4℄ or [5℄) is to write the partial di�erential equation as a system of �rstorder equations (8) and then to dis
retise it.The idea of Bridges and Rei
h [5℄ was to develop integrators whi
h satisfy a dis
retisedversion of the multi-symple
ti
 
onservation law (9). For this purpose, they 
onsidereda dire
t dis
retisation of (8), repla
ing the derivatives with divided di�eren
es, and the
ontinuous fun
tion z(x, t) by a dis
rete version zn,i ≈ z(xn, ti) on a uniform re
tangulargrid. We set ∆x = xn+1 − xn, n ∈ Z, and ∆t = ti+1 − ti, i ≥ 0.Following their notation, we write
M∂n,i

t zn,i + K∂n,i
x zn,i =

(

∇zS(zn,i)
)n,i

. (12)A natural way of inferring multi-symple
ti
ity on the dis
rete level is to demand that onany pairs (Un,i, V n,i) of solutions to the 
orresponding variational equation of (12), onehas
∂n,i

t ωn,i + ∂n,i
x κn,i = 0,where

ωn,i(U
n,i, V n,i) = 〈MUn,i, V n,i〉, κn,i(U

n,i, V n,i) = 〈KUn,i, V n,i〉.Unfortunately, it is not generally true that the dis
rete versions of the lo
al 
onservationlaws for energy and momentum (10) are obeyed by solutions of a multi-symple
ti
 integra-tor. However, as noted in [5℄ this holds in some 
ases when S(z) is a quadrati
 fun
tion,but this is not so for the Camassa-Holm multi-symple
ti
 formulations presented here.We pro
eed by giving two well-known examples of multi-symple
ti
 integrators, but �rstwe introdu
e some notation for di�eren
e operators to be used throughout the rest ofthis paper. For any variable U = (Un,i) de�ned on a two-dimensional grid, we let
δ+
t Un,i =

Un,i+1 − Un,i

∆t
and δ−t Un,i =

Un,i − Un,i−1

∆t
,and similarly for di�eren
es in spa
e. Also, we shall need the 
entered di�eren
es δt =

1
2(δ+

t + δ−t ), and δx = 1
2 (δ+

x + δ−x ).The 
on
atenated midpoint rule. This s
heme was proved to be multi-symple
ti
 in[5℄, but has been known as a mu
h used method in hydrauli
s sin
e it was introdu
ed byPreissman in 1960. The s
heme also appears under the name Preissman box s
heme, or
entered box s
heme. It reads
Mδ+

t

(

zn,i + zn+1,i

2

)

+ Kδ+
x

(

zn,i + zn,i+1

2

)

= ∇zS(zc)where
zc =

1

4

(

zn,i + zn+1,i + zn,i+1 + zn+1,i+1
)

.6



The Euler box s
heme. Following [37℄ one may obtain an integrator satisfying a dis
retemulti-symple
ti
 
onservation law by introdu
ing a splitting of the two matri
es M and
K, setting M = M+ + M−, K = K+ + K− where MT

+ = −M− and KT
+ = −K−. The
orresponding s
heme reads

M+δ+
t zn,i + M−δ−t zn,i + K+δ+

x zn,i + K−δ−x zn,i = ∇zS(zn,i). (13)Note that the s
heme is only linearly impli
it as opposed to the 
on
atenated midpointrule for whi
h a system of nonlinear equations must be solved in ea
h time step. Themulti-symple
ti
ity is interpreted in the sense that
δ+
t ωn,i + δ+

x κn,i = 0, (14)where ωn,i = dzn,i−1 ∧M+dzn,i and κn,i = dzn−1,i ∧K+dzn,i. An important observationis that the splitting of the matri
es is not unique, and we shall see later that the 
hoi
eof splitting may strongly e�e
t the behaviour of the s
heme. In general one 
an write,say K+ = 1
2K + S where S is any symmetri
 matrix.In the rest of the paper, we will 
onsider only the Euler box s
heme for the sakeof simpli
ity, although in prin
iple, any other multi-symple
ti
 s
heme 
ould have beenused.3 Multi-symple
ti
 integrators for the Camassa-HolmequationIn this se
tion, we will propose two multi-symple
ti
 formulations for the Camassa-Holmequation. The �rst formulation is based on the partial di�erential equation (1) and hasa state variable ve
tor of dimension 5. The se
ond formulation has 8 
omponents in theve
tor of state variables and it is based on (7). With this formulation the resulting multi-symple
ti
 integrator is able to 
ontinue the 
onservative solution through a peakon-antipeakon solution.3.1 First multi-symple
ti
 formulationEquation (1) may be rewritten in the form

ut − uxxt +
(3

2
u2 +

1

2
u2

x

)

x
−

(

uux

)

xx
= 0. (15)

