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1. Introduction

A quantum graph Γ is a graph (with multiple edges and loops allowed) in which each

edge e is assigned a coordinate x (and hence a length) and the whole graph is equipped

with a self-adjoint differential operator as Hamiltonian. For instance, if Γ is embedded

nicely into a Riemannian manifold, one can use the arc length as a coordinate along an

edge. In geometric language, Γ is a one-dimensional CW-complex with a Riemannian

metric on each 1-cell and appropriate boundary conditions at each 0-cell to define a

self-adjoint “Laplacian”. We refer to [8, 12, 14, 15] for further background on quantum

graphs.

Here we consider only graphs that are compact : the number of vertices V , the

number of edges E, and the lengths of all edges are assumed to be finite. The number

of edges attached to vertex v is called the degree of v and denoted dv . We also assume

that every vertex has at least one edge attached, since isolated vertices are negligible in

the quantum graph context.

The simplest Hamiltonian for a quantum graph is the Laplacian with Kirchhoff

boundary conditions, which acts as the negative second derivative along each edge,

H = − d2

dx2
e

,

with the functions in its domain required to be continuous at the vertices and to satisfy

the Kirchhoff condition of no net flux at each vertex:∑
e∈Ev

df

dxe

(v) = 0.

Here Ev is the set of edges incident on vertex v, and xe is the arc-length coordinate on

e outgoing from v (in other words, the distance from v of the variable point on e). For

more precise definitions see [12, 15] and section 3 below.

In one of the earliest papers on quantum graphs [18], J.-P. Roth calculated the

trace of the heat kernel K for the operator just described. He found an exact formula
∞∑

n=0

e−λnt = Tr K =

∫
Γ

K(t, x, x) dx = K1 + K2 + K3 , (1)

where λn are the eigenvalues of H . Written in detail, it contains (before the integration)

one term for every path in the graph Γ leading from the point x (not a vertex) to itself.

These closed paths fall into three classes: The path of zero length yields the term

K1 = L/
√

4πt, the anticipated leading term in the Weyl series, where L is the total

length of all edges of the graph. K2 is the sum of the contributions of the periodic paths

(where the initial and final direction of the path are the same), which are proportional to

e−L(C)2/4t, where L(C) is the length of the path C. (Such terms do not contribute to the

asymptotic expansion for t → 0 of Tr K in powers of t, but they determine oscillations

in the distribution of the eigenvalues {λn}.) Finally, the contributions of paths that

are closed but not periodic (i.e., the initial and final directions are opposite) sum to the
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simple form

K3 = 1
2
(V − E), (2)

which constitutes the entire remainder of the Weyl series for the heat kernel trace. Note

that K3 is independent of t and moreover is the only constant term in the formula (1).

The expression in Equation (2) is interesting because it is a half-integer and depends

on the topology of Γ only (e.g., it is independent of the edge lengths). Indeed, it is the

Euler characteristic of Γ regarded as a 1-complex. These features are reminiscent of

index theorems in geometric analysis and the calculation of indexes from the constant

terms in heat-kernel expansions [6, 7]. The original goal of this paper was to give an

index interpretation of (2); in fact, we also generalize it to graphs with other boundary

conditions and compute indexes of quite general quantum graph operators by another,

very simple method.

The contents of the paper are as follows: Section 2 reviews the appearance of indexes

in the heat kernel asymptotics for the case of an interval. In section 3 we introduce

necessary notions and auxiliary results concerning quantum graphs. The section also

contains a general formula for indexes of differential operators on quantum graphs.

Section 4 contains the main results concerning the relations between the constant terms

in the asymptotic expansion of the heat kernel and indexes of suitable operators on

the graph. Relations to the secular determinant are discussed in section 5. The final

section 6 contains some remarks and conclusions.

2. The interval

In [7, Section 1.5] P. Gilkey treats the Laplacian on an interval with Dirichlet and with

Neumann boundary conditions as the prototype of the index theorem for the de Rham

complex on a manifold with boundary. The index theorem for a quantum graph with

Kirchhoff boundary conditions is a different generalization of this elementary example,

so we shall review the latter.

Let HD and HN be the operator −d2/dx2 on the interval (0, L) with Dirichlet and

Neumann boundary conditions, respectively. The eigenfunctions of HN with eigenvalue

0 are the constant functions, so the kernel of HN has dimension 1. In contrast, HD has

trivial kernel. On the other hand [7, Subsection 3.1.3], the heat traces of these operators

are

Tr e−tHD,N =

∫ L

0

KD,N(t, x, x) dx ∼
t→0

L√
4πt

∓ 1

2
, (3)

where the negative sign applies to the Dirichlet case and the exponentially small terms

analogous to K2 in (1) have been omitted. Therefore,

dim ker HN − dim ker HD = 1 = Tr KN − Tr KD . (4)

To identify (4) as an index theorem we must factor HD,N into first-order operators.

