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Abstract

We prove the convergence of an adaptive linear finite element method for comput-
ing eigenvalues and eigenfunctions of second order symmetric elliptic partial differential
operators. The weak form is assumed to yield a bilinear form which is bounded and co-
ercive in H1. Each step of the adaptive procedure refines elements in which a standard
a posteriori error estimator is large and also refines elements in which the computed
eigenfunction has high oscillation. The error analysis extends the theory of convergence
of adaptive methods for linear elliptic source problems to elliptic eigenvalue problems,
and in particular deals with various complications which arise essentially from the non-
linearity of the eigenvalue problem. Because of this nonlinearity, the convergence result
holds under the assumption that the initial finite element mesh is sufficiently fine.
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1 Introduction

In the last decades, mesh adaptivity has been widely used to improve the accuracy of numerical
solutions to many scientific problems. The basic idea is to refine the mesh only where the error
is high, with the aim of achieving an accurate solution using an optimal number of degrees of
freedom. There is a large numerical analysis literature on adaptivity, in particular on reliable
and efficient a posteriori error estimates (e.g. [1]). Recently the question of convergence of
adaptive methods has received intensive interest and a number of convergence results for the
adaptive solution of boundary value problems have appeared (e.g. [10, 16, 8, 7]). As far as
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we are aware, there is no convergence result for eigenvalue problems and the present paper is
a first contribution to this topic.

We prove here the convergence of an adaptive linear finite element algorithm for comput-
ing eigenvalues and eigenvectors of scalar symmetric elliptic partial differential operators in
bounded polygonal or polyhedral domains, subject to Dirichlet boundary data. Such prob-
lems arise in many applications, e.g. resonance problems, nuclear reactor criticality and the
modelling of photonic band gap materials, to name but three.

Our refinement procedure is based on two locally defined quantities, firstly a standard a
posteriori error estimator and secondly a measure of the variability (or “oscillation”) of the
computed eigenfunction. (Measures of “data oscillation” appear in the theory of adpativity
for boundary value problems (e.g. [16]). In the eigenvalue problem the computed eigenvalue
and eigenfunction on the present mesh plays the role of “data” for the next iteration of the
adaptive procedure.) Our algorithm performs local refinement on all elements on which the
minimum of these two local quantities is sufficiently large. We prove that the adaptive method
converges provided the initial mesh is sufficiently fine. The latter condition, while absent for
adaptive methods for linear symmetric elliptic boundary value problems, commonly appears
for nonlinear problems and can be thought of as a manifestation of the nonlinearity of the
eigenvalue problem.

The outline of the paper is as follows. In Section 2 we briefly describe the model elliptic
eigenvalue problem and the numerical method and in Section 3 we describe a priori estimates,
most of which are classical. Section 4 describes the a posteriori estimates and the adaptive
algorithm. Section 5 proves that proceeding from one mesh to another ensures error reduction
(up to oscillation of the computed eigenfunction) while the convergence result is presented in
Section 6. Numerical experiments illustrating the theory are presented in Section 7.

2 Eigenvalue problem and numerical method

Throughout, Ω will denote a bounded domain in Rd (d = 2 or 3). In fact Ω will be assumed
to be a polygon (d = 2) or polyhedron (d = 3). We will be concerned with the problem of
finding an eigenvalue λ ∈ R and eigenfunction 0 6= u ∈ H1

0 (Ω) satisfying

a(u, v) := λ b(u, v) , for all v ∈ H1
0 (Ω) , (2.1)

where

a(u, v) =

∫

Ω

∇u(x)TA(x)∇v(x)dx and b(u, v) =

∫

Ω

B(x)u(x)v(x)dx . (2.2)

Here, the matrix-valued function A is required to be uniformly positive definite, i.e.

a ≤ ξTA(x)ξ ≤ a for all ξ ∈ Rd with |ξ| = 1 and all x ∈ Ω. (2.3)

The methods which we describe below can be extended to piecewise smooth coefficients A,
but to reduce technical detail in the proofs we will assume in fact that A is piecewise constant
on Ω and that the jumps in A are aligned with the meshes Tn (introduced below), for all n.
The scalar function B is required to be bounded above and below by positive constants for all
x ∈ Ω, i.e.

b ≤ B(x) ≤ b for all x ∈ Ω. (2.4)

2



Throughout the paper, for any polygonal (polyhedral) subdomain of D ⊂ Ω, and any
s ∈ [0, 1], ‖ · ‖s,D and | · |s,D will denote the standard norm and seminorm in the Sobolev
space Hs(D). Also (·, ·)0,D denotes the L2(D) inner product. We also define the energy norm
induced by the bilinear form a:

‖|u ‖|2Ω := a(u, u) for all u ∈ H1
0 (Ω) ,

which, by (2.3), is equivalent to the H1(Ω) seminorm. (The equivalence constant depends on
the contrast a/a, but we are not concerned with this dependence in the present paper.) We
also introduce the L2 weighted norm:

‖u‖2
0,B,Ω = b(u, u) =

∫

Ω

B(x)|u(x)|2 dx ,

and note the norm equivalence

√
b‖v‖0,Ω ≤ ‖v‖0,B,Ω ≤

√
b‖v‖0,Ω . (2.5)

Rewriting the eigenvalue problem (2.1) in standard normalised form, we seek (λ, u) ∈
R×H1

0 (Ω) such that

a(u, v) = λ b(u, v), for all v ∈ H1
0 (Ω)

‖u‖0,B,Ω = 1

}
(2.6)

By the continuity of a and b and the coercivity of a on H1
0 (Ω) it is a standard result that

(2.6) has a countable sequence of non-decreasing positive eigenvalues λj, j = 1, 2, . . . with
corresponding eigenfunctions uj ∈ H1

0 (Ω) [3, 12, 21].
In this paper we will need some additional regularity for the eigenfunctions uj, which will

be achieved by making the following regularity assumption for the elliptic problem induced
by a:

Assumption 2.1 We assume that there exists a constant Cell > 0 and s ∈ [0, 1] with the
following property. For f ∈ L2(Ω), if v ∈ H1

0 (Ω) solves the problem a(v, w) = (f, w)0,Ω for all
w ∈ H1

0 (Ω), then ‖v‖1+s,Ω ≤ Cell‖f‖0,Ω.

Assumption 2.1 is satisfied with s = 1 when A is constant (or smooth) and Ω is convex. In
a range of other practical cases s ∈ (0, 1), for example Ω non-convex (see [4]), or A having a
discoutinuity across an interior interface (see [2]). Under Assumption 2.1 it follows that the

eigenfunctions uj of the problem (2.6) satisfy ‖uj‖1+s,Ω ≤ Cellλj

√
b.

