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1 Overview and Introduction

We look at the Fermi-Pasta-Ulam problem with three stiff (fast) and three soft (slow) springs
as it is given in [HLW06] (I.5.1).
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• x0,i: Scaled displacement of ith stiff spring.

• x1,i: Scaled expansion (or compression) of the ith stiff spring.

• y0,i and y1,i: The conjugate momenta of the above.

As in [HLW06], we use initial conditions: x0,1(0) = 1, x1,1(0) = ω−1, y0,1(0) = 1, y1,1(0) = 1
and all other entries are zero. I.e.

z(0) = [1, 0, 0, ω−1, 0, 0, 1, 0, 0, 1, 0, 0]T .
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The energy of the ith stiff spring is

Ij =
1

2

(

y2
1,j + ω2x2

1,j

)

and the total oscillatory energy I =
∑

j Ij is an adiabatic invariant.
Here we look at the leap-frog method, the mid-point rule and trigonometric integrators in

their symmetric1 one-step formulation of eqns (2.7) and (2.8) of [HLW06] (XIII.2.2). The
methods are then characterised entirely by their filter functions which we give below (Table 1);
(A)-(E) are from [HLW06] (XIII.2.2), (G) is from [GH06].

ψ(ξ) φ(ξ)

(A) sinc2(1

2
ξ) 1 Gautschi (1961)

(B) sinc(ξ) 1 Deuflhard (1979)
(C) sinc2(ξ) sinc(ξ) Garćıa-Archilla et al. (1999)
(D) sinc2(1

2
ξ) sinc(ξ)(1 + 1

3
sin2(1

2
ξ)) Hochbruck and Lubich (1999)

(E) sinc2(ξ) 1 Hairer and Lubich (2000)
(G) sinc3(ξ) sinc(ξ) Grimm and Hochbruck (2006)

Table 1: Filter functions for the various trig integrators

The methods are symplectic if and only if ψ(ξ) = sinc(ξ)φ(ξ), methods (B) and (C) are
therefore the only symplectic trig integrators on our list. although the trig methods are not
symplectic in general, one can show that they preserve a modified symplectic form [HLW06]
(XIII.11-(3)). For short (i.e. T = 1) time periods and small (i.e h → 0) step size all the
methods are second order accurate in position; see [HLW06] (XIII.2.3). Beyond the small step
size regime this changes, but since the system is chaotic, global errors are, perhaps, not sensible
quantities to study. For this reason we use quantities such as the change in the Hamiltonian to
quantify the accuracy of the methods.

One of the notable features of the trig methods is that they can suffer from resonances at
integer multiples of π causing large errors in various quantities. One can try to use the filter
functions to prevent this, possibly at the expense of causing other unwanted phenomena.

2 Resonances for a planar problem

The problem of resonances for numerical integrators can be most easily and dramatically illus-
trated for a planar Hamiltonian system.

The resonances which affect the trig integrators at odd and even multiples of π are order two
and one resonances respectively. These resonances are typically unstable (result in unbounded
growth with time). The trig integrators can also suffer from order three resonances; these are also
typically unstable but are slower to increase than the lower order resonances. The order three
resonance occurs at hω/π = 2/3 for the trig integrators and at hω/π = 2

√
3/π ≃ 1.1 for the mid-

point rule. Order four resonances (at hω/π = 1

2
for the trig methods, hω/π = 2/π ≃ 0.64 for the

mid-point rule) can be either stable or unstable but typically have smaller magnitude/growth
than the lower order resonances. Higher order resonances are generally stable[Arn89].

The analysis in [SS00] shows that for a planar Hamiltonian system

H(q, p) =
1

2
p2 +

1

2
ω2q2 +

1

3
Bq3 +

1

4
Cq4 + O(q5) (1)

1The method is symmetric ⇔ ψ(ξ) = sinc(ξ)ψ1(ξ), ψ0(ξ) = cos(ξ)ψ1(ξ)
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the order three and four resonances of the midpoint rule occur for h = 2

ω

√
3 and h = 2

ω

respectively. The order three resonances are unstable at equilibrium whenever the potential
has a cubic term (B 6= 0) while the order four resonances are unstable at equilibrium when
(ω2C −B2)(ω2C − 2B2) < 0.