Let A be the operator d/dx acting on the domain H1(0, L), which is the Sobolev space
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containing functions on (0, L) that, together with their first distributional derivatives,

are square-integrable. Standard integrations by parts show that the adjoint operator

A∗ is −d/dx with domain H1
0 (0, L) (containing functions from H1(0, L) that satisfy the

Dirichlet conditions f(0) = f(L) = 0) and that A∗∗ = A. One now forms two second

order operators

HN = A∗A, HD = AA∗, (5)

where in the first case the domain consists of twice differentiable (H2(0, L)) functions

satisfying the Neumann conditions, f ′(0) = f ′(L) = 0, so that Af ∈ dom A∗ and the

composition is defined; in the second case, similarly, the domain consists of functions

from H2(0, L) satisfying the Dirichlet conditions.

Because 〈f, A∗Af〉 = 〈Af, Af〉 = ‖Af‖2, the kernel of A is the same as that of

HN . Similarly, ker A∗ = ker HD . Therefore, (4) can be restated as the index formula

index A = Tr KN − Tr KD = 1. (6)

Remark 1. By regarding the elements of dom A∗ as 1-forms rather than scalar

functions, one identifies A and A∗ with the exterior derivative operator d: Λ0(0, L) →
Λ1(0, L) and its adjoint δ: Λ1(0, L) → Λ0(0, L), where Λ0(0, L) and Λ1(0, L) are the

spaces of L2 functions f(x) and 1-forms g(x) dx. One can combine these operators into

a single operator from Λ0(0, L)⊕ Λ1(0, L) into itself,

d + δ =

(
0 δ

d 0

)
,

where, in the version on the left, d annihilates the 1-forms and δ annihilates functions.

Then the Hodge Laplacian is

(d + δ)2 = δd + dδ =

(
HN 0

0 HD

)
.

It is this formulation that generalizes to higher-dimensional manifolds, with HN acting

on forms of even degree and HD on forms of odd degree (or vice versa) [6, 7].

In the following sections we will extend this analysis to more general quantum

graphs. In particular, a central task is to identify the analogues of the operators A

and A∗.

3. Quantum graphs

3.1. Vertex conditions

As we have mentioned in section 1, appropriate vertex conditions are needed in order

to turn the (negative) second derivative along the edges of a quantum graph into a

self-adjoint operator in L2(Γ). All such choices of boundary conditions at vertices were

catalogued in [12] (after prior discussion in [4]) and reformulated in [9, 15]. It will be

convenient for us to follow the formulation from [15].
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Let v be a vertex and f(x) a function on Γ. We denote by

F (v) =




f1(v)
...

fdv(v)




the vector of values of the function f at the vertex v, attained along dv edges incident

to v. In particular, if f were continuous, all these values would be equal. Analogously,

F ′(v) =




f ′1(v)
...

f ′dv
(v)




is the vector of derivatives at v of f along these edges, where the derivatives are taken

in the directions outgoing from the vertex v.

It is clear that vertex conditions for the second-derivative operator can involve only

the values of the function and of its derivatives along edges. If these conditions do

not mix the values attained at different vertices, they are called local. (On an interval,

for instance, Dirichlet, Neumann, and Robin conditions are local, but the periodicity

condition is nonlocal.) As we will see later, there is actually not much difference between

local and nonlocal vertex conditions on a quantum graph. (For instance, the periodicity

condition becomes local if the interval is replaced by a loop attached to a single vertex.)

Theorem 2. [15] All self-adjoint realizations H of the negative second derivative on

Γ with local vertex boundary conditions can be described as follows: For every vertex

v, of degree dv , there are two orthogonal (and mutually orthogonal) projectors Pv, Qv

operating in Cdv and an invertible self-adjoint operator Λv operating in the subspace

(1− Pv −Qv)C
dv . (Either Pv, Qv, or Cv ≡ 1− Pv − Qv might be zero.) The functions

f in the operator domain are those members of the Sobolev space
⊕

e H2(e) that satisfy

at each vertex v boundary conditions consisting of the “Dirichlet part”

PvF (v) = 0, (7)

the “Neumann part”

QvF
′(v) = 0, (8)

and the “Robin part”

CvF
′(v) = ΛvCvF (v). (9)

The quadratic form of H is

h[f, f ] =
∑
e∈E

∫
e

∣∣∣∣ dfdx

∣∣∣∣
2

dx +
∑
v∈V

(ΛvCvF, CvF ) (10)

with the domain that consists of the functions f(x) that belong to the Sobolev space

H1(e) on each edge e and satisfy (7) at each vertex.
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Remark 3. This theorem was formulated a little bit differently in [15]. For one thing,

Λv was called −Lv there. More importantly, there the two projectors Qv and Cv where

lumped into a single one, and thus the condition of invertibility of the operator Λv

disappeared. The equivalent formulation provided here distinguishes between Robin

and pure Neumann conditions, as is often convenient.