To approximate problem (2.6) we use the continuous linear finite element method. Ac-
cordingly, let Tn , n = 1, 2, . . . denote a family of conforming triangular (d = 2) or tetrahedral
(d = 3) meshes on Ω. Each mesh consists of elements denoted τ ∈ Tn. We assume that for
each n, Tn+1 is a refinement of Tn. For a typical element τ of any mesh, its diameter is denoted
Hτ and the diameter of its largest inscribed ball is denoted ρτ . For each n, let Hn denote
the piecewise constant mesh function on Ω, whose value on each element τ ∈ Tn is Hτ and
let Hmax

n = maxτ∈Tn Hτ . Throughout we will assume that the family of meshes Tn is shape
regular, i.e. there exists a constant Creg such that

Hτ ≤ Cregρτ , for all τ ∈ Tn and all n = 1, 2, . . . . (2.7)

3



In the later sections of the paper the Tn will be produced by an adaptive process which ensures
shape regularity.

We let Vn denote the usual finite dimensional subspace of H1
0 (Ω), consisting of all contin-

uous piecewise linear functions with respect to the mesh Tn. Then the discrete formulation of
problem (2.6) is to seek the eigenpairs (λn, un) ∈ R× Vn such that

a(un, vn) = λn b(un, vn), for all vn ∈ Vn

‖un‖0,B,Ω = 1 .

}
(2.8)

The problem (2.8) has N = dim Vn positive eigenvalues (counted according to multiplicity)
which we denote in non-decreasing order as λn,1 ≤ λn,2 ≤ . . . ≤ λn,N . As we shall see in §3,
for each j, λn,j → λj as Hmax

n → 0 and (by the minimax principle - see e.g. [21, §6.1]) the
convergence of the λn,j is monotone decreasing i.e.

λn,j ≥ λm,j ≥ λj , for all j = 1, . . . , N, and all m ≥ n . (2.9)

Thus it is clear that there exists a separation constant ρ > 0 (depending on the spectrum
of (2.6)) with the following property: If λ` = λ`+1 = . . . = λ`+R−1 is any eigenvalue of (2.6)
of multiplicity R ≥ 1, then

λ`

|λn,j − λ`| ≤ ρ, j 6= `, ` + 1, . . . , ` + R− 1 , (2.10)

provided Hmax
n is sufficiently small.

The a priori error analysis for our eigenvalue problem is classical (see, e.g. [3], [12] and
[21]). In the next section we briefly recall some of the main known results and also prove
a non-classical result (Theorem 3.2) which is essential to the proof of convergence of our
adaptive scheme.

3 A priori analysis

First, manipulating the definitions of the eigenproblems (2.6) and (2.8), we obtain the impor-
tant basic identity:

a(uj − un,j, uj − un,j) = a(uj, uj) + a(un,j, un,j)− 2a(uj, un,j)

= λj + λn,j − 2λj b(uj, un,j)

= λn,j − λj + λj (2− 2b(uj, un,j))

= λn,j − λj + λj b(uj − un,j, uj − un,j) . (3.1)

Using this and (2.9), we obtain

|||uj − un,j|||2Ω = |λj − λn,j| + λj ‖uj − un,j‖2
0,B,Ω . (3.2)

The following theorem investigates the convergence of discrete eigenpairs. Although parts
of it are very well-known, we do not know a suitable reference for all the results given below, so
a brief proof is given for completeness. In the proof we make use of the orthogonal projection
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Qn of H1
0 (Ω) onto Vn with respect to the inner product induced by a(·, ·), which is defined by

requiring, for each u ∈ H1
0 (Ω), Qnu ∈ Vn and

a(u−Qnu, vn) = 0 for all vn ∈ Vn. (3.3)

Note that it follows immediately from (2.1) that

a(Qnu, vn) = λ b(u, vn) for all vn ∈ Vn, (3.4)

Theorem 3.1 Let s be as given in Assumption 2.1. Then for all 1 ≤ j ≤ N ,

(i)
|λj − λn,j| ≤ |||uj − un,j|||2Ω; (3.5)

(ii) There is a constant Cadj > 0 such that

‖uj − un,j‖0,B,Ω ≤ Cadj(H
max
n )s ‖|uj −Qnuj ‖|Ω ≤ Cadj(H

max
n )s ‖|uj − un,j ‖|Ω; (3.6)

(iii) For sufficiently small Hmax
n there is a constant Cspec such that

|||uj − un,j|||Ω ≤ Cspec(H
max
n )s . (3.7)

The constants Cadj and Cspec both depend on the spectral information λl, ul, l = 1, . . . , j.

Proof. The estimate (3.5) follows directly from (3.2).
The proof of (3.6) is obtained by a reworking of the results in [21]. First the arguments

in [21, Theorem 6.2] (extended to our case) show that

‖uj − un,j‖0,B,Ω ≤ 2(1 + ρ)‖uj −Qnuj‖0,B,Ω, (3.8)

with ρ defined in (2.10). In fact the proof in [21] is for simple eigenvalues, but it extends to
the multiple eigenvalue case without difficulty (details are given in [11]).

Now, applying a standard argument from approximation theory, for any v ∈ H1+s(Ω),
there exists a function vn ∈ Vn such that

|v − vn|1,Ω ≤ Capp(H
max
n )s|v|1+s,Ω, (3.9)

where the constant Capp may also depend on the constant Creg. Since by (3.4), a(Qnuj, vn) =
b(λjuj, vn), it follows that Qnuj is the finite element solution of the source problem a(u∗, v) =
b(λjuj, v) with the exact solution u∗ = uj. The usual Aubin-Nitsche duality argument can be
applied to obtain the L2 convergence for uj −Qnuj. Let us denote en,j := uj −Qnuj and let
us define ϕ to be the solution of the linear problem

a(ϕ,w) = b(en,j, w) for all w ∈ H1
0 (Ω). (3.10)

We have
‖en,j‖2

0,B,Ω = a(ϕ, en,j) = a(ϕ− vn, en,j) for all vn ∈ Vn,
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where in the last step we used the orthogonality of en,j to the space Vn. Then applying
Cauchy-Schwarz we obtain

‖en,j‖2
0,B,Ω ≤ a |ϕ− vn|1,Ω |en,j|1,Ω, for all vn ∈ Vn. (3.11)

Using (3.9) (together with the Assumption 2.1) in (3.11) we get

‖en,j‖2
0,B,Ω ≤ a Capp (Hmax

n )s|ϕ|1+s,Ω|en,j|1,Ω

≤ a Capp Cell(H
max
n )s‖Ben,j‖0,Ω|en,j|1,Ω

≤ a
√

b Capp Cell(H
max
n )s‖en,j‖0,B,Ω|en,j|1,Ω. (3.12)

The last step of the argument consists of dividing both sides of (3.12) by ‖en,j‖0,B,Ω and
applying the coercivity of the bilinear form a(·, ·)

‖en,j‖0,B,Ω ≤ a
√

b a−1/2 CappCell(H
max
n )s ‖|en,j ‖|Ω (3.13)

Combining (3.8) and (3.13) we obtain

‖uj − un,j‖0,B,Ω ≤ C(Hmax
n )s ‖|uj −Qnuj ‖|Ω, (3.14)

for a constant C in the required form.
The proof of (iii) for the simple eigenvalue case can be found in [21]. The extension to the

multiple eigenvalue case (which is mentioned in [21]) is given in [11].