7



Setting z = [u, φ,w, v, ν]T we may now derive a multi-symple
ti
 formulation (8) withthe two skew-symmetri
 matri
es
M =























0 1
2 0 0 −1

2

−1
2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
2 0 0 0 0























, K =























0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0























.

The right-hand side of (8) is then given by the gradient of the s
alar fun
tion
S(z) = −w u − u3/2 − u ν2/2 + ν v.For 
onvenien
e, we also write this system 
omponentwise

1
2φt −

1
2νt − vx = −w − 3

2u2 − 1
2ν2,

−1
2ut + wx = 0,

φx = u,
−ux = −ν,
−1

2ut = uν − v.To the best of our knowledge, this multi-symple
ti
 formulation of the Camassa-Holmequation is new. However, in the Lagrangian setting a formulation with 6 × 6 matri
es
M and K has been derived in [31℄ and a formulation with non-
onstant matri
es 
an befound in [20℄.For this 
hoi
e of the skew-symmetri
 matri
es M and K, the density fun
tions de�nedin the introdu
tion are expli
itly given by

E(z) =S(z) +
1

2
zT
x Kz =

1

4

(

φtu − uxtu + u3 + uxut + uu2
x − utφ

)

,

F (z) = −
1

2
zT
t Kz =

1

2

(

utv − φtw + φwt − uvt

)

,

G(z) =S(z) +
1

2
zT
t Mz =

1

2
φtu − uxtu − u2uxx + u3 −

1

2
u2

x

+
1

2
uu2

x +
1

2
uxut +

1

4

(

utφ − utν − φtu + νtu
)

,

I(z) = −
1

2
zT
x Mz =

1

4

(

−uxφ + uxν + uφx − uνx

)

.In deriving the 
orresponding global invariants (11), some 
are has to be taken withrespe
t to boundary terms be
ause φ(x, t) is not periodi
 (or vanishing at ±∞) even if
u(x, t) is. We integrate the se
ond lo
al 
onservation law ∂tI(z) + ∂xG(z) = 0 over thespatial domain and obtain (using the de�nitions of the additional variables)

1

4

ddt ∫

(

−uxφ + u2
x + u2 − uuxx

) dx +
[

G(z)
]

= 0, (16)8



where the square bra
kets signify the di�eren
e of the fun
tion evaluated at the upper andlower limit of the integral. By periodi
ity (or the assumption that u and its derivativesat in�nity vanish at in�nity), we have [u] = [ux] = [uxx] = . . . = 0 and [φt] =
∫

φxt dx =
∫

ut dx =
∫

(u2

2 +P )x dx = 0. Hen
e, after two integrations by parts, it follows from (16)that
1

2

ddt

∫

(u2 + u2
x)dx −

1

4

ddt

[

uφ
]

+
1

4

[

utφ
]

= 0,and thus the momentum ∫

(u2 + u2
x)dx is a global 
onserved quantity.Similarly, for the energy, we obtain

−2
ddt ∫

(u3 + u2
xu)dx +

ddt[1

4
(φt − 2φxxt − φ2

xx + 3φ2
x − 2φxφxxx)φ

]

+
1

2

[

φwt

]

= 0.By the usual assumption on boundary terms, the two expressions in square bra
kets
an
el.Finally, we remark that these two global 
onserved quantities are equivalent to the twoHamiltonians of the bi-Hamiltonian formulation of the Camassa-Holm equation given forinstan
e in [32, 34℄:
H1 =

1

2

∫

(u2 + u2
x)dx, (17)

H2 =
1

2

∫

(u3 + uu2
x)dx. (18)Considering now waves traveling from left to right, we have 
hosen the following split-ting of M and K