Remark 4. The three parts (7)–(9) of the vertex conditions can be combined into a

single condition

AvF (v) + BvF
′(v) = 0, (11)

where the dv × dv matrices Av and Bv are

Av = Pv − ΛvCv, Bv = Qv + Cv . (12)

The conditions were introduced in [12] in the form (11) (which by itself does not suffice

to define the matrices Av and Bv uniquely, however).

The most popular vertex conditions are the Kirchhoff ones (also called Neumann

or natural), which reduce at vertices of degree 1 to Neumann conditions:

Definition 5. The Kirchhoff boundary conditions are defined by the continuity condition

f1(v) = f2(v) = · · · = fdv(v) ≡ f(v) (13a)

as Dirichlet part and the zero flux condition

dv∑
e=1

f ′e(v) = 0 (13b)

as Neumann part, with no Robin part.

In other words, (1 − Pv)C
dv is in this case one-dimensional and consists of the

vectors with equal coordinates.

Another type of conditions that arises in our work is dual to the Kirchhoff type, in

the sense that the roles of the values and derivatives of the function f at each vertex

are switched. (At vertices of degree 1 these “anti-Kirchhoff” conditions reduce to the

Dirichlet ones.)

Definition 6. The anti-Kirchhoff boundary conditions are

dv∑
e=1

fe(v) = 0 (14a)

as Dirichlet part and

f ′1(v) = f ′2(v) = · · · = f ′dv
(v) ≡ f ′(v) (14b)

as Neumann part, with no Robin part.
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3.2. Bonds vs edges

In what follows, we will need to use directed edges (which we will call bonds) rather

than the undirected ones as before. Thus, each edge results in two directed bonds (with

opposite directions), which are denoted by Greek letters. We denote by α the bond α

with its direction reversed.

Recall that loops (tadpoles) can always be removed from a quantum graph by

inserting extra Kirchhoff vertices of degree 2. Adding such a vertex does not change the

heat trace or the Euler characteristic, nor either side of any of the index formulas in this

paper. Therefore, one may assume that the two ends of a bond are distinct vertices.

It is not necessary to pick either of the two directions of an edge as the canonical

one. The language of differential forms makes it possible to give global meaning to

the differential of a function on Γ without committing to any particular coordinate,

xe , on each edge. In discussing the behavior of functions (and their derivatives) in the

neighborhood of any one vertex, therefore, we remain free to use the most convenient

coordinate on each edge, namely, the outgoing arc length parameter.

3.3. Scattering matrices

In this subsection we introduce, following [12, 14], the scattering matrices and some of

their properties that we will need in the rest of the text.

Let H be a self-adjoint realization of the negative second derivative −d2/dx2 on

a finite quantum graph Γ (i.e., one of the self-adjoint vertex conditions described in

Theorem 2 is imposed).

Let us consider a vertex v and the set Ev of all edges e incident to it. (Such a

configuration is called a star; see Fig. 1.) For any edge e0 ∈ Ev and any real k, we

•......................................................................................
.............
.............
.............
.............
.............
.............

..........
..........
..........
..........
..........
..........
......

......................................................................

............................................................

Figure 1. A star.

choose as in section 1 the coordinate x increasing away from the vertex and consider

the unique solution f(x) on the star Ev of the following scattering problem at v:


− d2f

dx2
= k2f(x) on each edge e ∈ Ev ,

f(x) = e−ikx + σ(v)
e0e0

eikx on e0 ,

f(x) = σ(v)
e0ee

ikx on e 6= e0 ,

vertex conditions are satisfied at v.

(15)

In other words, σ
(v)
e0e0 is the reflection coefficient along the bond e0 , and σ

(v)
e0e is the

transmission coefficient from the edge e0 to e. Notice that the coefficients σ
(v)
e0e in general

depend on k.
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Definition 7. The unitary dv × dv matrix σ(v)(k) with the entries σ
(v)
e1e2(k) for ej ∈ Ev

is the edge scattering matrix at the vertex v.

Notice that in defining σ(v) the direction chosen along each edge depends on the

vertex considered. That is why it becomes necessary to deal with directed bonds when a

scattering matrix S for the whole graph is defined. However, as explained in section 3.2,

the ambiguity in xe does not create any inconsistency in the notation. Another remark

is that this matrix clearly depends upon what type of vertex conditions are imposed, and

not every matrix function σ(v)(k) can necessarily be realized by one of the second-order

differential Hamiltonians studied here.