We take the system given by (1) with B = C = −1 and, fixing the step size at h = 0.02 we
vary ω such that 0 < hω/π ≤ 4.5. Figure 1 shows the maximum deviation in the Hamiltonian
for integration over the interval [0, 1000].

The widths of the resonant bands for the symplectic trigonometric method (B) appear to
render it unusable. Method (A) fares slightly better due to the absence of the wide resonant
spikes at even multiples of π. Methods (C) and (G) seem to give excellent results, though we
will see later that this is not the case in general.

The mid-point rule is not affected by resonances of order lower than three because its
eigenvalues are limited to exp(ıθ), θ ∈ (0, π).
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Figure 1: Maximum error of total energy on the interval [0, 1000] as a function of hω/π for the
Hamiltonian H(q, p) = 1

2
p2 + 1

2
ω2q2− 1

3
q3− 1

4
q4, (step size h = 0.02). Note the different vertical

axis for methods (C) and (G).
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3 Energy Deviation: Fixed Step Size

The FPU problem is Hamiltonian — its energy is an invariant quantity. Since the system is
chaotic it doesn’t make sense to look at the global error (in position) of an individual orbit,
except for very short integration lengths. Therefore, to illustrate the effect of resonances on the
numerical solutions we look at the errors in the energy of a numerical solutions for fixed step
size and integration length. In figure 2 we plot the maximum deviation in the energy over the
interval [0, 1000] as a function of hω/π for fixed h = 0.02.
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Figure 2: Maximum error of total energy on the interval [0, 1000] as a function of hω/π, (step
size h = 0.02). Note the different vertical axis for (MPT).

In figure 2 the trig methods don’t appear to show any of the order three and four resonances
that were so clear for the planar system. This is due to relatively slow growth of these higher
order resonances combined with the relatively short integration length. For longer integration
times these resonances become apparent. We illustrate this in figure 3 by plotting the value of
the Hamiltonian for three choices of step size using method (A) with an integration time roughly
ten times longer than those used in figure 2. We take one step size h = 2π/(3ω) ≃ 0.0419 on
the order three resonance and two step sizes immediately either side of the resonant value;
h = 0.044 and h = 0.04.

We observe that the maximum energy error is no longer bounded for the resonant step size.
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Figure 3: Total energy of solutions calculated with method (A) for step sizes slightly below
(h = 0.04), on (h = 2π/(3ω) ≃ 0.0419, ω = 50), and slightly greater than (h = 0.044) the
resonant value.

4 Oscillatory Energy Deviation: Fixed Step Size

The oscillatory energy I =
∑

j Ij of the FPU system is not a conserved quantity but, rather, an
adiabatic invariant: a nearly conserved quantity which oscillates about its mean value with some
standard deviation. The standard deviation of I is therefore possibly a better characterisation
of the oscillatory energy than the maximum deviation. We show both in figure 4 in order to
compare the trig methods and the mid-point rule. All the methods with the exception of the
trig integrator (G) and the mid-point rule can be seen to be severely affected by resonances.

The exact solution of the FPU problem has I(t) = Const.+O(ω−1). That is, the standard
deviation of the total oscillatory energy as a function of ω should look like Cω−1. In most of
the examples of figure 4 this general pattern can be seen away from the resonant frequencies.

We used a very long (T = 1 × 106) integration period and a small (h = 0.002) time step
which resolved all the fast oscillations (for ω = 50) to calculate, σI, the standard deviation of
the oscillatory energy. This allowed us to determine the value of coefficient (C = 0.75) and
give a reference solution for the behaviour of σI(ω). Figure 5 shows σI/ω minus the reference
solution, that is we plot σIω − 0.75 against hω/π, again, for fixed step size h = 0.02. We
can see that for the trig method (G), the cost of preventing resonances is to also prevent the
correct behaviour of the oscillatory energy. The only methods which manages to approximate
the correct behaviour,(a horizontal line at zero), is the mid-point rule. The trig methods (A)
and (D) show the correct behaviour away from resonant values of ω.