The next theorem is a generalisation to eigenvalue problems of the standard monotone
convergence property for linear symmetric elliptic PDEs, namely that if one enriches the
finite dimensional space, then the error is bound to decrease. This result fails to hold for
eigenvalue problems (even for symmetric elliptic partial differential operators), because of the
nonlinearity of such problems. The best that we can do is to show that if the finite dimensional
space is enriched, then the error will not increase very much. This is the subject of Theorem
3.2.

Theorem 3.2 For any 1 ≤ j ≤ N , there exists a constant q > 1 such that, for m ≥ n, the
corresponding computed eigenpair (λm,j, um,j) satisfies:

‖|uj − um,j ‖|Ω ≤ q ‖|uj − un,j ‖|Ω . (3.15)

Proof. From Theorem 3.1 (ii), we obtain

‖uj − um,j‖0,B,Ω ≤ Cadj(H
max
m )s ‖|uj −Qmuj ‖|Ω (3.16)

Since Tm is a refinement of Tn, it follows that Vn ⊂ Vm and so the best approximation property
of Qm ensures that

‖|uj −Qmuj ‖|Ω ≤ ‖|uj −Qnuj ‖|Ω .
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Hence from (3.16) and using the fact that Hmax
m ≤ Hmax

n , we have

‖uj − um,j‖0,B,Ω ≤ Cadj(H
max
n )s ‖|uj −Qnuj ‖|Ω. (3.17)

Combining with (3.2) and then using (2.9) we obtain

‖|uj − um,j ‖|2Ω ≤ |λj − λm,j| + λjC
2
adj(H

max
n )2s ‖|uj −Qnuj ‖|2Ω

≤ |λj − λn,j| + λjC
2
adj(H

max
n )2s ‖|uj −Qnuj ‖|2Ω. (3.18)

Hence, from (3.5) we obtain

‖|uj − um,j ‖|2Ω ≤ ‖|uj − un,j ‖|2Ω + λjC
2
adj(H

max
n )2s ‖|uj −Qnuj ‖|2Ω. (3.19)

But since Qn yields the best approximation in the energy norm, we have

‖|uj − um,j ‖|2Ω ≤ (1 + λjC
2
adj(H

max
0 )2s) ‖|uj − un,j ‖|2Ω , (3.20)

which is in the required form.

Remark 3.3 From now on we will be concerned with a true eigenpair (λj, uj) and its ap-
proximation on the mesh Tn (λj,n, uj,n) in the sense described in Theorem 3.1. So we can
drop the subscript j and we simply write (λ, u) for the eigenpair of (2.6) and (λn, un) for the
corresponding eigenpair of (2.8).

4 A posteriori analysis

This section contains our a posteriori error estimator and the definition of the mesh adaptivity
algorithm for which convergence will be proved in the following sections.

Recalling the mesh sequence Tn defined above, we let Sn denote the set of all the edges (or
the set of faces in 3D) of the elements of the mesh Tn. For each S ∈ Sn, we assume that we
have already chosen a preorientated unit normal vector ~nS and we denote by τ1(S) and τ2(S)
the elements sharing S (i.e. τ1(S) ∩ τ2(S) = S). In addition we write Ω(S) = τ1(S) ∪ τ2(S).
Elements, faces and edges are to be considered closed. Furthermore we denote the diameter
of S by HS.

Notation 4.1 We write A . B when A/B is bounded by a constant which may depend on
the functions A and B in (2.2),on a, a, b and b, on Cell in Assumption 2.1, Creg in (2.7) and
on Capp in (3.9). The notation A ∼= B means A . B and A & B.

All the constants depending on the spectrum, namely ρ in (2.10), q in (3.15), Cadj in (3.6)
and Cspec in (3.7), are handled explicitly. Similarly all mesh size dependencies are explicit.
Note that all eigenvalues of (2.6) satisfy λn & 1, since λn ≥ λ1 = a(u1, u1) & |u1|21,Ω &
‖u1‖2

0,Ω & ‖u1‖2
0,B,Ω = 1.

The error estimator which we shall use is obtained by adapting the standard estimates for
source problems to the eigenvalue problem. Analogous estimates for eigenvalue problems can
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be found in [5] (for the Laplace problem) and [22] (for linear elasticity). Related results are
in [13].

For a function g, which is piecewise continuous on the mesh Tn, we introduce its jump
across an edge (face) S ∈ Sn by:

[g]S(x) :=

(
lim

x̃∈τ1(S)
x̃→x

g(x̃)− lim
x̃∈τ2(S)

x̃→x

g(x̃)

)
, for x ∈ int(S).

Then for any function v with piecewise continuous gradient on Tn we define, for S ∈ Sn

JS(v)(x) := [~nS · AOv]S(x), for x ∈ int(S).

The error estimator ηn on the mesh Tn is defined as

η2
n :=

∑
S∈Sn

η2
S,n , (4.1)

where each term ηS,n, which is the local contribution to the residual, is defined by

η2
S,n := ‖Hnλnun‖2

0,B,Ω(S) + ‖H1/2
S JS(un)‖2

0,S . (4.2)

The following lemma is proved, in a standard way, by adapting the usual arguments for
source problems.