M+ =













0 0 0 0 0
−1

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1
2 0 0 0 0













, and K+ =













0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.With this parti
ular 
hoi
e, the Euler box s
heme (13) reads
1
2δ−t φn,i − 1

2δ−t νn,i −δ+
x vn,i = −wn,i − 3

2(un,i)2 − 1
2 (νn,i)2,

−1
2δ+

t un,i +δ+
x wn,i = 0,

−δ−x φn,i = −un,i,

δ−x un,i = νn,i,

1
2δ+

t un,i = −un,iνn,i + vn,i.There is a potential di�
ulty in the 
omputation of the starting values zn,0 and in there
urren
e for φn,i. But fortunately, like in [39℄ for the KdV equation, one may eliminate9



all the additional variables φ,w, v, ν and express the Euler box s
heme only in the variable
u. This gives us the following multi-symple
ti
 integrator, resembling the form (15) ofthe Camassa-Holm equation

1
2(δ+

t + Sxδ−t )un,i −1
2δ+

x (δ−x δ−t + δ+
x δ+

t )un,i

+δ+
x (3

2 (un,i)2 + 1
2(δ−x un,i)2 − δ+

x (un,iδ−x un,i)) = 0,
(19)where we have introdu
ed the right shift operator Sxun,i = un+1,i.In the 
ase that the wave travels in the opposite dire
tion, one must use a di�erentsplitting of the skew-symmetri
 matrix K, for example with

K+ =













0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0













.The resulting numeri
al s
heme and its behaviour is very similar to the �rst 
ase, and wetherefore omit any further dis
ussion of it. In the 
ase of waves traveling in both dire
tionssimultaneously, it is possible to make a 
ompromise between the two above 
hoi
es, andset K+ = 1
2K and M+ = 1

2M . The resulting s
heme is given below, expressed in termsof just the u variable, using 
entered divided di�eren
es δt, δx only:
δtu

n,i − δ2
xδtu

n,i + δx(
3

2
(un,i)2 +

1

2
(δxun,i)2) − δ2

x(un,iδxun,i) = 0. (20)In Figure 2, we plot the deviation of the invariants (3) from their values on the initialdata along the numeri
al solution obtained by the Euler box s
heme, using the s
hemes(19) and (20) respe
tively. We have used smooth initial data (see [1℄)
u0(x) = u(x, 0) = 0.2 + 0.1 cos(2x), for x ∈ [−π, π],and grid parameters ∆x = 0.0042 and ∆t = 0.004 over the time interval [0, 5]. Itis interesting to observe how sensitive the 
onservation properties are to the 
hoi
e ofsplitting of the K-matrix.The Camassa�Holm equation admits a whole family of traveling waves of the type

u(x, t) = f(x − ct),where f is a fun
tion of one variable and c is the velo
ity of the wave, see [30℄. It 
an be
he
ked that smooth traveling waves have to ful�ll the relation
d2f

dx2
= f −

α

(f − c)2
, (21)for some 
onstant α. To obtain a periodi
 smooth traveling wave the 
onstant α 
annotbe taken arbitrarily, as pointed out by Kalis
h [29℄. By 
hoosing c = α = 3 and solving10
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∆x L1-error order estimate2.5272e-02 2.5168e-03 -1.2636e-02 6.2909e-04 2.00036.3179e-03 1.5724e-04 2.00033.1590e-03 3.9311e-05 1.99992.1060e-03 1.7473e-05 1.99981.5795e-03 9.8285e-06 2.00001.2636e-03 6.2903e-06 2.00001.0783e-03 4.5805e-06 1.99998.0869e-04 2.5767e-06 1.9998Table 1: Convergen
e rate for the smooth traveling wave (21).(21) for f(0) = 1 and f ′(0) = 0, we obtain a periodi
 smooth traveling wave with period
a=6.469546942524, see Figure 3.We 
onsider the 
onvergen
e of the s
heme (20) for a smooth traveling wave with initialdata as in Figure 3. The Courant number p = c∆t

∆x is �xed to the value p = 0.9. Thespa
e step ∆x is varied and the time step is 
omputed as ∆t = p∆x/c. Table 1 displaysthe L1-error and an order estimate at time T = 12 for various spa
e step ∆x. For thissmooth solution, order 2 
an be observed.In the following numeri
al experiment, we study the error for the peakon solution (see[42℄) given by
u0(x) =