For fixed hω the value of ωσI does not converge to the correct value as h→ 0.

5 Energy Conservation: Fixed hω

Results for symplectic integrators concerning approximate energy conservation and preservation
of a modified Hamiltonian hold in the limit of small step size. As the step size increases, one
see the difference between the modified Hamiltonian and the original one grow — the energy
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Figure 4: Maximum (solid) and standard (dotted) deviation of the oscillatory energy on the
interval [0, 1000] as a function of hω/π, (step size h = 0.02).
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Figure 5: Standard deviation of oscillatory energy, on the interval [0, 1000], scaled by ω and
shifted by a reference solution, (i.e. σI(ω)ω − 0.75) as a function of hω/π, (step size h = 0.02).
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of the numerical solution oscillates with greater amplitude as step size increases and backward
error analysis — the usual tool for showing near-conservation of energy — no longer holds.

For linear systems f(z) = Az, the condition (on the filter functions φ and ψ) for a numerical
(trig) method to conserve total energy up to O(h), independent of hω, is incompatible with
the condition for a (trig) method to be symplectic. Since symplectic methods are not exactly
energy conserving either, a fair question to ask is how well a particular numerical method is
able to approximately conserve the total energy and how much extra work is needed in order
to get better conservation of energy. That is, what is the order of the numerical scheme with
respect to energy conservation.

In figure 6 we fix hω = 0.5, 1.5 and 5 and let h (and ω) vary. We plot the maximum
deviation in the total energy on the interval [0, 1000] against the step size h and use this to
show the orders of the schemes with respect to energy conservation. The trig methods (E) and
(G) satisfy a condition

φ(ξ) = sinc2(ξ)φ(ξ) (2)

necessary for the methods to conserve total energy up to O(h) independent of hω for linear
problems [GH06], [HL00] . Methods (B), (C) and, of course, the mid-point rule are symplectic.
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Figure 6: Maximum deviation in the total energy on the interval [0, 1000] as a function of h for
fixed hω = 0.5 (dotted), hω = 1.5 (dashed) and hω = 5 (solid).

Curiously, apart from the mid-point rule, the only other methods which are second order
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for energy conservation are methods (A) and (D) which are not symplectic and do not satisfy
the above condition (2) for finite-energy of linear problems. However, these are precisely the
methods which correctly captured the ω−1 behaviour for the oscillatory energy deviation (away
from resonances) in figures 4 and 5. They also satisfy a condition necessary for O(h2) energy
conservation [HLW06] (XIII.11-(8))

6 Slow Exchange of Oscillatory Energy

The FPU problem exhibits a slow exchange of energy between the stiff springs, that is, the
distribution of I between I1, I2 and I3 changes with time. These effects take place on a time
scale t = O(ω). A good numerical method should capture the rate of the slow exchange and
should give correct statistics for the mean distribution of energy between the stiff springs. For
the trig integrators to correctly approximate the slow exchange it is necessary that their filter
functions satisfy

ψ(hω)φ(hω) = sinc(hω), (3)

[HLW06] (XIII.4.2).
Here we show the oscillatory energy in the stiff springs and the total oscillatory (figure 7)

energy on the interval [0, 200] for the trig integrators and the mid-point rule for ω = 50 with
step size h = 0.03. For comparison we include the same results computed using the leap-frog
integrator using a smaller step size (h=0.001) so that all the fast oscillations are resolved.

Of the trig methods, only method (B) satisfies the slow exchange condition (3). For the
values used here, hω = 1.5, method (D) almost satisfies (3) with ψ(1.5)φ(1.5) ≃ 0.95sinc(1.5)
which accounts for its good behaviour. Method (A) gets the energy exchange slightly too fast
while method (E) and the mid-point rule get the exchange slightly too slow, methods (C) and
(G) get the exchange slower still.