Lemma 4.2 (Reliability)
‖|u− un ‖|Ω . ηn + Gn, (4.3)

and

Gn :=
1

2
(λ + λn)

‖u− un‖2
0,B,Ω

‖|u− un ‖|Ω . (4.4)

Proof. To ease readability we set en = u − un in the proof. Note first that, since (λ, u) and
(λn, un) respectively solve the eigenvalue problems (2.1) and (2.8), we have, for all wn ∈ Vn,

|||en|||2Ω = a(en, en)

= a(en, en − wn) + a(en, wn)

= a(en, en − wn) + a(u,wn) − a(un, wn)

= a(en, en − wn) + b(λu− λnun, wn)

= a(en, en − wn) − b(λu− λnun, en − wn) + b(λu− λnun, en) . (4.5)

We shall estimate each of the three terms on the right-hand side of (4.5).
First, we deal with the first two of these terms. Using again (2.1), and then elementwise

integration by parts (recall A is assumed constant on each element), we have for all v ∈ H1
0 (Ω),
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a(en, v)− b(λu− λnun, v) = −a(un, v) + λnb(un, v)

= −
∑
τ∈Tn

∫

τ

(A∇un).∇v + λnb(un, v)

= −
∑
S∈Sn

∫

S

[~nS · AOun]S v + λnb(un, v)

= −
∑
S∈Sn

∫

S

JS(un)v + λnb(un, v) . (4.6)

Hence for all wn ∈ Vn,

a(en, en−wn) − b(λu−λnun, en−wn) = −
∑
S∈Sn

∫

S

JS(un)(en−wn) + λnb(un, en−wn). (4.7)

Now we choose wn = Inen where In is the Scott-Zhang quasi-interpolation operator. In
[19] it is shown that, for all v ∈ H1(Ω),

‖v − Inv‖0,τ . Hn|v|1,ωτ , (4.8)

‖v − Inv‖0,S . H
1
2
S |v|1,ωS

, (4.9)

where ωτ is the union of all elements sharing at least a point with τ , and ωS is the union of
all elements sharing at least a point with S. Now substituting wn = Inen in (4.7) and using
Cauchy-Schwarz, together with the inequalities (4.8) and (4.9), we obtain:

a(en, en − wn) − b(λu− λnun, en − wn) . ηn|||en|||Ω. (4.10)

Finally, to deal with the third term in (4.5), we simply observe that due to the normalisa-
tion in each of the eigenvalue problems (2.1) and (2.8) we have

b(λu− λnun, en) = (λ + λn)(1− b(u, un)) =
1

2
(λ + λn)‖en‖2

0,B,Ω. (4.11)

Now, combine (4.10) and (4.11) with (4.5) and divide by |||en|||Ω to obtain the result.

Remark 4.3 We shall see below that Gn defined above constitutes a “higher order term”.

For mesh refinement based on the local contributions to ηn, we use the same marking
strategy as in [10] [16]. The idea is to refine a subset of the elements of Tn whose side
residuals sum up to a fixed proportion of the total residual ηn.

Definition 4.4 (Marking Strategy 1) Given a parameter 0 < θ < 1, the procedure is:
mark the sides in a minimal subset Ŝn of Sn such that

( ∑

S∈Ŝn

η2
S,n

)1/2

≥ θηn . (4.12)
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To satisfy the condition (4.12), we need first of all to compute all the “local residuals”
ηS,n and sort them according their values. Then the edges (faces) S are inserted into Ŝn in
decreasing order of ηS,n, starting from the edge (face) with the biggest local residual, until

the condition (4.12) is satisfied. Note that a minimal subset Ŝn may not be unique. Then
we construct another set T̂n, containing all the elements of Tn which share at least one edge
(face) S ∈ Ŝn.

In order to prove the convergence of the adaptive method, we require an additional marking
strategy, which will be defined in Definition 4.6 below. The latter marking strategy is driven
by oscillations. The same argument has been already used in many papers about convergence
for source problems (see [10], [16], [15], [8] and [7]), but to our knowledge has not yet been
used for analysing convergent algorithms for eigenvalue problems.

The concept of “oscillation” is just a measure of how well a function may be approximated
by piecewise constants on a particular mesh. For any function v ∈ L2(Ω), and any mesh Tn,
we introduce its orthogonal projection Pnv onto piecewise constants defined by:

(Pnv)|τ =
1

|τ |
∫

τ

vn, for all τ ∈ Tn. (4.13)

Then we make the definition:

Definition 4.5 (Oscillations) On a mesh Tn, we define

osc(v, Tn) := ‖Hn(v − Pnv)‖0,B,Ω. (4.14)

Note that

osc(v, Tn) =

( ∑
τ∈Tn

H2
τ ‖v − Pnv‖2

0,B,τ

)1/2

.

and that (by standard approximation theory and the ellipticity of a(·, ·)),

osc(v, Tn) . (Hmax
n )2|||v|||Ω , for all v ∈ H1

0 (Ω) . (4.15)

The second marking strategy (introduced below) aims to reduce the oscillations corre-
sponding to a particular approximate eigenfunction un.

Definition 4.6 (Marking Strategy 2) Given a parameter 0 < θ̃ < 1: mark the sides in a
minimal subset T̃n of Tn such that

osc(un, T̃n) ≥ θ̃ osc(un, Tn) . (4.16)

Note that a minimal subset T̃n may not be unique. To satisfy the condition (4.16), we need
first of all to compute all the local terms H2

τ ‖(un − Pnun)‖2
0,B,τ forming osc(un, Tn) and sort

them according their values. Then the elements τ are inserted into T̃n in decreasing order of
the size of those local terms, until the condition (4.16) is satisfied.

Our adaptive algorithm can then be stated:

10



Algorithm 1 Converging algorithm

Require: 0 < θ < 1
Require: 0 < θ̃ < 1

loop
Solve the Problem (2.8) for (λn, un)
Mark the elements using the first marking strategy (Definition 4.4)
Mark any additional unmarked elements using the second marking strategy (Definition
4.6)
Refine the mesh Tn and construct Tn+1

end loop

In 2D at the n − th iteration in Algorithm 1 each element in the set T̂n ∪ T̃n is refined
using the “bisection5” algorithm (see, e.g. [16]), as illustrated in Figure 1c. An advantage of
this technique is the creation of a new node in the middle of each marked side in Ŝn and also
a new node in the interior of each marked element.
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Figure 1: The refinement procedure applied to an element of the mesh. In (a) the element
before the refinement, in (b) after the three sides as been refined and in (c) after the bisection
of one of the three new segments.

In the 3D-case we use a suitable refinement that creates a new node on each marked face
in Ŝn and a node in the interior of each marked element. These requirements are analogous
to the requirements satisfied by bisection5 in 2D-case.

In [16] and [15] it has been shown for linear source problems that the reduction of the
error, as the mesh is refined, is triggered by the decay of data oscillations on the sequence of
constructed meshes. This is if we are solving a(u, v) = (f, v)0,Ω for a given function f (“the
data”), then reduction of error is achieved when the oscillation of f on the adaptively refined
meshes is sufficiently small.

For the eigenvalue problem (2.1) the quantity λu plays the role of data and in principle
we have to ensure that oscillations of this quantity (or more precisely of its finite element
approximation λnun), are sufficiently small. However λnun may change if the mesh changes
and so the proof of error reduction for eigenvalue problems is not as simple as it is for linear
source problems. This is the essence of the theoretical problems solved in this paper.
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5 Error Reduction

In this section we give the proof of error reduction for Algorithm 1. The proof has been
inspired by the corresponding theory for source problems in [16]. However the nonlinearity
of the eigenvalue problem introduces new complications and there are several lemmas before
the main theorem (Theorem 5.5).