{

c
cosh(a/2) cosh(x − x0) |x − x0| ≤ a/2,

c
cosh(a/2) cosh(a − (x − x0)) |x − x0| > a/2,

(22)where x0 = −5, c = 1 and the period a = 30. Figure 4 shows snapshots, for the time
t = 0, 3 and 5, of the exa
t solution (solid line) and the numeri
al solution (dashed line)
omputed with a time step ∆t = 0.0002 and a spa
e step ∆x = 0.04 for method (20).Note that even for this relatively small spa
e step, a small os
illatory tail at one end ofthe peak appears in the numeri
al solution. This phenomenon was also observed in [30℄.We next 
onsider the rate of 
onvergen
e for the problem (22) using again the s
heme(20), the Courant number p = c∆t

∆x is �xed to the value p = 0.9. The spa
e step ∆x isvaried and the time step is 
omputed as ∆t = p∆x/c. One 
an see from Figure 5 thatthe order of 
onvergen
e is one for this non-smooth solution.3.2 Se
ond multi-symple
ti
 formulationAs we said in the beginning of this se
tion, the �rst formulation does not handle peakon-antipeakon 
ollisions. To remedy to this problem, as explained in the introdu
tion, wehave to 
onsider the evolution of the energy density and repla
e equation (2) by (7).However, we �rst have to prove that the two formulations are indeed equivalent. Whenthe solutions are smooth (2) implies (6); the 
omputation whi
h is very similar to the12
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one that follows 
an also be found in [24℄. We want to establish the impli
ation in theopposite dire
tion. We 
onsider a solution (u, α) of (7) with initial data (u0, α0) satisfying
α0(x) = u2

0(x) + u2
0,x(x) and we want to prove that u is solution of (2). It will be the
ase if we 
an prove that for any time t > 0, α(x, t) remains equal to u2(x, t) + u2

x(x, t)as the equations (7a) and (7b) be
omes then identi
al to (2). After di�erentiating (7a)and using (7b), we obtain
utx + u2

x + uuxx =
1

2
u2 +

1

2
α − P.We multiply both sides by 2ux and after some manipulations we obtain

(u2
x)t + u(u2

x)x = u2ux + αux − 2Pux − 2u3
x. (23)After multiplying (7a) by 2u, we obtain

(u2)t + u(u2)x + 2Pxu = 0. (24)Let us denote the di�eren
e α − (u2 + u2
x) by w. Subtra
ting (23) and (24) to (7
), weobtain after some 
al
ulations that

wt + uwx = −2uxw. (25)We have w(x, 0) = α0(x) − u2
0(x) + u2

0,x(x) = 0. We 
laim that w(x, t) = 0 for all t > 0and therefore the systems (2) and (7) are equivalent. Re
alling the assumption that u issmooth, we 
an de�ne the 
hara
teristi
s y(ξ, t) as yt(ξ, t) = u(y(ξ, t), t) with y(ξ, 0) = ξand the mapping ξ → y(ξ, t) is a bije
tion for all time t. We 
onsider the quantity
W (ξ, t) = w(y(ξ, t), t). Sin
e Wt = wt(y, t) + u(y, t)wx(y, t), it follows from (25) that

Wt(ξ, t) = −2ux(y, t)W (ξ, t).Sin
e we assume that u is smooth, we have C = sup(x,t)∈R×[0,T ] |ux(x, t)| < ∞ and
|Wt| ≤ C |W | .As W (ξ, 0) = w(ξ, 0) = 0, Gronwall's Lemma gives us that W (ξ, t) = 0 for all t and ξand therefore w(x, t) = 0 for all t and x, as 
laimed. Of 
ourse, the 
ondition that u issmooth is a strong limitation sin
e it does not 
over the 
ollision 
ase, whi
h was the 
asewhi
h motivated the introdu
tion of the system (7). However, one must keep in mindthat the uniqueness of the 
onservative solutions in [2, 24℄ is only obtained in the newsets of variables where they are de�ned and that there is no uniqueness result - to theknowledge of the authors - on the equation expressed in the original variable u, even ifit would be reasonable to 
onje
ture that the solution of

ut + uux + Px = 0,

P − Pxx = u2 +
1

2
u2

x,

(u2 + u2
x)t + (u(u2 + u2

x))x = (u3 − 2Pu)x14



is unique and given by the 
onservative solutions. But this is an open problem and fromthis perspe
tive, the fa
t that the numeri
al solutions of (7) we obtain below 
oin
idewith the 
onservative solutions of the problem reinfor
e this 
onje
ture.Let us introdu
e a multi-symple
ti
 formulation based on (7). Let z = [u, β,w, α, φ, γ, P, r],
M =

