Although it doesn’t get the rate of exchange correct for the oscillatory energy, the mid-point
rule is the only method for which the energy in I1 decreases all the way to zero before increasing
again — the behaviour seen in the reference solution. The trig methods transfer only a portion
of the oscillatory energy between springs for this value of hω.

The condition for correctly approximating the slow exchange depends on hω. That is, for
fixed ω the methods will give different rates of slow exchange for different step sizes — a purely
numerical property since the rate of exchange should depend only on the parameters of the FPU
problem itself. In figure 8 we plot I1, the energy in the first stiff spring on the interval [0, 200]
and with ω = 50. We use three different step sizes so that hω takes in the values 0.5, 1.5 and 5.

Getting the slow exchange correct independent of hω is a much tougher requirement for
a numerical method with all the methods apart from (B) performing badly when hω is large.
It might be sensible to ask questions about how quickly the behaviour for the slow exchange
converges to the correct behaviour as hω decreases. Since the point of the trig integrators is
to be able to take step sizes larger than those allowed by traditional restrictions on hω (most
M.D. calculations use a rule-of-thumb of hω = 0.1) one could ask ‘What is the slow exchange
behaviour for hω small but above the traditional limits?’.

We also note that the amount of oscillatory energy transfered between springs is a function
of hω. For example, method (B) has the correct rate of oscillatory energy transfer independent
of hω but transfers the correct amount of oscillatory energy only as hω →.

9



0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(A)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(B)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(C)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(D)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(E)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(G)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(MPT)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

(LF)

Figure 7: Oscillatory energy exchange between stiff spring on the interval [0, 200] for fixed step
size h = 0.03 and with ω = 50. The solution for the leapfrog method, (LF), was computed with
step size h = 0.001, resolving all oscillations (i.e. hω = 0.05.)
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Figure 8: Oscillatory energy in the first stiff spring, on the interval [0, 200] and with ω = 50
for step sizes h = 0.01 (yellow/lightest, hω = 0.5), h = 0.03 (green, hω = 1.5) and h = 0.1
(black/darkest, hω = 5).
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7 Long-time/Statistical Properties

We saw in section 6 that the slow exchange of energy between the stiff springs is a difficult
property to capture for numerical methods. Here we give some long-time results for the FPU
problem. That is, we ask whether the numerical schemes get the correct mean values and
distributions for the energy in the stiff springs. We used an integration interval of [0, 1 × 106]
and frequency ω = 50 for the fast oscillation. The step size was fixed at h = 0.02 for the trig
methods and the mid-point rule. As a reference solution, we use the leap-frog method with
h = 0.002, a step size small enough to resolve the fast oscillations. We saved every 100th data
point for the trig methods and mid-point rule and every 1000th for the leap-frog method. We
present, in table 2, the average values of the oscillatory energy in each of the stiff springs, the
standard deviation in the total oscillatory energy and the relative maximum deviation in the
Hamiltonian for each of the methods.

It is worth noting that for these calculations hω = 1 is only moderately large; hω = 2.5, for
example, would give dramatically different results.

Ī1 Ī2 Ī3 σI ∆maxH/H
ref (0)

(A) 3.367e-01 3.279e-01 3.360e-01 1.475e-02 1.290e-03
(B) 3.273e-01 3.466e-01 3.266e-01 1.312e-02 7.800e-03
(C) 3.341e-01 3.300e-01 3.363e-01 1.137e-02 2.221e-02
(D) 3.378e-01 3.262e-01 3.366e-01 1.477e-02 1.616e-03
(E) 3.319e-01 3.373e-01 3.311e-01 1.123e-02 2.188e-02
(G) 3.207e-01 3.597e-01 3.199e-01 9.198e-03 3.280e-02

mid-pt 3.400e-01 3.197e-01 3.408e-01 1.468e-02 3.789e-04
leap-frog 3.377e-01 3.243e-01 3.385e-01 1.496e-02 2.514e-03

Table 2: Mean values of I1, I2 and I3, standard deviation in the total oscillatory energy and
maximum deviation of the total energy for the trig methods, the mid-point rule and the leap-
frog method calculated on the interval [0, 1 × 106] with ω = 50. The calculations with the trig
methods and the mid-point rule used a step size of h = 0.02 and saved every 100th point for
the statistics. The calculation with the leap-frog method used h = 0.002 which resolves all the
fast oscillations to give a reference solution. For the leap-frog method, every 1000th point was
saved.