For the rest of the section let (λn, un) be an approximate eigenpair on a mesh Tn, let Tn+1

be the mesh obtained by one iteration of Algorithm 1 and let (λn+1, un+1) be the corresponding
eigenpair in the sense made precise in Remark 3.3.

The first lemma is similar to [16, Lemma 4.2] for the 2D case. The extension of this lemma
to the 3D case is treated in Remark 5.2.

Lemma 5.1 Consider the 2D case. Let Ŝn be as defined in Definition 4.4 and let Pn be as
defined in (4.13). For any S ∈ Ŝn, there exists a function ΦS ∈ Vn+1 such that supp(ΦS) =
Ω(S) and also

λn

∫

ΩS

B(Pnun)ΦS −
∫

S

JS(un)ΦS = λn‖HnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S, (5.1)

and
|||ΦS|||2Ω(S) . ‖HnPnun‖2

0,B,Ω(S) + ‖H1/2
S JS(un)‖2

0,S. (5.2)

Proof.
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Figure 2: Two cases of refined couples of elements .

Figure 2 illustrates two possible configurations of the domain ΩS: in Figure 2a we have
that both the green-refinements are applied to the shared edge, while Figure 2b shows the
case where the green-refinements are applied to different edges. The point xS is the node
created by the red-refinement in the middle of the shared edge S while the points x1 and x2

are the nodes created in the interior of the refined elements τ1(S) and τ2(S) respectively.
The two situations in Figure 2 do not exhaust all the possible configurations for couples

of adjacent refined elements. There could be other possible configurations different from
Figure 2b, in which the green-refinements are applied to different edges. However, the way
in which the green-refinements split the elements is irrelevant for the proof, since the only
important thing is the existence of an new node on the shared edge and two nodes in the
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interior of the elements. So, we choose Figure 2 just to illustrate the possibility in practise
that the green-refinements could be applied or could not be applied to the same edge.

We then define
ΦS := αSϕS + β1ϕ1 + β2ϕ2, (5.3)

where ϕS and ϕi are the nodal basis functions associated with the points xS and xi on Tn+1,
and αS, βi are defined by

αS =





−‖H
1/2
S JS(un)‖2

0,S∫
S

JS(un)ϕS

if JS(un) 6= 0,

0 otherwise,

(5.4)

and

βi =





‖HnPnun‖2
0,B,τi(S) − αS

∫
τi(S)

B(Pnun)ϕS∫
τi(S)

B(Pnun)ϕi

if Pnun|τi(S) 6= 0,

0 otherwise,

(5.5)

for i = 1, 2.
Using the fact that supp(ϕi) = τi(S), for i = 1, 2 we can easily see that the above formulae

imply

αS

∫

S

JS(un)ϕS = −‖H1/2
S JS(un)‖2

0,S, (5.6)
∫

Ω(S)

B(Pnun)(αSϕS + β1ϕ1 + β2ϕ2) = ‖HnPnun‖2
0,B,Ω(S), (5.7)

(and that these formulae remain true even if JS(un) or Pnun|τi(S) vanish). Hence

λn

∫

Ω(S)

B(Pnun)ΦS−
∫

S

JS(un)ΦS = λn

∫

Ω(S)

B(Pnun)(αSϕS +β1ϕ1+β2ϕ2)−
∫

S

JS(un)αSϕS

and (5.1) follows immediately on using (5.6) and (5.7).
To prove (5.2), use (5.3), and the fact that |ϕS|1,Ω(S) . 1 and |ϕi|1,Ω(S) . 1 to obtain

|||ΦS|||2Ω(S) . |αS|2 + |β1|2 + |β2|2 . (5.8)

Now, since JS(un) is constant on S and
∫

S
ϕS ∼ HS, we have

|αS| .
|JS(un)|‖H1/2

S ‖2
0,S

HS

. |JS(un)|HS ∼ ‖H1/2
S JS(un)‖0,S . (5.9)

Also since Pnun is constant on each τi(S) and since
∫

τi(S)
Bφi ∼ H2

τi(S), we have

|βi| .
|Pnun|τi(S)| ‖Hn‖2

0,B,τi(S) + |αS|H2
τi(S)

H2
τi(S)

. |Pnun|τi(S)| H2
τi(S) + |αS| ∼ ‖HnPnun‖0,B,τi(S) + |αS|

13



This implies

|βi|2 . ‖HnPnun‖2
0,B,τi(S) + |αS|2 . ‖HnPnun‖2

0,B,τi(S) + ‖H1/2
S JS(un)‖2

0,S , (5.10)

and the proof is completed by combining (5.8) with (5.9) and (5.10).

Remark 5.2 To extend the results in Lemma 5.1 to the 3D-case we need to use a refinement
procedure for tetrahedra that creates a new node on each marked face in Ŝn and a node in
the interior of each marked element. The proof in the 3D-case is similar to the proof in the
2D-case: for each couple of refined elements we define

ΦS := αSϕS + β1ϕ1 + β2ϕ2,

where ϕS is the nodal basis function associated to the new node on the shared face and ϕi

are the nodal basis functions associated to the new nodes in the interior of the elements. The
coefficients αS, β1 and β2 can be chosen in the same way as in Lemma 5.1 and the rest of the
proof goes on similarly.

In the next lemma we bound the local error estimator above by the local difference of
two discrete solutions coming from consecutive meshes, plus higher order terms. This kind of
result is called “discrete local efficiency” by many authors.

Recall that Tn+1 is the refinement of Tn obtained by applying Algorithm 1.

Lemma 5.3 For any S ∈ Ŝn, we have

η2
S,n . ‖|un+1 − un ‖|2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖2

0,B,Ω(S)

+‖Hnλn(un − Pnun)‖2
0,B,Ω(S) .