0 −1
2 0 0 0 0 0 0

1
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1

2 0 0 0
0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























, K =

























0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 −2
0 0 0 0 0 0 2 0























and
S = −γu +

u2α

2
−

u4

4
+ Pu2 − αw − P 2 + r2.The multi-symple
ti
 formulation (8) is equivalent to the following system

−
1

2
βt = −γ + uα − u3 + 2Pu,

1

2
ut + wx + Px = 0,

−βx = −α, −
1

2
φt = −w +

u2

2
,

1

2
αt + γx = 0, −φx = −u,

−βx − 2rx = −2P + u2, 2Px = 2r.

(26)We now �nd the energy and momentum 
orresponding to this multi-symple
ti
 for-mulation. As for the �rst formulation, the density fun
tions are given by
E(z) = − γφx +

u2α

2
−

u4

4
+ Pu2 − αw − P 2 + P 2

x +
1

2
βx(w + P )

−
1

2
wxβ +

1

2
φxγ −

1

2
γxφ −

1

2
Px(2Px + β) + PxxP,

F (z) = −
1

2
βt(w + P ) +

1

2
wtβ −

1

2
φtγ +

1

2
γtφ +

1

2
Pt(2Px + β) − PxtP,

G(z) = − γφx +
u2α

2
−

u4

4
+ Pu2 − αw − P 2 + P 2

x −
1

4

(

utβ − βtu + αtφ − φtα
)

,

I(z) =
1

4

(

uxβ − βxu + αxφ − φxα
)

.The �rst 
onservation law ∂tE(z) + ∂xF (z) = 0 yieldsddt ∫

(

−γφx +
1

2
φxγ −

1

2
γxφ − βxw +

1

2
βxw −

1

2
wxβ −

1

2
Pxβ

+
u2α

2
−

u4

4
+ Pu2 − P 2 + P 2

x +
1

2
αP − P 2

x + PxxP
) dx

+
1

2

[

wtβ + γtφ + Ptβ
]

= 0.15



Integrating the terms −1
2γxφ,−1

2wxβ and −1
2Pxβ by parts, and using the periodi
ity (orvanishing at in�nity) of the fun
tions u, P,w, φt, βt, we obtain thatddt ∫

(

(

u2 +
u2

x

2

)

P +
u2

4

(

u2 + 2u2
x

)

) dx = 0.The se
ond lo
al 
onservation law ∂tI(z) + ∂xG(z) = 0 leads to
1

4

ddt ∫

(

uxβ − αu + αxφ − αu
) dx +

[

G(z)
]

= 0.And two integrations by parts give the global 
onservation of ∫

(u3 + u2
xu)dx. We thusobtain the following two global 
onserved quantities

H2 =

∫

(u3 + u2
xu)dx, (27)

H3 =

∫

(

(

u2 +
u2

x

2

)

P +
u2

4

(

u2 + 2u2
x

)

) dx, (28)whi
h 
orrespond to the third and fourth Hamiltonian in the series of 
onstant of motionof the Camassa-Holm equation.Considering again (26), we see that after eliminating the intermediate variables β, w,
φ, γ and r, the system (7) is re
overed. The 
omputation is identi
al to the dis
rete
ase whi
h is treated below. We use symmetri
 splittings of M and K and take M+ =
M− = 1

2M and K+ = K− = 1
2K. The Euler box s
heme is then obtained from (26) byrepla
ing the exa
t derivatives, ∂t and ∂x, by their dis
rete symmetri
 
ounterparts, δtand δx. We have

−
1

2
δtβ

n,i = −γn,i + un,iαn,i − (un,i)3 + 2Pn,iun,i,
1

2
δtu

n,i + δxwn,i + δxPn,i = 0,(29a)
− δxβn,i = −αn,i, −

1

2
δtφ

n,i = −wn,i +
(un,i)2

2
,(29b)