Another way to look at the data in table 2 is to subtract the leap-frog reference values from
each row and then look at the absolute mean 1

3

∑ |Īj − Ījref | of the differences. We present this
data in table 3 along with the relative differences between the standard deviations of the total
oscillatory energy and the reference value and the relative errors in each of the Ij.

The methods which give the best results for the long-time statistics for the mean difference
in the oscillatory energy with respect to the reference solution are the trig methods (A) and (D)
and the mid-point rule — the same methods which did well at capturing the total oscillatory
energy (see section 4).

In addition to getting the average values Ij, j = 1, 2, 3 correct, a numerical method should
give the correct distribution of Ij values, that is, it should visit the appropriate parts of the Ij
phase space for the correct amounts of time. We try to visualise this for the various methods by
plotting contours of the probability distribution functions for I1 and I2. For clarity we show only
the contours higher than the average values of the reference solution. The reference solution
shows quite a lot of structure with certain regions of the I1 − I2 plane preferred over other
regions. None of the methods considered here manage to capture all of the structure correctly.
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Figure 9: Contour plots of the upper portion of the probability distribution functions of I1
and I2 for solutions on the interval [0, 1 × 106] withω = 50 and h = 0.02 (every 100th point
saved), except for the leap-frog solution which used h = 0.002, to resolve all oscillations and
saved every 1000th point. Lighter shading corresponds to higher frequency count.
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Ī1−Ī1
ref

Ī1
ref

Ī2−Ī2
ref

Ī2
ref

Ī3−Ī3
ref

Ī3
ref

σI−σIref

σIref
1

3

∑ |Īj − Īj
ref |

(A) -3.11e-03 1.10e-02 -7.40e-03 -1.46e-02 2.37e-03
(B) -3.09e-02 6.86e-02 -3.51e-02 -1.23e-01 1.49e-02
(C) -1.07e-02 1.73e-02 -6.61e-03 -2.40e-01 3.82e-03
(D) 1.76e-04 5.88e-03 -5.78e-03 -1.27e-02 1.31e-03
(E) -1.72e-02 4.01e-02 -2.18e-02 -2.50e-01 8.74e-03
(G) -5.04e-02 1.09e-01 -5.51e-02 -3.85e-01 2.37e-02

mid-pt 6.65e-03 -1.41e-02 6.84e-03 -1.92e-02 3.05e-03

Table 3: Differences between the Ij and σI of table 2 and the reference solutions computed
using leap-frog, along with the absolute mean of the differences in Ij .

8 Conclusions

1. Order three resonances are generally unstable and cannot be avoided, as a consequence
the trig integrators are unstable for 3hω = 2nπ, n ∈ Z.

2. It is not enough to have, for example ∆I bounded; one also wants the correct distribution
of I.

3. None of the trig methods manage to capture all properties and some perform worse than
the mid-point rule.

Table 4 gives a comparison of the trig methods and the midpoint rule for a selection of criteria.
It is far from exhaustive. Other sensible measures of performance might include long time
averages, e.g. Lyapunov exponents.

(A) (B) (C) (D) (E) (G) (MPT)

H(hω)
√ × √ √ √ √ √√

H(h) O(h2) O(h) O(h) O(h2) O(h) O(h) O(h2)
I

√ × × √ × × √

dIj/dt × √ × × × × ×
Ij stats × × × × × × ×

Table 4: A quick comparison of the performance of various methods.

It is also sensible to ask if there are trig integrators of a wider class which may get more
properties correct. One possibility may be to use more force evaluations allowing more free
parameters which can be chosen to capture more properties.
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