(5.11)

Proof. Since the function ΦS defined in Lemma 5.1 is in Vn+1 and supp(ΦS) = Ω(S), we have

a(un+1 − un, ΦS) = a(un+1, ΦS)− a(un, ΦS) = λn+1

∫

ΩS

Bun+1ΦS − a(un, ΦS). (5.12)

Now applying integration by parts to the last term on the right-hand side of (5.12), we obtain

a(un+1 − un, ΦS) = λn+1

∫

ΩS

Bun+1ΦS −
∫

S

JS(un)ΦS. (5.13)

Combining (5.13) with (5.1), we obtain

a(un+1 − un, ΦS)−
∫

ΩS

B(λn+1un+1 − λnPnun)ΦS

= λn

∫

ΩS

B(Pnun)ΦS −
∫

S

JS(un)ΦS

= λn‖HnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S. (5.14)
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Rearranging this, and then applying the triangle and Cauchy-Schwarz inequalities, we obtain

‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S

≤ |a(un+1 − un, ΦS)|+
∣∣∣∣
∫

Ω(S)

B(λn+1un+1 − λnPnun)ΦS

∣∣∣∣
≤ |||un+1 − un|||Ω(S)|||ΦS|||Ω(S) + ‖λn+1un+1 − λnPnun‖0,B,Ω(S)‖ΦS‖0,B,Ω(S)

.
(
|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)
|||ΦS|||Ω(S) . (5.15)

In the final step of (5.15) we made use of the Poincaré inequality ‖ΦS‖0,B,ΩS
. HS|||ΦS|||Ω(S)

and also the shape-regularity of the meshes. In view of (5.2), the fact that λn ≥ λ1 & 1 (see
Notation 4.1) yields

‖HnλnPnun‖2
0,B,Ω(S) + ‖H1/2

S JS(un)‖2
0,S

.
(
|||un+1 − un|||Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω(S)

)2

. |||un+1 − un|||2Ω(S) + ‖Hn(λn+1un+1 − λnPnun)‖2
0,B,Ω(S). (5.16)

From the definition of ηS,n in (4.2), and the triangle inequality, we have

η2
S,n . ‖HnλnPnun‖2

0,B,Ω(S) + ‖H1/2
S JS(un)‖2

0,S + ‖Hnλn(un − Pnun)‖2
0,B,Ω(S). (5.17)

The required inequality (5.11) now follows from (5.16) and (5.17).

In the main result of this section, Theorem 5.5 below, we will be interested in achieving
an error reduction result of the form |||u − un+1|||Ω ≤ α|||u − un|||Ω for some α < 1. In the
case of source problems (e.g. [16] ) this is approached by writing

‖|u− un ‖|2Ω = ‖|u− un+1 + un+1 − un ‖|2Ω
= ‖|u− un+1 ‖|2Ω+ ‖|un+1 − un ‖|2Ω + 2a(u− un+1, un+1 − un).

(5.18)

and making use of the fact that the last term on the right-hand side vanishes due to Galerkin
orthogonality. However this approach is not available to us in the eigenvalue problem. There-
fore a more technical approach is needed to bound the two terms on the right-hand side of
(5.18) from below. The main technical result is in the following lemma. Recall the convention
in Notation 4.1.

Lemma 5.4

|||un+1 − un|||2Ω & θ2|||u− un|||2Ω − osc(λnun, Tn)2 − L2
n , (5.19)

where θ is defined in the marking strategy in Definition 4.4 and Ln satisfies the estimate:

Ln . Ĉ(Hmax
n )s|||u− un|||Ω , (5.20)

where Ĉ depends on θ, λ, Cspec, Cadj and q.
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Proof. By Lemma 5.3 and Definition 4.4 we have

θ2η2
n ≤ ∑

S∈Ŝn
η2

S,n

. ‖|un+1 − un ‖|2Ω + ‖Hn(λn+1un+1 − λnPnun)‖2
0,B,Ω + osc(λnunTn)2 .

Hence, rearranging and making use of Lemma 4.2, we have

|||un+1 − un|||2Ω & θ2η2
n − ‖Hn(λn+1un+1 − λnPnun)‖2

0,B,Ω − osc(λnunTn)2

& θ2|||u− un|||2Ω − osc(λnunTn)2

−θ2G2
n − ‖Hn(λn+1un+1 − λnPnun)‖2

0,B,Ω . (5.21)

We now estimate the last two terms in (5.21) separately.
To estimate Gn, we use (4.4), combined with the Poincaré inequality (and the H1 - ellip-

ticity of a(·, ·)) and then Theorem 3.1(ii) to obtain

Gn . 1

2
(λ + λn)‖u− un‖0,B,Ω . 1

2
(λ + λn)Cadj(H

max
n )s|||u− un|||Ω. (5.22)

To estimate the last term in (5.21), we first use the triangle inequality to obtain

‖Hn(λn+1un+1 − λnPnun)‖0,B,Ω ≤ ‖Hn(λn+1un+1 − λnun)‖0,B,Ω + osc(λnun, Tn). (5.23)

For the first term on the right-hand side of (5.23), we have

‖Hn(λn+1un+1 − λnun)‖0,B,Ω ≤ Hmax
n

(‖λu− λn+1un+1‖0,B,Ω + ‖λu− λnun‖0,B,Ω

)
. (5.24)

Then, recalling (2.6) and Theorem 3.1, we obtain

‖λu− λn+1un+1‖0,B,Ω ≤ |λ− λn+1|‖u‖0,B,Ω + λn+1‖u− un+1‖0,B,Ω

≤ |||u− un+1|||2Ω + λn+1Cadj(H
max
n )s|||u− un+1|||Ω . (5.25)

Using Theorem 3.1 again and then Theorem 3.2, this implies

‖λu− λn+1un+1‖0,B,Ω . (Cspec + λn+1Cadj)(H
max
n )s|||u− un+1|||Ω

≤ q(Cspec + λn+1Cadj)(H
max
n )s|||u− un|||Ω . (5.26)

An identical argument shows

‖λu− λnun‖0,B,Ω . (Cspec + λnCadj)(H
max
n )s|||u− un|||Ω . (5.27)

Combining (5.26) and (5.27) with (5.24), we obtain

‖Hn(λn+1un+1 − λnun)‖0,B,Ω . (1 + q)(Cspec + λnCadj)(H
max
n )s+1|||u− un|||Ω . (5.28)

Now combining (5.28) with (5.21), (5.22) and (5.23) we obtain the result.

The next theorem contains the main result of this section. It shows that provided we start
with a ”fine enough” mesh Tn, the mesh adaptivity algorithm will reduce the error in the
energy norm.
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Theorem 5.5 (Error reduction) For each θ ∈ (0, 1), exists a sufficiently fine mesh thresh-
old Hn

max and constants µ > 0 and α ∈ (0, 1) (all of which may depend on θ and on the
eigenvalue λ), with the following property. For any ε > 0 the inequality

osc(λnun, Tn) ≤ µε, (5.29)

implies either |||u− un|||Ω ≤ ε or

|||u− un+1|||Ω ≤ α|||u− un|||Ω ,

where the constant α may depend also on the parameter θ and on λ.

Proof.
In view of the equation (5.18) and remembering that un+1 − un ∈ Vn+1 we have

‖|u− un ‖|2Ω− ‖|u− un+1 ‖|2Ω = ‖|un+1 − un ‖|2Ω + 2a(u− un+1, un+1 − un)

= ‖|un+1 − un ‖|2Ω + 2b(λu− λn+1un+1, un+1 − un).