It is straightforward to derive the formula [12]

σ(v)(k) = −(Av + ikBv)
−1(Av − ikBv), (16)

which in particular confirms that the matrix is unitary and shows that its k-dependence

is tightly constrained. From (12) we get an alternative representation of σ:

σ(v)(k) = Pv −Qv + (Λv − ik)−1(Λv + ik)Cv . (17)

The following result will be important for what follows. A part of it was proved by

Kostrykin and Schrader ([11, Proposition 2.4]), [12, Corollary 2.3], [13, Theorem 1]).

Theorem 8. The following conditions are equivalent:

(i) For each vertex v, σ(v) is independent of k.

(ii) For each vertex v, there is a value k 6= 0 such that (σ(v))2 = 1.

(iii) For each vertex v, (σ(v))2 = 1 for all k.

(iv) For each vertex v, σ(v) has the form 1− 2Qv for some orthogonal projection Qv .

(v) There is no Robin part in the vertex conditions: Cv = 0 for each vertex v.

(vi) The vertex conditions are scale-invariant (i.e., if a function f(x) on neighborhood

of v in the star Ev satisfies the vertex conditions at v, then after rescaling to f(rx),

it still satisfies the conditions).

(vii) The Hamiltonian H = − d2

dx2 with the given vertex conditions can be factored as

H = A∗A, where A = d
dx

with appropriate vertex conditions, and A∗ is its adjoint

operator.

Proof. Equivalence of statements (i) through (iv) was proved by Kostrykin and Schrader;

it also follows rather easily from (17).

Computing (σ(v))2 using (17), we get

(σ(v))2 = Pv + Qv +

(
Λv + ik

Λv − ik

)2

Cv . (18)

If Cv 6= 0, then in order to get σ2 = 1, we need that
(

Λv+ik
Λv−ik

)2

= 1. A straightforward

calculation shows that this is impossible for an invertible operator Λ and a non-zero k.

This proves equivalence of (iii) and (v).

Equivalence of (v) and (vi) is trivial.
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The implication (vii) ⇒ (v) can be established as follows. The vertex conditions

for A can involve only the values of the function, not its derivatives. Thus, at any

vertex v they can be written as PvF (v) = 0 for some orthogonal projector Pv . Then

a simple and well known (e.g., [12]) calculation, which boils down to an integration by

parts, shows that for the adjoint operator − d
dx

, the vertex conditions are given by the

complementary projector Qv = 1 − Pv . The equality H = A∗A now implies that the

vertex conditions for H have Pv as the Dirichlet and Qv as the Neumann part, with no

Robin part being present. This argument can easily be reversed to show the converse

implication, (v) ⇒ (vii).

Corollary 9. The scattering matrices σ for the Hamiltonian − d2

dx2 with Kirchhoff or

anti-Kirchhoff boundary conditions satisfy the equivalent conditions of Theorem 8.

We now introduce the global scattering matrix Sαβ , entries of which are indexed by

the directed bonds α and β.

Definition 10. The 2E × 2E (global) scattering matrix S is defined as follows:

Sβα =

{
σ

(v)
βα if α terminates at v and β starts at v,

0 otherwise,
(19)

where α and β are (directed) bonds in Γ.

Proposition 11. Let H satisfy the equivalent conditions of Theorem 8, so that it factors

as H = A∗A as in (vii) of the theorem. Let also H ′ ≡ AA∗. We also denote by σ′ and

S ′ the scattering matrices for H ′. Then

σ
(v)
αβ = −(σ′)(v)

αβ ,

Sαβ = −(S ′)αβ

(20)

for any vertex v and any bonds α, β.

Proof. Indeed, it is clear that for H ′ the projectors Pv and Qv exchange their places,

while Cv = 0. Then formulas (17) and (19) prove the statement.

3.4. Indexes of quantum graph operators

As it happens, one can establish a simple formula for the index of any (elliptic)

differential operator on a compact quantum graph Γ, which in particular implies the

index formulas for the exterior-derivative operators A introduced previously.

First we need to review the basic notions concerning the Fredholm property and

the index (see, e.g., [10]). Recall that the codimension of a (closed) subspace E ⊂ H

is defined as the dimension of the quotient space H/E, or, equivalently (in a Hilbert

space), the dimension of an orthogonal complement of E.

Definition 12. A bounded operator T : H1 → H2 between two Hilbert (or Banach) spaces

is said to be Fredholm, if it has a closed range and the dimension of its kernel ker T
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and the codimension of its range ran T are finite. The index of a Fredholm operator T

is defined as

index T = dim ker T − codim ran T.

Proposition 13. If operator T is Fredholm and operator K is compact (in particular,

of finite rank), then T + K is also Fredholm and index(T + K) = index T .

To formulate the main theorem for a differential operator of arbitrary order it is

convenient to choose an orientation for each edge, so that the arc length parameter xe

is unambiguous.