− δxφn,i = −un,i,
1

2
δtα

n,i + δxγn,i = 0, (29
)
− δxβn,i − 2δxrn,i = −2Pn,i + (un,i)2, 2δxPn,i = 2rn,i. (29d)As for the �rst multi-symple
ti
 formulation, we eliminate the intermediate variables.Applying δx to both sides of the �rst equation in (29a), we obtain

−
1

2
δxδtβ

n,i = −δxγn,i + δx(un,iαn,i − (un,i)3 + 2Pn,iun,i). (30)The operators δt and δx 
ommute. Plugging δxβn,i = αn,i and δxγn,i = −1
2δtα

n,i into(30) we obtain
δtα

n,i + δx(un,iαn,i) = δx((un,i)3 − 2Pn,iun,i), (31)16



whi
h 
orresponds to the dis
retised version of (7
). Combining the �rst equation in(29b) and the two in (29d), we obtain
Pn,i − δxδxPn,i =

1

2
(un,i)2 +

1

2
αn,i, (32)whi
h 
orresponds to the dis
retised version of (7b). After applying δx to the se
ondequation in (29b), we obtain

δxwn,i =
1

2
δtδxφn,i + δx

((un,i)2

2

)

.Plugging this into the se
ond equation in (29a), sin
e δxφn,i = un,i from the �rst equationin (29
), we �nally get
δtu

n,i + δx

( (un,i)2

2

)

+ δxPn,i = 0, (33)whi
h is the dis
retised version of (7a). Gathering (33), (32) and (31), we obtain thefollowing numeri
al s
heme
δtu

n,i + δx(
(un,i)2

2
) + δxPn,i = 0, (34a)

Pn,i − δxδxPn,i =
1

2
(un,i)2 +

1

2
αn,i, (34b)

δtα
n,i + δx(un,iαn,i) = δx((un,i)3 − 2Pn,iun,i). (34
)The numeri
al s
heme (34) is the multi-symple
ti
 Euler box s
heme derived from themulti-symple
ti
 formulation (8) and therefore it enjoys the 
onservation law (14). Ithas also to be noted that the s
heme 
an be derived dire
tly from (7) by taking thesymmetri
 dis
retisation of the derivative - both with respe
t to time and spa
e - whi
happear in the system.We 
onsider the rate of 
onvergen
e for the smooth traveling wave (21) using thes
heme (34), the Courant number p = c∆t

∆x is �xed to the value p = 0.9. The spa
e step
∆x is varied and the time step is 
omputed as ∆t = p∆x/c. Table 2 displays the L1-errorand an order estimate at time T = 12. This table 
an be 
ompared to Table 1.We next 
onsider the 
onvergen
e of the s
heme (34) to the single-peakon problemwith initial data (22) using x0 = 0, a = 6, and c = 1. On
e again, the Courant number
p = c∆t/∆x is �xed to the value 0.9 and we vary ∆x. A plot of the error at time T = 2and T = 5 
an be found in Figure 6.We want to study the behaviour of the numeri
al s
heme when dealing with a 
ollision.First we derive a referen
e solution for the antisymmetri
 peakon 
ollision. We adaptthe formulae derived in [25℄ to the periodi
 
ase. Let a denote the period. We 
onsiderthe antisymmetri
 
ase and the positions of the peaks are given by

y2i(t) = −y(t) + ia and y2i+1(t) = y(t) + ia (35)17



∆x L1-error order estimate2.5272e-02 2.6017e-03 -1.2636e-02 6.5045e-04 1.99996.3179e-03 1.6256e-04 2.00043.1590e-03 4.0644e-05 1.99992.1060e-03 1.8066e-05 1.99981.5795e-03 1.0162e-05 2.00011.2636e-03 6.5036e-06 1.99991.0783e-03 4.7358e-06 2.00008.0869e-04 2.6640e-06 1.9998Table 2: Convergen
e rate for the smooth traveling wave (21) for the s
heme (34).
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entered s
heme at T = 2 and T = 5 applied to the single-peakon problem with initial data (22) using x0 = 0, a = 6, and c = 1. Thedashed lines have slopes 1 and 2.
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while their height are given by
u2i(t) = −u(t) and u2i+1(t) = u(t) (36)for i = 0,±1,±2, . . .. We denote the energy 
ontained between the i-th and i+1-th peakby δHi(t), that is, when the peaks do not 
oin
ide,