Now using Cauchy-Schwarz and the Young inequality 2ab ≤ 1
4
a2 + 4b2 on the second term on

the right hand side we get

‖|u− un ‖|2Ω− ‖|u− un+1 ‖|2Ω ≥ ‖|un+1 − un ‖|2Ω − 2‖λu− λn+1un+1‖0,B,Ω‖un+1 − un‖0,B,Ω

≥ ‖|un+1 − un ‖|2Ω −
1

4
‖un+1 − un‖2

0,B,Ω − 4‖λu− λn+1un+1‖2
0,B,Ω

≥ 3

4
‖|un+1 − un ‖|2Ω − 4‖λu− λn+1un+1‖2

0,B,Ω.

(5.30)

Hence

|||u− un+1|||2Ω ≤ |||u− un|||2Ω −
3

4
|||un+1 − un|||2Ω + 4‖λu− λn+1un+1‖2

0,B,Ω .

Applying Lemma 5.4 we obtain

|||u− un+1|||2Ω .
(

1− 3

4
θ2 + Ĉ2(Hmax

n )2s

)
|||u− un|||2Ω

+ 4‖λu− λn+1un+1‖2
0,B,Ω

+ osc(λnun, Tn)2

Then making use of (5.26) we have

|||u− un+1|||2Ω . βn |||u− un|||2Ω + osc(λnun, Tn)2. (5.31)

with

βn :=

[
1− 3

4
θ2 +

(
q2(Cspec + λnCadj)

2 + Ĉ2
)
(Hmax

n )2s

]
. (5.32)

17



Note that Hmax
n can be chosen sufficiently small so that βm ≤ β < 1 for all m ≥ n.

Consider now the consequences of the inequality (5.29). If |||u − un|||Ω > ε then (5.31)
implies

|||u− un+1|||2Ω ≤ [β + µ2] |||u− un|||2Ω .

Now choose µ small enough so that

α := (β + µ2)1/2 < 1 (5.33)

to complete the proof.

6 Proof of convergence

The main result of this paper is Theorem 6.2 below which proves convergence of the adap-
tive method and also demonstrates the decay of oscillations of the sequence of approximate
eigenfunctions. Before proving this result we need a final lemma.

Lemma 6.1 There exists a constant α̃ ∈ (0, 1) such that

osc(un+1, Tn+1) ≤ α̃ osc(un, Tn) + (1 + q)(Hmax
n )2 ‖|u− un ‖|Ω. (6.1)

Proof. First recall that one of the key results in [16] is the proof that the oscillations of any
fixed function v H1

0 (Ω) are reduced by applying one refinement based on Marking Strategy 2
(Definition 4.6). Thus we have (in view of Algorithm 1):

osc(un, Tn+1) ≤ α̃ osc(un, Tn), (6.2)

where 0 < α̃ < 1 is independent of uh. Thus, a simple application of the triangle inequality
combined with (6.2) yields

osc(un+1, Tn+1) ≤ osc(un, Tn+1) + osc(un+1 − un, Tn+1)

≤ α̃ osc(un, Tn) + osc(un+1 − un, Tn+1) (6.3)

A further application of the triangle inequality and then (4.15) yields

osc(un+1 − un, Tn+1) ≤ osc(u− un+1, Tn+1) + osc(u− un, Tn+1)

. (Hmax
n+1 )2 (|||u− un+1|||Ω + |||u− un|||Ω) (6.4)

and then combining (6.3) and (6.4) and applying Theorem 3.2 completes the proof.

Theorem 6.2 Provided the initial mesh T0 is chosen so that Hmax
0 is small enough, there ex-

ists a constant p ∈ (0, 1) such that the recursive application of Algorithm 1 yields a convergent
sequence of approximate eigenvalues and eigenvectors, with the property:

‖|u− un ‖|Ω ≤ C0qp
n, (6.5)

and
λn osc(un, Tn) ≤ C1p

n, (6.6)

where C0 and C1 are constants and q is the constant defined in Theorem 3.2.
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Remark 6.3 The initial mesh convergence threshold and the constants C1 and C2 may depend
on θ, θ̃ and λ.

Proof. The proof of this theorem is by induction and the induction step contains an application
of Theorem 5.5. In order to ensure the reduction of the error, we have to assume that the
starting mesh T0 is fine enough and µ in Theorem 5.5 is small enough such that for the chosen
value of θ, the quantity α in (5.33) satisfies α < 1.

Then with α̃ as in Lemma 6.1, we set

max{α, α̃} < p < 1 .

We also set

C1 = osc(λ0, u0, T0) and C0 = max{µ−1p−1C1, |||u− u0|||Ω}.

To perform the inductive proof, first note that by the definition of C0 and Theorem 3.2,

‖|u− u0 ‖|Ω ≤ C0 ≤ C0q,

since q > 1. Combined with the definition of C1 we have shown the result for n = 0.
Now, suppose that for some n > 0 the inequalities (6.5) and (6.6) hold.
Now let us consider the outcomes, depending on whether the inequality

‖|u− un ‖|Ω ≤ C0p
n+1, (6.7)

holds or not. If (6.7) holds then we can apply Theorem 3.2 to conclude that

‖|u− un+1 ‖|Ω ≤ q ‖|u− un ‖|Ω ≤ qC0p
n+1,

which proves (6.5) for n + 1.
On the other hand, if (6.7) does not hold then, by definition of C0,

|||u− un|||Ω > C0p
n+1 ≥ µ−1C1p

n. (6.8)

Also, since we have assumed (6.6) for n, we have

λn osc(un, Tn) ≤ µε with ε := µ−1C1p
n . (6.9)

Then (6.8) and (6.9) combined with Theorem 5.5 yields

|||u− un+1|||Ω ≤ α|||u− un|||Ω
and so using the inductive hypothesis (6.5) combined with the definition of p, we have

|||u− un+1|||Ω ≤ αC0qp
n ≤ qC0p

n+1,

which again proves (6.5) for n + 1.
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To conclude the proof, we have to show that also (6.6) holds for n + 1. Using Lemma 6.1,
(2.9) and the inductive hypothesis, we have

λn+1 osc(un+1, Tn+1) ≤ α̃C1p
n + (1 + q)(Hmax

n )2λnC0qp
n

≤ (α̃C1 + (1 + q)(Hmax
0 )2λ0C0q)p

n. (6.10)

Now, (recalling that α̃ < p), in addition to the condition already imposed on Hmax
0 we can

further require that
α̃C1 + (1 + q)(Hmax

0 )2|λ0|C0q ≤ pC1.

This ensures that
λn+1 osc(un+1, Tn+1) ≤ C1p

n+1,

thus concluding the proof.