Theorem 14. Consider the operator on Γ defined by the differential expression of

order m

T =
m∑

j=0

cj(xe)
dm−j

dxm−j
e

(21)

with c0(x) continuous on each closed edge (but not necessarily on the whole graph) and

never equal to 0 and all other cj measurable and bounded. Let T1 be the restriction of

T as an operator from ⊕eH
m(e) into L2(Γ) to a subspace of codimension p (e.g., by

imposing p vertex conditions sustainable by Hm, i.e., involving derivatives up to the

order m− 1). Then

(i) The operator so defined is Fredholm.

(ii) index T1 = mE − p. (22)

Proof. Consider T as the naturally defined (and obviously bounded) operator from

⊕eH
m(e) into L2(Γ). All terms in T that involve derivatives of order less than m are

compact operators and thus do not influence the Fredholm property or the index. Thus,

we can assume that T = c0(xe)
dm

dxm
e

. This is now the composition of dm

dxm
e

acting from

⊕eH
m(e) to L2(Γ) with the invertible operator of multiplication by c0(x) in L2(Γ). Thus,

everything reduces to the mth derivative alone. It is easy to show that it is a surjective

operator from Hm(e) onto the whole L2(e) (and thus from ⊕eH
m(e) onto L2(Γ)). On

each edge, it has the m-dimensional kernel consisting of polynomials of degree less than

m. Thus, T is Fredholm and

index T =
∑

e

(m− 0) = mE.

Let us now notice that by definition, T1 is the restriction of T onto a subspace M

of codimension p. Consider any (p-dimensional) complement N to M in ⊕eH
m(e) and

the extension T̃ of T1 from M to the whole ⊕eH
m(e) that acts as the zero operator on

N . Then the difference T − T̃ vanishes on M and thus is a finite-dimensional operator.

Hence, T̃ is Fredholm of the same index mE as T .

On the other hand, it is clear that the ranges of T̃ and T1 are the same and the

kernel of T̃ is p dimensions larger than the kernel of T . Hence, T is Fredholm and

index T = index T̃ − p = mE − p.
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This implies in particular

Corollary 15. Let A be the exterior derivative d acting as a bounded operator from

a subspace M of codimension p in
⊕

e H1(e) into L2(Γ). This operator is Fredholm of

index E − p. Therefore,

index A = E − p = E −
∑

v

dim Pv , (23)

where Pv are the orthogonal projectors describing the vertex conditions for A. Thus, in

particular,

(i) Without any vertex conditions, one has index A = E.

(ii) With continuity conditions (13a) at all vertices, one has

index A = E −
∑

v

(dv − 1) = E − (2E − V ) = V −E.

(iii) With the condition (14a) that the sum of values at each vertex is equal to zero, one

has

index A = E −
∑

v

1 = E − V.

Notice that
∑

v dim Pv arising in this corollary is just the number of vertex

conditions defining H that contain only the values of the function and no derivatives

(Dirichlet part of the conditions).

4. Heat kernel and index

In this section we address the relation between the heat trace asymptotics and the index

on quantum graphs. Most of the considerations are independent of Theorem 14.

We will assume from now on that Γ is an arbitrary quantum graph and the

Hamiltonian H satisfies the conditions of the Theorem 8, so that it factors as H = A∗A,

where A = d/dx with some vertex conditions on the values of functions, such conditions

corresponding at any vertex v to an orthogonal projector Pv in Cdv . Then, as before,

we denote by H ′ the operator AA∗ with the vertex conditions given by the orthogonal

projector Qv = 1 − Pv . Let also K and K ′ be the corresponding heat kernels. The

following proposition is standard.

Proposition 16. In the situation just described,

index A = Tr K − Tr K ′. (24)

Proof. The non-zero eigenvalues of H = A∗A and H ′ = AA∗ are the same, including

their multiplicity. The only exception is that the dimensions of the eigenspaces for the

eigenvalue 0 are different. Thus, the difference of the heat kernel traces is guaranteed

to be independent of t. At large t this difference reduces to the difference of the

nullities (i.e., dimensions of the kernels), and at small t it reduces to the difference

of the constant terms in the heat-kernel expansions. See, for instance, [6] for a more
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Figure 2. A bounce path αα3α2α1α with n = 3.

detailed exposition. Now, since the nullity of H is clearly equal to that of A, and that of

H ′ coincides with that of A∗, one concludes that Tr K−Tr K ′ = dim ker H−dim ker H ′ =
dim ker A− dim ker A∗ = index A.

We now need to establish a formula for the constant term of a heat trace:

Theorem 17. [19, 1] Let Γ be a finite quantum graph with scale-invariant vertex

conditions defining the Laplacian. (Thus the bond-to-bond scattering matrix Sαβ is

independent of the frequency k). Let K(t, x, y) be the corresponding heat kernel on Γ.