δHi(t) =

∫ yi+1

yi

(u2(x, t) + u2
x(x, t))dx. (37)In (37), u(x, t) denotes the solution of (1) and not the height of the peak given in (36).Between two peaks, the fun
tion u(x, t) is given as a linear 
ombination of e−x and exand therefore the integral in (37) 
an be 
omputed. We obtain

δHi(t) =
(u2

i + u2
i+1) cosh(yi+1 − yi) − 2uiui+1

sinh(yi+1 − yi)
.Note that when there is a 
ollision, yi+1 = yi, but this is a property of the quantity

δHi that it remains well-de�ned for all time. Note also that, at 
ollision time, we have
δHi > 0 and not δHi = 0 as (37) 
ould indi
ate. In [25℄, the variable δHi is 
onsideredas an independent variable and the equations that governs (yi, Ui, δHi) are given byddtyi = ui, (38a)ddtui = −Qi, (38b)ddtδHi = u3

i+1 − u3
i − 2Pi+1ui+1 + 2Piui, (38
)where

Pi =
∞
∑

j=−∞

Pi,j, and Qi = −
∞
∑

j=−∞

κijPi,j, (39)with
Pi,j =

exp(−κijyi) exp(κij
yj+yj+1

2 )

8 cosh(
yj+1−yj

2 )

(

2δHj cosh2(
yj+1 − yj

2
)

+ 2κij(u
2
j+1 − u2

j ) sinh2(
yj+1 − yj

2
) + (uj+1 + uj)

2 tanh(
yj+1 − yj

2
)
) (40)and

κij =

{

−1 if j ≥ i

1 otherwise.Due to the periodi
ity of the solution, δH2i does not depend on i and we set h = δH2i.We denote by E the energy over one period, that is, for times where no 
ollision o

urs,
E =

∫ a

0

(

u2(x, t) + u2
x(x, t)

) dx. (41)19



The quantity E is 
onserved and the energy 
ontained between the 2i+1-th and 2i+2-thpeaks is given by δH2i+1 = E −h. Plugging (35) and (36) we obtain from (40) and (39),after some 
al
ulation, that
Q2i = −Q2i+1 = −E

cosh(a
2 − y) sinh(y)

4 sinh(a
2 )

+
h

4
(42)and

Pi = E
cosh(a

2 − y) cosh(y)

4 sinh(a
2 )

.Then, (38) yields
yt = u, (43a)
ut = −E

cosh(a
2 − y) sinh(y)

4 sinh(a
2 )

+
h

4
, (43b)

ht = 2
(

u3 − Eu
cosh(a

2 − y) cosh(y)

2 sinh(a
2 )

)

. (43
)For the times when there is no 
ollision, that is, when y is di�erent from 0 or a
2 , it ispossible to 
ompute expli
itely the energy h and E from (41) and (37). We obtain

E = 2u2 sinh(a
2 )

sinh(y) sinh(a
2 − y)

, (44)and
h = 2u2 cosh(y)

sinh(y)
. (45)These expressions are not well-de�ned when y = 0 or y = a

2 but, after plugging (45) into(44), we get
h = E

sinh(a
2 − y) cosh(y)

sinh(a
2 )

, (46)whi
h is well-de�ned even when 
ollisions o

ur. Thus, we obtain an expression for h asa fun
tion only of y. In this simple 
ase of an antisymmetri
 peakon-antipeakon 
ollision,we did not integrate dire
tly (38
), we use the fa
t that for almost every time, the densityenergy is given u2 + u2
x dx and therefore (37) and (41) hold. Of 
ourse, it is possible toderive (44) and (46) from the governing equation (43). To do that, one 
an introdu
ethe quantities

w1 = E sinh(
a

2
− y) cosh(y) − h sinh(

a

2
)and

w2 = E sinh(y) sinh(
a

2
− y) − 2u2 sinh(

a

2
).From (43), after some 
omputations, we obtain that

w′
1 = uw2,

w′
2 = uw1.20
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omputed solution and the exa
t solution (in dash line) at time
t=12.Hen
e, if (44) and (46) hold at time 0, that is w1(0) = w2(0) = 0, then, by Gronwall'sLemma, w1(t) = w2(t) = 0 for all t, that is, (44) and (46) hold for all time.Finally, after plugging (46) into (42), equations (38a) and (38b) yield

ytt =
E sinh(a

2 − 2y)