7 Numerical Experiments

We start with a brief discussion about the implementation of our method. Algorithm 1 has
been implemented in FORTRAN95. The mesh refinement has been done using the toolbox
ALBERTA [20]. We used the package ARPACK [14] to compute eigenpairs via Arnoldi’s
method and the linear solver ME27 from the HSL [17, 18] to carry on the shift-invert solves
required by Arnoldi’s method.

7.1 Example: Laplace operator

In the first set of simulations we have solved the Laplace eigenvalue problem on a unit square
with Dirichlet boundary conditions.

We compare different runs of Algorithm 1 using different values for θ and θ̃ in Table 1.
Since the problem is smooth, from Theorem 3.1 it follows that using uniform refinement the
rate of convergence for eigenvalues should be O(Hmax

n )2, or equivalently the rate of conver-
gence in the number of degrees of freedom (DOFs) N should be O(N−1). We measure the
rate of convergence by conjecturing that |λ− λn| = CN−β and estimating β for each pair of
computations from the formula β = − log(|λ−λn|/|λ−λn−1|)/ log(DOFsn/DOFsn−1). Sim-
ilarly Table 2 contains the same kind of information relative to the fourth smallest eigenvalue
of the problem. As can be seen the rate of convergence is sensitive to the values of θ and θ̃.
Moreover, our results for the adaptive method shown a convergence rate close to O(N−1) for
θ, θ̃ sufficiently large.

In the theory presented in [21] it is shown how the error for eigenvalues for smooth problems
is proportional to the square of the considered eigenvalue, i.e. |λ−λn| ≤ C λ2 (Hmax

n )2. Since
the Laplace problem is very well understood, we know from the theory the exact values for
the first and the fourth eigenvalues, namely: 19.7392089 and 78.9568352. Comparing errors
in Tables 1 and 2, corresponding to similar numbers of degrees of freedom (DOFs), we see
that the error grows roughly with the square of the eigenvalue.
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θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 0.1350 400 - 0.1350 400 - 0.1350 400 -
2 0.1327 498 0.0802 0.1177 954 0.1581 0.0529 1989 0.5839
3 0.1293 613 0.1228 0.0779 1564 0.8349 0.0176 5205 1.1407
4 0.1256 731 0.1645 0.0501 1977 1.8788 0.0073 15980 0.7877
5 0.1215 854 0.2138 0.0351 2634 1.2383 0.0024 48434 0.9836
6 0.1165 970 0.3340 0.0176 4004 0.7885 0.0009 122699 1.0673
7 0.1069 1097 0.6962 0.0121 6588 0.7217 0.0003 312591 1.0083

Table 1: Comparison of the reduction of the error and DOFs of the adaptive method for the
smallest eigenvalue for the Laplace problem on the unit square.

θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 2.1439 400 - 2.1439 400 - 2.1439 400 -
2 2.0997 505 0.0895 1.8280 1016 0.1658 0.7603 2039 0.6365
3 2.0549 626 0.1004 1.0850 1636 1.1662 0.2439 6793 0.9447
4 1.9945 759 0.1548 0.7792 12254 1.0331 0.0917 18717 0.9652
5 1.9164 883 0.2638 0.4936 3067 1.4826 0.0331 54113 0.9583
6 1.7717 1017 0.5557 0.3484 4681 0.8240 0.0120 146056 1.0181
7 1.6463 1131 0.6911 0.2578 7321 0.6730 0.0046 382024 0.9970

Table 2: Comparison of the reduction of the error and DOFs of the adaptive method for the
fourth smallest eigenvalue for the Laplace problem on the unit square.

7.2 Example: Elliptic operator with discontinuous coefficients

In this second example we investigate how our method copes with discontinuous coefficients.
In order to do that we modified the smooth problem from the previous example. We inserted
a square subdomain of side 0.5 in the center of the unit square domain. We also choose the
function A to be piecewise constant and to assume the value 100 inside the subdomain and
the value 1 outside it.

The jump in the value of A could produce a jump in the gradient of the eigenfunctions all
along the boundary of the subdomain. So the regularity of the eigenfunctions in the sense of
Assumption 2.1 is now between 3/2 ≤ s+1 < 2. From Theorem 3.1, using uniform refinement,
the rate of convergence for eigenvalues should be at least O(Hmax

n )2s or equivalently O(N−s),
where N is the number of DOFs. Instead, using our method we obtain greater orders of
convergence for big enough value of θ and θ̃, as can be seen from Table 3. We measure the
rate of convergence computing the value of β as before. In fact the rate of convergence for
θ = θ̃ = 0.5 or 0.8 is close to the rate of convergence for smooth problems in Table 1 and
Table 2. In this case the exact eigenvalue λ is unknown, but we approximate it by computing
the eigenvalue on a very fine mesh involving about half a million of DOFs.

In Figure 3 we depict the mesh coming from the fourth iteration of Algorithm 1 with θ =
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θ = θ̃ = 0.2 θ = θ̃ = 0.5 θ = θ̃ = 0.8
Iteration |λ− λn| DOFs β |λ− λn| DOFs β |λ− λn| DOFs β

1 1.1071 81 - 1.1071 81 - 1.1071 81 -
2 0.9166 108 0.6561 0.7959 216 0.3364 0.4214 362 0.6452
3 0.9036 136 0.0062 0.6075 301 0.8139 0.1955 1153 0.6628
4 0.8575 159 0.3350 0.4168 437 1.0108 0.0789 2811 1.0174
5 0.8118 186 0.3497 0.2750 643 1.0762 0.0335 6534 1.0151
6 0.8065 208 0.0582 0.1989 954 0.8212 0.0172 14059 0.8687
7 0.7580 229 0.6448 0.1236 1459 1.1186 0.0066 28341 1.3621
8 0.7447 250 0.2024 0.0935 2117 0.7504 0.0033 60148 0.9123

Table 3: Comparison of the reduction of the error and DOFs of the adaptive method for the
smallest eigenvalue for the problem with discontinuous coefficients.

θ̃ = 0.8. This mesh is the result of multiple refinements using both marking strategies 1 and 2
each time. As can be seen the region along the interface and particularly the corners are much
more refined than the rest of the mesh. This is clearly the effect of the first marking strategy,
since the edge residuals have detected the discontinuity in the gradient of the eigenfunction
along the interface. However also in some other parts away form the interface the mesh is
relatively fine. These are the results of the use of the second marking strategy based on
oscillations, which is designed to detect high gradients of the eigenfunction.

Finally in Figure 4 we depict the eigenfunction corresponding to the smallest eigenvalue
of the problem with discontinuous coefficients. This eigenfunction is the one used to refine
the mesh in Figure 3.
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Figure 3: A refined mesh from the adaptive method corresponding to the first eigenvalue of
the problem with discontinuous coefficients.
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