Then the constant term in the asymptotic expansion at t → 0 of the heat trace
∞∑

n=0

e−λnt =

∫
Γ

K(t, x, x) dx (25)

is
1

4

∑
α

Sαα . (26)

(See Definition 10 for Sαβ.)

Sketch of proof. The theorem is proved in [1] for a different kernel, but as stressed in

[19] the same argument applies to a whole class of kernels, including the heat kernel.

(See also [18, 11].) Starting from the standard one-dimensional heat kernel on the real

line,

K0(t, x, 0) ≡ (4πt)−1/2e−x2/4t, (27)

by an extension of the method of images one constructs the heat kernel on the graph

as a sum over all paths from y to x, which then needs to be restricted to the diagonal

y = x. The heat trace is formed then by integrating over x. As in [18], the contributions

of the periodic paths, i.e., the ones that return to the point x with the same direction

as at the start, are proportional to Gaussian terms e−L2
q/4t and cannot contribute to

the t-independent term of the heat-kernel expansion. The path of zero length gives

the leading Weyl term, proportional to t−1/2. The contribution of the other class of

paths, which are closed but not periodic (“bounce” paths), αpα, where p is a cycle in Γ

(see Fig. 2, where the triangle represents the cycle p and the point x is located on the

bond α), can be reduced to the following sum:

1

2

∑
n

∑
p∈Pn

∑
α

Aαpα

∫ lp+2Lα

lp

K0(t, x) dx. (28)
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(The condition of k-independence of the scattering matrix is used here.) We denote here

by Pn the set of cycles of period (number of edges traversed, including multiplicity) n.

E.g., in Fig. 2, the cycle p = α1α2α3 has period 3. We also use here notations Lα for the

length of the bond α and lp for the metric length of the cycle p (e.g., lp = Lα1 +Lα2 +Lα3

in Fig. 2). The shorthand notation Aαpα is used for the product of scattering amplitudes

along the path

Aαpα = Sα,αnSαn,αn−1 · · ·Sα1,α .

One can now make a sequence of reductions [19, 1]: The unipotency property, σ2 = 1,

of the scattering matrix (see Theorem 8) leads to∑
α

Sα,αnSαn,αn−1 · · ·Sα1,α = δα1,αnSαn,αn−1 · · ·Sα2,α1 .

This allows a massive inductive reduction of the sum (28), in the course of which one

must also combine the α-dependent factors
∫ lp+2Lα

lp
K0(t, x) dx. One eventually arrives

at the following representation of (28):

1

2

∑
α

Sαα

∫ ∞

0

K0(t, x) dx. (29)

From (29) and (27) one obtains (26) as the total contribution of all these “bounce”

paths. This finishes the proof of Theorem 17.

Example. It is well known (e.g., [14]) that at a Kirchhoff vertex of degree dv the

scattering matrix is

σ
(v)
ef =

2

dv
− δef . (30)

For an entirely Kirchhoff graph, therefore, we have

1

4

∑
α

Sαα =
1

4

V∑
v=1

(
2

dv
− 1

)
dv =

1

2
V − 1

2
E, (31)

since every edge is incident on two vertices. This reproduces Roth’s formula (2). By

a similar calculation, or by appealing to Proposition 11, one sees that in the case of

a graph all of whose vertices are of the anti-Kirchhoff type, the resulting term is the

negative of (31).

Proposition 18. In the context of Proposition 16, TrK − Tr K ′ is equal to twice the

constant term in the small-t expansion of Tr K.

Proof. Proposition 11 and Theorem 17 imply that the constant term in Tr K is the

negative of that in Tr K ′. The proof of Proposition 16 shows that only these constant

terms survive when the traces are subtracted.
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Corollary 19. Under the conditions of Theorem 17 and Proposition 16, the following

alternative representations hold for the index of A:

index A =
1

2

∑
α

Sαα = Tr K − Tr K ′ = E −
∑

v

dim Pv = E − p, (32)

where H = A∗A is the factorization of the Hamiltonian in accordance with (vii) in

Theorem 8, K and K ′ are the heat kernels of H and A∗A, E is the number of undirected

edges in Γ, Pv is the projector onto the Dirichlet part of the vertex conditions, and p is the

total number of vertex conditions not involving derivatives. Furthermore, Tr K − Tr K ′

can be read off from the asymptotics of a single heat kernel by virtue of Proposition 18.

Proof. The last two equalities are quoted from (23) for completeness. The rest of the

corollary summarizes the results of this subsection.

4.1. The Euler characteristic

We now look at the special situation of Kirchhoff conditions to see the implications of

Corollaries 19 and 15 there.

It is convenient to consider first-order operators on quantum graphs as defined in

terms of differential forms, rather than functions, introducing thus an analogue of the

de Rham complex. Therefore, we henceforth identify A with d: Λ0(Γ) → Λ1(Γ) and A∗

with δ: Λ1(Γ) → Λ0(Γ) (on appropriately restricted domains).