4 sinh(a
2 )

. (47)We were not able to solve this equation analyti
ally and therefore we will 
onsider anumeri
al approximation of the solution 
omputed with very high a

ura
y. From theposition of the peaks (given by y) and their height (given by u), we re
onstru
t thesolution u(x, t) on the entire spa
e domain 
onsider the solution as a linear 
ombinationof ex and e−x between the peaks. The solution obtained this way will be 
onsideredas the referen
e solution. In the following numeri
al test, the initial values are set to
y(0) = a/4 and yt(0) = u(0) = −1. From (44), we have E = 4 tanh−1(a

4 ).We apply the multi-symple
ti
 s
heme (34) to the antisymmetri
 peakon 
ollision withinitial data from Figure 1. The problem is integrated on the time interval [0, 12] and thespatial domain is [0, 20]. In Figure 7, we 
an see that the s
heme 
onverges and that themain part of the error is 
on
entrated around the point of 
ollision, x = 10.Figure 8 shows the simulation in 4 snapshots taken just before and after the 
ollisiontakes pla
e and we observe strong os
illations.21
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Figure 8: Snapshots showing the 
ollapse and resurre
tion of an antisymmetri
 peakon
ollision, ∆x = 0.0133,∆t = 0.0024.

22



0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

tc − 5

tc − 1

tc − 2

tc

Figure 9: Plot of the energy density, u2+u2
x(x, t), for the exa
t solution at di�erent timesbefore 
ollision (tc ≈ 5.69 is the 
ollision time).The di�
ulty to handle 
ollisions 
an be explained by the low degree of regularitythat the solution rea
hes when two peakons 
ollide. Indeed, when the time t tends to
ollision time, the energy density (u2 + u2

x)(x, t) tends towards a Dira
, E
∑

k δa
2
+ka(x)or E

∑

k δka(x), see Figure 9. Hen
e, the variable α, whi
h stands for the energy density,has very low regularity as it be
omes a Dira
 fun
tion at 
ollision time.Finally, we plot the deviation in momentum (27) and energy (28), along the numeri
alsolution of method (34), from the respe
tive values for the initial data. Note that in theevaluation of these integrals, we 
ompute u2
x by means of α rather than using a �nitedi�eren
e approximation. Good 
onservation properties are observed for this s
heme,even through the 
ollision point.4 Con
lusionWith this paper, we have tried to see if the multi-symple
ti
 philosophy 
ould be useful forthe Camassa-Holm equation. We have presented two new multi-symple
ti
 formulationsfor this nonlinear partial di�erential equation. Basi
 linearly impli
it multi-symple
ti
s
hemes were also derived, one allowing to des
ribe peakon-antipeakon 
ollisions.So far, numeri
al tests have been 
ondu
ted only with the Euler box s
heme. It remainsto try out and analyze impli
it s
hemes like the Preissman box s
heme or some multi-symple
ti
 Runge-Kutta 
ollo
ation methods. It would also be interesting to understandwhether this formalism 
an be 
ombined with the te
hniques found in the literature forapproximating non-smooth solution, i.e. if multi-symple
ti
 variants of su
h s
hemes 
anbe found.Sin
e the multi-symple
ti
 formulation of a partial di�erential equation is not unique,one 
an also try to �nd other su
h formulations of the Camassa-Holm equation andthen derive other numeri
al s
hemes. Questions that immediately arise, is whether other23
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Figure 10: Conservation of momentum (27) and energy (28) for the se
ond multi-symple
ti
 formulation, ∆x = 0.0133,∆t = 0.0024.multi-symple
ti
 formulations will give di�erent energy and momentum or not and if thesequantities will be the next 
onstants of motion in the series of Hamiltonian fun
tions ofthe Camassa-Holm equation.For all these reasons, it seems to us that it would be of interest to get more insightinto the behaviour of multi-symple
ti
 s
hemes for the Camassa-Holm equation.5 A
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