Theorem 20. Let HK and HA be the Kirchhoff and anti-Kirchhoff Laplacians on a

compact quantum graph Γ (acting in Λ0(Γ) and Λ1(Γ) respectively), KK and KA be the

corresponding heat kernels, and d and δ = d∗ be the external derivative operators (with

the domains defined by the continuity conditions for d and the sum of values equal to

zero at each vertex for δ), so that

HK = δd and HA = dδ. (33)

Then

index d = Tr KK − Tr KA = V −E, (34)

the Euler characteristic of Γ.

Proof. Either the first formula (with (31)) or the last formula in (32) can be used to

calculate the index.

Corollary 21. Let C be the number of connected components of Γ. Then

dim ker d = dim ker HK = C (35)

and

dim ker δ = dim ker HA = E − V + C. (36)

In particular, in the connected case

dim ker δ = E − V + 1 = r, (37)

the rank of the fundamental group of Γ.
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Proof. Equality (35) is immediate, since the zero modes of HK are constant on each

component. Now the index theorem (34) yields (36).

Remark 22. Equation (36) counts the locally constant differential 1-forms satisfying

(14a). It is 0 for a tree graph (where (14a) must be violated at the leaves) and 1 for a

cycle. In general, it counts the independent cycles in the graph.

5. Relation to the secular determinant

Kottos and Smilansky [14] derived their trace formula for the density of states of a

(compact) quantum graph from a certain secular equation,

f(k) ≡ det[U(k)− 1] = 0. (38)

In terms of frequency the density of states is

ρ(k) =
∞∑

n=0

δ(k − |kn|) ≡ N0δ(k) + ρ1(k), (39)

where N0 is the true spectral multiplicity of 0 as an eigenvalue, and ρ1(k) is the

contribution of the positive eigenvalues, λn = kn
2, appearing with multiplicity. (We

assume there are no negative eigenvalues. According to [14, 17, 8, 16], for strictly

positive eigenvalues the spectral multiplicity is equal to the multiplicity as a root of

(38), but the situation for k = 0 is quite different.) The secular function f defines a

distribution ρ̃(k) on the entire real line by

ρ̃[φ] ≡ lim
ε↓0

1

4πi

∫ ∞

−∞

(
f ′(k − iε)

f(k − iε)
− f ′(k + iε)

f(k + iε)

)
φ(k) dk (40)

=
1

2

∞∑
n=−∞

φ(kn), (41)

the sum being over all zeros of f (with multiplicity), including the possible one at k = 0,

whose algebraic multiplicity as a root of (38) we shall denote Ñ . If k is a nonzero root

of f , then so is −k. The positive eigenvalues are the squares of the nonzero roots of f ;

thus every positive eigenvalue appears in the sum (41) twice (times its multiplicity), and

hence (39) is correctly reproduced on the positive axis by ρ̃. The spectral multiplicity

N0 , however, is generally equal neither to Ñ nor to 1
2
Ñ . Furthermore, Ñ itself has

proved difficult to calculate reliably [14, 17, 8, 16].

From the foregoing definitions and discussion it follows that

ρ(k) =

{
(N0 − 1

2
Ñ)δ(k) + ρ̃(k) for k ≥ 0,

0 for k < 0

≡ h(k)[(N0 − 1
2
Ñ)δ(k) + ρ̃(k)], (42)

where h is the unit step function and (because the product hδ would otherwise be

ambiguous) we stipulate that hδ[φ] ≡ φ(0) (not 1
2
φ(0)). In terms of the density of

states, (1) can be rewritten as∫ ∞

−∞
e−k2tρ(k) dk = Tr K = K1 + K2 + K3 .
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The derivation of the trace formula [14, 17, 8, 16] makes clear that ρ̃ yields precisely the

leading Weyl term and the oscillatory (periodic-orbit) terms in the density of states. It

follows (cf. discussion following (1)) that the contribution of ρ̃ to the heat kernel is the

terms K1 and K2 . The remaining term in (42), proportional to δ(k), must therefore be

responsible for precisely the constant term K3 in the heat kernel. We reemphasize that

the coefficient of those terms is not N0 , the coefficient of δ(k) in the spectral density ρ.

That is not a paradox: The distributionally convergent periodic-orbit sum ρ̃ contains

another δ(k) contribution to ρ that restores consistency with (39).

On the other hand, we now know from previous sections that K3 , for a scale-

invariant Laplacian, is equal to half the index of the associated first-order operator, A.

The index, in turn, equals E − p, where E is the number of (undirected) edges and p is

the number of Dirichlet conditions. Furthermore, we have index A = N0 − N∗
0 , where

N∗
0 is the nullity of A∗ and hence of the operator dual to H . Therefore, we immediately

get two interesting identities:

Corollary 23. Let N0 and Ñ be the spectral and algebraic multiplicities of k = 0 for

a scale-invariant graph Laplacian, A∗A, and let N∗
0 be the spectral multiplicity for the

dual Laplacian, AA∗. Then

Ñ = 2N0 − index A = 2N0 − E + p (43)

and

Ñ = N0 + N∗
0 . (44)

Example 1: For HK , the Laplacian of a connected Kirchhoff graph, one has N0 = 1

and index A = index d = V − E. Therefore, Ñ = 2 − V + E, in agreement with [17,

corrigendum] and [16].

Example 2: For the pure Neumann Laplacian HN of section 3.4, one has N0 = E

and p = 0, so Ñ = E. This is correct, because 0 appears as a root of f once for each

disconnected Neumann edge.

Kurasov [16] gives a convincing direct calculation of Ñ for the Kirchhoff case. On

that basis he deduces that the Euler characteristic (2) is determined by the spectrum

of HK . Thus the direction of the logic in [16] is roughly the reverse of that in the present

paper. Our derivation of Corollary 23 is simpler (as well as more general).

6. Conclusions and additional remarks

We have demonstrated that the “topological” term in the heat-kernel expansion for a

Laplacian on a quantum graph does indeed have an index interpretation, if the Laplacian

is of the scale-invariant class (i.e., the boundary conditions do not mix function values

and derivatives, and hence the scattering matrix is independent of k). Such a Laplacian

factors into two first-order operators, A and A∗, defined on domains determined by those

boundary conditions.

One can calculate the index in three ways: (1) in the usual way, by subtracting the

heat kernel of AA∗ from that of A∗A (Proposition 16 and Theorem 20); (2) by inspection
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of just the heat kernel of A∗A (Proposition 18 and Corollary 19); (3) just by counting

the number of Dirichlet-type conditions (Theorem 14 and Corollary 15).

A general index formula has been derived for an arbitrary (elliptic) differential

operator on a quantum graph (Theorem 14).

Along the way, we have provided some properties of the Hamiltonian that are

equivalent to the scale invariance of the vertex conditions (Theorem 8).

Finally, we have determined the algebraic multiplicity of 0 as a root of the secular

equation of a generic scale-invariant graph Laplacian in a novel way (Corollary 23).

We now add a few final remarks concerning the results of the paper:

• There is an elementary sense in which the integer V − E encountered in (2) is

associated with an operator index. A graph as a purely combinatorial object (with

no lengths assigned to the edges) is described in graph theory by the incidence

matrix, whose rows are indexed by the vertices and its columns by the edges. Each

matrix entry is equal to either 0, 1, or 2, depending on whether that edge is not or

is attached to that vertex or forms a loop there. Then it is easy to see that (just

because of the matrix’s dimensions) the index of the incidence matrix is equal to

E − V .

• The restriction to “local” vertex conditions in Theorem 2 and elsewhere has very

little content. Indeed, the structure of the graph enters the problem only through

the vertex conditions, and one could define a vertex as a subset of edges that are

related by such conditions. Alternatively, one could think that all vertices of a

quantum graph have collapsed into a single one (creating a “rosette” consisting of

one vertex and E cycles attached). Since all (whether previously local or nonlocal)

vertex conditions refer to this single vertex, all conditions have become local. This

is impossible only if we need to enforce some specific type of vertex conditions, e.g.,

the Kirchhoff ones; after the graph collapses to a rosette, the vertex conditions will

generally no longer be of that type.

• Kirchhoff conditions on Λ0(Γ) and anti-Kirchhoff conditions on Λ1(Γ) seem to be

quite natural, whereas the interchanged conditions look rather unnatural. The

situation for manifolds is different: there one can either impose Neumann conditions

on forms of even degree and Dirichlet conditions on forms of odd degree, or do the

reverse. The two choices correspond to two different cohomology theories for the

manifold, “absolute” and “relative” [6, 7].

• Carlson [2] also constructs second-order self-adjoint operators on quantum graphs

in terms of first-order operators, but his construction is rather different from ours.

More pertinent are the remarks of Friedman and Tillich [5] and Exner and Post [3]

that derivatives on quantum graphs should be treated as 1-forms (or vector fields).

• An extension of the first-order formulation of the index theorem to operators H

with a nontrivial Robin part, Cv 6= 0, is not to be expected. As pointed out

by V. Kostrykin, in general either H or its dual will have negative spectrum,

whereas operators of form A∗A and AA∗ must both be positive. This impossibility
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of factorization is also contained in the statement (vii) of Theorem 8. On the other

hand, inserting “Robin” operators Λv into the definition of H does not change the

t-independent terms of Tr KH and its dual, which are the ingredients of the formula

for the index of the second-order operator.
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